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Abstract

A fundamental problem in Knowledge Representation is the design of a logical language to express
theories about actions and change. One of the most prominent proposals for such a language is
John McCarthy’s situation calculus, a formalism which views situations as branching towards the
future. The situation calculus has been criticized for imposing severe representational limitations.
For example, actions cannot be concurrent, properties change discretely, etc. In this thesis we show
that many of these limitations can be overcome. Our work builds upon the discrete situation calculus
and on Reiter’s monotonic solution to the frame problem. A limitation of Reiter’s approach is that
it does not allow for state constraints. However, Lin and Reiter have made progress by providing
a correctness criterion by which one can determine if an axiomatization can be said to solve the
frame problem for theories that include state constraints.

In this thesis we extend Lin and Reiter’s work on the ramification problem by providing mech-
anisms to deal with theories of action that include binary state constraints and/or stratified defi-
nitions. Furthermore, we show how to extend the situation calculus to deal with a wider range of
representational issues. In particular, we provide an approach to represent determinate knowledge
about the future. Also, we extend the situation calculus to deal with concurrent actions. This
problem is addressed by separating the problem into a precondition interaction problem and an ef-
fect interaction problem. Moreover, we present an enriched ontology of the situation calculus that
allows the representation of knowledge about continuous properties of the world. We introduce the
notion of a natural event, which is the result of a process governed by the laws of nature. Finally,
we show that the situation calculus provides a better logical foundation for reasoning about actions
and time than some other popular temporal logics.
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Chapter 1

Introduction and Motivation.

In this thesis, we are concerned with the design of a logical language for the modeling of dynamic
worlds; i.e., worlds that change with time. Surely, this is an old endeavor which has been tackled
by many. In fact, many languages for describing dynamic phenomena have been proposed (e.g.,
STRIPS, Dynamic Logic, Modal Temporal Logics, Interval Temporal Logic, etc.). Our work builds
upon the work of others who have put forward proposals to deal with this issue, but who have
left many areas open for investigation. The research we rely upon has been carried out within
the field of Computer Science and deals with issues that are relevant to Databases, Programming
Languages, Software Engineering and Artificial Intelligence.

Our work is based on the situation calculus, which was originally conceived by John McCarthy
[35]. McCarthy’s objective was to provide a logical language to model the behavior of a single
agent in a world that changes solely as consequence of the agent’s actions. The original situation
calculus is a first order theory that is based on the notion of situation. The intuition is that the
world is in a given situation, which changes into another situation as a result of performing some
action. It is assumed that the only way in which the world changes from one situation to another
is by performing an action. Since an agent can perform a variety of different actions, there are
many possible futures. These alternatives give rise to the future-branching structure of the situation
calculus.

The situation calculus is a very appealing language which has been used to investigate many
problems related to formal reasoning about change. For example, the language has been the
formalism of choice for a great number of researchers interested in the so called frame problem
(e.g., [40, 20, 21, 27, 54, 33, 9, 47]). So much so, that some researchers identify the frame problem
as characteristic of theories based on the situation calculus, instead of as a problem inherent to
the formalization of dynamic systems. Unfortunately, as has been pointed out elsewhere (e.g.,
[16, 23, 55]), the original situation calculus is a limited language that has several shortcomings.
Nevertheless, as Gelfond, Lifschitz and Rabinov argue [16], these limitations can be overcome.

The objective of this thesis is twofold. On the one hand, we want to extend the expressiveness
of the situation calculus to deal with several of its limitations. On the other, we want to address
some open problems in the formalization of certain dynamic phenomena.

This document is organized as follows. In chapter 2, we present the formalization of the discrete
situation calculus. This language has the same expressive power as early specifications of the
situation calculus (e.g., McCarthy and Hayes [38]), with the notable exception that it restricts the
set of existing situations to those that are reachable by performing finite sequences of actions from
an initial situation. Also, we present the solution to the frame problem that was proposed by
Reiter [47]. Reiter’s approach is based on the derivation of a set of successor state azioms. Each
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successor state axiom specifies necessary and sufficient conditions to determine whether a property
of the world holds after performing an action. These conditions refer to the state of the world in
which the action is performed. Throughout this work, we will use this approach to deal with the
frame problem. It is well understood that with Reiter’s original framework, we cannot deal with
state constraints, which are responsible for the ramifications. However, as discussed in chapter 2,
Lin and Reiter [31] have studied the problem of dealing with theories of action that include state
constraints. Their main result establishes that, under certain conditions, a set of successor state
axioms can be used to replace the set of effect axioms and the state constraints.

In chapter 3, we consider the task of mechanically generating successor state axioms for the-
ories of action containing a set of state constraints. To do this, we make use of Lin and Reiter’s
characterization of what constitutes a solution to the frame and ramification problems. The results
provided are for theories whose state constraints are disjunctions with no more than two situa-
tion dependent literals. We argue that, under suitable conditions, reasoning with these theories
is tractable. Furthermore, we show that a set of successor state axioms for theories that contain
disjunctive state constraints with more than two situation dependent literals does not always exist.
Finally, we show that reasoning with these theories is intractable. These results suggest that there
is a fundamental limitation in reasoning about tasks requiring state constraints.

In chapter 4, we discuss some important limitations of the original situation calculus, namely
its inability to express some basic temporal assertions; for example, that some event occurs in the
future. Then, we present an extension to the situation calculus to address these limitations. This is
done by augmenting the situation calculus with a notion of linear time, popular in temporal logics.
The basic idea is to define the notion of an actual branch of situations. Thus, we identify one of
the possible paths in the branching structure of situations as the actual branch. This actual branch
depicts the way in which the world actually evolves through time. Based on this approach, an action
is said to occur if and only if it is mentioned in the actual branch of situations. Also, we impose a
time line on the path of actual situations, and extend the language to express temporal assertions
like: At three o’clock I will be at the office. Finally, we argue that in order to completely characterize
the actual branch of situations, we need to appeal to preferential semantics. In particular, we use
circumscriptive semantics to identify the actual branch.

In chapter 5, we study how to augment the types of actions that can be used. There are two
types of extensions that we consider. First, we take the notion of complex events, as proposed
in [30], and study how it can be integrated with the actual line of situations. In particular, we
show that, by appealing to the notion of occurrences, there is a natural way to specify complex
actions, when they are built from primitive actions. A clear disadvantage of our approach based on
occurrences is that it only works for the actual branch of situations. A second issue that we discuss
in chapter 5, is how to extend the ontology of actions to incorporate concurrent actions. For this
purpose, we introduce the binary function symbol + to denote the concurrent execution of two
actions or events. In order to study the problem of modeling concurrency, we divide the problem
into three distinct cases. First, the trivial case in which the actions that are being performed
concurrently are independent. Thus, they do not interact in any way. Second, the case in which
there are interactions between the preconditions of the actions. For instance, cases in which the
actions require the use of certain scarce resources (e.g., the dining philosophers example). Third,
cases in which there are interactions between the effects of the concurrently executed actions. In
these cases, such actions may either have effects that are not present when the actions are performed
separately (i.e., the so called synergistic effects) or in which the actions cancel each others effects.
Each of the three cases of concurrency is analyzed separately. Finally, we analyze how to integrate
the notion of action occurrence with the ontology of actions extended with concurrent actions.



In chapter 6, we discuss the issue of continuity. That is, how to represent, within the situation
calculus, properties that vary continuously with time; for example, the position of a moving ball.
Gelfond, Lifschitz and Rabinov [16] proposed an extension to the situation calculus in which there
is a continuum of situations. As discussed in chapter 2, the situation calculus that we use requires
that the set of situations be enumerable. Therefore, a continuum of situations is incompatible with
this view. In our approach, we describe a continuous property by using a fluent that states that
this property’s value is described by some continuous function of time. For example, we would
have a fluent to state that the motion of ball A is described by a parabola. In the same manner
as with other fluents, this fluent may change from situation to situation due to the occurrence of
actions or events. Also in this chapter, a very important notion is introduced. This is the notion
of a natural event or natural action. Intuitively, a natural event is one that occurs due to natural
causes, and whose occurrence is not the result of an agent performing it. For example, if a ball
is falling, the ball will naturally collide with the floor, barring intervention from an agent. The
collision is considered natural and no agent “performs” the event. However, a drop action is not
a natural action, rather, it is an action that requires an agent to bring it about. Of course, an
agent may perform an action which leads to the occurrence of a natural action (e.g., a drop action
initiates a situation in which falling is true, which may lead to a collide event). The distinction
between natural actions and agent-performed actions is essential if one wants to specify systems
that reason about physical processes. For example, assume that we want to specify an agent that
would have the mission of impeding the breakage of an egg. For the agent to be successful, it would
need to infer that if the egg is falling it would hit the floor and probably break, unless the egg is
stopped in midair. We also make use of the notion of natural process, which corresponds to a set
of occurring natural actions.

In chapter 7, we look at three other approaches to temporal reasoning and study their relation-
ship to the situation calculus. First, we look at the interval temporal logic [2, 3, 4, 5, 1], and discuss
how its view of time can be, in most cases, modeled within the situation calculus. Second, we study
in much greater detail the calculus of events [25, 24, 56], and argue that its formulation as a logic
program has certain drawbacks. Also, we show that the functionality of the event calculus can be
realized within the situation calculus. Furthermore, we present a logic program as an alternative
to the logic programming formulation of the situation calculus. We analyze the correctness and
completeness of the implementation with respect to a logical specification written in the language
of the situation calculus extended with the notion of occurrences. Third, we discuss the so called
modal logic of concurrency [19]. This logic deals with pseudo-concurrent actions, thus no true
concurrency is possible. This logic, exemplifies the family of logics in which modal operators are
utilized to model notions of propositions being true now, true all times in the future, true in the
nezxt state, etc. We show that the particular logic presented in [19] can be embedded within the
extended situation calculus.

Finally, in chapter 8, we present the conclusions and discuss some of the avenues along which
this research can be extended. We also summarize what we believe are the main contributions of
this work.



Chapter 2

Formal Framework.

In this chapter we present the theoretical framework that constitutes the basis for the later work.
First, we present the basic language of the situation calculus. Then, we discuss how to deal with
two important problems in formalisms for reasoning about action and change, namely the frame
problem and the ramification problem.

2.1 The Basic Situation Calculus.

2.1.1 Ontology.

The situation calculus is a logical language designed to represent theories of action and change.
The language has its origins in the early work of John McCarthy [35]. The intuition behind the
situation calculus language is that there is an initial situation, called Sy, and that the world changes
from one situation to another when actions are performed. As will become clear later, we take the
point of view that the only situations that exist are those that are reached by performing some
sequence of actions in Sy. Furthermore, we consider the structure of situations to be a tree. That
is, two different sequences of actions lead to different situations. Therefore, the tree structure
allows for situations to be understood as a state along with the history of actions that led to it.
In this context, the notion of state is equated with the situation dependent properties that hold
in a situation. In this framework, situation dependent properties are called fluents, and a state
corresponds to a set of fluents. Thus, the state of a situation is the set of fluents that hold in that
situation. Notice that the branching factor of the tree of situations rooted at Sy equals the number
of distinct actions that exist.

In this section, we discuss a version of the situation calculus' which has evolved through a
sequence of refinements [29, 47, 41, 31]. The situation calculus is a sorted second order language with
equality. We use the standard operators conjunction, disjunction, implication and equivalence (A,
V, D and = respectively), and standard universal and existential quantifiers. Scoping is indicated
by parentheses or by the dot notation (e.g., (Vx).¢(x) is the same as (Vx)(¢(x))). There are three
domain independent sorts A, S, and F, for action types, situations and propositional fluents?. We
also include a sort D of domain objects, which may be further subdivided in subsorts depending on

'In the future, the term discrete situation calculus or simply situation calculus will refer to the language presented
in this chapter.

2The term propositional fluent was used by McCarthy and Hayes [38] to mean a function of situations that would
have as a range the set {true, false}. In the same spirit, we take a fluent to be a property of the world that may or
may not hold at each situation in the tree.
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the particular domain of application. Notice that all sorts are independent. Variables are denoted
by lower case letters (with or without subscripts), and constants are denoted by upper case letters
(with or without subscripts). Letters a, s, f, d (4, S, F, D) are used for variables (constants)
of sorts A, S, F, D respectively. We will have a single 1-place predicate variable ¢ over situations.
Unless otherwise stated, other variables and constants will be assumed to be of sort D. Also, when
free variables appear in formulas, they are assumed to be universally quantified from the outside.

Strictly speaking, our language is second order. In fact, induction is needed in order to define
the set of situations, as well as to define the notion of iterative actions discussed in chapter 5.
Nevertheless, we restrict ourselves to a standard sorted first order sublanguage (with equality) to
express all other axioms of our theories. If we wanted to eliminate the second order nature of
the axiomatization of the situation calculus, we could simply consider “standard models” of the
situation calculus axioms. Thus, we would replace the second order induction axiom with a first
order induction schema, as done in first order number theory.

We include the special constant Sy of sort S, the function do : AXS — S, the relation < C Sx S,
the relation Poss C A x S, the predicate holds C F x S, along with other functions and relations
introduced later. We use the abbreviation s; < ss to mean s; < s3 V s1 = 8. Also, we use the
notation ¢ < b < ¢ to mean a < b A b < ¢, and similarly when the expression combines < and <.
Another abbreviation we use is for terms of the form:

do(an,do(...,do(a1,s)...)),

which we abbreviate as:
do([ala s 7an]’ 8)'

Keep in mind that [aq,...,a,] is not a term in the language and that it can only appear as a first
argument in a do function term.

2.1.2 Basic Axioms and Language.

It has been pointed out (e.g., [29, 47]) that the sort of situations in the situation calculus can be
formalized in much the same way as the sort of numbers is formalized in Peano’s axioms in number
theory. The formalization that we present here originates on Reiter’s formalization that appears in
[47].

The basic axioms for situations are:

V).[p(S0) A (Vs,a) (v(s) D p(do(a, s)))] D (Vs) ¢(s),
Vai,as,s1,s2).do(ay, s1) = do(az, s2) D a1 = as,

2.1
2.2
V s1, 82,a).51 < do(a, s2) = s1 < 9, 2.3
2.4

e N N N
~ o~ ~
~— — ~— ~—

V81,32).81 < 82 D 189 < 81.

Axiom (2.1) is an induction axiom, necessary to prove properties true in all situations. See Reiter
[49] for examples of the need for, and use of, induction in the situation calculus. The induction
axiom (2.1) defines the universe of situations as the smallest set that includes Sy and such that if
s is in the set of situations and a is an element of A then do(a, s) is also in the set of situations.

Axioms (2.1) and (2.1) establish the properties of <. Intuitively, s < s’ is true if and only if s
and s’ fall in the same branch of the tree of situations and s is closer to the root (Sp) than s'.

Axiom (2.1) along with the axioms for < ensure that the structure of situations forms a tree.
This is confirmed by the properties of the tree structure discussed by proposition 2.1 below.
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Also, we utilize the predicate Poss C A x S that is true whenever an action can be performed
in a situation. This is a predicate that has to be axiomatized as part of the background axioms of
any application domain.

Our notion of < differs from the one used by Reiter [47] in an important way. For us, s < s’ is
true if and only if there exists a sequence of actions a1, ao,...,a; such that:

s’ =do([a1,az,-..,a], s). (2.5)

In contrast, Reiter’s notion is stronger, in the sense that not only must a sequence of actions exist
that satisfies (2.5), but also every action along the sequence must be possible in the situations in
which they are done. In a later chapter, we use this alternative notion. Therefore, we introduce
this second notion as a new relation <C § x § and with the abbreviation < such that:

sXs'=s=<sVvs=4. (2.6)
Based on Lin and Reiter [31] < is axiomatized as:

—s < Sp, (2.7)
s1 < do(a, s2) = Poss(a,s2) A s1 =< so. (2.8)

In what follows ¥ will denote the axioms (2.1)-(2.1) and (2.7)-(2.7).

Proposition 2.1 Some consequences of azioms ¥y are3:

(Vs) So <s, )
(Va,s) —s<s, (2.10)
(Vs) —s < So, (2.11)
(Vs).s # So D (Fa,s') s =do(a,s'), (2.12)
(Vs1,82,83).51 < S2 A\ S2 < 83D 81 < 83, ( )
(Va,s) s < do(a,s), (2.14)
(Vay,a9,s1,892).do(ay, s1) < do(ag, $2) D 1 < S9, ( )
(Va,s,s').do(a,s) <s' Ds<s, (2.16)
(Va,s1,s2).do(a, s1) = do(a, s2) D s1 = so, (2.17)
(Va,s,s')~(s < s" < do(a,s)), (2.18)
( (2.19)

V s1,82).81 < S92 D 81 < Sa.
Finally, let us introduce McCarthy’s abnormality predicate ab as:
ab(f,a,s) = —[holds(f,do(a, s)) = holds(f, s)]. (2.20)

That is, a fluent f is abnormal with respect to an action a in a situation s if the action makes
f change from s to do(a, s). Many non-monotonic approaches to the frame problem are based on
the minimization of this predicate (e.g., [9, 29]); however, we introduce it only as a shorthand. In
particular, we use it to simplify the presentation of the following proposition:

3All proofs are in the appendix.



2.1. THE BASIC SITUATION CALCULUS. 7

Proposition 2.2 From azioms (2.1)-(2.1) and (2.20), it follows that:

$1 < s2 A holds(f,s1) A —holds(f,s2) D
(Is,a) (s1 < do(a,s) < s3) Aab(f,a,s). (2.21)

That is, if a fluent changes its truth value between two situations s; and so, it must be the case
that some action a was responsible for this change. Furthermore, a situation s must exist such that
both, s and do(a, s) lie in the path between s; and so.

2.1.3 Reification.

An important difference between this and other versions of the situation calculus (e.g., McCarthy
and Hayes [38], Reiter [47]), is that we include a fluent sort. In other words, our fluents are reified.
The use of situation calculus with reified fluents is also very common (e.g., [27, 9, 32] and others).

In non-reified formulations of the situation calculus, fluents correspond to predicates that take
one or more arguments. The last argument is the only one of sort situation. For instance, let L,
denote a classic situation calculus language with non-reified fluents. In such a language, fluents
are predicates, like onTabley,,(z, s), which would be true if the object z had the property of being
onTable in the situation s. On the other hand, in a situation calculus language with reified fluents
(which we call £,), fluents (like onTable) are awarded the status of objects. Thus, to each (n+1)-ary
fluent predicate symbol in L, corresponds an n-ary function symbol of sort fluent in the language
L,. Hence, in a language with reified fluents, onTable(x) would be a fluent term and instead of
writing onTable,, (z, s) we write holds(onTable(x), s).

Interestingly, as Steven Shapiro has pointed out?®, in the classical situation calculus, actions are
already reified objects. Indeed, the function do plays much the same role in the language £, with
respect to actions, as the predicate holds does with respect to fluents. In fact, in a purely non-
reified language, actions can be understood as functions from situations to situations. Therefore,
instead of writing do(a, s), in a purely non-reified language Ly, one would write a(s). For example,
if Drop(x) is an action term in a language with reified actions (e.g. L, or L), then the purely
non-reified representation of that action is the binary function symbol Drop(z, s) of sort situation.
Therefore, while in £, one may write:

holds(onTable(z), do(Drop(x), s)).

In Ly, one would write:
onTable(z, Drop(z, s)),

in which onTable is a predicate (a fluent), and Drop is a situation function symbol (an action).
The main difference between Ly, and L, is that in £,,, we eliminate from the language the sorts
for actions and fluents along with the predicate symbol holds and function symbol do.

The advantages gained with the reification of fluents are essentially the same as with the reifi-
cation of actions; namely, the ability to treat fluents as objects in the language. Therefore, in the
reified language L, we have the ability to quantify over fluents as well as over actions. For instance,
in order to illustrate an advantage of reification, we may use the notion of state and formally define
a predicate that would be true of two situations when the same fluents hold in each of them:

4Personal communication.
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Definition 2.1 The state of a situation is equal to the set of fluents that hold in that situation.
Therefore, we can define the predicate sameState C S x S as:

sameState(s,s') = [(V f).holds(f, s) = holds(f,s)].

This definition is not generally possible in a non-reified language, unless we have a fixed set of
fluent predicate symbols f; ... f,. If this were the case, in L, we would write:

sameState(s,s') = (Vx1...%,)[(f1(x1,8) = fi(x1, ) Ao (Ffa(Xn, 8) = fu(xn,8))]- (2:22)

However, from an axiomatizer’s point of view, this is undesirable, since every time a new fluent
is added to the language, a new conjunct must be added to the definition of sameState (or any
definition in which we universally quantify over fluents). As further evidence for the convenience
of using reified fluents, notice that proposition 2.2 could not have been written in L,,, unless it
were written as a second order sentence (quantifying over fluent predicates). Furthermore, several
approaches to deal with the frame problem appeal to the minimization of the predicate ab (defined
in (2.20)). For instance, Baker’s solution to the frame problem [9, 10] uses a circumscription policy
in which the predicate ab is minimized with the interpretation of the function symbol do allowed
to vary. Such a policy cannot be expressed without reifying fluents. This motivates the following:

Observation 2.1 The language of the situation calculus without reified fluents is strictly less ex-
pressive than the reified counterpart.

