Proving Properties of States in the
Situation Calculus

Raymond Reiter
Department of Computer Science
University of Toronto

Toronto, Canada M5S 1A4

and
The Canadian Institute for Advanced Research
email: reiter@ai.toronto.edu

Abstract

In the situation calculus, it is sometimes necessary to prove that
certain properties are true in all world states accessible from the initial
state. This is the case for some forms of reasoning about the physi-
cal world, for certain planning applications, and for verifying integrity
constraints in databases. Not surprisingly, this requires a suitable form
of mathematical induction. This paper motivates the need for prov-
ing properties of states in the situation calculus, proposes appropriate
induction principles for this task, and gives examples of their use in
databases and for reasoning about the physical world.

Abbreviated title: Proving Properties of States

1 Introduction

The situation calculus [8] is enjoying new popularity these days. One rea-
son is that its expressiveness is considerably richer than has been commonly
believed (Gelfond, Lifschitz and Rabinov [2], Pinto and Reiter [10], Schubert
[16]). Another is the possibility of precisely characterizing the strengths and
limitations of various general theories of actions expressed within its formalism
(see Lin and Shoham [7], Lifschitz [5] and Reiter [12] for examples). Still an-
other concerns its application in formalizing update transactions in database
theory (Reiter [12, 15]).

Within the situation calculus, it is sometimes necessary to prove that cer-
tain properties are true in all world states accessible from the initial state.
This is the case in reasoning about the physical world, where, for example,
one might want to infer that if an object is broken, and if it never gets re-
paired, then it will always be broken. The same kinds of proofs are required in
planning to show that no plan exists to achieve a certain world state. A closely
related need for proving properties of world states arises in database theory,
in connection with the verification of integrity constraints. An integrity con-
straint for a database specifies what counts as a legal database state; it is a
property that every state must satisfy, for example, the property that no one’s
salary may decrease during the evolution of a personnel database. Verifying
that a database satisfies a particular integrity constraint amounts to proving
that the constraint is an entailment of the database. Not surprisingly, such
proofs require a suitable form of mathematical induction.

This paper motivates the need for proving properties of states in the sit-
uation calculus, proposes appropriate induction principles for this task, and
gives examples of their use in databases and in reasoning about the physical
world.

2 Why Prove Properties of World States?

The kinds of properties we have in mind are of the form “No matter how
the world evolves from its initial state, such-and-such will be true.” There
are at least three reasons for wanting to prove such properties, one having
to do with reasoning about the physical world, another with certain planning
applications, and a third with verifying integrity constraints in databases.

2.1 Reasoning about the Physical World

Many facts about the world concern properties which must hold no matter
how the world unfolds, for example, if an object is broken and it never gets
repaired, then it will always be broken.

(Va).broken(x, So) A [(Vs).So < s D —occurs(repair(z),s)] D (1)
(Vs').S0 < &' D broken(x,s').

Here,

e Sy denotes the initial state of the world.

o s < s’ means that s’ is a possible future of s, i.e. that it is possible to
reach state s’ via some sequence of actions, beginning with state s.!

e occurs(a,s) means that a is one of the actions in the sequence of actions
leading from Sy to s.

One concern of this paper is how an agent might derive such facts from some

background situation calculus axiomatization.

2.2 Planning

The standard logical account of planning views this as a theorem proving task
(Green [3]): To obtain a plan whose execution will lead to a world state s in
which the goal G(s) will be true, establish that

Azioms |= (38).S0 < s A G(s).

Sometimes we would like to establish that no plan could possibly lead to a
given world state. This is the problem of establishing that

Azioms = (Vs).5 < s D =G(s),

i.e. that in all possible future world states, G will be false.?

1See Section 3 below for an axiomatization of <.
2] am grateful to Fangzhen Lin for pointing out this use, in planning, for proofs that
certain properties must be true in all world states.

2.3 Integrity Constraints in Database Theory

In the theory of databases, an integrity constraint specifies what counts as a
legal database state; it is a property that every database state must satisfy
(Reiter [11]). For example,

e Salaries are functional: No one may have two different salaries in the
same database state.

e No one’s salary may decrease during the evolution of the database.

The concept of an integrity constraint is intimately connected with that of
database evolution; no matter how the database evolves, the constraint must
be true in all database futures. It follows that in order to make formal sense
of integrity constraints, we need a prior theory of database evolution. How do
databases change? One way is via predefined update transactions, e.g.

e Change a person’s salary to $.

e Register a student in a course.