It is easy to understand why this is the case; given a theory in a non-reified language we can
easily build a theory in a reified language that is equivalent to the original theory. This is done by
simply replacing every predicate fluent symbol with a function fluent symbol, plus axioms stating
that the only fluents that exist are those mentioned and that they are not equal. Furthermore,
the definition of sameState shows a simple and interesting definition that is not possible in the
non-reified language (unless a second order variable for fluent predicates were introduced).

In spite of what we have just said, it seems that the most important advantage of reification is
a simple matter of notational convenience. In fact, in general one wants to talk about a specific,
fixed, and finite set of fluents, in which case definitions like (2.22) would be sufficient. Therefore,
what is left is the technical advantage of being able to write general truths about fluents, without
having to write them as some sort of schemata.

In the past, there has been some confusion over what reification is and is not. In particular,
Shoham [58] calls his logic a “reified logic”, and, as argued in [45], it is unclear in which sense his
logic is reified. In Shoham’s logic, it is not possible to take properties as objects and predicate
about them or quantify over them. This ability seems to be the major advantage of using reified
logics.

Adding to the confusion created by Shoham’s unorthodox use of the term “reify”, Bacchus et
al. [8] developed a non-reified temporal logic and proved that it subsumed the “reified” logic of
Shoham’s. Their paper can be seen as a strong argument against reification. However, it does not
seem to apply to the more standard notion of reification [17]. Actually, as was argued before, a
reified language is in general more expressive than its unreified counterpart.

Now, what is the price that one has to pay for the conveniences of having reification of fluents?
One drawback is that one has to add the new holds predicate. This is less “elegant” than the use
of predicate fluents, especially when writing sentences involving several fluents. For example, in
the non-reified language one may have the sentence:

(Vz,y,s).onTable(z,s) Ny # x D onFloor(y,s) VonHand(y, s),
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which in the reified language is written with a proliferation of holds literals:

(Vz,y, s).holds(onTable(z), s) Ny # x D holds(onFloor(y),s) V holds(onHand(y), s).

Of course, there might be syntactic variants that would help make things more succinct, but the
added complexity is certainly present. For example, we extend the sort of fluents, as some other
researchers do (e.g., [9]), with functions from fluents to fluents that mimic propositional operators.
Thus, we write:

holds(fi A fa,8) =des holds(fi,s) A holds(fa,s). (2.23)
holds(—f,s) =g4ef ~holds(f,s), (2.24)

and similarly for other propositional operators. Here the symbols A, -, etc. are being overloaded.
They are both logical symbols and non-logical function symbols of sort fluent. The intended
meaning of each of these symbols should be obvious from the context. Unfortunately, things
get more complex if one wants to introduce fluents with quantification in them, and we refrain
from doing so. We point out that the fluent function symbols that correspond to the propositional
operators are used as mere abbreviations. Thus, the properties of the language (e.g., expressiveness)
remain unaltered. The advantage of the abbreviations is that we avoid writing an excessive number
of holds literals. Notice that expressions like f A f' are not terms in the language. They can only
be used in abbreviations inside the holds predicate.

A second drawback of reification is the need to introduce a separate sort for fluents. Furthermore,
we also need to add unique names axioms for fluents, which we describe later.

2.2 The Frame Problem.

One of the hardest problems encountered in reasoning about actions has been the so called frame
problem. This problem has attracted much interest in the Al community and many solutions for it
have been proposed (e.g., [18, 20, 27, 58, 47, 54, 33]). Basically, the problem is understood as one
of finding a way to succinctly specify the effects of actions, given the situations in which they are
performed. Most solutions to the frame problem (e.g., [58, 27, 33]) are based on non-monotonic
logics. Lately, there has been interest in the development of solutions based on standard monotonic
logics. In particular, we appeal to the solution proposed by Reiter [47], which is based on the work
of Haas [20], Pednault [40], and Schubert [54].

In this section, we present Reiter’s monotonic solution to the frame problem. This presentation
is slightly different from the original due to the differences between our language and Reiter’s.

A theory of action X consists of the following sets of axioms:

e A set Xpq, which includes

— The set 3 of basic situation calculus axioms (refer to section 2.1.2).

— A set ¥, of situation independent axioms formalizing the domain of interest.

o A set Tj,, of action precondition axioms. In general, we have a set of necessary conditions for
executing an action. For example, we may know that to repair an object it is necessary that
the object be broken and that we have glue. This is written as an implication, for instance:

Poss(repair(r, x),s) D holds(hasglue(r), s) A holds(broken(z), s).
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Thus, for each action A we have a set of axioms of the form:

Poss(A,s) D ) (s), (2.25)

where 77 (s) is a simple state formula with a unique free situation variable s. The adjective
simple is used in the sense of Reiter’s. That is, a simple formula is a first order formula which
does not mention the predicate symbols Poss, < or < (nor < or <), that mentions a unique
situation variable (e.g. s) and no other situation terms, and which does not quantify over
variables of sort state (S) [48]. Furthermore, we require that s not appear outside the scope
of a holds predicate (as its second argument).

In this work, we assume that all the necessary conditions for the execution of an action are
known. This completeness assumption allows us to write for each action A, an axiom of the
form:

Poss(A,s) =T 4(s).

This is obtained by applying predicate completion to the axioms of the form (2.25). That is
IT4(s) is the disjunction:
IMa(s) = wh(s) V...V 7%(s), (2.26)

where 7%, (s) appears in (2.26) iff there is an action precondition axiom of the form
Poss(A,s) D mly(s).

Therefore, the set Tj,; is a set of equivalences that establish necessary and sufficient conditions
for actions to be executable.

A set Tg, of sentences about Sy. That is, a description of the initial situation.

A set Tey = Tj} U Te}, where Tg} is a set of general positive effect axioms, e.g., for fluent
function R and action a:

Poss(a,s) Ay (a,s) D holds(R,do(a, s)), (2.27)
and T, is a set of general negative effect axioms, for fluent R and action a:
Poss(a,s) Nyg(a,s) D —holds(R,do(a, s)). (2.28)

Here, 77 (a,s) and 75 (a,s) are simple formulas which are used to provide conditions under
which an action a produces an effect on a fluent R. In (2.27) and (2.28) we omit all but the
action and state arguments.

A set T, of uniqueness of names axioms for actions. For distinct action names a and a':

a’("I"la--- axn) 7é a,(yla--- ,ym)-

Identical actions have identical arguments. Thus, for each function symbol of sort A in the
language, we write:

a(xla---al‘n):a(yla---ayn)D-TIZyl/\---/\In:yn-
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o A set Ty, s of unique names axioms for fluents. For distinct fluent names f and f”:

f(-rla"'amn) ;éfl(yla"'aym)'

Identical fluents have identical arguments. Thus, for each function symbol of sort F in the
language, we write:

f(xla---amﬂ):f(yla""yn)jml:yl/\---/\wn:yn-

Notice that this assumption is necessary only because we have chosen to reify fluents. In the
future we will consider these unique names axioms to be part of the set ¥, of domain specific
axioms.

Following Schubert [54], the assumption that the general (positive or negative) effect axioms
characterize all the conditions for a state s under which action a makes holds(R, do(a, s)) true can
be formalized with an explanation closure axiom of the form:

Poss(a, s) A —holds(R, s) A holds(R, do(a, s)) D 74 (a, s).

Where 'yg (a, ) can be understood as an explanation why R changed from not holding in s to holding
in do(a, s), as result of performing action a. Similarly, the assumption that the general effect axioms
characterize all the conditions for a state s under which action a makes —holds(R, do(a,s)) true is
formalized with:

Poss(a, s) A holds(R, s) A —holds(R,do(a, s)) D vg(a,s).

Reiter provides an approach to mechanically integrate Schubert’s explanation closure axioms
with the general effect axioms to derive a set of successor state azioms. A successor state axiom
for fluent R is of the form:

Poss(a, s) D [holds(R,do(a, s)) = v} (a, s) V holds(R, s) A~y (a, s)]. (2.29)

That is, given a situation, if an action is possible we can determine whether the fluent R will
hold in the subsequent situation. For this approach to work, it is necessary to have a finite set
of effect axioms. Reiter’s proposal is to replace the effect axioms with the successor state axioms,
yielding a new theory Xpq U Ts(Tep) U Tpos U T'sy U Tyung- Where we write Tis(T,f) to denote the
successor state axioms that result from utilizing explanation closure axioms and the effect axioms
Tes. So, for each function fluent in the language, we have a successor state axiom. Notice that if
for some fluent F' there are no effect axioms, the resulting successor state axioms would state that:

Poss(a, s) D [holds(F,do(a, s)) = holds(F, s)].

Thus, F' does not change due to the performance of any action.

Interestingly, Reiter’s monotonic solution to the frame problem is equivalent to the solution
of Lin and Shoham’s [32] in the absence of state constraints. More precisely, as shown in [31]
and in [57], the models of Xpq U Ts(Tes) U Tpos U T'sy U Tynq correspond to the minimal models of
Ypg U T UTpos UTsy UTyng given by Lin and Shoham’s minimality criterion, based on minimization
of change [32]. The minimality criterion is discussed in more detail in the next section.

Reiter’s proposal solves the frame problem by providing an axiomatization that requires a num-
ber of axioms proportional to the sum of fluent and action function symbols plus the number of
actions. As already mentioned, a limitation of this approach is that it does not consider theories
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that include axioms that constrain the legal ways in which fluents can change. For example, con-
sider an axiomatization in which a one handed robot can perform the action Drop, which has the
effect of leaving its hand empty. If we had a constraint like: an object is either in the hand or on
the floor, it should be possible to infer that a ramification of a Drop action is that whatever is
dropped will be on the floor. The ramification problem is addressed later.

Notice that, by virtue of reification, instead of writing one axiom per fluent (like (2.29)) we
could write a single general frame axiom of the form:

Poss(a, s) D [holds(f,do(a,s)) =~ (a, f,s) V holds(f,s) A~y (a, f,s)]. (2.30)

In which y"(a, f,s) is a formula stating the conditions in which a fluent f is made to hold as a
result of some action a, and v (a, f, s) is a formula stating the conditions in which a fluent f is
made not to hold as a result of some action a. This single frame axiom would also constitute a
solution to the frame problem, provided that the axiom is of finite length. In fact, not only do we
need the axiom to be finite in length but we also want its length to be small. Otherwise, it could
hardly be considered a solution to the frame problem. In theory, the length of the axiom would be
proportional to the number of action function symbols times the number of fluent function symbols.

For example, suppose that we have a world in which there is a single movable object. Further-
more, assume that we describe the position of the object using a fluent function symbol pos, such
that pos(x) holds iff the object is at position z. Also, assume that we have a single action function
symbol move, such that move(z) is true iff the object is moved to position z. Then, we may write:

v (a, f,5) = a = move(z) A f = pos(z),
v (a, f,8) = a=move(z) A f = pos(y) Nz # y.

In most cases, causality relationships between fluents and actions will allow for axioms of shorter
length. For example, we may be able to assume that each fluent is affected by at most k, kinds of
actions (each kind identified by a different action function symbol). In this case the length of the
frame axiom would be proportional to the number of fluent function symbols in the language.

2.3 The Ramification Problem.

In [31], Lin and Reiter studied the problem of extending Reiter’s approach to the frame problem to
theories that include a set of state constraints. In particular, they came up with a set of sufficient
conditions under which a set of successor state axioms can be said to correctly solve the frame
problem. The notion of correctness of the solution is understood in terms of its equivalence to a
specific non-monotonic solution to the frame problem. In this section, we summarize the definitions
and results of [31] that we will use later. Our presentation deviates from the original in several
minor ways. This is so since we need to accommodate the linguistic differences.
Formally, we extend the theories of action ¥ with:

e A finite set Ty.(s) of domain dependent state constraints®, such that each constraint is a simple
formula with a unique free variable s. In the future we will write T, to refer to the universal
closure of Ts.(s). We also use Ts.(s) to refer to the conjunction of all the state constraints
applied to the situation term s.

5For the purpose of this work, we consider only what Lin and Reiter call effect-oriented state constraints, ignoring
the precondition oriented state constraints.
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Now, we denote with X, the theories of action extended with state constraints. Thus, a theory
of action X, is as follows:

Yoo = Dpg U T UTpos UTsy UTyna UTs. (2.31)

In Lin and Reiter’s proposal, a solution to the frame and ramification problem for a theory 3.
is a theory X~ such that:

ZJsc’ = Ebd U Tss(Tefa Tsc) U Tpos U TSO U Tunaa (2'32)

where Ts5(T, s, Tsc) represents a set of successor state axioms derived from the effect axioms and the
state constraints. Naturally, not any set Tss(7T,f, Ts.) will correspond to a correct solution. In order
to assess the correctness of a proposed solution, Lin and Reiter take an alternative non-monotonic
solution to the frame problem as a correct solution. Thus, a set of successor state axioms is regarded
as a solution if and only if the models of the theory ¥, (with a simple extension) are the same as
the non-monotonic models of ;.. These non-monotonic models are defined using a minimal model
semantics.

Lin and Reiter’s key result states that the minimal models of 3. are exactly the models of ¥
conjoined with the state constraints applied to the initial situation and the impossible situations®.
The notion of minimality is based on Lin and Shoham’s [32]. In order to define the minimality
criterion more formally, let s, a, ', f and f’ denote variables of sorts S, A, F (according to our
convention). Also, let o, 0, and oy denote assignment functions from free situation, action and
fluent variables to domain objects of the respective sorts. A model M’ is preferred to a model M
(i.e., M" < M) iff the following conditions hold:

e M’ and M share the same domain and they interpret everything the same with the possible
exception of the predicate holds.

e For some variable assignment to situations oy, M’ and M are such that:
— For any assignment of, M’ and M agree on holds(f,s), that is:
M, og,05 = holds(f, s)

if and only if:
M, 04,01 |= holds(f, s).

— For any assignments o4, oy, if
M,04,04,0f = s < do(a,s) A —ab(f,a,s),

then
Mla 05,0q,0Ff IZ _'Clb(f, a, S)'

— There are two assignments o,, oy such that:
M,05,04,0f = s < do(a,s) Aab(f,a,s),

but
Mla 05,0q,0f IZ _|(lb(f, a, 3)'

A situation s is impossible iff =Sy < s.
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Finally, M is minimal if there is no M’ such that M’ < M. For further details, the reader is
referred to [32, 31].
Lin and Reiter’s result is formally stated as follows:

Theorem 2.3.1 Given a theory ¥ as in (2.31), let Tys(Teyr, Tsc) be a set of successor state azioms
(one for each fluent function symbol) of the form:

Poss(a,s) D holds(f(x1,...,z,),do(a,s)) = [¥fV (holds(f(z1,...,2n),s) N=¥_p)],

where f is an n-ary fluent function symbol. Yy and Y_; are simple state formulas whose free
variables are among a, s, x1,...x,, and that satisfy the following:

Yse = (Va,s,z1,...,24).Poss(a,s) D [¥y D holds(f(z1,...,2,),do(a, s))],

and
Y E (Va,s,z1,...,25).Poss(a,s) D [U.y D —holds(f(z1,...,2,),do(a, s))].

Also, let Xy be the set of arioms obtained from Y. by replacing Tey and Tye with Tss(Tef, Tsc).
Assume that the following conditions hold:
1.

Tuna = (Va,8,21,...,2n). 2 (Tp A T_5),

Y U Tsc(SO) |= (V S).So <XsD Tsc(s)-

Given these conditions, an interpretation M is a model of:
Yiser U TSC(S()) uTy,

if and only if M 1is a minimal model of ¥4, where T,, is the set of state constraints restricted to
states reached by performing impossible actions, thus:

T,. = (Vs).mSy = s D Tie(s).

The first condition in the theorem, Ty, = (Va,s,z1,...,2,).7(YfAV_ ), should be understood
as a consistency condition. In fact, it is a requirement that no single action have the effect of making
a fluent F true in some situation and the effect of making the fluent false in the same situation.

The second condition imposes the requirement that the new theory with a set of successor state
axioms entail the state constraints whenever these are satisfied by the initial situation. Thus, we
should guarantee that the updates performed using the successor state axioms preserve the consis-
tency of the successor state with respect to the state constraints. Therefore, the state constraints
are now implicit in the successor state axioms.

The relevance of Lin and Reiter’s result is that it provides a criterion to judge whether or not a
set T of successor state axioms constitutes a correct solution to the frame problem. Unfortunately,
this correctness criterion is not absolute. In fact, it relies completely upon a very specific solution
to the frame problem based on a non-monotonic logic. Therefore, by using this result we are simply
providing evidence to support the correctness of Reiter’s solution based on successor state axioms.
This evidence would be strengthened if Lifschitz’s belief’, that under certain circumstances all
solutions to the frame problem based on model minimality are equivalent, were to be confirmed.

Also, we will need the following:

"As quoted in [31]
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Observation 2.2 The theory s U Ts.(So) U Ty, is categorical in the following sense:
Let M and M’ be two models of the theory of action Ygw U Ts.(So) UT,,, such that:

o M and M’ share the same domain.
e M and M’ interpret everything the same except for holds.

o M and M’ agree on the state of So. Thus, if o5 is an arbitrary variable assignment for
fluents, then:
M, o = holds(f, So),

if and only if:
M’ o = holds(f,So).
If the previous conditions hold, then:
M, 0,05 |= So = s A holds(f,s),
if and only if:
M',af,as = So = s A holds(f,s).

where oy and o are arbitrary variable assignment functions for fluents and situations respectively.
Thus, if two models agree on the initial state, then they agree on all states that are reachable from
So by performing possible actions only.

In the next chapter, we propose an approach to generate successor state axioms obtained from a set
of effect axioms and a set of state constraints. In order to justify the correctness of the approach,
we make use of theorem 2.3.1.



Chapter 3

State Constraints and Successor State
Axioms.

In the previous chapter we noted that Reiter’s original proposal to deal with the frame problem [47]
was not general enough to deal with theories that include a set of state constraints. Then, we briefly
outlined Lin and Reiter’s results to deal with state constraints and solve the so called ramification
problem. In summary, they provide sufficient conditions that a set of successor state axioms must
satisfy in order for it to be considered a solution to the combined frame and ramification problems.

In this chapter, we extend this line of work by studying theories that have either of two kinds
of state constraints:

The first kind includes a set of state constraints that are clauses containing at most two holds
literals. We show that a simple syntactic manipulation can be used to generate a suitable set of
successor state axioms. We also show that, in general, such a procedure cannot exist for theories
that include clauses with more than two holds literals. In [47], Reiter taught us how to derive
successor state axioms from theories that expressed the effects of actions in the so called effect
azioms. Our approach to deal with theories that also include a set of state constraints is to find
a way to replace these state constraints with new effect axioms along with some simple sentences
about the initial state Sy. Thus, we look for a new theory that would fall under the class of theories
for which Reiter’s approach works and that would have the state constraints implicit in the effect
axioms and in the axioms about Sj.

The second type of state constraint we consider are definitions. Basically, we argue that it
is common to deal with theories in which there are primitive fluents, along with defined fluents.
Primitive fluents, are those directly affected by actions. On the other hand, non-primitive fluents
are defined in terms of the primitive ones. We characterize these types of theories by establishing
the notion of stratified definitions and show how to deal with the frame and ramification problems
within these theories.

3.1 Binary State Constraints.

Consider a theory Y. in which the set T, of state constraints is written in semi-clausal form. That
is, each constraint is a sentence of the form:
p(xy) V holds([—] fi(x1),s) V holds([—] fa(x2),s) V ... V holds([~] frm (Xm), $). (3.1)

In this sentence, p(x,) represents a formula that does not contain any situation terms. We call
this form semi-clausal because p(x,) is not necessarily a literal. Here, each f; is a fluent function

16
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symbol. The notation [—] signifies that the symbol — may or may not appear in front of the fluent
term. Here, we write holds(—R, s) as abbreviation for —holds(R, s) as defined in (2.23). In order to
simplify variable substitutions, we require that the tuples x; ... x,, of variables be disjoint, and the
tuple x, include the variables in X; ...x,,. This requirement is not as restrictive as it may seem.
For example, if we have the following state constraint:

holds(onHand(x), s) V holds(onTable(x), s),
we conform to the requirement by rewriting it as:
z1 = x2 D holds(onHand(z1), s) V holds(onTable(zs), s).

In the future, we will use the following:
Definition 3.1 A state constraint of the form (3.1) is called an m-ary state constraint.

Our goal in this section is to show that for the simplest case in which there are no state constraints
with more than two holds literals (i.e., binary constraints) it is easy to derive a solution to the
frame problem based on a set of successor state axioms. Thus, we provide a mechanical procedure to
generate a set of successor state axioms to replace the effect axioms and the binary state constraints.
We prove that the successor state axioms generated satisfy the properties necessary to apply Lin
and Reiter’s result discussed in the previous chapter.

The solution is derived as follows: We start with a theory X,,:

2562 = ZJbd u Tpos UTyne U TSO U Tef U Tscm

where T, is a set of binary state constraints. The first step is to find an alternative formulation
of this theory without state constraints. In fact, we derive a set 7 7 (Tscy, Teg) of new effect axioms
and form the theory:

e = Bbd U Tpos U Tuna U TSy UTer UTgp(Tocy, Tey).

Later, we prove that if ¥, is consistent, then the theory Efm is equivalent to Xg.,, given a

simple condition on the initial situation. In the next step, we use X! to derive a set of successor
state axioms Ts(T% ¢ (Tsc,, Tef))- Thus, we finally obtain the theory:

2552 = Ypg U Tpos U TSO U Tyna U Tss (Telf (T502 ) Tef))-

The set Tys(Ty(Tse,, Tey)) is derived directly following Reiter’s approach to the frame problem in

the absence of state constraints, described in section 2.2. Finally, we use theorem 2.3.1 to show

that ¥,,, constitutes a solution to the frame and ramification problem for the original theory.
Thus, we describe the procedure to obtain 77, f (Tscy, Teg) from a theory Xge,:

Let

p(xr) V holds([=]f1(x1), s) V holds([~] f2(x2), s)

be an arbitrary binary state constraint in Ts.,. In order to simplify the presentation, we describe
how to obtain new effect axioms for state constraints of the form:

p(xy) V holds(fi(x1), s) V holds(fa(x2), s).

Thus, we ignore the case in which we have negative holds literals. However, the same discussion
applies to constraints for negative literals. The only change is that if f(x) is a fluent term with a
= in front, i.e. =f(x), we reverse the roles of negative and positive.
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Each negative effect axiom for f; in T, is of the form!:

Poss(a,s) Ny, (a,s) D —holds(f1(x1),do(a, s)). (3.2)
For each such axiom, we generate the following positive effect axiom for fo:
Poss(a,s) Ny, (a,s) A =p(xr) D holds(fa2(x2), do(a, s)). (3.3)
Symmetrically, if we have an effect axiom:
Poss(a, s) Ay, (a, s) D —holds(f2(x2),do(a, 5)), (3.4)
we add:
Poss(a,s) Ny, (a, s) A =p(xr) D holds(f1(x1),do(a, s)). (3.5)

Notice that (3.3) and (3.5) are entailments of the original theory ¥,.,. The previous procedure
is used with each and every state constraint, and is repeated until no new effect axioms can be
generated.

Now, we have the following:

Proposition 3.1 Let
Z]scz = 2bd U Tpos U Tuna U TSO U Tef U Tscza

be a theory of action as described before, and let
Yiey = 2bd U Tpos U Tung U Tsy U Te s U Tgf(Tm, Tes),

be the theory obtained from Xg.,, in which the set Ty, is replaced with the new effect azioms
e’f(TSC2,Tef), according to the procedure described above. Then, the following holds®:

Sy F Tse2(S0) D (V5).80 < s D Tiey(s)-

That is, given a theory Xs., if we replace the binary state constraints with the set Téf(TsQ,Tef)
we obtain a theory that entails the state constraints whenever the initial state satisfies them. This
result is proven by induction?, using ©(s) = Sg < 5 D Tsc,(8)-

This proposition establishes that we can replace the binary state constraints with a new set of

effect axioms and the state constraints applied to the initial state only. Thus, X is a theory
suitable to apply Reiter’s solution to the frame problem. Hence, we obtain:
Bssy = Lo U Tpos U Tupa U Ty U Ty (S0) U Ty (T (Tsey, Tey)), (3.6)

which constitutes the solution to the frame and ramification problems for the original theory X, .
In order to guarantee that this is a solution to the problem, we have the following:

Theorem 3.1.1 The set X5, (as in (3.6)) is a solution to the frame and ramification problem for
the theory Xsc,, as long as the following consistency condition is satisfied:

Tuna = (Va,8,21,...,20).~(Vy AU_y),
where ¥y and ¥_; are as defined in the statement of theorem 2.3.1.

This theorem follows directly from theorem 2.3.1 and proposition 3.1.

Tt may be necessary to rename the variables in the effect axiom and state constraints to make the fluent term
fi(x1) coincide. Since this renaming operation is straightforward, we ignore it to make the presentation more concise.

*Recall that Ts.,(s) denotes the conjunction of all the state constraints applied to the situation term s.

3See appendix.
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Example: To illustrate how to derive the successor state axioms from a basic theory of action,
consider the following example:

e Y, (situation independent axioms):

(Vd).d = Saucer V d = Cup.

® Thos:
Poss(pickup(d), s) = —~(3d')holds(inHand(d'), s),
Poss(drop(d),s) = holds(inHand(d), s).
o Tey:
Poss(pickup(d), s) D holds(inHand(d), do(pickup(d), s)),
Poss(drop(d), s) D —holds(inHand(d),do(drop(d), s)).
o T
d = d' D holds(inHand(d), s) V holds(onFloor(d'), s),
d = d D -holds(inHand(d), s) V =holds(onFloor(d'), s).
e Ts,:

holds(onFloor(Saucer), Sy),
holds(onFloor(Cup), Sy),
—holds(inHand(Cup, Sp)),
—holds(inHand(Saucer, Sy)).

Therefore, following the procedure outlined before, we can derive the following new effect axioms:
o Tpp(Tsc, Tef):
Poss(pickup(d),s) Ad = d' D =holds(onFloor(d'),do(pickup(d), s)),
Poss(drop(d),s) Ad = d' D holds(onFloor(d'),do(drop(d), s)).
Thus, the new theory is built by replacing axiom set T, with the set:
o TosTop((Toc, Tef)):

Poss(a, s) D holds(inHand(d),do(a, s)) =

a = pickup(d) V holds(inHand(d), s) A —a = drop(d),
Poss(a, s) D holds(onFloor(d),do(a, s)) =

a = drop(d) V holds(onFloor(d), s) A ~a = pickup(d).
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It is simple to check that Ti.(So) is satisfied by ¥4 U T's,. Furthermore, the condition:
Tuna = (Va,8,21,...,2,).(¥f A V_f),

gets translated into:
Tuna E (Va,d) =(a = pickup(d) A a = drop(d)),

which is trivially true.

The previous results have interesting computational consequences. In fact, a very important
advantage of theories of action described using successor state axioms for each fluent is that they
lend themselves to easy update procedures. For instance, if we know the state of a situation s,
then determining whether or not a fluent f holds in a successor situation do(a, s) depends only on
the evaluation of the simple formulas ¥y and W_;. Thus, the computational cost of updating the
value of a fluent equals the cost of determining the value of the ¥ formulas.

These theories are also interesting because, as shown below, extending them to allow for more
general disjunctive state constraints (i.e., m-ary state constraints with m > 2) leads to non-
tractability. Furthermore, we also show that, in general, it is not possible to develop a procedure
that would generate successor state axioms for these extended theories. Thus, we have:

Proposition 3.2 Let ¥4 be a theory ¥y, defined as in (2.31), such that Ts. contains m-ary state
constraints with m > 2. A set Tss(Tes,Tse) of successor state axioms satisfying the conditions of
theorem 2.3.1 for ¥sc4+ need not ezist.

Proof: Assume a theory in which T, contains the single constraint:
holds(X, s) V holds(Y, s) V holds(Z, s),

with Tg:
holds(X, Sy) A —=holds(Y, Sy) A —holds(Z, Sy),

and single effect axiom:
Poss(A, s) D —holds(X,do(4,s)).

Also, assume that the only fluents that exist are those denoted by the constants X, Y and Z. It
is easy to see that this theory has no unique minimal models. In fact, there would be at least two
minimal models, one in which holds(Y, do(A, Sp)) is true and another in which holds(Z, do(A, Sp)) is
true. In other words, the effects of performing action A are uncertain. Therefore, given observation
2.2 and the fact that the state of Sy is fixed, a set of successor state axioms that solves the frame
and ramification problems does not exist.
a

As discussed before, the limitation of binary constraints is suggestive of a more essential barrier.
In fact, we show below that propositional theories that contain ternary state constraints are in
general intractable. By propositional, in this context, we mean theories in a situation calculus
language whose fluent function symbols have arity 0 (i.e., they are all constants):

Definition 3.2 A situation calculus theory is called propositional if its language is such that there
s a fized set of fluent constants fi,..., fn, and there are no other fluent function symbols. Also,
the theory must contain a closure azxiom stating that there are no fluents other than those denoted

by f1,--- s fn-
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Proposition 3.3 Let X, be a propositional theory of action as defined in (2.31), such that T,
contains m-ary state constraints of the form:

holds([=]f1(x1),s) V holds([—] fa(x2),s) V ... V holds([=] fm (Xm), 5)- (3.7)

Consider the problem of constructing a model M for ;.. Assume that s and a are a situation
and action in the domain of M. Furthermore, assume that the state of s has been determined.
Also, assume that we have a truth assignment for all situation independent atoms. Under these
circumstances, we have that the task of finding a state for the situation do’™ (a, s)* has the following
properties:

1. If m < 2, the time that it takes to perform this task is polynomial in the number of fluent
constants in the language and in the size of Tey and Tye.

2. If m > 2, this task is intractable.

Therefore, there are important reasons why ternary constraints are difficult. Unless the set of
ternary constraints was equivalent to a set of binary constraints they introduce ambiguity. Having
ambiguity precludes the use of Reiter’s monotonic solution to the frame problem. Furthermore,
reasoning with ternary constraints is intractable.

In [28], Vladimir Lifschitz presented a nonmonotonic solution to the frame problem in the
presence of ramifications. Lifschitz uses a reified situation calculus and circumscription to formalize
his approach. The main result is that, under certain conditions, the result of the circumscription
is a complete characterization (explicit definitions) of the circumscribed predicates. Thus, when
these conditions are satisfied, the complete characterization can be used as a monotonic solution
to the frame problem.

Interestingly, one of the conditions in Lifschitz’s result is that the state constraints be expressible
through a formula®:

Compatible(f1, f2)

where the fluent variables fi and fo are the only free variables in Compatible(fi1, f2) and there is
no mention of the holds predicate. Furthermore, it is required that the following is satisfied:

So < s A holds(f1,s) A holds(fa,s) D Compatible(f1, f2)-

Thus, assume that s is a situation reached by performing a sequence of possible actions. This
condition requires that the state of s be such that any pair of fluents that hold in it are Compatible.
The interesting aspect of this requirement is that a set of binary state constraint can be written in
such a way that Lifschitz’s conditions are satisfied.

It appears that, under certain circumstances, Lifschitz solution to the frame problem, in the
presence of ramifications, is equivalent to our approach to the frame problem in the presence of
binary state constraints. A formal analysis of the relationship between the two frameworks is left
for further research.

3.2 Stratified Definitions.

In this section we consider a different kind of extension, in which we allow the introduction of non-
recursive definitions as a new set Ty, s of state constraints. We identify a set of fluents as primitive

4do™ denotes the interpretation of do in model M.
"We have adapted and simplified Lifschitz’s condition to our language.
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fluents, such that the non-recursive definitions bottom out on the primitive fluents. Furthermore,
we require that the effect axioms refer only to primitive fluents. This is a rather straightforward
problem. However, as argued later, theories with definitions arise often and we need a systematic
way to deal with them.

First, we introduce the notion of stratified definitions®.

Definition 3.3 A set Tycs is a set of stratified definitions if it is composed of a set of sentences,
each of the form:

holds(fo(x),s) = ®o(f1,---, fn.X,8),

where ®q is a simple formula, and fo, ..., fn are fluent function symbols’. fo is called a defined
fluent. The set Tyey must be such that there exists a numbering scheme that assigns a non-negative
integer to all the fluent function symbols, such that for each sentence in the set Tye; the number
associated with the defined fluent is strictly greater than the number assigned to the fluents on the
right side of the definition.

Definition 3.4 Let S and S’ be two different numbering schemes for a set Tgep of stratified defi-
nitions. Also, let S(f) and S'(f) denote the numbers that each scheme associate with the fluent f.
We define the ordering < between two numbering schemes as:

S <9,

if and only if there exist a fluent fo such that S(fo) is strictly less than S'(fo), and for every fluent
f, other than fo, S(f) is less than or equal to S'(f).

Definition 3.5 A numbering scheme is called a stratification, iff it is minimal with respect to <.

It should be obvious that there exists at most one stratification for any set of definitions. Given
a stratification, we call the number associated with a fluent its stratum. Primitive fluents are those
that are assigned a stratum of zero.

Definition 3.6 A set Tgey is a normal set of definitions iff it has a stratification that assigns a
stratum of 1 to all its defined fluents.

Observation 3.1 Given a set Ty; of stratified definitions there is a normal set of definitions Téef
that is equivalent to Tgey.

Thus, without loss of generality, in the rest of this chapter, we simply assume that the set of
definitions is normal.
Now, we restrict our attention to theories Y4 s of the following kind:

2def = z]deTpos U Tuna UTSO UTef UTdefa

in which the effect axioms refer only to effects on primitive fluents. Thus, if we have an effect axiom
like:
Poss(a,s) Ayi(a,s) D holds(F,do(a, s)), (3.8)

5The term stratified is used in the same spirit as the notion of stratification applied to logic programs and deductive
databases [42].
"Fluent terms may only appear as a first argument of a holds predicate.
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then F must be a primitive fluent. We are interested in finding a solution to the frame and
ramification problems for a theory Y4, r. We propose two ways in which this can be done.

First, the simplest solution is to consider a language without the defined fluents. Given a set
T of sentences, let the set 7, (7)) denote the set of sentences in which the defined fluents have
been eliminated from 7. This elimination is trivial, each holds literal in T', whose first argument
is a defined fluent, is replaced by the right side of its definition in Ty.¢. Since Tys is normal, the
resulting set contains only primitive fluents. Let ¥_4.; be:

Y gef = %def (Bpa) U 7—Tdef (Tpos) U Tuna U TTdef (Tso) U TTdef (Tef)-

Then, we obtain the set of successor state axioms Tss(7r,,,(Tey)) utilizing Reiter’s solution to the
frame problem and obtain the theory:
St = Zoa U Tss(Try,; (Tes)) U Tpos U Tsy U Tuna U Taey (3.9)

as solution to the frame and ramification problems. The correctness of this solution is a direct
consequence of theorem 2.3.1. Obviously, the theory X/, 7 — Tuey represents a correct solution of
the frame and ramification problems for the theory ¥_4., as long as the consistency condition

Tuna ): (Va,s,m,... ’g;n)_—|(\Ilf A \IJ“f)

is met. Therefore, given the same consistency condition, ¥/, 7 can be considered a solution for Y. .

A second approach to solve the frame and ramification problems for the theory Y4.f is to derive
successor state axioms for the defined fluents as well as for the primitive fluents. To do so, we take
the set Tss(T7y, ,;(Tey)) (from (3.9)) which are successor state axioms for the primitive fluents. We
obtain a set 757, of successor state axioms for the defined fluents by applying regression, as defined
in [48], to the primitive fluents in each definition. Thus, if fj is a defined fluent, and its definition
is of the form:

holds(fo(x),s) = ®o(f1,---, fn,X,8),
where fluents fi,..., f, are primitive, then:
hOldS(fo(X), do(a, 8)) = QO(fla SRR fna X, do(a, S))a (310)

Now, we may use Reiter’s regression operator R [48], which is meant to reduce the depth of
nesting of the function symbol do. Thus, assume the following is a successor state axiom for
primitive fluent f; in Tss(TTdef (Tey)):

Poss(a,s) D [holds(fi(xi,do(a,s)) =T'f,(s)].
where I'f,(s) is a simple state formula. Then, to apply the operator R to @, each literal

holds(f;(y;), do(a, s))

in ®g is replaced by 'y, after performing the obvious variable substitutions. This is done with each
primitive fluent in ®;. We obtain the formula

R(@O(fla e 1fn’xa dO(G,S))),

which is a simple formula that does not mention the function symbol do. Therefore, from (3.10)
we obtain:
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Poss(a, s) D holds(fo(x),do(a,s)) = R(Po(f1,---, fn,X,do(a,s))), (3.11)

which is a suitable successor state axiom for fo. For each defined fluent in Tg.r we obtain a successor
state axiom. Hence, we postulate that the theory:

csif:f = Ypqg U TPOS U Tuna UTs, U TSS(TTdef (Tef)) U T&sesf’

represents a correct solution to the frame and ramification problem for ¥g4.r. To guarantee the
correctness of this solution, we use theorem 2.3.1. In fact, using induction, (3.10) and (3.11) it
follows that:

sz |= (VS).S() =<s8D Tdef(s),

where Tg.r(s) denotes the conjunction of the definitions, each instantiated with the term s. There-
fore, if the consistency condition:

Tuna ): (VG,S,.’E1,--- ’;1;”)—|(\Ilf /\ \IJ_‘f)

is satisfied, the theory %37 fisa solution to the frame and ramification problem for 4.

Theories with stratified definitions are of practical relevance. Changes in defined fluents are
ramifications of the actions in this type of theories. Certainly, it is the simplest case of ramifications.
Definitions or equivalences of this kind also arise when completeness assumptions are made. For
example, given a set of necessary conditions under which some fluent holds, we may want to assume
that these conditions are also sufficient. We may formalize this assumption by predicate completion
or some such mechanism, deriving an equivalence, which behaves like a simple definition. For
example, assume that we have the following set of axioms:

holds(Sick, s) D holds(Sad, s),
holds(Trouble, s) D holds(Sad, s),
—holds(Love, s) D holds(Sad, s).

These axioms provide sufficient conditions for Sad to hold. Thus, a subject is Sad if he is Sick or
if he is in Trouble or if he is not in Love. Now, we may want to make the assumption that this
sufficient conditions are also necessary, and use completion to obtain:

holds(Sad, s) = holds(Sick, s) V holds(T'rouble, s) V —holds(Love, s),

Now, for this to work properly with our approach, it must be the case that no action is such that
it has the effect of making Sad true directly. Thus, we disallow an effect axiom of the form:

Poss(a, s) Ay, ,(a,s) D holds(Sad, do(a, s)). (3.12)
Otherwise, if we eliminate the fluent Sad, we would obtain:
Poss(a, s) Ayd,4(a,s) D holds(Sick, s) V holds(Trouble, s) V —holds(Love, s), (3.13)

which does not conform to the standard form of effect axioms.

As another example, consider the problem of modeling the behavior of an arbitrary combina-
tional circuit without feedback, in which time delays are ignored. Such a device can be abstracted
as a black box with a set of input signals and a set of output signals. Each signal corresponds
to a Boolean value. For instance, we can have a circuit with two inputs (Ga and Gb) and two
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outputs (Gc and Gd), in which Gc is Ga V Gb and Gd is Ga A Gb. We represent each signal with
a propositional fluent. The input signals will be considered to be the primitive fluents. In this
simple example, we only have switch actions for the input gates: SwitchGa and SwitchGb, with
the following set T, of effect axioms:

Poss(a,s) A a = SwitchGa A holds(Ga, s) D —holds(Ga,do(a, s)), (3.14)
Poss(a,s) A a = SwitchGa A —~holds(Ga, s) D holds(Ga,do(a, s)), (3.15)
Poss(a,s) A a = SwitchGb A holds(Gb, s) D —holds(Gb, do(a, s)), (3.16)
Poss(a, s) A a = SwitchGb A\ =holds(Gb, s) D holds(Gb,do(a, s)). (3.17)

Switching actions are always possible:
Poss(SwitchGa, s) A Poss(SwitchGb, s).
Finally the set Tyey of definitions is simply:

holds(Ge, s) = holds(Ga, s) V holds(Gb, s),
holds(Gd, s) = holds(Ga, s) N\ holds(Gb, s).

The set Tys(Tes) derived from the set Tey is:

Poss(a,s) D holds(Ga,do(a, s)) =

—holds(Ga, s) A a = SwitchGa V holds(Ga, s) A ~a = SwitchGa,
Poss(a,s) D holds(Gb,do(a, s)) =

—holds(Gb, s) A a = SwitchGb V holds(Gb, s) A —a = SwitchGb.

That is, Tys(Tes) consists of successor state axioms for the primitive fluents only. Obviously,
the defined fluents can be uniquely determined from the primitive fluents and the definitions. Also,
by following the procedure outlined before, it is possible to derive successor state axioms for the
defined fluents from the definitions and the successor state axioms for the primitive fluents. An
advantage of doing so is that we would eliminate the definitions, maintaining the derived successor
state axioms for non primitive fluents. This would guarantee that the non-primitive fluent’s values
be consistent with the original definitions. The successor state axiom for the defined fluent G, is
simply:

Poss(a,s) D holds(G,,do(a, s)) =
[~holds(Ga, s) A a = SwitchGa V holds(Ga, s) A ~a = SwitchGa] V
[—holds(Gb, s) A a = SwitchGb V holds(Gb, s) A —a = SwitchGb).

The successor state axiom for G4 is analogously determined. However, it seems simpler to keep the
definitions and use them to evaluate non-primitive fluents after actions are performed.
3.3 Combining Classes of Constraints in a Single Theory.