We shall assume that such transactions provide the only mechanism for database
state changes.

Following Reiter [14, 15], we propose that databases be represented in the
situation calculus; updatable relations will be fluents, i.e. they will take a state
argument. Moreover, update transactions will be treated exactly like actions
in the Al planning domain, so that transactions will be functions. The next
section illustrates this approach to the representation of databases and their
transactions within the situation calculus.

2.3.1 The Basic Approach to Specifying Database Transactions:
An Example

We consider a toy education database to illustrate our approach to specifying

update transactions.

Relations

The database involves the following three relations:

1. enrolled(st,course, s): Student st is enrolled in course course when the
database is in state s.

2. grade(st,course, grade, s): The grade of student st in course course is
grade when the database is in state s.

3. prerequ(pre, course): pre is a prerequisite course for course course. No-
tice that this relation is state independent, so is not expected to change
during the evolution of the database.

Initial Database State

We assume given some first order specification of what is true of the initial
state Sy of the database. These will be arbitrary first order sentences, the only
restriction being that those predicates which mention a state, mention only the
initial state Sp. Incomplete initial database states are permitted. Examples of
information which might be true in the initial state are:

enrolled(Sue, C100, Sp) V enrolled(Sue, C200, Sy),

(c)enrolled(Bill, ¢, Sp),

(Vp).prerequ(p, P300) = p = P100V p = M 100,
(Vp)—prerequ(p, C'100),
(Ve).enrolled(Bill, ¢, So) = ¢ = M100 V ¢ = C'100 V ¢ = P200,
enrolled(Mary,C100,Sy), —enrolled(John, M200,Sy),...
grade(Sue, P300,75,Sy), grade(Bull, M200,70,5),...
prerequ(M200, M100), -prerequ(M100,C100),...

Database Transactions

Update transactions will be denoted by function symbols, and will be treated
exactly as are actions in the situation calculus. For the example, there will be
three transactions:

1. register(st, course): Register student st in course course.

2. change(st, course, grade): Change the current grade of student st in
course course to grade.

3. drop(st,course): Student st drops course course.

Transaction Preconditions

Normally, transactions have preconditions which must be satisfied by the cur-
rent database state before the transaction can be “executed”. In the example,
it will be possible to register a student in a course iff she has obtained a grade
of at least 50 in all prerequisites for the course:

Poss(register(st,c), s) = {(Vp).prerequ(p,c) D (3g).grade(st, p, g, s)A\g > 50}.

It is possible to change a student’s grade iff he has a grade which is different
than the new grade:

Poss(change(st,c,g),s) = (3¢').grade(st,c,q',s) N g’ # g.
A student may drop a course iff the student is currently enrolled in that course:

Poss(drop(st,c),s) = enrolled(st,c, s).

Update Specifications

The following axioms specify the effects of the transactions on the database
relations:

Poss(register(st,c),s) D enrolled(st, ¢, do(register(st,c), s)).

Poss(drop(st,c),s) D —enrolled(st, c,do(drop(st,c), s)).
Poss(change(st,c,g),s) D grade(st,c,g,do(change(st,c,g),s)).

As is well known in the planning literature (McCarthy and Hayes [9]), the
above axioms are not sufficient to correctly specify all database futures; frame
aztoms, specifying those relations left invariant by each transaction, must also
be provided. We defer proposing such frame axioms until Section 4.1; in the
mean time, assume they have also been provided in conjunction with the above
update specification axioms.

2.3.2 Integrity Constraints Revisited

Recall that an integrity constraint specifies what counts as a legal database
state; it is a property that every database state must satisfy. Accordingly, it is
natural to represent these as first order sentences, universally quantified over

states. For example, no one may have two different grades for the same course
in any database state:

(Vs)(Vst, e, g,9").5 < s A grade(st, e, g,s) A grade(st,c,g', s))
= (2)

29=4g.

In a personnel database, we might require that salaries must never decrease

during the evolution of the database:

(Vs,s")(Vp,$,9).5 < sAs<s Asal(p,$,s) A sal(p,$,s") (3)
D5 <§.

These intuitions lead to:

Definition: Constraint Satisfaction

A database satisfies an integrity constraint IC' iff the database entails the
constraint:

Database = IC?

As it happens, state constraints, as they arise in the context of the ramifica-
tion problem (Finger [1], Lin and Shoham [7]), have exactly the same character
as database integrity constraints, and can be given an identical treatment. See
Lin and Reiter [6] for details. Within the database community, the notion of
integrity constraints as inductive entailments has been proposed, and imple-
mented, by Sheard and Stemple [17] in the context of relational databases.

2.4 Summary

There are at least three reasons for wanting to prove properties of states in the
situation calculus, one having to do with reasoning about the physical world,
another with showing that no plan exists for certain planning problems, and
the third with verifying integrity constraints in databases. In general, we shall
assume given some situation calculus axiomatization, with a distinguished inz-
tial state Sy. Using this axiomatization, our objective is to prove properties
of all states accessible (via some finite sequence of possible actions) from Sp,

3This definition should be contrasted with those in Reiter [11, 13]. Tt seems that there
is not a unitary concept of integrity constraint in database theory, and that there are many
subtleties involved.

for example, sentences like (1), (2) and (3). Notice that these sentences are
universally quantified over states, in contrast to the standard theorem-proving
account of plan synthesis (Green [3]), which requires proofs of sentences exis-
tentially quantified over states.

Not too surprisingly, proving such universally quantified sentences requires
mathematical induction. Just what form these induction principles should
take is the subject of the next section.

3 Formulating Suitable Induction Axioms

There is a close analogy between the situation calculus and the theory of
the natural numbers; simply identify Sy with the natural number 0, and
do(Addl, s) with the successor of the natural number s. In effect, an axioma-
tization in the situation calculus is a theory in which each “natural number”
s has arbitrarily many successors.* Just as an induction axiom is necessary
to prove anything interesting about the natural numbers, so also is induc-
tion required to prove general properties of states. This section is devoted to
formulating some induction principles suitable for this task.

We shall use a many-sorted language for the situation calculus. The two
domain independent sorts are state and action. There is a unique state con-
stant symbol, Sy, denoting the initial state, and a binary state function symbol
do with arguments of sort state and action, respectively. Throughout, variables
s and a, with, or without subscripts and superscripts, will be of sort state and
action, respectively.

We begin by postulating a second order induction axiom:

(VP).P(So) A (Va, s)[P(s) D P(do(a,s))] D (Vs)P(s). (4)
Compare this with the induction axiom for the natural numbers:
(VP).P(0) A (Va)[P(z) D P(suce(z))] D (Va)P(z).

Just as the induction axiom for the natural numbers restricts the domain of
numbers to 0 and its successors, the effect of the induction axiom (4) is to
restrict the state domain of any of its models to be isomorphic to the smallest
set S satisfying:

4There could even be infinitely many successors whenever an action is parameterized by
a real number, as for example move(block, location).

1. So€8.
2.1f S € § and A € A, then do(A,S) € S, where A is the domain of

actions in the model.

Not every action is executable in every state. Accordingly, we introduce
a binary predicate Poss(a,s), meaning that it is possible to execute action a
in state s. Next, we define an ordering relation < on states. The intended
interpretation of s < s’ is that state s’ is reachable from state s by some
sequence of one or more actions, each action of which is possible in that state
resulting from executing the actions preceding it in the sequence.

(Vs)—s < So. (5)

(Va,s,s').s < do(a,s') = Poss(a,s') Ns < s (6)

Here, s < s’ is an abbreviation for s < s’V s = s’
In the sequel, we shall refer to the above three axioms (4), (5) and (6) as
the foundational axioms.

Proposition 1 The following sentence is entailed by the foundational axioms:

(Vs,s').s < 8" = (YP)A{[(Va,s1).Poss(a,s1) D P(s1,do(a,s1))|A
[(Va, s1,82).Poss(a, s3) A P(s1,82) D P(s1,do(a, s2))]} (7)
D P(s,s').

Proof:
(<) Take P to be < in (7) and use (6).

(=) Do induction (axiom (4)) on s’ in the formula

(Vs).s < s D (VP).{[(Va,s1).Poss(a,s1) D P(s1,do(a,s1))]A
[(Va, s1,82).Poss(a, s3) A P(s1,82) D P(s1,do(a, s2))]}
D P(s,s').