In the previous sections we described ways in which we can deal with classes of constraints that
were either binary state constraints or sets of stratified definitions. Both cases were discussed
independently. Now, it is important to answer the questions: What happens if we combine both
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types of constraints in the same theory? Under what circumstances can we apply the previous
approaches? To answer these questions, assume that we have a theory:

Yise = 2pa U Tpos U Tuna U TSO U Tef U Tdef U Ty,

where Ty are stratified definitions® and T}, are other arbitrary state constraints. To deal with
these theories, we first eliminate the defined fluents from ¥, following the procedure explained in
section 3.2. After replacing all defined fluents by their definitions, we end up with a theory

e = Bpa U Tpos UTg) UTyna UT,p UTy,.
Here, the theory ¥, is equivalent to X, in the sense that for any sentence that does not mention a
defined fluent, the sentence is entailed by one theory iff it is entailed by the other. Now, the set 7%,
can be divided into T}, and T}, 1, where T}, are all the state constraints that can be written as

§C2
disjunctive state constraints with no more than two holds literals and such that T;, = T;, UTy., .

sco
Now, we can eliminate the state constraints in T;CQ by using the approach described in section 3.1.
This leads to a another theory:

Se = Bpa U Tpos UTgy U Tyna UT; UTy,,.

Therefore, we reduce the problem by eliminating state constraints and replacing them by other
axioms (i.e., effect axioms and axioms about Sy). Now, we can directly use Reiter’s approach to
the frame problem if 7., is empty. Otherwise, the problem remains open as to whether or not we
can come up with a systematic approach to derive the successor state axioms. However, the point
we make here is that if such an approach exists, it would cleanly integrate with the ones discussed
previously in this chapter.

8We assume that the right side of the effect axioms only refer to primitive fluents.



Chapter 4

Adding a Time Line to the Situation
Calculus.

4.1 Why a Time Line?

The situation calculus is a temporal logic in which time is seen as a branching structure. Intuitively,
the structure of situations is a tree rooted at the initial situation Sy, as illustrated by figure 4.1.
In general, the initial situation Sy is taken as the present time. Thus, each branch that starts in
So can be understood as a hypothetical future. The tree structure of the situation calculus shows
all possible ways in which the events in the world could unfold. Therefore, any arbitrary sequence
of actions identifies a branch in the tree of situations.

Figure 4.1: A tree of situations.

Thus, the situation calculus serves as a tool for the representation of hypothetical knowledge. As
such it has several important drawbacks. In particular, it does not provide for ways to constrain
the manner in which events occur. Also, it does not provide a notion of linear time. Therefore,
propositions like “I will be home at three o’clock” cannot be represented in the language. We
cannot even express the sentence: “I will die”. This phenomenon is due to the branching nature
of the underlying structure of situations. In fact, the language of the situation calculus does not
provide the elements to prefer one development of events over others. For example, in figure 4.1
we may know that situation S5 is real, in the sense that the actions that lead to it from Sy have
occurred. However, the original language lacks the power to make such a statement.

In contrast, formalisms based on linear time provide ways in which to express definite temporal
knowledge about a given domain. For example, not only can we state that “I am at the office but I
will be home at three o’clock,” but we can also conclude that I will have to perform some action to
take me home, and that such an action will have to be performed between now and three o’clock.

27
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In the situation calculus, on the other hand, the most we can do is conclude that if I am going to
be home at three o’clock, then I must do something that will take me there.

In this chapter we extend the language of the situation calculus by incorporating the basic
elements of a linear temporal logic. This is an extension, in the sense that we introduce new
distinctions. In particular, we talk about a subset of situations that are actual and provide an
axiomatization that describes its properties. The set of actual situations represents the situations
that arise in the actual world. This is illustrated with the continuous line in figure 4.2. This exten-
sion does not impose any additional constraints on the situations. Thus, we retain the expressive
power of the original situation calculus.

S3

Figure 4.2: An actual line of situations.

So

As we see later in the chapter, the new distinctions introduced have a wide range of applicability.
The main expressive enhancement is the ability to state that a sequence of events has occurred or
will occur. One of the consequences of such an ability is that we can write sentences describing
constraints among action occurrences. For example, we can write that one of the effects of some
action is the triggering of other actions. Also, we may write that some actions have occurred
without specifying completely which actions have occurred.

The discussion that follows concentrates on non-concurrent actions. How to apply the new
notions introduced to concurrent actions is discussed later in this document.

4.2 An Actual Path of Situations.

So far, we have introduced axioms that allow for the specification of what is true and what truths
change along different paths that start in the initial situation Sy. Here, we address the problem of
describing the evolution of the world as it actually unfolds. To this end, we incorporate a predicate
actual for situations. The intended meaning is that a situation is actual if it lies on the path that
describes the world’s real evolution. The axioms for actual are:

actual(So), (4.1)
(Va, s).actual(do(a, s)) D actual(s) A Poss(a, s), (4.2)
(Vay, a9, s).actual(do(ay, s)) A actual(do(as, s)) D a1 = as. (4.3)

Axioms (4.1)-(4.1) express that the initial situation is always actual, and if a situation is actual,
then its immediate predecessor must also be. Axiom (4.1) says that an actual situation has at most
one actual successor situation. An important characteristic of actual situations is that they all lie
on the same path (i.e., they constitute a time line), as the following shows:

Proposition 4.1 From azioms (4.1)-(4.1) it follows:
(V s1,82).82 < 81 D [actual(s1) D actual(s2)],

(V 81, 82).actual(s1) A actual(sa) D s1 < s2V 82 < 81V 81 = S9.
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We also introduce a notion of time, which allows us to establish a direct relationship between
the situation calculus and linear temporal logics (e.g., the calculus of events [25]). Intuitively,
each situation has a starting time and an ending time. During the time span of a situation no
fluents change truth values!. We incorporate the sort 7, interpreted as a continuous time line,
into our language. The sort 7 is considered isomorphic to the non-negative reals. We work with
an interpreted theory, that is, we assume standard interpretations for the real numbers. Also, we
introduce the functions start from S to 7, and end, from S x A to 7. Events/actions occur at the
ending time of situations. This is captured by the following axioms?:

(Vs,a) end(s,a) = start(do(a, s)), (4.4)
(Va,s) start(s) < start(do(a, s)), (4.5)
start(Sp) = 0. (4.6)

Thus, each situation is labeled with a start time and these times begin at 0 in Sy and increase
monotonically away from the initial situation. Hence, we have the immediate consequence:

Proposition 4.2 From (4.4)-(4.4) it follows that:
(Vs,s').s < s D start(s) < start(s').

There exists an obvious asymmetry between the end and start functions. This is a reflection of
the temporal asymmetry of the situation calculus. In fact, any given situation has a unique past.
Therefore, for any single situation, there exists a unique start. On the other hand, any situation
has multiple possible futures. Each possible future is reached by performing different sequences of
actions. Thus, the end of a situation will depend on which future we consider. Hence, the term
end(s,a) denotes the time that would end the situation s if action a were to be performed. Since
each actual situation has a unique actual successor situation, it turns out that the end time of
actual situations is determinate.

Occurrences are introduced as a relation between event types and situations. For example:
occurs(pickup(D), S),

says that the event of picking up D occurred in situation S. Occurrences are defined in terms of
the actual path as follows:

occurs(a, s) = actual(do(a, $)).- (4.7
Thus, each actual situation s, after Sy, is related to a unique action that must have occurred

and which leads to s. For example, if occurs(pickup(D), S) is true, the situation tree may look like
the one in figure 4.3.

!This restricts the properties of the world that can be represented as fluents, for instance, the position of a moving
ball cannot be represented by a fluent. This problem is addressed in chapter 6.

In what follows, we use < and < as relations between situations (as defined earlier), as well as for the standard
ordering relation between the elements of 7.
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Figure 4.3: A tree of situations in which occurs(pickup(D), S) is true.

In some cases, it might be convenient to establish a relationship between events/actions that
occur and the time at which they occur (rather than the situation). For this purpose, we introduce
a predicate occursT C A x T, defined as:

occurst(a,t) = (3 s).occurs(a, s) A start(do(a, s)) = t. (4.8)

Also, we define a relation holds7 between fluents and time points and a relation during between
time points and situations:

holds7(f,t) = (3 s).actual(s) A during(t,s) A holds(f, s), (4.9)
during(t, s) = actual(s) A start(s) < t A (Va) [occurs(a,s) D end(s,a) >1t].  (4.10)

Intra-state persistence is derivable:
Proposition 4.3 From azioms (4.1)-(4.9) it follows:
(V f,s,t,t").during(t, s) A during(t',s) D holdsr(f,t) = holdsr(f,t').
We can also introduce the notion of an event occurring between situations as follows:
occursBet(a, s1,52) = (3s).51 < s < s2 A occurs(a, s). (4.11)

We can also show that if s; and sy are actual situations, and nothing occurs between them, then
one must be the result of performing some action on the other. This is stated in the following;:

Proposition 4.4 From azioms (4.1)-(4.11) it follows:
actual(se) A s1 < sy A=(3ad') occursBet(a', s1,s2) D (3a) s3 = do(a, s1).

In the next section we will consider theories that include sentences in which an ordering between
situations is provided. For this purpose, we introduce the following;:

Definition 4.1 A formula O<(x1,%2,...,2,) is an ordering formula if it only mentions the
terms x1,x2,--.,%n, does not include any quantifiers and all its literals are < literals.

For example, if O (z1,22) = 1 < z9 then O (s1,82) = s1 < s9 where < refers to the ordering
between situations, and O (t1,t2) = t1 < to where < refers to the less than operator for the real
numbers.

Now, we have the following:
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Proposition 4.5 From proposition 2.1 and azioms (4.1)-(4.11):

(3s1,-..,8n).0ccurs(Ay,s1) A ... Noccurs(An, sp) N O<(81,---,5n)

(Ft1,...,tn)-0ccursy(Ar,t1) A ... Noccurs(An,tn) N Oc(t1, ..., tn)-

where O, 1is an ordering formula.

The expanded ontology for the situation calculus introduced in this section provides the essential
features of other temporal logics. In fact, as we analyze in chapter 7, we can realize most of the
representational features of some well known temporal logics based on a linear view of time. For
example, Kowalski and Sergot’s [25] Logic Programming based Calculus of Events and Allen’s
interval temporal logic [3].

4.3 What Occurs?

4.3.1 Motivation.

Adding the occurs predicate to the language does not introduce any complications in the case in
which all the events that occur are completely determined. However, problems do arise when this
is not the case. For instance, consider the Yale Shooting Problem [21]; it is common to pose it as
the problem of determining the truth value of the literal:

holds(Alive, do(Shoot, do(W ait,do(Load, Sy)))).

That is, we want to know whether a fluent holds in a completely determined situation.
This problem can be formulated in a different fashion. In particular, using the situation calculus
extended with a time line, we can formalize it as follows:

Poss(Load, s) A Poss(Shoot, s), (4.12)
Poss(Unload, s) = holds(Loaded, s), (4.13)
Poss(a,s) A a = Load D holds(Loaded, do(a, s)), (4.14)
(a,s) A a = Shoot A holds(Loaded, s) D (4.15)
—holds(Alive,do(a, s)),
Poss(a, s) A a = Unload D —holds(Loaded, do(Unload, s)), (4.16)
holds(Alive, Sy), (4.17)
(3 s1, S92, 83, 84).0ccurs(Load, s1) A occurs(W ait, s3) A occurs(Shoot, s3) A (4.18)
81 < 82 < 83 < 84 A actual(sy).
Axioms (4.12) and (4.12) specify Tpos. (4.12)-(4.12) are the effect axioms. (4.12) establishes the
initial conditions. (4.12) lists all the actions that we know have occurred and provides an ordering

among the situations in which the actions occur.
Following Reiter’s mechanism to derive the successor state axioms, we obtain:

Poss(a, s) D [holds(Loaded, do(a, s)) = (4.19)
a = Load V —a = Unload A holds(Loaded, s)],
Poss(a, s) D [holds(Alive,do(a, s)) = (4.20)

—(a = Shoot A holds(Loaded, s)) A holds(Alive, s)].
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Then, we may ask whether Alive holds after the shooting. By formulating the YSP in this
manner, there are two distinct problems that have to be studied:

e First, we have the frame problem whose solution allows us to determine the effects of each
action in the environment, given the state of the situation in which they are done. Here, we
assume that the frame problem is properly dealt with using Reiter’s approach described in an
earlier chapter. Thus, we assume that for each fluent we have a successor state axiom. It is
important to point out that we assume that the frame problem is solved before we address
the second problem described below. This requirement should be understood as giving higher
priority to solving the frame problem.

e The second problem that we have to address is the one of determining exactly which actions
occur. For instance, in the formulation of the YSP above, it could be the case that an Unload
action occurred after the Load and before the Shoot. Also, between two situations there may
be an infinite number of unrelated actions that may occur. However, we would like to infer
that these extra actions do not occur. To deal with this problem, we take the view that some
sort of minimization has to be used. In fact, our approach to address this problem follows a,
similar intuition to the one that serves as the basis for Reiter’s solution to the frame problem.
That is, in the solution to the frame problem, it is assumed that each action has no more
effects than those that necessarily follow from the effect axioms. In a similar vein, we take the
point of view that, after the frame problem is solved, no actions occur unless their occurrence
is dictated by the axioms of the theory.

A very important issue arises when the frame problem is separated from the problem of deter-
mining the set of occurrences. To illustrate it, we introduce a simple abstract example. Consider
a theory of action whose language includes a fluent constant F, situation constants S’ and S” and
action constants A1 and A.. Also, assume that the only effect axiom is:

Poss(Ac, s) D —holds(F,do(Ae, s))-
Furthermore, assume that the theory satisfies the following sentence:
holds(F,S") A —holds(F,S") N S' < §".

That is, F' has changed from S’ to S”. We can easily conclude that some action must have
occurred which negatively affected F (see proposition 2.2). So, assume that action A; is known to
have occurred at S’ or between S’ and S”, that is:

occurs(Ay,S") V occursBet(A1, S, S").

Also, assume that there are no effect axioms relating A; to F. Now, given that this represents all
we know about our domain, we have two possible ways of understanding the nature of the change
in F:

1. Action A; has made F change negatively from S’ to S”. Thus, A; affects F' in a way that is
not sanctioned by the effect axioms.

2. Some other action (e.g. A.), whose occurrence we did not know about, occurred between S’
and S” and made F' change from S’ to S”.
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Interestingly, the literature on the situation calculus and the frame problem is concerned only
with the first sort of explanation. In fact, if all we know is that A; occurred, this is usually expressed
as:

S” = dO(Al, Sl)

Most non-monotonic solutions to the frame problem will conjecture that there is an unstated
qualification which makes A; affect F' negatively. In fact, non-monotonic solutions are concerned
with explaining change due to A;, and the only possible explanation (given that other actions are
not postulated) is that A; is responsible for the change. In contrast, Reiter’s monotonic solution
to the frame problem would lead to a contradiction when using 1 as hypothesis. This is so since in
the absence of effect axioms relating F' and A;, we will obtain a successor state axiom stating that
F never changes from a situation s to a situation do(A1, s).

An alternative to explaining change by assuming unstated qualifications to known actions (e.g.,
assuming that a Wait event may have unstated effects such as Unloading guns) is to postulate the
existence of intervening actions that explain the change. For instance, given the effect axiom that
states that A, always makes F' false, Reiter’s solution to the frame problem will allow for models in
which such an action explains the changes in F'. On the other hand, if there were no effect axioms
relating actions to negative change in F', then using Reiter’s solution to the frame problem would
lead to a contradiction. This contradiction seems to be the only appropriate conclusion. In fact, if
the theory does not mention any actions that would change F', then F' should not change.

As has been described in this section, we follow the approach of assuming that we do not know all
the actions that occur. However, we also assume that any action whose occurrence is not necessary
to explain the information at hand does not occur. Thus, we divide the problem of reasoning about
actions and change into two parts:

e First, given the state of a situation s, what is the state of a situation do(a, s)? This question is
answered using Reiter’s solution to the frame problem. Thus, we use successor state azrioms.

e Second, given a possibly incomplete description of the actions that occur, what are the actions
that occur? This is answered using the non-intervening events assumption. Thus, we choose
models that contain minimal sets of occurring actions. This is formalized using circumscrip-
tion.

Interestingly, Miller and Shanahan [39] study the formalization of narratives within the situation
calculus. Narratives are conceptually similar to ordered sets of actions that are known to have
occurred. In their work, they present an approach related to the one discussed here. They solve
the first problem mentioned above by appealing to Baker’s circumscriptive solution to the frame
problem [10]. The second problem is also solved using a circumscriptive policy. They choose to
minimize a predicate Happens, which plays a conceptually similar role to the predicate occursy.

4.3.2 The Preferential Policy.

As mentioned before, we use a minimization policy in order to select models of a theory in which
nothing occurs unless its occurrence is necessary. Thus, assume that 3. is a theory of action
with occurrences. Also, assume that X .. has a model M in which all the actions that occur are as
depicted in the time line of figure 4.4. Hence, in M, the only action occurrences are A, B and C at
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Figure 4.4: Time line in model M.

times T,, Ty and T, respectively. Furthermore, assume that M’ is another model of X,.. in which
the occurrences are depicted in the time line of figure 4.5. In the model M’, we have that the only

y

¢

1
T, T,
Figure 4.5: Time line in model M.

action occurrences are A and C at times T, and T, respectively. Our preferential semantics is such
that the model M’ should be preferred to M. As partial justification for this semantics we will
show that it yields the expected results when complete information can be assumed. Furthermore,
in some cases this policy subsumes the policies stated by other researchers in the area. For example,
Shanahan’s assumption “that the only events which occur are those which are known to occur” [56]
is subsumed by our policy when the chronological ordering between the actions is known. Thus, if
it is consistent to make Shanahan’s assumption, then our policy yields the same results when the
chronological ordering of the actions is known.

In order to formalize the minimization, we use Circumscription [36, 37, 26]. To simplify the
presentation of the circumscription policy, we consider the predicates occurs, holdst, during, and
occursBet and the function end to be abbreviations (as defined by (4.7), (4.9), (4.9), (4.11) and
(4.4)), which are not part of the extended language of the situation calculus. By doing this, we
need not include these elements in the list of symbols whose interpretation is made variable in the
circumscription policy.

In the following discussion, ¥,.. denotes a theory of action that includes:

e Axiom sets as in section 2.3, in which the sets T,; and T, can be replaced with a set
Tss(Tes, Tse) of successor state axioms according to the criterion presented in section 2.3.

e Axioms (4.1)-(4.11).

e A set Ty, of occurrence axioms. These axioms are meant to constrain the interpretations of
the actual line of situations. First, we consider the case in which T,.. includes axioms that
directly constrain the the structure of the actual line of situations. These are of the form:

(3s1,--+,8n).0ccurs(Ay, s1) A ... Noccurs(An, sp) N O< (81,82, .. ,8n). (4.21)

where O is an ordering formula. Later we extend the classes of formulas contained in Tp,.

The circumscription policy is as follows3:
Circ(Zoee; occursT; actual, start), (4.22)

Thus, we select the models of ¥,.. that have a minimal extension for the predicate occursy. Below,
we present a precise semantic characterization of (4.22). The predicate actual and the function

3A general discussion about circumscription can be found in appendix B.
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start are variable elements in the circumscription. Clearly, these elements need to vary since
occursy is defined in terms of them. Notice that the situation tree is fixed except for the elements
that determine what the actual line looks like. As mentioned before, an interesting property of
this policy is that if we know all the actions that occur, and if it is consistent to believe that they
are all that occurred, then the circumscription will select those models in which the actual line of
situations contain all and only those actions.

A remarkable feature of this circumscription is that it makes the choice of the actual path of
situations depend only on the time line. That is, the minimization of the actions does not directly
depend on the situations in which the actions are performed.

In the examples that follow, we make use of model-theoretic arguments to justify our conclusions.
Therefore, based on Lifschitz’s results [26], we present the model-theoretic meaning of the above
circumscription.

Let M7 and Ms be two arbitrary models of a theory of action ¥,... Model M; is preferred to
model Ms, written M; < My iff:

1. [M1|| = ||[M2]||. That is, M; and My share the same domain.

2. The interpretation for every function symbol other than start, and the interpretation of every
predicate other than actual and occursy is the same.

3. occursf}/[ ' C occursé’b. That is, the extension of the predicate occursy in Mj is a proper

subset of the extension of occursy in Mas.

A model M of X,.. is minimal with respect to <, if there is no other model M’ of X,.. such
that M’ < M. Finally, from Lifschitz result, it follows that M is a model of

Circ(Eoce; occursT; actual, start)

if and only if M is a minimal model of ¥, according to < as defined previously.
In what follows we introduce theories that contain skolemized versions of axioms of the form
(4.21). In these cases, and as justified by theorem B.2.1 in appendix B, we replace (4.22) with:

Circ(Xoce; occursT; actual, start, Sy).- (4.23)

Where Sy denotes the set of skolem constants introduced.

As mentioned before, we claim that if we have complete information about the actions that
occurred then the circumscription policy gives the expected results. This is formally stated as
follows:

Observation 4.1 If ¥, is a theory in which the set Ty, contains a single axiom of the form:
occurs(A1,S1) A ... Noccurs(Ap,Sp) ANS1 < ... < Sy. (4.24)
and the theory ¥occ has a model M that satisfies:
occurs(a,s) =a=A1Ns=51Va=A4r3ANs=5V...Va=A4, Ns= 5. (4.25)
Then, every model of Circ(Zoee; occursT;actual, start, Sy) will satisfy (4.25) and will also satisfy

Sn == dO(Anfl, Snfl) VAN SQ - dO(Al, Sl) A Sl == S(). (426)
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The importance of this observation is that it establishes that if it is consistent to assume that all

the actions that are known to occur are the only ones that occur, and these actions are totally

ordered, then the models of the circumscription will not include any other occurrences.
Furthermore:

Observation 4.2 Let Y. be a theory in which Ty contains a single sentence of the form:
occurs(Ar, S1) A ... Noccurs(An, Sp) N O<(S1,S2,...,5n).
Where O~ is an ordering formula. Assume that there is a model M of Y. that satisfies:
occurs(a,s) =a=A1ANs=S1Va=AsAs=5V...Va=A, ANs=S, (4.27)

Then, M is a model of:
Clirc(Zoce; occursT; actual, start, Si). (4.28)
Howewver, it is not necessarily the case that for any model M' of (4.28) M’ satisfies (4.27).

This property of our minimization policy is extremely important. In fact, it serves to illustrate
the fact that it does not necessarily correspond to the intuition that if it is consistent to assume
that no occurrences other than the known ones exist, then there are mo other occurrences. As an
example, consider a situation calculus language with action constants A, B and C, fluent F, and a
theory Y,. with the following axioms:

e Axioms about Poss:
Poss(B, s) = holds(Fy, s)
Poss(A,s) A Poss(C, s).
Thus, B is possible only if F, is true. A and C' are always possible.

e Successor state axioms:
Poss(a,s) D [holds(Fg,do(a, s)) = (holds(F,,s) N —a = A)]. (4.29)
Thus, F, is falsified by action A and is otherwise unaffected.

e Initial state:
holds(F, Sy)-

o Toee:

occurs(A, S1) A occurs(B, Sa).

Thus, we know that A and B have occurred, but we don’t know in which order. Here, S; and
Sy are skolem constants.

Clearly, X,cc = S2 < Si. Thus, any preferred model will satisfy this ordering.
Now, let us extend the language with a new action C. Also, let us change the example by
replacing the successor state axiom (4.29) with:

Poss(a, s) D [holds(F,,do(a,s)) =a= CV (holds(F,,s) A ~a = A)]. (4.30)

Thus, C changes F, positively. In this situation, there are models of ¥,.. that satisfy the ordering
S1 < S9. Therefore, the previous proposition establishes that there will be models of the circum-
scription in which A occurred before B. It is not difficult to see that in these models C' occurs in
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between. Thus, this is an example in which it is not the case that the circumscriptive theory entails
that the known actions are all the actions that occur, even if it is consistent to assume so. Notice
that there is a model in which Sy < S7 and C does not occur in it.

In our view, it would be incorrect to force an ordering among actions to ensure that fewer actions
occur. For example, assume that we are told that: John and Mary will meet at their place at some
time. If Mary gets there before John, then she will call Sue. If this is all that is known we do not
want to infer that John will get home first just to enforce a minimization of actions (disallowing
models in which Mary makes her call).

In the previous discussion we have shown that the preferential policy that we presented gives the
correct answers when the set Ty, of occurrence axioms are of the form (4.24). Given proposition
4.5, this is also the case when T, is a sentence of the form:

(Ft1, ... tn).0ccursT(A1,t1) A ... ANoccursT(An,tn) AN Oc(ty,. .., t,).

when O, provides a complete order. Unfortunately, sentences of this form are too restrictive and
do not provide the expressiveness required by many examples (as shown below). Thus, we would
like to be able to introduce a more general kind of occurrence statements in the set Ty... Now, given
such a set of sentences, we need some argument to the effect that the preferential policy presented
gives the right answers. The only argument that we provide is the fact that the minimization
policy selects those models which seem intuitively better in a set of examples. Unfortunately, this
is unsatisfactory. A completely satisfactory solution to this problem would be to present some
independent justification for the policy utilized. However, independent justifications are hard to
come by. Thus, as other researchers in theories of action, we must use examples that would provide
evidence for the correctness of the solution proposed. This we do in the next section.
Aside from axioms of the form (4.21), we will use axioms stating conditional occurrences. This
axioms are of the form:
®(s,a) D (3s').s < 8" Aoccurs(a, s'), (4.31)

where ®(s,a) is a simple state formula. Conditional occurrence axioms of this form provide further
constraints on the actual line of occurrences. These axioms can also be written by utilizing situation
free sentences that contain time terms. For example:

holds(Hungry,t) D (3t').t <t A occurst(Eat,t')

states that if in the line of actual situations there is a time in which the fluent constant Hungry
holds, then there must be an action Fat in the actual line after the time at which Hungry holds.
Finally, we also use axioms of the form:

(3t1,. .., tn).occursT(A1,t1) A ... AoccursT(An,tn) AN O (t, ..., t).

In which O'(t,...,t,) is an extended ordering formula that mentions temporal constants aside
from the terms t¢q,...,%,.

In the next section we apply our approach to several examples from the literature. In particular,
we show that the intended conclusions for the Y SP example above are indeed what follows from
the circumscription.

4.4 Examples.

In this section we discuss several examples. These examples are taken from the literature in
temporal reasoning in Artificial Intelligence. Most of these are used as benchmarks to test various
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theoretical proposals for reasoning about actions and change, and were compiled by Sandewall in
[53]. Each problem is formalized as a circumscriptive theory (4.23) and differs in the domain axioms
that are specified with each example.

4.4.1 The YSP.

The Yale Shooting problem [21] was presented in the previous section. The relevant axioms we
repeat here in a skolemized form:

Poss(Load, s) N Poss(Shoot, s), (4.32)
Poss(Unload, s) = holds(Loaded, s), (4.33)
holds(Alive, Sp), (4.34)
occurs(Load, S1) A occurs(W ait, S2) A occurs(Shoot, Ss3), (4.35)
S1 < 82 < S3 < Sy, (4.36)
actual (S4), (4.37)
Poss(a, s) D [holds(Loaded, do(a, s)) = (4.38)

a = Load V —a = Unload A holds(Loaded, s)],
Poss(a, s) D [holds(Alive,do(a, s)) = (4.39)
—(a = Shoot A holds(Loaded, s)) N holds(Alive, s)].

The objective of the YSP is to determine whether or not Alive holds after the shooting. First,
it is not difficult to see that there is a model M,;,; of the circumscription such that:

Mint |: Sl = S() A SQ = do(Load, Sl) A
S3 = do(Wait, S2) A Sy = do(Shoot, Ss3).

Furthermore,

Mt = —holds(Alive, Sy).
This model is depicted by figure 4.6. However, we need to show that there is no model of the

do([Load, W ait, Shoot],

do([Load, W ait], S

Figure 4.6: The situation tree in an intended model for the Y SP.

circumscriptive theory that satisfies holds(Alive, S4). We do so by contradiction. That is, assume
that there is a model M such that

M = holds(Alive, Sy)
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is true.
From the occurs and ordering statements (4.32)-(4.32), we infer that M satisfies:

(Ft1,ta, t3).occursy(Load, t1) A occursy (W ait, ta) A occursy(Shoot, t3) A
11 < 19 < t3.

By induction and using the successor state axiom for Alive (4.32), it follows that M satisfies:
(Vs,s").s' > s A —holds(Alive, s) D —holds(Alive, s').

That is, no resuscitations are possible. Therefore, if Alive holds in Sy, it follows that Alive holds
in all previous situations. In particular, it follows that holds(Alive,do(Shoot,Ss)). Therefore, the
successor state axiom for Alive tells us that holds(Loaded, S3) must be false. Using the successor
state axiom for Loaded it follows that an Unload action must have occurred between the Load and
the Shoot. So, we obtain:

M = (3t1, ta, ts, ta).occursy(Load, t1) A occurs (W ait, ta) A
occursT(Shoot,t3) A occurs(Unload, ts) A
1 <t <tzg ANt <ty <ts.

Thus, in M, Unload occurred some time between the Load and the Shoot. M is depicted by figure
4.7. However, from this model, we can easily obtain a model M/, , (e.g., the one depicted by figure
4.6) without the Unload occurrence and that preserves the rest of the interpretation. Essentially,
we only change the actual line of situations from one branch to another. Clearly, M} , < M,

do([Load, W ait, Unload, Shoot], Sp)

do([Load, W ait, Shoot], S ;
o([Loa ai 00t do([Load, W ait, Unload), Sp)

do([Load, W ait], S,

do(Load, Sy)

So

Figure 4.7: The situation tree in a non-minimal model for the Y SP

therefore, M cannot be a model of (4.23). It follows that in all the models of the circumscription,
Alive does not hold in Sy.

4.4.2 The Hiding Turkey.

The Hiding Turkey Problem is a simple variation of the Y'SP and was proposed by Sandewall [52]
as a test for theories whose initial state is incompletely specified. The variation is that the turkey
that is being shot may or may not be deaf. If the turkey is not deaf, then it will go on hiding if
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it hears the loading of the gun. There are many ways in which this problem can be formalized. A
simple formulation is as follows:

Poss(Load, s) A\ Poss(Shoot, s), (4.40)
Poss(Unload, s) = holds(Loaded, s), (4.41)
Poss(a, s) A a = Load D holds(Loaded, do(a, s)), (4.42)
Poss(a,s) A a = Load A —holds(Deaf, s) D holds(Hiding,do(a, s)), (4.43)
Poss(a, s) A a = Shoot A holds(Loaded, s) A —holds(Hiding, s) D (4.44)
—holds(Alive,do(a, s)),
Poss(a, s) A a = Unload D —holds(Loaded, do(a, s)), (4.45)
holds(Alive, Sp), (4.46)
—holds(Hiding, Sp), (4.47)
So < 81 <8y < S3< 8y, (4.48)
occurs(Load, S1) A occurs(W ait, S3) A occurs(Shoot, Ss3), (4.49)
actual (Sy). (4.50)

A more accurate formalization would include Hide actions and would have these actions oc-
curring after noisy situations. However, doing so adds complexity that would distract us from the
main purpose of the example. First, we have added the fluents Hiding and Deaf to the language
of the YSP example. Axiom (4.40) says that if the turkey is not deaf and Load is performed, the
turkey will go under. Axiom (4.40) says that the turkey is not alive after shooting a loaded gun
when the turkey is not hiding. Given that there are no effect axioms for Deaf, it follows that the
successor state axiom for Deaf is simply:

Poss(a,s) D holds(Deaf,do(a, s)) = holds(Deaf,s).

So Deafness is a property that always persists. Alternatively, Deaf could be simply a state
independent atom instead of a fluent. For Hiding, we obtain:

Poss(a, s) D [holds(Hiding,do(a, s)) = a = Load A —holds(Deaf,s) V holds(Hiding, s)].

In this problem, the goal is to show that either the turkey is deaf and dead or non-deaf and
alive after the shooting. Indeed, this is trivially the case. First, notice that holds is one of the fixed
predicates in the circumscription. Therefore, there are two classes of minimal models, one class in
which holds(Deaf,Sy) is true, and one in which —holds(Deaf,Sy). If the former holds, then the
problem is identical to the YSP. Otherwise, it is obvious that the occurrence of Load will always
make the turkey go hiding. Therefore, in the second class of models the turkey remains Alive and

Hiding.
4.4.3 The Stanford Murder Mystery.

This is yet another variation of the YSP. The difference is that the occurrence of the Load event is
eliminated. Therefore, there are only two occurrences explicitly stated, the Wait and the Shoot.
Also, the literal:

—holds(Alive, Sy)
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is added to the axiomatization. The problem is to determine whether or not the gun was loaded
in Sy.

Interestingly, there are two possible solutions to this problem. The first one corresponds to
minimal models in which —holds(Loaded, Sp) is true. In this class of models some Load event must
occur some time before the Shoot. For example, there will be models in which Wait, Load, and
Shoot occur in sequence. Here, the Load action is necessary to explain —holds(Alive, Sy).

The second solution corresponds to a different class of models, in which holds(Loaded, Sy) is
true. In this case, no Load event is postulated.

Thus, our preferential semantics does not tell anything about the state of the gun in Sy. In-
terestingly, according to the proponents of this example, the intended interpretation is such that
holds(Loaded, Sy) must be true. While it is unclear whether this should be the intuitively correct
solution, it is interesting to note that this effect can be obtained by allowing for the predicate holds
to vary. If we were to adopt this policy, then the second solution would be preferred to the first
one. Nevertheless, we argue that both types of models for this problem should be “intended.”

4.4.4 Ferryboat Connection Scenario.
This example was first proposed in [52]. It is as follows:

“A motorcycle is initially driving along a road on island Fyen, in the direction of a
ferryboat landing. The ferryboat departs at time 100. If the motorcycle reaches the
ferryboat landing before time 100, it will be in Jutland from time 110, otherwise it stays.
The motorcycle is known to reach the landing sometime between time 99 and 101.”

This problem serves as a test to determine how well our language allows to express temporal
relations between events. We extend the language with a fluent function At with one argument. We
fix the domain objects as those denoted by Fyen, Landing, Boat and Jutland, which we assume to be
distinct. Aside from the four primitive fluents At(F'yen), At(Landing), At(Boat) and At(Jutland),
we introduce the fluents Gone and Arrived. The fluent Gone holds as a consequence of the
departure of the ferry. The fluent Arrived holds after the ferryboat arrives in Jutland. Also, we
introduce a two-place action function move, such that move(d;,d2) would denote the action of
moving from location d; to location do. Other actions are denoted by the constants Depart and
Arrive. The axioms are as follows:

o Tie:
dy # dy D —holds(At(dy), s) V —holds(At(dz), s). (4.51)
® Thos:
Poss(move(dy,ds), s) = holds(At(dy),s) A (4.52)
[d1 = Boat D holds(Arrived, s)| A [de = Boat O —holds(Gone, s)],
Poss(Arrive, s) = holds(Gone, s) A —holds(Arrived, s), (4.53)
Poss(Depart, s) = —holds(Gone, s). (4.54)
[ ] ef:
Poss(Arrive, s) D holds(Arrived, do(Arrive, s)), (4.55)
Poss(Depart, s) D holds(Gone, do(Depart, s)), (4.56)

Poss(move(dy,dz), s) D holds(At(dz), do(move(dy,dz), s)). (4.57)
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o Tg,:
holds(At(F'yen), So) A —holds(Gone, Sp) A ~holds(Arrived, Sy). (4.58)

® Tocc:
occurst(move(Fyen, Landing), T1) A 99 < T; < 101, (4.59)
occurst(Depart,100), (4.60)
occurst(Arrive, 110), (4.61)
holdst(At(Landing),t) At < 100 D (4.62)

(3t").occurst(move(Landing, Boat),t') At < t' < 100,
holdst(Arrived,t) A holdsT(At(Boat),t) D (4.63)
(3t').t <t A occursy(move(Boat, Jutland),t').

State constraint (4.51) asserts that the motorcycle cannot be in two places simultaneously.
Following the procedure indicated in section 3.1, the effect axiom:

Poss(move(dy,ds), s) A dy # do D —holds(At(dy),do(move(dy,ds), s)), (4.64)

can be generated from this state constraint and the effect axiom (4.55). Therefore, we obtain the
following successor state axiom:

Poss(a,s) D holds(At(d),do(a, s))

= (4.65)
a = move(dy,d )V —(dy #d N a=move(d,d1)) A holds(At(d), s),

which means that the motorcycle is at d after moving to d, or if it is at d and did not move
elsewhere. The successor state axioms for Gone and Arrived are:

Poss(a, s) D holds(Arrived,do(a, s)) = a = Arrive V holds(Arrived, s), (4.66)
Poss(a,s) D holds(Gone,do(a, s)) = a = Depart V holds(Gone, s). (4.67)

Axiom (4.52) says that to move anywhere from d; the motorcycle has to be at di, and if the
motorcycle is in the Boat then the move is only possible if the Boat has Arrived. Also, if the
motorcycle moves to the Boat, then the Boat must not be Gone. Axiom (4.59) says that the
motorcycle will board the boat if it is at Landing before the boat departs. Axiom (4.59) says that
the motorcycle leaves the boat after the boat has arrived. Axioms (4.59) and (4.59) state that
Depart and Arrive occur at times 100 and 110 respectively. Notice that Depart and Arrive can
each occur only once. The other axioms are self explanatory.

Using our framework, we obtain two classes of minimal models. Each class is characterized by
the sets of situations that are actual in each. In order to abbreviate the sentences that we will
write below, we extend the language with a new set of situation constants Sy, Sz, S3, Sa, S5, S,

%, and S5. We fix the interpretation of these situation constants*:

S1 = do(move(Fyen, Landing), Sp), (4.68)
Sy = do(move(Landing, Boat), S1), (4.69)

4These constants are introduced as abbreviations to avoid writing very long sentences that involve do terms
with many other nested do terms. Since the interpretation for these constants is fixed, its participation in the
circumscription policy as fixed or variable is of no consequence.
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S3 = do(Depart, Ss), (4.70)
S4 = do(Arrive, S3), (4.71)
S5 = do(move(Boat, Jutland), Sy), (4.72)
S| = do(Depart, S), (4.73)
St = do(move(Fyen, Landing), S}), (4.74)
S = do(Arrive, Sh). (4.75)
As we just said, there are two classes of models. In the first class of models, we have:
actual(s) =s=S)Vs=5Vs=8Vs=5Vs=S5Vs=S_Ss, (4.76)
start(S1) < start(S2) < start(Ss) < start(Si) < start(Ss). (4.77)

Whereas the second class of models is characterized by:

actual(s) =s=S)Vs=95]Vs=5,Vs=5i, (4.78)
start(S]) < start(Ss) < start(S3). (4.79)

Obviously the ordering (4.76) and (4.78) of the temporal constants is derivable from the equality
relationships defined with the axioms (4.68)-(4.68).

The objective of this example is to show that the circumscriptive theory characterized by (4.23)
entails that either the first set of sentences (4.76)-(4.76) is true, or the second set of sentences
(4.78)-(4.78) is true. We do so by showing that there are minimal models that satisfy each set of
sentences. Then we show that any model that does not satisfy either set of sentences cannot be
minimal.

Observation 4.3 There ezists a minimal model M that satisfies sentences (4.76)-(4.76).

M may be obtained by setting T = start(S1) = 99, start(S2) = 99.5, start(Ss) = 100, start(Ss) =
110, start(Ss) = 111. Clearly, there is a model in which the actual line is such that these temporal
constrains are satisfied. This model is minimal with respect to the circumscription policy. In fact,
if we eliminate any element from the extension of occursy we violate one of the axioms.

Observation 4.4 There exists a minimal model M’ that satisfies sentences (4.78)-(4.78).

For the second class of models, we set start(S]) = 100, start(Sy) = Ty = 101, start(S;) = 110.
Again, it is easy to check that a model M’ that satisfies this constraints exists. Also, this is a
minimal model, since eliminating any one of the elements of the extension of occursy leads to a
non-model.

Finally:

Observation 4.5 Any minimal model must satisfy either (4.76)-(4.76) or (4.78)-(4.78).

This can be easily checked by realizing that all models include the occurrences of Depart and
move(Fyen, Landing). The only ambiguity with respect to these events is which occurs first.
There are only two possibilities (we assume that they may not occur concurrently). From each
possibility, a different class of models arise. First, assume that M is an arbitrary model in which
move(Fyen, Landing) occurs before Depart. Thus, in this model 77 < 100, given that the structure
of time is dense and from proposition 4.2 it follows that this model satisfies:

(3 s,t) occurs(move(Fyen, Landing), s) A start(do(move(Fyen, Landing), s)) =T A
during(t,s) ATy < t < 100. (4.80)
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Therefore, the left hand side of (4.59) is satisfied. Hence, the motorcycle moves to the Boat. Once
in the Boat, no move actions are possible until the ferryboat has arrived, as inferred from (4.52).
Thus, (4.76)-(4.76) must hold in the minimal models arising from this case. Second, it is simple
to check that if M’ is a model in which move(Fyen, Landing) occurs after Depart, then all the
occurrences in the second class of models must arise. Hence, it is easy to see that the minimal
models arising from this class must satisfy (4.78)-(4.78).

It is important to point out that the axiomatization of the problem is extremely simplified.
For example, in a more general axiomatization, the Poss axioms for move actions should refer to
the spatial interrelationships between the origin and destination. Also, the axiomatization forces
the behavior of the ferry and the motorcyclist. For example, after arriving at Landing, if the
motorcyclist is on time she must board. However, in a more general case, there is no guarantee
that the motorcyclist will indeed board the ferry once in Landing. In fact, without formalizing
notions of agent’s goals, desires, intentions, etc., we may not have any way to predict what will
happen.