—
—
—

Proposition 1 informs us that < is the smallest binary relation on states
such that:

1. 0 <o, and

2. 0 < do(a,c') whenever action « is possible in state o’ and o < ¢,

Theorem 1 The following sentence is entailed by the foundational axioms:

(YW).W(So) A [(Va,s).Poss(a,s) AN So < s ANW(s) D W(do(a,s))] (IPs,<1)
D (Vs).50 < s D W(s). 0<s

Proof:

Let W be a unary predicate variable. Using (6) and the instance W(s) D s <
sS'AW(s') for P(s,s') in (7), we can derive the following second order sentence:

(YW)(Vs) AW (s) A [(Va, s1). W (s1) As < 51 A Poss(a,s1) D W(do(a,s1))]}
D (Vs').s < s D W(s).

The theorem is established by taking the instance Sy of s in this.

—
—
—

Sentence (I Ps,<s) provides an induction principle suitable for proving prop-
erties of states s when Sy < s.

Frequently, we shall want to prove sentences of the form
(Vs,s').50 < sAs<s" DR(s,s).

The integrity constraint (3) is an example. Towards that end, we now derive
a suitable induction principle.

Theorem 2 The following sentence is entailed by the foundational axioms:
(VR).R(So, So) A
[(Va,s).Poss(a,s) N So < s A R(s,s) D R(do(a, s),do(a,s))] A

[(Va,s,s).Poss(a,s') N So < sAs<s' AR(s,s') D R(s,do(a,s))] (IPsys)
D (Vs,8).50 <sAs<s DR(s,s).

Proof: Using (7), we can derive:
(Vs,s').s <s' D
(YP)A{P(s,s)A[(Va,s1).Poss(a,s1) D P(s1,do(a,s1))] A

[(Va, sy, 82).Poss(a, sy) A P(s1,82) D P(s1,do(a,s2))]}
D P(s,s").

10

Writing Sp < s D s < s’ A R(s,s") for P(s,s) in this, we obtain, with the help
of (6):

(Vs,8').s <s' D
(VR).{So < s A R(s,s) A
[(Va, s1).Poss(a,s1) A So < s1 D R(sy,do(a,s1))] A
[(Va, s1,82).Poss(a, s2) A So < 81 A sy < s3 A R(s1,82) D R(s1,do(a,s2))]
D R(s,s")}.
(8)

Using (I Ps,<,) with R(s,s) for W(s), we obtain:

(\V/S).So § D)
(VR).R(So, So) A
[(Va, s1).Poss(a, s1) A So < s1 A R(s1,81) D R(do(a, s1),do(a,s1))]
D R(s,s).

This, together with (8) entails the following:

(VR).R(So, So) A
[(Va,s).Poss(a,s) N So < s D R(s,do(a,s))] A
[(Va,s).Poss(a,s) A So < s A R(s,s) D R(do(a,s),do(a,s))] A
[(Va,s,s').Poss(a,s') N Sog < sANs<s"ANR(s,s)D R(s,do(a,s"))]
D (Vs,8).5 <sAs<s DR(s,s).

This can be simplified by observing that by the simple induction principle
(I Ps,<s), the first and third conjuncts of the antecedent of this implication
entail the second conjunct. This establishes the theorem.

Sentence ([Ps,<s<s) provides an induction principle suitable for proving
properties of pairs of states s and s’ when Sy < s A s < s
4 Using these Axioms in Practice

In this section, we give some examples of the use of these induction principles
to prove properties of world states. Before doing so, we must revisit the frame
problem, which we glossed over in Section 2.3.1.

11

4.1 Frame Axioms and the Explanation Closure Ax-
ioms of Haas and Schubert

As we all know, to correctly formalize dynamically changing worlds, some
axiomatization is required which provides the same effects as frame axioms.
At one extreme, the frame axioms themselves may be used. At the other, the
frame axioms may be implicitly represented, as entailments of some uniform
nonmonotonic policy, as for example in (Lin and Shoham [7]) or (Lifschitz
[5]). For the purposes of invoking the induction principles of Section 3 to prove
properties of world states, it is irrelevant how the frame axioms are represented,
so long as they are available, whether explicitly or implicitly. Nevertheless, for
purposes of actually constructing inductive proofs, it is desirable to have an
explicit collection of axioms with the same force as frame axioms. One such
approach, which we favour for the purposes of this paper, appeals to so-called
explanation closure azioms as defined by Schubert [16], in elaborating on a
proposal of Haas [4].