4.4.5 The Russian Turkey Scenario.

This is yet yet another variation of the YSP. This problem is essentially one in which there is
uncertainty with respect to some event. In particular, the gun is a revolver that has a partially
loaded cylinder which is spun. Depending on how far the spinning of the cylinder goes, a bullet
may or may not end up aligned with the gun’s barrel. Normally, this type of uncertainty is labeled
as uncertain effects of a deterministic action. As such, Reiter’s approach using successor state
axioms is not viable. However, this problem may be seen in a slightly different manner. We can
think of the spinning action as being a class of actions. One element of the class is SpinOhNo
in which case the spinning leaves a bullet aligned with the barrel. Another element of the class is
SpinSigh, in which no bullet is left aligned with the barrel. It can be argued that this is a more
accurate axiomatization. In particular, uncertainty arises because of a lack of knowledge of all the
physical parameters involved in the spinning process. Therefore, it is more accurate to say that we
are uncertain of exactly which action was performed (i.e. the exact values of the spinning action
parameters) than to say that we are uncertain about the effects of a deterministic action. The
axiomatization that follows takes that point of view:

Poss(SpinOhNo, s) A Poss(SpinSigh, s),
Poss(Load, s) N Poss(Shoot, s),
Poss(a, s) D [holds(Loaded, do(a, s)) = a = Load V holds(Loaded, s)],
(a,s) D [holds(Aligned, do(a, s)) =
a = SpinOhNo V holds(Aligned, s) A —a = SpinSigh],
Poss(a, s) D [holds(Alive,do(a, s)) =
holds(Alive, s) A ~(a = Shoot A holds(Loaded, s) A holds(Aligned, s))],
occurs(Load, S1) A occurs(Shoot, S3),
occurs(SpinOhNo, S2) V occurs(SpinSigh, Ss).

Thus, we are uncertain of what occurred in S5. Obviously, there will be two classes of models.
The first one in which Load, SpinOhNo and Shoot occur in sequence, and the second, in which
Load, SpinSigh and Shoot occur in sequence. Each of these models is minimal (we cannot have a
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model with fewer occurring actions) and the effects of each action are given by the successor state
axioms. So, in one class of axioms the shooting is done with the bullet aligned and the other with
the bullet not aligned.

4.4.6 The Stolen Car Problem.

The stolen car problem was proposed by Kautz [22] to illustrate problems that arise when an
incomplete set of events is provided in a reasoning task. The basic idea is that an individual
parks a car in the street. Later, the person goes to get the car and finds that the car is no longer
where she parked it. The intended conclusion is that the car has been stolen sometime after it
was parked and before it was noticed missing. We change the problem slightly by extending the
possible explanations of the car disappearance with a TowAway action.

Assume that the car is parked in the morning:

holds(Parked, Sp,) A actual(Sy,)-
The observation that some time later the car is no longer parked is written as:
actual(Se) A —holds(Parked, Se) A Spm, < Se.-

Furthermore, assume that our theory includes the following successor state axiom (derived from
the corresponding effect axioms):

Poss(a,s) D holds(Parked,do(a, s)) =
[holds(Parked, s) A\ a # Steal A\ a # TowAway| V a = Park.

Then, the following is a consequence of the axioms:
(39).(Sm < s < 8e) Afoccurs(Steal, s) V occurs(TowAway, s)].

Again, as in the ferryboat example, there are two classes of minimal models. In the first class Steal
occurred and in the second TowAway occurred. In both cases, S, is identified with Sy. Nothing
else occurs.

4.5 Modeling Sequential Circuits.

In this section we discuss the use of the extended situation calculus as a framework to model
sequential circuits. This is an application that is interesting for two reasons. First, it deals with
a real application domain in which the dynamic aspect of the world is an essential aspect. The
availability of a formal framework to specify these circuits is important in order to analyze the
dynamic behavior of different circuit designs. Second, it shows that the situation calculus is suitable
for modeling knowledge in a domain in which the formal framework of choice seems to be some
form of modal temporal logic [34]. Thus, it serves to illustrate the fact that the expressive power
of the situation calculus makes it an alternative to modal logics of time.

To illustrate our approach, we first present a general theory used to model sequential circuits
of a restricted class. The restrictions are introduced to simplify the presentation. In fact, the
approach can be extended to deal with a more general class of circuits. Thus, we first introduce
an extended language to represent sequential circuits. We show how we can model the behavior
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of individual components using definitions and effect axioms. Finally, we derive successor state
axioms that describe how non-defined fluents change due to changes in the input to the circuit.

Later on, we present a simple circuit (a 1-bit counter with an unable signal) and show how to
prove that the circuit’s design is correct. Thus, we show that the predicted behavior corresponds
to the intended behavior of the device. The intended behavior of the device is described with a
sentence in the language. The design is correct if this sentence follows from the axiomatization
that describes the circuit.

4.5.1 General Axiomatization.

A sequential circuit is built from a set of components which are either gates or flip-flops. Each one
of these components is a black boxr which has a set of wires that are used to interconnect them.
Each wire is either an input wire or an output wire. Furthermore, the circuit as a whole has certain
wires that are considered to be inputs to the circuit. The circuit’s output is identified with some
of its component’s output wires. At any given time, a wire is energized over some threshold or is
de-energized. When the wire is energized, it is said to carry a positive signal, variously identified as
true, on or 1. When the wire is de-energized it is said to carry a negative signal, identified as false,
off or 0. There are several types of gates, we only consider gates that have a single output and
one or two inputs. The output of a gate is a logical function of its inputs. The gates we consider
are not (with one input), and and or (each with two inputs). There are several types of flip-flops,
we only consider one of them, the D flip-flops (in the rest of this chapter, we refer to D flip-flops
simply as flip-flops). A flip-flop has a single output and two inputs. One of the inputs is a clock. A
clock is a signal that changes from on to off and vice-versa in a periodic fashion. The other input
of the flip-flop is its data input. When the clock input of a flip-flop changes from off to on, the
flip-flop reads its data input and sets the output at the same value as this input. If the clock does
not change, then the output of the flip-flop does not change either. Thus, it is commonly said that
a flip-flop memorizes the data input for an entire cycle of its clock. Another simplification that we
make, is that we only consider circuits in which all the flip-flops are fed with external clocks.

If we consider that any sequential circuit may be in a finite number of possible states (defined
as the value carried by each one of the wires in the circuit), we may show by induction that for
any of these states and any possible action certain properties hold. For example, if we have the
specifications for a given circuit, we may use this approach to prove the correctness of a design.

We subdivide the domain objects into two subdomains: G of components and W of wires.
Furthermore, we subdivide the sort G into four independent subsorts: Guna, Gory Gnots Gry- Also,
we need the wire functions in : G x {1,2} — W and out : G — W. These functions identify the
input and output wires of a component. Thus, if g is a component then out(g) denotes its output
wire. Components have one or two input wires, the term in(g,4) is used to denote the input wire
number 7 of component g. Thus, a literal holds(val(in(g,2)), s) would be true if the input numbered
2 of g was on in s. If a component does not have a wire numbered 2, then the denotation of the
term 4n(g,2) is irrelevant.

We also introduce the fluent function val : W — F. The idea is that if w is a wire, then
holds(val(w), s) is true if and only if the wire w is on.

In what follows, we use the variable names g and w for components (sort G) and wires (sort
W). Also, variables gq, go, gn, and gy, are used for subsorts Guna, Gor, Gnot, and Gyy. As usual,
we use these names with other subscripts and markers as variables of the same types. Upper case
is used for constants. The wires that do not correspond to inputs or outputs of gates correspond
to the circuit’s inputs. The actions in these domain are toggling actions. Thus, we introduce the
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function symbol toggle : W — A. Hence, toggle takes an element of the sort W of wires and yields
an element of the sort A of actions. Also, we will use the predicate input C W to identify the
circuit’s input wires.

Depending on the type of component, there is a different relationship between the inputs and
the output of the component. A very important distinction must be made between the behavior
of gates and flip-flops. The output value of a gate® in a situation s is determined by the values of
its input wires in s. In contrast, the output value of a flip-flop in a state s depends on the value
of its inputs in the previous state (except for the initial state Sy, where the output value of the
flip-flops is given as part of the description of the initial state). The following axioms describe the
relationships between inputs and outputs of gates:

holds(val(out(ganq)), s) = holds(val(in(gand, 1)), s) A holds(val(in(gang,2)),s), (4.81)
holds(val(out(ger)), s) = holds(val(in(gor, 1)), s) V holds(val(in(ger,2)), s), (4.82)
holds(val(out(gnot)), s) = —holds(val(in(gnot, 1)), s). (4.83)

Thus, we have simple definitions for the values of the output connectors in terms of the input
connectors. Notice that an expression of this type cannot be used to describe the behavior of a
flip-flop. As mentioned before, the reason is that the output value of a flip-flop in a situation s is
given by the state of the circuit in the situation previous to s and the action that led to s. Later,
we will describe the behavior of a flip-flop using effect axioms.
In order to describe the connections among components of a circuit, we use equality literals.
For example, the literal:
in(Gq,1) = out(Gy). (4.84)

states that the first input of G, is connected to the output of Gy. An important constraint is that
the outputs of different components must not be connected. Thus, we need:

(Vg1,92) out(g1) = out(g2) D g1 = go- (4.85)

If this constraint were not satisfied, the circuit would be anomalous. In fact, this corresponds to a
shorted circuit. A shorted circuit would, in most cases, lead to a contradictory theory.
The wires that correspond to the circuit’s input can be characterized as follow:

input(w) = (Vg) -~ w = out(g).
Furthermore, we require that toggling actions be performed only on input wires, thus:
Poss(toggle(w), s) = input(w).

Interestingly, we can view theories that model circuits of the type presented here as theories
of the type studied in chapter 3. In the theories designed for the modeling of digital circuits, the
primitive fluents are all the fluents that denote values of wires that are inputs to the circuit or that
are outputs of flip-flops. In the rest of this chapter, wires that are inputs to the circuit or outputs
of flip-flops will be called primitive wires. The behavior of primitive fluents is described by effect
axioms. In contrast, non-primitive fluents correspond to fluents that denote the value of wires that
are the output of gates.

5The output or input value of a gate refers to the value carried by the corresponding wire.
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Problems arise if the circuits are not properly constructed. For example, if the output of a not
gate is connected to its input. To eliminate these type of anomalies, we should precisely axiomatize
the allowable circuit topologies. For simplicity, we leave this distinction at a metatheoretical level.
We consider that a circuit is anomalous if and only if there exists a loop in it that does not go
through a flip-flop®, or if two outputs are connected together. In our theory, we do not deal with
anomalous circuits.

The only actions that we have in this domain are the toggling of the wires that are circuit’s
inputs. Obviously, one of the effects of toggling an input wire is to modify the value of the wire.
This is modeled with the following effect axioms:

Poss(toggle(w), s) A holds(val(w),s) D
=holds(val(w), do(toggle(w), s)),
Poss(toggle(w), s) A —holds(val(w),s) D (4.87)
holds(val(w), do(toggle(w), s)).

(4.86)

An important characteristic of D-flip-flops is that they have a state which changes when the
clock changes from negative to positive. The state of a D-flip-flop corresponds to the state (value)
of its output wire. Since this behavior is dynamic, and depends on a tic of the clock, it is better
characterized using effect axioms. Thus, given the toggle of a wire, we have:

Poss(toggle(w), s) A =holds(val(w), s) A holds(val(in(gy,1)),s) A (4.88)
w =1n(gy,2) D holds(val(out(gy)), do(toggle(w), s)),
Poss(toggle(w), s) A —holds(val(w), s) A —holds(val(in(gf,1)),s) A (4.89)

w =1n(gy,2) D —holds(val(out(gys)), do(toggle(w), s)).

The values of all non-primitive wires are given by the definitions (4.81)-(4.81). Given that we
have identified a set of primitive fluents and given that non-primitive fluents are defined in terms
of the primitive ones, we would like to utilize the results of chapter 3. Remember that for this
to be possible, we need that the the right side of the effect axioms refer only to primitive fluents.
Unfortunately, this is not the case. In fact, effect axioms (4.86)-(4.88) refer to the effects of toggle
actions on fluent terms val(w), where w is an unrestricted variable of sort WW. Thus, these effect
axioms do not refer only to the effects of actions on primitive fluents. To deal with this difficulty we
introduce a syntactic variant of the original theory that will conform to the requirement of having
effect axioms refer only to primitive fluents. First, we introduce the following abbreviation:

prim(w) = input(w) V (Ig5) w = out(gy).

Thus, prim(w) is true only if w is a primitive wire. We also introduce a new fluent function
symbol val’ : W — F, such that:

prim(w) D holds(val' (w), s) = holds(val(w), s). (4.90)

Thus, val’ is the same as val for primitive wires. Now, the primitive fluents are the fluents val’
and the val fluents are defined. The definition of val is derived from (4.81)-(4.81) and (4.90):

holds(val(w), s) = (4.91)

5We can associate a digraph with any digital circuit. The digraph’s nodes are the gates and the digraph’s directed
links are the circuit’s connections (as specified by the equality literals, e.g. (4.84)). The directionality of the links is
always towards the input of a gate. A loop is any cycle in the digraph.
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[(3 Gand) [w = out(gana) A holds(val(in(gand, 1)), s) A holds(val (in(gand,2)), s)] V
(3 gor)[w = out(gor) A (holds(val(in(gor,1)),s) V holds(val(in(gor, 2)),s))] V

(3 gnot)[w = out(gnoet) A ~holds(val(in(gnet, 1)), s)] V
prim(w) A holds(val' (w), s)].

Finally, we replace the effect axioms (4.86)-(4.88) with:

Poss(toggle(w), s) A holds(val(w), s) D
—holds(val' (w), do(toggle(w), s)),
Poss(toggle(w), s) A ~holds(val(w), s) D
holds(val' (w), do(toggle(w), s)),
Poss(toggle(w ) s) A —holds(val(w), s) A holds(val(in(gs,1)),s) A
= in(gs,2) D holds(val'(out(gy)), do(toggle(w), s)),
Poss(toggle(w ) s) A —holds(val(w), s) A —holds(val(in(gy,1)),s) A
= in(gs,2) D —holds(val' (out(gy)), do(toggle(w), s)).

From these effect axioms we derive the following successor state axiom:

Poss(a, s) D holds(val' (w), do(a, s)) = (4.92)
(a = toggle(w) A —holds(val(w), s)) V
(Fw').(a = toggle(w') Aw = out(gr) Aw' = in(gs,2) A
holds(val(in(gy,1)), s) A —=holds(val(w'), ))
holds(val(w), s) A [~a = toggle(w) A —(w = out(gs) A a = toggle(w') A

—holds(val(w'), s) A =holds(val(in(gs, 1)), s) Aw' = in(gy,2))].

Thus, we have derived a successor state axiom for the primitive fluents val’. This successor
state axiom tells us what the values of the primitive wires will be as the result of some input. In
order to determine the behavior of non-primitive wires, we make use of the definitions (4.81)-(4.81)
and (4.90). To illustrate how this theory can be used to prove properties of circuits, in the next
subsection we present a simple example.

4.5.2 An Example.

Consider the circuit of figure 4.8. In this circuit, the output corresponds to the wire out(Gy). The
circuit is a simple 1-bit counter with an unable signal (wire Wy, ). Thus the output changes once
(from on to off or from off to on) for every complete cycle of the clock signal w. This behavior
is disabled if the wire Wy, is off, in which case, the output of the flip-flop is fixed. We use the
language introduced in the previous subsection to describe the circuit and then show that this
circuit exhibits the intended behavior. The intended behavior is described with a sentence in the
same language, as shown later.
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Wi —ﬁ Gy

Figure 4.8: A Circuit.

In this circuit, there are two external input signals, W;, and Wy, along with three gates G,
and Gy and G,. The circuit is described as follows:

in(Gq, 1) = Wi,

In this example there is only one external clock (W¢). The behavior of this external clock may
be modeled as:
actual(s) D occurs(toggle(Weyk), s). (4.93)

This axiom states that toggle(Wey) occurs repeatedly in an infinite sequence. Furthermore, it says
that nothing else occurs. To see why, assume that occurs(toggle(Wr,), S) is true for some arbitrary
situation S. From the definition of occurs (4.7) it follows that:

occurs(toggle(Wr, ), S) D actual(do(toggle(Wr,), S)).

It also follows that actual(S). Thus, from (4.93) it follows that occurs(toggle(Wey),S) as
well as actual(do(toggle(Weyg), S)), which contradicts (4.1), given that -Wi, = Wey,. With this
axiomatization, it is easy to prove that the wire Wy, never changes its value.

The initial situation is given by:

—holds(val(out(Gy)), So) A —holds(val(Wcy), So)-
Thus, it is unknown whether holds(val(W7y,),Sy) is true. The flip-flop’s state is initially off and
so is the clock. The intended behavior of this device is that if Wy, is on, then the output of the
flip-flop is a clock signal with half the frequency of the input clock. When W7y, is off, the output

of the flip-flop is a steady off signal. Formally, we need to write a sentence that describes this
behavior. We do so by cases:

e In the first case, we have the following;:

Proposition 4.6 From the theory Yoc that includes the axioms of sections (4.5.1) and (4.5.2)
it follows that:

holds(val(Wy,), So) A actual(s) D (4.94)
[ab(val(out(Gy)), toggle(Weir), s) = —holds(val (W), s)]-
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Where the predicate ab is as defined in (2.20), that is:
ab(f,a,s) = —[holds(f,do(a, s)) = holds(f, s)].

Sentence (4.94) states that the output of the flip-flop changes (i.e., is abnormal) due to a toggle
of the clock only when the clock is off at the time of the toggle. This necessarily implies that
the rate of change of the flip-flop’s output is half of the clock’s rate. While this may not
be immediately obvious, it is the most concise way to write this property without having to
introduce other notions (as rate of change) in the language. To prove that this sentence holds,
we simply assume that val(W7,) is on and use the induction axiom (2.1) with:

©(s) = actual(s) D ab(val(out(Gy)), toggle(Weuk), s) = ~holds(val(Wei), s)-

The proof is fairly straightforward but very tedious. An essential element of the proof is
achieved by showing that:

a = toggle(Wei) AN w = out(Gy) D
holds(val(w), do(a, s)) =
[—holds(val(w), s) A —holds(val(Wek), s))] V
[holds(val(w), s) A holds(val(Weyg), s)].

which is derived from (4.92).

e The second case is much simpler and can be written as:

Proposition 4.7 From the theory Xoc. that includes the azioms of sections (4.5.1) and (4.5.2)
it follows that:

—holds(val(Wr,), So) D actual(s) D —holds(val(out(Gy)), s).

This proposition states that if Wi, is off in Sy then the output of the flip flop is always off.
This is also proven by induction with:

¢ = actual(s) D —holds(val(out(Gy)), s).

The approach that we have presented here has many limitations. One of them is that we cannot
deal with concurrent events. However, in the next chapter we propose an approach to accommodate
concurrent actions in the language. This further extension to the situation calculus will allow the
possibility of having input signals that change concurrently. On the other hand, other extensions
are possible within the language of the situation calculus with occurrences. For example, in many
circuits there are delays that retard the changes in the output of some components. These delays
can be modeled introducing a new sort of delay component. Each delay component would have a
single input wire and one output wire. Thus, if W; and Wy denote the input and output of a delay
component, we would write:

occurst(toggle(Wr),t) D occurst(toggle(Wo),t + 6),

where § is some positive real number. Of course, we need to extend the axiomatization to allow
for the new actions and components. Furthermore, we would need to consider situations in which
the input is toggled with a frequency that is higher than § changes per unit time. There are many
ways in which this can be resolved depending on the actual behavior of the delay component.
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4.6 Other Features.

As we have seen throughout this chapter, there are many expressive enhancements derived from
our extension to the situation calculus. Many of these enhancements have not been described with
the previous examples. In this section, we briefly mention some of these.

An interesting kind of expressiveness that we gain by having an actual line in the situation
calculus is the possibility to specify behavioral rules, for example: “Never cross the street against
a red light.” This can be expressed as:

holds(Red, s) D —occurs(Cross, s).
Another example is “If you drink, don’t drive,” formalized as:
—occurs(Drive,do(Drink, s)). (4.95)

Notice that these constraints could be alternatively modeled as preconditions for actions. For
instance, we could model the “If you drink, don’t drive,” as:

Poss(Drive, s) = —holds(Drunk, s),

That is, if you are drunk you cannot possibly drive. However, this is in general too strong. In fact,
by writing (4.95) instead, we allow for drinking on alternative branches (non-actual branches), and
can fantasize about the consequences of drinking and driving. Using the latter strategy precludes
us from doing so.

We also have a natural notion of prevention. To prevent F' from ever becoming false:

actual(s) D holds(F,s).
Interestingly, this could also be modeled as:
holds(F, s),

which could be interpreted as a precondition oriented state constraint in the terminology of Lin and
Reiter [31]. For example, if we have the effect axiom:

Poss(A,s) Ny (A, s) D —holds(F,do(A, s)),
then we would obtain the precondition:
Poss(A,s) D ~yp(A4A,s).

Again, modeling prevention in this manner precludes us from reasoning about non-actual lines in
which F' is made false. These issues are related to deontic notions like obligations, commitments,
permissions, etc, which are beyond the scope of this work. However, it is possible to incorporate
some simple forms of hypothetical reasoning by exploring non-actual lines of situations. Pursuing
this idea is left for future research.

Another interesting aspect of our presentation is that we can model some simple notions of
causality between events. That is, causal relations in which one event is the cause of another. For
example, “shooting a loaded gun causes a noise to occur”:

holds(Loaded, s) A occurs(Shoot, s) D occurs(Noise, do(Shoot, s)).

Also, we may state that if the event of a ball colliding with the floor occurs, it must be the case that
some event occurred prior to the collision. Furthermore, this event must have started the motion
of the ball.



Chapter 5

Enriching the Ontology of Actions.

In this chapter we investigate how richer ontologies of action can be integrated with the notion of
occurrences introduced in the previous chapter. We study two different ontological extensions. The
first one is an extra-logical extension in which complez actions are introduced as elements that are
built from simple primitive actions. The approach to complex events studied here is the result of
research conducted in the Cognitive Robotics group in the University of Toronto’s Department of
Computer Science. The second extension we explore is the introduction of concurrent actions. This
time, we propose to extend the language of the situation calculus with operators among actions
that denote new concurrent actions.

5.1 Complex Actions.

Until recently, the problem of using complex actions within the situation calculus had not been
addressed. Gelfond, Lifschitz and Rabinov [16], proposed an approach for a situation calculus in
which situations form a continuum. In that context, they proposed a way to deal with complex
actions. Unfortunately, their work is not directly applicable to a discrete situation calculus. On
the other hand, Lin, Lespérance, Levesque, Reiter and Scherl propose a mechanism to integrate
complex actions into the more standard discrete situation calculus [30] (in the future we refer to
this as CR’s approach, for Cognitive Robotics). Their work is based on Reiter’s solution to the
frame problem in the situation calculus. In this section, we study how to integrate the notion of an
actual line in the situation calculus, with the notion of complex events based on CR’s work. The
main objective is to be able to write sentences referring to complex action occurrences. In what
follows, we show how to integrate CR’s approach with the notion of an actual line of situations.

5.1.1 Definition of Complex Actions.

So far, we have studied the situation calculus in which all actions are considered primitive. Thus,
actions cannot be decomposed nor defined in terms of others. It is clear, however, that the notion of
complex action is necessary to describe the activity of agents. For example, we may state complex
actions such as: clear the table, which can be expressed as while there is some item on the table,
remove an item from the table.

An interesting feature of CR’s approach is that the proposal does not involve an extension
of the language of the situation calculus. Instead, they propose a mechanism in which a set of
extra-logical symbols, along with a set of translation rules are introduced. Therefore, the notion
of complex action is not incorporated into the ontology of the situation calculus. An important
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advantage is that the solution to the frame problem for complex actions is obtained directly from
the solution for the primitive actions. Clearly, the main disadvantage of this approach is that
complex actions are not objects in the language. Therefore, we cannot prove any properties of the
complex actions within the logic.

In what follows, we summarize CR’s approach to complex actions. We have made certain
changes to their presentation to accommodate reified fluents.

First, there is a number of extra-logical symbols: Do, and the complex action constructors:
?, 5, |, m, if then else, and while. These symbols are used in expressions which have to be
translated into the logical language of the situation calculus. Complex actions are composed from
other primitive or complex actions using the complex action constructors. The basic extra-logical
expression is formed by using the Do symbol. In particular, if a is an action (complex or primitive),
then the expression Do(a, s, s’) should be understood as saying that if ¢ is done in situation s, then
s' is one of the possible situations reached. Complex actions appear only as first argument to the
Do expression. Therefore, we need translation rules for Do(a, s, s') when a is either a primitive
action or a complex action. The translation of Do is as follows:

1. If @ is a primitive action:
Do(a, s,8") =gey Poss(a,s) A s' = do(a, s).

2. Tests:
Do(f?,8,8") =gef holds(f,s) Ns =5,

where f is a fluent term.

3. Sequence:
Do([a1;as],s,s") =def (3 s").Do(aq,s,s") A Do(as,s", s').

4. Non-deterministic choice between two actions:
Do([a1]as), s,s") =4ef Do(ai,s,s") V Do(as, s, s').

5. Non-deterministic choice of action parameters:
Do((mz)a, s,s") =ges (3z)Do(a, s, s").

6. Conditional actions:
if f then a; else ag =4cf [f7;a1]|[~f7; a2).

7. Non-deterministic iteration, execute a zero or more times:
Do(a*,s,s") =def
(VP).[(VSl)P(Sl, 81)] A

[(V s1, 82, 83).P(s1,82) A Do(a, s2,83) D P(s1,83)]
D P(s,s').

Not surprisingly, a second order definition is necessary to introduce non-deterministic iteration.
This definition establishes that the set of states that can be reached by performing the action
a* is the reflexive and transitive closure of the performance of a.

8. While loops:
while f a =45 [f7;a]";—f7.
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5.1.2 Occurrences and Complex Actions.
In order to integrate complex events with the situation calculus extended with an actual line, we
introduce a new element to the set of extra-logical symbols: Occurs. The definition of Occurs relies
on the definition of Do given above. Occurs is defined as:

Occurs(a, s) =ges (38').actual(s") A Do(a, s, s").
From this definition, we obtain:

1. If @ is a primitive action:

Occurs(a,s) = (3s).actual(s') A Poss(a, s) A s' = do(a, s)
= Poss(a, s) A actual(do(a, $)).

which, from (4.1) and (4.7), leads to:

Occurs(a, s) = actual(do(a, s)),

Occurs(a, s) = occurs(a, s).

As should have been expected, the expression Occurs(a,s) gets translated into occurs(a, s)
when ¢ is a primitive action.

2. Tests:
Occurs(f?,s) = actual(s) A holds(f, s).

3. Sequence:
Occurs([a1;az],s) = (3§).actual(s’) A (35").Do(ay, s,5") A Do(as, s", ).
By simple logical manipulation we can derive:

Occurs([ay;az],s) = (3s") Occurs(ay, s) A Do(ay,s,s') A Occurs(ag, s').

4. Non-deterministic choice between two actions:
Occurs([a1]as], s) = (3s').actual(s') A [Do(a1, s,s") V Do(as, s, s)].
which, by simple manipulation, leads to:

Occurs([ail|a2), s) = Occurs(ai, s) V Occurs(ag, s).
5. Non-deterministic choice of action parameters:
Occurs((rz)a,s) = (3s').actual(s') A (3x)Do(a, s, s'),

which is equivalent to:
Occurs((nz)a, s) = (3z)Occurs(a, s).
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6. Conditional actions: As before, simple logical manipulation leads to:
Occurs(if f then ay else ag, s) = holds(f,s) A Occurs(ay, s) V —holds(f,s) A Occurs(as, s).
It is illustrative to rewrite this expression as:

Occurs(if f then a; else ag, s) =
[holds(f,s) D Occurs(ai, s)] A [-holds(f,s) D Occurs(az, s)].

Also, notice that in the derivation of the expression for occurrences of conditional actions we
make use of the abbreviation —f, which is defined by (2.23).

7. Non-deterministic iteration.

Occurs(a*,s) = (3s').actual(s’) A Do(a*, s, s').

8. While loops.
Occurs(while f a,s) = (3s).actual(s') A Do([f?;a]*;-f?,s,5").
That is:

Occurs(while f a,s) = (3s').actual(s’) A =holds(f,s") A Do([f?;a]*,s,s")
= (3¢').actual(s') A —holds(f,s') A
(VP).[(Vs1)P(s1,81)] A
[(V 51, 82, 83)-P(s1, $2) A holds(f, s2) A Do(a, s2,83) D P(s1,83)]
D P(s,s).

It follows that s’ is a state that is obtained by performing a 0 or more times from the situation
s. As long as f holds, a is performed again.

As pointed out before, a difference between the approach presented here and that of CR is that
the latter approach uses a situation calculus with non-reified fluents. A disadvantage of such an
approach is that they need to introduce pseudo-fluents in addition to the extra-logical symbols we
mentioned before. These pseudo-fluents are necessary when writing test actions, in fact, we simply
write:

Do(f?,8,5") =gef holds(f,s) Ns="
and f is a situation term in our language. In contrast, CR write
Do(p?,s,8") =ges pls] Ns =5

where p is a pseudo-fluent, which stands for a formula in the situation calculus, but with all state
arguments suppressed. p[s] denotes the formula obtained from p by restoring the state arguments
with the term s. An advantage of CR’s approach is that they may write expressions such as:

while[(3 block) ontable(block)]remove_a_block,

which is not possible for us, since (3 block) ontable(block) is not a fluent. However, we can achieve
the same effect by extending the language with a new fluent that holds in a situation exactly when
the existential sentence is true. Thus, we add a fluent constant Exisf, such that

holds(Exisf,s) = (3z)holds(f(x), s).
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Therefore, the same meaning can be achieved by adding new fluent constants to the language (for
another example, see below).

Notice that in the same way as complex events are treated as meta-logical constructs in the
standard situation calculus, we treat occurrences of these complex events as meta-logical constructs
in the situation calculus extended with a notion of occurrences. Furthermore, all the advantages
gained by introducing the notion of simple action occurrences are inherited by the language with
the meta-logical constructs Do and Occurs. For example, we can write expressions involving the
abbreviation Occurs that would express constraints between complex actions. For example, to
represent the fact that “John removed all the items from the table one by one and then served
Mary a cup of tea,” we can write:

holds(Empty, s) = —~(3x) holds(ontable(x), s),
(3s) Occurs(|while =Empty (wz) pickup(John, z); serves(Tea, John, Mary)], s).

where we are assuming a suitable situation calculus language with the appropriate function symbols
and constants. Another interesting advantage is that if we want to deal with the occurrence of
complex events defined in terms of primitive events only, we need not appeal to the meta-logical
constructs. In fact, if we want to state that “Mary took a sip of tea and smiled,” we can simply
write:

(3s) occurs(TakeSip(Mary), s) A occurs(Smile(Mary), do(TakeSip(Mary), s)).

Thus, with respect to the actual line of situations, some of the expressive gains of the complex
meta-logical actions are directly available within the situation calculus with occurrences.

5.2 Concurrency.

5.2.1 A Richer Ontology of Actions.

In the previous chapters, we considered axiomatizations based on the assumption that actions
were not performed concurrently. Therefore, we provided necessary conditions for the execution
of actions in isolation. Similarly, the effect axioms are written for non-concurrent actions. In this
section, we discuss a simple proposal to integrate concurrency in theories of action based on the
situation calculus. Also, we analyze the problems that arise when combining concurrent actions
with an actual line of situations.

In general, concurrency does not offer significant problems if actions do not interact. The
difficulties arise when actions performed concurrently interact with one another. In the same
manner as CR’s approach to complex actions, we want a way of dealing with concurrent actions
that inherits the solution to the frame problem.

In order to introduce concurrency, we extend the language in a manner similar to [16]. Thus,
we introduce the function + : A x A — A, so that a; + a9 denotes the action of performing aq
and a9 concurrently. We also introduce the predicate €C A x A, such that a1 € ay iff a; is part of
action ao. The axioms that characterize these new elements are:

a=a+a, (5.1)
a1+ ag = as + aq, (5.2)
a1 + (a2 + a3) = (a1 + a2) + as, (5.3)
a1 € aa = (Ja) ay = a1 + a. (5.4)
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We introduce the predicate primitive C A to distinguish those actions that are not the result
of other actions being performed concurrently:

primitive(a) = (Va').a' €aDa=d. (5.5)

A consequence of (5.1)-(5.5) is that we cannot assume unique names for actions. In fact for any
action name A, A+ A is another name for it. This drawback can be dealt with by providing unique
names axioms for all action terms that do not mention the function symbol 4. Furthermore, in
order to derive inequalities of the kind A; # A,, the following necessary condition for the equality
of action terms needs to be introduced:

[(Va')(a' € a1 =d € az)] D a1 =as. (5.6)

Thus, two actions are equal if they contain exactly the same sub-actions.

There are two problems that arise when considering concurrency, namely the precondition in-
teraction problem, and the effect interaction problem. The precondition interaction problem arises
when a pair of actions cannot be performed concurrently. This is normally due to incompatible re-
quirements for the physical performance of the actions. We adopt the point of view that in general
this incompatibility can be modeled in terms of the resources that each action uses. For example,
if we need some resource for the execution of some action A, and some other action A needs the
same resource, then it follows that the action A; + A is not possible unless the said resource can
be shared.

On the other hand, the effect interaction problem has to do with the effects of actions. Thus,
assuming that a pair of actions can be executed concurrently, we need to determine how they affect
the world. We take the point of view that each action has some direct or primary effects. These
effects arise as a result of performing the action given specific conditions on the situation in which
they are performed. The direct effects will be present whether or not the action is performed
concurrently with others. Thus, direct effects are never cancelled by the concurrent execution of
other actions. For example, the action of pouring a liquid out of a jug results in liquid coming out
of the jug. The only way to prevent this effect, given the conditions, is by impeding the execution of
the action. However, if the action is performed in the right situation the primary effects must arise.
In addition to primary effects, we consider that actions have indirect or secondary effects. These
effects arise depending on whether or not other actions are performed concurrently. For example,
if the actions of lifting one side of a table and lifting the other side of the table are performed
concurrently, then the table will be lifted in the air. In our approach to deal with indirect effects,
we adopt the point of view that all the secondary effects can be derived from state constraints.

Thus, in the example, we will have a constraint stating that whenever both sides of the table are
lifted, the table is lifted.

5.2.2 The Precondition Interaction Problem.

If Ay and As are two distinct actions for which we have an adequate characterization of Poss(Aj, s)
and Poss(As, s), we would like to have a systematic way to obtain a characterization for Poss(A1 +
As, s). For example, consider the action term paint(agent,wall, colour) used to denote the action
of some agent painting some wall with some colour. Also, assume that we have established that
Poss(paint(G1,W1,C1), So) and Poss(paint(Ga, W2, C2), Sy) are true. Of course, we do not want
to infer that:

Poss(paint(G1, W1, C1) + paint(Ga, Wa, Ca), So)
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is also true. In particular, if G1 = G4, and W7 # Ws, then the concurrent execution of both actions
should not be possible (assuming that the agent cannot paint two walls simultaneously). In order
to provide an appropriate axiomatization, we propose to write the following general axiom about
concurrent actions:

Poss(ay + a9, s) = Poss(ay,s) A Poss(az, s) A —precInt(ai,as). (5.7)

Here, we have introduced the predicate precInt(ai,as) to say that there is interaction between
the preconditions of a; and ao, making the concurrent execution of a; and as impossible. From
(5.1)-(5.1) and (5.7) it follows that:

precInt(ai,as) A a1 + as € a D ~Poss(a, s). (5.8)

The axiomatization of precInt seems to be domain dependent. However, at the very least we
need the following:
—precInt(a,a).

That is, an action never interacts with itself. Depending on the problem at hand, we would need to
provide a different level of granularity in the formalization of precInt. At one end of the spectrum,
we could incorporate the laws governing the phenomena that determines whether or not precInt
holds for a given set of actions. For example, in the physical world, we might incorporate axioms
detailing notions of space. Thus, from these axioms we would infer that actions performed by
different agents requiring the same space are not possible. A complete axiomatization of precInt
is in general not possible. There are several ways to deal with an incomplete axiomatization. For
instance, we could list necessary conditions for precInt to be true and non-monotonically assume
that these conditions are also sufficient. Alternatively, we choose to abstract away from a fine level
of granularity by appealing to the notion of resource. For example, to paint, a painter needs a brush,
paint, light, and access to the object to be painted (e.g., a wall). In order to talk about resources,
we introduce two predicates, zres and sres which take an action and an object as arguments.
zres(a,r) means that action a requires the exclusive use of some resource 7. On the other hand,
sres(a,r) means that action a requires the use of r for its execution, but that the resource can be
shared. For example, we may write:

zres(Paint, Brush) A xres(Paint, Wall) A zres(Paint, PaintCanister), (5.9)
sres(Paint, Light). (5.10)

Here, (5.9) states that to Paint, the painter needs exclusive access to a brush, wall and paint.
Also, (5.9) states that in order to paint, the painter needs light, which can be shared. Given the
information about the exclusive and shared resources we may determine whether actions interact
on that basis:

precInt(ai,as) = a1 € aa ANag € a1 A
(3r) [zres(ai,r) A zres(ag,T) V
sres(ai,r) A zres(az, ) V
zres(ai,r) A sres(ag,r)].
Our separation of resources into exclusive and shared is rather simplistic. It is not difficult to

come up with situations in which this distinction will be inadequate. For example, I can share my
office with one office-mate and we can both work at the same time, but if you try to put an extra



60 CHAPTER 5. ENRICHING THE ONTOLOGY OF ACTIONS.

person in our office we will both be unable to work there. A more general solution to this problem
is obtained by providing a more detailed axiomatization. For example, we can state explicitly how
much space is necessary in order for each of us to work. Also, we would need a sentence stating
that if there is not enough space available, then work becomes impossible.

5.2.3 Effect Interaction Problem.

Once we have established that Poss(A; + Az, S) is true for some situation S, we have to determine
what the effects of the combined execution of both actions are. There are two phenomena associated
with this interaction:

1. Cancellation: Actions may cancel each other’s effects. For instance, if an agent pushes a
door to open it, the door will become open. This effect is cancelled, however, if at the same
time another agent pushes the door in the opposite direction with an equal or greater force.

2. Synergy: Actions may have synergistic effects. I.e., two actions, when performed in con-
junction, will provoke changes in the world that would not be provoked by any of the actions
performed in isolation.

We view these two phenomena as ramifications of the individual actions, which are derived from
state constraints. To illustrate this, we use Lifschitz’ bowl of soup example [16]. In this example
we have a bowl of soup and the actions LiftLeft and LiftRight, which represent the actions of
lifting the left and right side of the bowl respectively. Also, we have the fluents Li fted, which holds
if the bowl is lifted, and Llifted and Rlifted that hold if the left and right sides of the bowl are
lifted respectively. Also, we have the following!:

holds(Lifted, s) = holds(Llifted, s) A holds(Rlifted, s), (5.11)
holds(Spilled, s) = holds(Llifted, s) @ holds(Rlifted, s). (5.12)

To simplify the discussion, we assume that there is no interaction among action preconditions:
—precInt(a,d’). (5.13)

The effect interaction problem is solved by deriving effect axioms for fluents. These axioms
describe the consequences of executing a concurrent action. In our view, effect axioms represent
direct effects of certain actions. That is, they are effects that must be present given the right
environmental conditions (i.e., qualifications) regardless of whether there are other actions occurring
at the same time. For example, the action Close-door is such that the door being acted upon must
be closed immediately after the action is performed. Otherwise, it would be difficult to argue that
the action took place. If this is unsatisfactory, we would be required to provide an extra level of
granularity. In the Close-door example, we may have an action attempt to close the door whose
direct effect is to apply a force of certain magnitude on the door. If all other forces are such that
the net force is not enough to close the door, then the door will remain open.

Notice that the consequences of taking this point of view are technical as well as conceptual.
Conceptually, we need to identify those consequences that result directly from the execution of
an action, independently of what else occurs simultaneously. Technically, we express the relation
between an action and its direct consequences as effect azioms. On the other hand, if some con-
sequences of an action are subject to whether or not the action occurs in conjunction with other
actions, then these consequences are ramifications of some intermediate primary consequences.

'We use @ to denote ezclusive or.
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Thus, the primary effects of an action are specified with effect axioms. For example:

Poss(LiftLeft,s) D holds(Llifted,do(LiftLeft,s)), (5.14)
Poss(LiftRight,s) D holds(Rlifted,do(LiftRight, s)). (5.15)

The secondary effects are inferred from primary effects and state constraints. These constraints
establish relationships between primary and secondary effects. Thus, the state constraints (5.11)
and (5.11) determine that Lifted and Spilled are secondary effects of the actions LiftLeft and
LiftRight.

Finally, if before we wrote effect axioms as:

Poss(a,s) Ay (a,s) D holds(R, do(a, s)), (5.16)
we now write them as:
Poss(a,s) Avg(a,s) Aa € a D holds(R,do(a, s)). (5.17)

Here, R is a primary consequence of action a. Thus, instead of (5.14) and (5.14), in the bowl of
soup example, we have:

Poss(a,s) A LiftLeft € a D holds(Llifted, do(c, s)),
Poss(a, s) A LiftRight € a D holds(Rlifted, do(, s)).

That is, no matter what other actions are performed, if LiftLeft is one of the sub-actions
executed, then Llifted will hold, and similarly for the right side.

Now, in our example, there are two definitions (for Lifted and Spilled). Therefore, we can use
the approach described in chapter 3 and generate a theory of action with a set of successor state
axioms. In particular, we would obtain:

Poss(a,s) D holds(Llifted, do(a,s)) = LiftLeft € aV holds(Llifted, s). (5.18)

Along with an analogous axiom for Rlifted. Obviously, to determine the values of the defined
fluents it suffices to use the definitions (5.11) and (5.11).