To illustrate the Haas-Schubert proposal, consider the transaction of reg-
istering a student in a course with multiple sections, without specifying in
which section the student is placed. Denote the transaction by register(st,c)
and consider the relation enrolled(st, ¢, sec, s) meaning that st is enrolled in
section sec of course ¢ when the database is in state s. We might then have the
following axiom, specifying the effect, on the relation enrolled, of registering
a student in a course:

Poss(register(st,c),s) D
enrolled(st, ¢, choose-section(st,c,s), do(register(st,c),s)).

Here the function choose-section(st,c,s) determines a section of the course ¢
for the student st when the database is in state s.

Now suppose that —enrolled(st,c,sec,s) and enrolled(st, ¢, sec,do(a, s))
are both true. How can we explain the fact that the negation of enrolled
ceases to be true? If we assume that the only way this can happen is by
registering st in ¢, we can express this with the explanation closure axiom:

Poss(a, s) N —enrolled(st, ¢, sec,s) A enrolled(st, ¢, sec, do(a, s))
D a = register(st,c).

Notice that this axiom universally quantifies over transactions a. To see how

12

this functions as a frame axiom, rewrite it in the logically equivalent form:

Poss(a, s) N —menrolled(st, ¢, sec,s) N a # register(st,c)
D —enrolled(st, ¢, sec,do(a, s)).

This says that all transactions other than register leave the negation of enrolled
invariant, which is the standard form of a frame axiom (actually, a set of frame
axioms, one for each transaction distinct from register). Now suppose that
enrolled(st,c, sec, s) and —enrolled(st, ¢, sec,do(a, s)) are both true. How can
we explain the fact that enrolled ceases to be true? If we assume that the only
way this can happen is by the student dropping the course, or by changing
sections of the course, we can express this with the explanation closure axiom:

Poss(a, s) A enrolled(st, c, sec, s) N menrolled(st, ¢, sec, do(a, s))
D a = drop(st,c) V (dsec’)a = change-section(st, ¢, sec, sec’).

In general, an explanation closure axiom has one of the two forms
Poss(a,s) N R(x,s) A ~R(x,do(a,s)) D ar(x,a,s),

and

Poss(a,s) N “R(x,s) A R(x,do(a, s)) D Br(x,a,s).

In these, the action variable a is universally quantified. These say that if ever
the fluent R changes truth value as a result of a state transition, then ag or
0Or provides an exhaustive explanation for that change.

As before, the best way to see how explanation closure axioms function
like frame axioms, rewrite them in their logically equivalent forms:

Poss(a,s) A R(x,s) A magr(x,a,s) D R(x,do(a,s))

and
Poss(a,s) N “R(x,s) A =fr(x,a,s) D " R(x,do(a, s)).

These have the same syntactic form as frame axioms with the important dif-
ference that the action a is universally quantified. Whereas there would be
2 x A x F frame axioms, where A is the number of actions and F the number
of fluents, there are just 2 x F explanation closure axioms. This parsimonious
representation is achieved precisely by quantifying over actions in the expla-
nation closure axioms, on the assumption that the “explanations” ar(x,a,s)
and Or(x,a,s) are reasonably compact.

With the notion of an explanation closure axiom in hand, we are now in a
position to offer some examples of proofs by induction.

13

4.2 Examples of Inductive Proofs
Example 1

We here present some axioms sufficient to inductively prove that if an object
is broken and it never gets repaired, then it will always be broken:

(Vz).broken(x, So) A [(Vs).So < s D —occurs(repair(z),s)] D 9
(Vs').S0 < &' D broken(x,s'). (9)

Recall that occurs(a,s) means that a is one of the actions in the sequence of
actions leading from Sy to s. We require a simple axiom for occurs:

(Ya, s)occurs(a, do(a, s)).
We also assume the following explanation closure axiom for broken:
Poss(a, s) A broken(z,s) A —broken(x,do(a,s)) D a = repair(z).

Together with the simple induction principle (1 Ps, <), these axioms are suffi-
cient to prove (9).

Example 2

We here show how to establish the integrity constraint that salaries must never
decrease during the evolution of a database:

(Vs,s)(Vp,$,9).5 < sAs<s Asal(p,$,s) A sal(p,$,s")

D$ <. (10)

We assume that if it is possible to change a person’s salary, the new salary
must be greater than the old:

Poss(change-sal(p,$),s) D (3%').sal(p,$',s) A § < 8.
We need the following axiom relating salary-changing transactions to salaries:
Poss(change-sal(p,$'), s) A sal(p, $, do(change-sal(p, $'),s)) D § = §.
We assume the following explanation closure axiom for sal:

Poss(a,s) N —sal(p,$,s) A sal(p,$,do(a,s)) D a= change-sal(p, $).

14

Assume further that, initially, the relation sal is functional in its second argu-
ment:

sal(p,$,S0) A sal(p,$',50) D% =9

We also need a unique names azxiom for change-sal:
change-sal(p,$) = change-sal(p’,$') D p=p' A$ =¥

These axioms, together with the double induction principle (IPs <s<s), are
sufficient to prove (10).

Acknowledgments

My special thanks to Vladimir Lifschitz, Fangzhen Lin and Javier Pinto for many
important suggestions about getting the induction axioms right. Other valuable
advice and suggestions were provided by Michael Gelfond, Hector Levesque and
Wiktor Marek as well as the referees. Support for this research was provided by
grants from the National Science and Engineering Research Council of Canada, and
the Government of Canada Institute for Robotics and Intelligent Systems.

References

[1] J. Finger. FEzploiting Constraints in Design Synthesis. PhD thesis, Stanford
University, Stanford, CA, 1986.

[2] M. Gelfond, V. Lifschitz, and A. Rabinov. What are the limitations of the
situation calculus? In Working Notes, AAAI Spring Symposium Series on the
Logical Formalization of Commonsense Reasoning, pages 59-69, 1991.

[3] C. C. Green. Theorem proving by resolution as a basis for question-answering
systems. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages
183-205. American Elsevier, New York, 1969.

[4] A.R. Haas. The case for domain-specific frame axioms. In F. M. Brown, editor,
The frame problem in artificial intelligence. Proceedings of the 1987 workshop,
pages 343-348, Los Altos, California, 1987. Morgan Kaufmann Publishers, Inc.

[5] V. Lifschitz. Toward a metatheory of action. In J. Allen, R. Fikes, and E. Sande-
wall, editors, Proceedings of the Second International Conference on Principles
of Knowledge Representation and Reasoning (KR’91), pages 376-386, Los Al-
tos, CA, 1991. Morgan Kaufmann Publishers, Inc.

15

[6]

[12]

[14]

[15]

[16]

F. Lin and R. Reiter. State constraints revisited. In Second Symposium on Log-

ical Formalizations of Commonsense Reasoning, pages 114-121, Austin, Texas.
Jan. 11-13, 1993.

F. Lin and Y. Shoham. Provably correct theories of action. In Proceedings of
the National Conference on Artificial Intelligence, 1991.

J. McCarthy. Situations, actions and causal laws. Technical report, Stanford
University, 1963. Reprinted in Semantic Information Processing (M. Minsky
ed.), MIT Press, Cambridge, Mass., 1968, pp. 410-417.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463-502. Edinburgh University Press, Edinburgh, Scotland, 1969.

J. Pinto and R. Reiter. Adding a time line to the situation calculus. In Second
Symposium on Logical Formalizations of Commonsense Reasoning, pages 172—
177, Austin, Texas, Jan. 11-13, 1993.

R. Reiter. Towards a logical reconstruction of relational database theory. In
M.L. Brodie, J. Mylopoulos, and J.W. Schmidt, editors, On Conceptual Mod-
elling: Perspectives from Artificial Intelligence, Databases and Programming
Languages, pages 191-233. Springer, New York, 1984.

R. Reiter. The frame problem in the situation calculus: a simple solution
(sometimes) and a completeness result for goal regression. In Vladimir Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy, pages 359-380. Academic Press, San Diego, CA,
1991.

R. Reiter. What should a database know? Journal of Logic Programming,
14(1-2):127-153, 1992.

R. Reiter. On specifying database updates. Technical report, Department of
Computer Science, University of Toronto, July, 1992.

R. Reiter. On formalizing database updates: preliminary report. In Proc.
3rd International Conference on Extending Database Technology, pages 10-20,
Vienna, March 23 - 27, 1992.

L.K. Schubert. Monotonic solution of the frame problem in the situation calcu-
lus: an efficient method for worlds with fully specified actions. In H.E. Kyberg,
R.P. Loui, and G.N. Carlson, editors, Knowledge Representation and Defeasible
Reasoning, pages 23-67. Kluwer Academic Press, 1990.

16

[17] T. Sheard and D. Stemple. Automatic verification of database transaction
safety. ACM Transactions on Database Systerns, 14(3):322-368, 1989.

17