In summary, we build a theory in which effect axioms describe direct effects of actions, and
constraints determine the secondary effects (which are ramifications of the primary effects). In the
same manner as with theories with non-concurrent actions, we can solve the frame and ramifica-
tion problems for theories that contain stratified definitions or binary state constraints. This is
illustrated in the example that follows.

5.2.4 An Example.

Here we consider the traditional Producer/Consumer problem, which is the example of choice in
Computer Science to illustrate the problem of concurrent execution of actions [44]. Specifically, it
is said that two processes are in a Producer/Consumer relationship when one of these processes
generates output that is the input to the other process. The problem consists of correctly modelling
the behavior of the two processes under any possible interleaving or concurrent execution of the
basic operations of production and consumption.

To make the example more concrete, we consider that there are only two primitive actions
Produce and Consume. Thus:

(Va).a = Produce V a = Consume,

Consume # Produce.
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The Produce action generates an item. A Consume action, takes an unused item if one is avail-
able and consumes it. Thus, the producer and consumer are in a pipeline. As an example, a
producer may generate ASCII characters to be used by a consumer that counts words. To model
the state of the process we use three counters: inBin, produced and consumed. Each one of these
counters is modelled as a fluent function symbol that takes an integer as an argument. For exam-
ple, holds(inBin(N), S) would be true if in situation S there are N items produced and not yet
consumed. holds(produced(N),S) and holds(consumed(M), S) are true if in S there have been
N items produced and M items consumed. Produce increases the items produced by one and
Consume increases the items consumed by one. We have the following constraints:

n # m D —holds(produced(n), s) V —holds(produced(m), s), (5.19)
n # m D —holds(consumed(n), s) V —holds(consumed(m), s). (5.20)

We introduce a defined fluent inBin, which also takes a non-negative integer as an argument.
We define it as:

holds(inBin(n), s) = (Iny, n.).holds(consumed(n.), s) A holds(produced(ny), s) An = ny — ne,
where we assume the usual interpretation for the operation minus (—). The constraint:
n # m D —holds(inBin(n), s) V —holds(inBin(m), s), (5.21)

can be derived from the the definition of inBin and the state constraints for produced and
consumed.

Consumption is not possible unless there is something in the bin. On the other hand, production
is always possible:

Poss(Consume, s) = (In).holds(inBin(n),s) An # 0,
Poss(Produce, s).

The effect axioms for these actions are as follows:

Poss(a, s) A Produce € a A holds(produced(n, — 1), s) D holds(produced(n,),do(c, s)),  (5.22)
Poss(a, s) A Consume € a A holds(consumed(n. — 1), s) D holds(consumed(n.),do(a, s)). (5.23)

Notice that it is tempting to state that a consumption would decrease the inBin number and
that production would increase it. However, this is an incorrect approach, since in general such a
statement is not true. Specifically, when a production and a consumption are performed simultane-
ously, the statement does not hold. In fact, a reduction of the elements in the bin is a ramification
of consumption when nothing else happens concurrently.

To derive the successor state axioms we follow the same procedure utilized for non-concurrent
actions. Notice that the constraints (5.19)-(5.21) are of the form (3.1). Therefore, we can replace
them with a suitable set of new effect axioms derived from the original effect axioms and the state
constraints. After this is accomplished, we follow Reiter’s strategy to generate the successor state
axioms. For instance, in order to derive the successor state axioms for produced, we first need to
derive the effect axioms that result from (5.19) and (5.22). We obtain the following:

Poss(a, s) A Produce € o A m # ny, A holds(produced(n, — 1), s) (5.24)
D —holds(produced(m), do(a, s)).
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Therefore, to derive the successor state axiom for produced we use effect axioms (5.22) and
(5.24) and obtain:

Poss(a, s) D holds(produced(n),do(a, s)) =
[Produce € a A holds(produced(n — 1), s)] V
holds(produced(n), s) A =[(Iny) Produce € a A holds(produced(n, —1),s) An # n,).

Utilizing the state constraint (5.19) we can simplify this expression to obtain:

Poss(a, s) D holds(produced(n),do(a, s)) =
[Produce € a A holds(produced(n —1),s)] V
—Produce € a A holds(produced(n), s).

Following a similar procedure, we also derive:

Poss(a, s) D holds(consumed(n),do(a, s)) =
[Consume € a A holds(consumed(n — 1),s)] V

—Consume € a A holds(consumed(n), s).
We assume that there is no precondition interaction between Consume and Produce, so:
—precInt(Consume, Produce).

Therefore, it follows that the action Consume + Produce is possible in those situations in which
each sub-action is individually possible.
As initial conditions, we require:

holds(consumed(0), Sy) A holds(produced(0),Sy) A holds(inBin(0), Sp).

From the above axiomatization, and with the induction axiom, we can infer that the produced
number is always greater or equal to the consumed number?.

So = s A holds(consumed(n.), s) A holds(produced(ny), s) D ne < np.

This problem serves to illustrate how the interaction of effects can be handled. Particularly, we have
shown how possible conflicts between actions may be avoided. For example, in order to determine
the number of items that are available for consumption we have a fluent function ¢nBin. Changes
to this fluent are indirect effects of the produce and consume actions.

In general, in many areas of computer science, e.g. Operating Systems, the approach to model
concurrency is to avoid situations in which processes may concurrently access the same pieces of
information. Thus, they create tools and concepts like mutual exclusion, critical sections, and others
to specify systems in which interaction between processes is avoided. With respect to our approach
to concurrency, this avoidance can be modeled with the Poss predicate. Thus, if two operations
access mutually exclusive resources, then their concurrent execution is deemed not possible.

*Here we utilize the symbol < to denote the usual order among the integers. This overloading of the symbol <
should cause no difficulty to the reader since the context identifies which operator we refer to.
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5.2.5 Concurrency and Occurrences.

Here we analyze the integration of the notion of occurrences and an actual line of situations with
concurrent actions. First, remember that according to our definition, an action a occurs in a
situation s if and only if the situation do(a, s) falls in the actual line of situations. On the other
hand, notice that if we have an action A; + Ao such that Ay # As, then the occurrence of A; + Ao
in a situation S is identified with the fact that do(A; + A9, S) belongs to the actual line. Given that
A1 # Aj + Ay, this latter situation is not the same as do(A1, S). So, it follows that the concurrent
occurrence of Ay and Ay in S implies that neither Ay nor A, occur in S. Thus, in the presence of
concurrency, the statement occurs(a, s) should be understood as: “the global action a occurred in
s”, therefore nothing else occurred. To formalize this, we have:

Observation 5.1
occurs(a,s) Aa' # a D —occurs(d’, s),

which follows trivially from (4.1) and (4.7).

This seems counterintuitive and inflexible. In particular, we may want to state that some action
A; occurred in some situation without necessarily implying that A, is all that occurred. With this
purpose in mind we introduce a new predicate occurs® C A x S defined as:

occurs®(a, s) = (3a')occurs(a’,s) Na € d'.

An analogous problem arises when looking at occurrences in the time line using the predicate
occurst. That is, occursy(a,t) means that the global action a has occurred at time ¢. Hence, we
also need to introduce the predicate occurss- C A x T as:

occurs$-(a,t) = (3d, s).occurs(d’, s) Aa € d' A start(do(d’, s)) = t. (5.25)

As a simple example, consider the Producer/Consumer axiomatization presented before. Fur-
thermore, assume that we are told that:

(3 s¢)-actual(se) A holds(inBin(0), s¢).

If this is all the domain information available, the (non-circumscriptive) models of this domain will
contain an infinite number of models. In one model, the situation denoted by s. will be equal to the
initial situation. Also, there is an infinite number of models in which s, equals a situation obtained
by performing some arbitrary legal sequence of actions such that all elements produced have been
consumed.

As is the case with non-concurrent actions, we may be interested in finding out what in all
likelihood occurs. Unfortunately, the circumscription policy (4.23) does not do the job. To illustrate
why, assume that we have a theory in which all that is known is that occurs®(A, Sy). Not having
other information, we would like to infer that A is all that ever occurred. However, using our
previous circumscription policy, a model in which occurs(A, Sp) is true and one in which occurs(A+
B, Sp) is true are not comparable. Thus, there will be a minimal model in which occurs(A +
B, Sy) is true. Therefore, we need to slightly modify the circumscription policy in worlds in which
concurrency is possible. The policy we use is:

Circ(Econe; occursy; actual, start, Sk), (5.26)

where the varying terms of the circumscription are the same as in (4.23).
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Now, assume that using the same background theory of the Producer/Consumer problem, we
have that:

actual(S¢) A holds(inBin(1), S.),
holds(consumed(N),S.) AN > 2.

Proposition 5.1 The circumscription policy leads to:

holds(consumed(2), S.), (5.27)
holds(produced(3), S.). (5.28)

Proof: First, we show that there is model in which (5.27)-(5.27) hold. Here, we introduce new
constants Sy, So, S3, and Sy, as abbreviations for the following situations:

S1 = do(Produce, Sy),

So = do([Produce, Consume], Sp),

S3 = do([Produce, Consume, Produce], Sp),

S4 = do([Produce, Consume, Produce, Produce + Consume], Sp).

There are several models that satisfy (5.27) and (5.27). In particular, consider a model in which:
actual(s) = s < do([Produce, Consume, Produce, Produce + Consume], Sp).
This model satisfies:

occurst(a,t) = a = Produce A\t = start(Sy) V
a = Consume At = start(Ss) V
a = Produce At = start(S3) V
a = Produce + Consume A\t = start(Sy).

Clearly, this is a minimal model since no elimination of action occurrences would yield another
model. Also, there are other minimal models, all of which have the same number of items produced
and consumed.

Finally, we need to show that any model that does not satisfy (5.27)-(5.27) is not minimal. We
do so by contradiction. Assume that there is a minimal model in which there are n items consumed.
This model has to satisfy:

holds(produced(n + 1), S.) A holds(consumed(n), S.) A actual(S;) An > 2.

Now, there are many models that can be built satisfying this sentence. Let us pick an arbitrary
such model (call it M). Thus, given a model that satisfies the above sentence we can always build
a model that is preferred to it and that satisfies (5.27)-(5.27). To do so, we take the original model
M and build a new model M’ that shares the exact same situation structure. In the new model the
branch that is considered actual in M will be considered a non-actual branch. Furthermore, from
this branch, we take the set of actions that have occurred and eliminate all but two consumptions
and all but three productions (maintaining a legal sequence of productions and consumptions). For
example, from the occurrences:

{produce, produce + consume, produce, produce, produce + consume},
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we would eliminate the last two productions and leave:
{produce, produce + consume, produce, consume}.

Finally, the reduced set of Produce and Consume operations names a branch in the tree which we
deem actual. Obviously, the model M’ is preferred to M.
a



Chapter 6

Continuity and Natural Events.

6.1 Introduction and Motivation.

An important drawback of the original situation calculus and some of its extensions is the impos-
sibility of talking about properties that change continuously with time. This is the case with the
discrete situation calculus, in which an induction axiom (e.g., (2.1)) is used to characterize the
set of existing situations. For example, consider the problem of modeling the dynamic behavior of
physical objects. To do so, we need a language to describe different properties of these objects.
For instance, we may want to describe situations in which an object is falling. Thus, we may
introduce a fluent term falling(A) to denote the property object A is falling. Therefore, we may
write holds(falling(A), s) to mean that falling(A) is true in some situation s. Also, assume that
we want to describe the position of the object. Specifically, we may want to consider the property
object A is at height Y. We might be tempted to write an expression like:

holds(height(A,Y), S),

as a sentence intended to mean that S is a situation in which A is at height Y. However, if A is
falling, and we take height to be a real number, such a formula would be true at an instant of time
only. For this to be logically correct, we would need S to span a single time point. Therefore we
would need a different situation for each time point in which the object is falling. Since we take
time to correspond to the non-negative real numbers, we would need a continuum of situations.
This, of course, violates the induction axiom. Hence, the property of an object being in a certain
position in space cannot be denoted by a fluent.

The previous problem does not arise if one gives up the notion that space-time has a continuous
nature. For example, we may consider that coordinates are isomorphic to the integers, and that
objects stay a positive and finite length of time at each location. In this approach, if an object falls it
would pass through a finite set of points during any interval of time. However, this is unsatisfactory
for several reasons. The most important one is that it introduces severe representational constraints.
In fact, it does not adequately describe the physical phenomena we want to reason about. Now,
assuming that we are willing to accept this representational limitation, the resulting framework is
very artificial. In particular, since the ball would be changing position from one situation to the
next, we would have to introduce actions to provoke these changes at every step.

Another possibility is to consider actions that have durations. For example, the falling of a ball
can be considered to be an event that results in the ball hitting the ground. Such an approach
greatly complicates the structure of the tree of situations. Furthermore, in this approach it is
unclear how to consider occurrences of events while other events are in progress.

67
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Instead, we propose a solution that involves dividing the properties of the world into two different
classes. First, we have the properties modeled using standard fluents, which we also call discrete
fluents. Second, we have the properties that vary continuously with time (e.g., the position of
an object), which we call continuous parameters. Then, the property object A is falling will be
considered a discrete fluent. As before, actions may be performed that would make discrete fluents
change from one situation to another. For example, some action or event might produce a change
that would make the discrete fluent object A is at rest true, and the property object A is falling
false. On the other hand, continuous parameters, such as the position of object A is x do not only
change due to actions being performed by agents, but they also change due to the object’s natural
inertia. For example, if the ball in our example is falling, its position will be changing until some
action that stops its motion is performed.

A further distinction between discrete fluents and continuous parameters is that the former
hold or do not hold throughout situations, whereas continuous parameters may change their value
continuously within a situation. This taxonomic division of properties of the world is not new. In
fact, Galton [14] proposes a similar distinction within the framework of Allen’s theory of time [3].
Galton uses the terminology state of motion and state of position for properties that correspond
to our discrete fluents and continuous parameters respectively. Also, related ideas are explored by
Shanahan in the framework of the event calculus in logic programming [55].

The majority of the problems that deal with properties that vary continuously with time are
problems in the domain of physics. Since physics is concerned with building mathematical models
for natural phenomena, we have to model actions or events that are considered natural. We use the
term natural event to refer to events whose occurrence is determined by the laws of nature (physics).
As an example, imagine that we start pumping a continuous flow of air into a rubber balloon. The
inflating of the balloon will cause it to explode (a natural event), unless something happens to stop
the flow of air. In other words, the laws of physics prescribe that when the pressure inside the
balloon reaches a certain point, the balloon ought to explode. Also, we use the term natural process
to refer to a totally ordered set of natural events that occur in sequence. For example, if a ball is
released, the set of bounces can be considered a natural process.

In contrast to what we call natural events, the actions that have been considered in the previous
chapter are performed by some agent. An important difference between agent-driven actions and
natural events is that the former can be performed at any time (given that the preconditions for
their execution are true). On the other hand, natural events cannot happen at an arbitrary time.
Rather, they occur if and only if the environmental conditions dictate that their occurrence must
arise. In this chapter we present a characterization of natural events. Clearly, a characterization of
natural phenomena is essential to build systems for reasoning about physical processes.

Our interest is to provide a formal foundation for specifying dynamic systems. To do so, we
present a mechanism to integrate continuous change into the situation calculus. An important
advantage of our approach is that the notions of fluent and situation are maintained. Thus, we
maintain the view that fluents are properties that change from situation to situation. Also, situa-
tions are discrete. Therefore, the same approach to deal with the frame and ramification problems
is applicable in the extended language presented here.
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6.2 Extensions to the language.

6.2.1 An Oracle.

We extend the language with a sort R for the reals. We consider the sort 7 to be a subset of R.
Again, we work with an interpreted theory in which R is fixed. Thus, we only consider standard
interpretations for the sort R. Furthermore, we add some standard functions for the reals, (i.e.,
+, —, X, /, etc.) along with an infinite set of numerical constants (e.g. 0, -1, 3.14, etc.). We also
assume that we work with standard interpretations for these functions and constants.

Another important assumption we make here, is that we have an Oracle capable of answering
questions about the truth or falsity of some sentences. For example, if in the course of a proof we
need to show that:

(Fk,t)t>0Nk>0ANEk xt =12,

we assume that our Oracle will correctly respond true.

It may be argued that the Oracle introduced here is not really necessary. This is due to the
fact that we are working with an interpreted theory in which the sort of real numbers has a fixed
interpretation. Similarly, we assume that the real function symbols (e.g., +, X, etc.) are also
interpreted in the standard way. The reason we introduce this Oracle is that it allows us to cleanly
separate the tasks of reasoning within the logic of the situation calculus and the task of reasoning
about the reals.

We appeal to the Oracle to respond to questions regarding relationships between real numbers.
For instance, solving systems of equations, and determining the existence of solutions to equations
or inequalities. By using such an Oracle, we deliberately gloss over many issues regarding reasoning
about equations and real numbers. This simplification allows us to concentrate on the extensions
that are necessary for the situation calculus to deal with continuity.

In order to characterize the Oracle, we consider that we have:

e A language L, which is a sublanguage of the situation calculus that contains the single
sort R of real numbers. A set of real variables and constants, the binary function symbols
+,—, %,/ : R xR — R, the predicate symbol <C R x R and the equality symbol.

e A theory Y in the language L that characterizes the sort R of real numbers, along with
the real operators +,—, X, and /. Thus, we assume that the models of X% correspond to
the standard interpretations for the real numbers and the real operators mentioned above.
Furthermore, let ®(x) be an arbitrary quantifier free formula, in which x represents a tuple
of real variables. All the free variables mentioned in the formula ®(x) are in x. We require
that X% be such that either:

Sk b (3%) 3 (x), (6.1)

or

Sk E -(3x) 3(x). (6.2)

In this work we do not address the issue of writing down the theory . Rather, we assume
that the theory is given. Finally, we assume that the Oracle is capable of answering whether (6.1)
is true or (6.2) is true for any given formula ®(x) that obeys the constraints mentioned earlier.
Furthermore, we assume that if (6.1) is true, then the Oracle provides us with an assignment of
elements of R to the variables in x that makes ®(x) true.
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Obviously, our entire approach to deal with continuity hinges on the expressive capabilities of
the language Lx, as well as on the existence of this Oracle. We have taken the simplest possible
language L using only the basic real operators. On the other hand, Oracles exist that are capable
of answering our questions for a wide variety of classes of existential queries of the kind (6.1), for
example, the Maple and Mathematica software systems.

As illustrated in the examples discussed later, we need to appeal to the Oracle in order to prove
or disprove that certain sentences of the form (3¢) ¢(t) are true.

6.2.2 Ontological Extensions.

Some properties of objects in the world vary continuously with time. For example, the temperature
or position of an object. In order to refer to these properties, we introduce a class of objects called
parameters. These parameters are used to name continuously varying properties. For example,
Pos may be a parameter that names the position of some object along the X-axis in a cartesian
space. The actual real value of the property during a situation is described using a real function
of time (e.g., y(t) = 5+ 6 x t). Each such function will have a name (e.g., y). If during a situation
s, a property named by a parameter p is behaving according to some function of time named by y
we will write an expression stating that p is evaluated through y during situation s.

Formally, we introduce two new sorts in the language. First, we add a sort P for parameters,
and the sort ) for names of real functions of time. We use the letters p and P for sort P, and y and
Y for sort ). These letters are used with or without subscripts or other markers. Furthermore, we
introduce two new functions: First, the function ¢ : ) x 7 — R; such that ¢(y,t) denotes the real
number that results from evaluating the function ¥ at time ¢'. Second, the function =: P x ) — F;
such that = (p,y), which we use in infix notation as p = y, denotes a fluent that holds when the
parameter p behaves as described by the function named by y.

As a simple example, assume that we want to state that the height of some object is given by
the function of time 5 + 6 X ¢ in some state S. Then, we may introduce the constant Y to name
the function of time 5 + 6 X ¢, and the constant P} to denote the parameter height. This is stated
in the language as follows:

(Vi) q(Y,t) =5+6 x t,
holds(P, =Y, S).

The first sentence states that the value of the function denoted by Y is 5 + 6 x . The second
sentence states that the object’s height behaves according to Y during the situation S.
An important axiom for the function = is:

holds(p = y1,s) A holds(p = y2,5) D (V1) q(y1,t) = q(ya, 1) (6.3)

Thus, if during a situation s a parameter’s value varies according to two functions of time, then
these functions must agree on their values at all times.

Since the function symbol = denotes a fluent function, a fluent p = y may change from situation
to situation. For example, a golf ball may be following a trajectory whose height is given by a
function 2 x t — t? during Sy. If it falls in a sand trap, its height will be described by the constant
0. Therefore, the event of the ball falling into the trap has had the effect of changing the way in
which the ball’s height is described (e.g. from a parabolic function of time to a constant). On the
other hand, if some other event occurs, the behavior of the ball may be unaffected. Thus, in the

'In [50], Sandewall proposes a similar approach to deal with functions of time.
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same manner as with traditional fluents, we need to describe how actions affect the behavior of
parameters. This is addressed in the following section.

Also, we need to introduce the functions +, —, x and / : Y x Y — Y. Once again, we
overload symbols in the language and rely on the context to disambiguate them. These symbols
are introduced to apply real operators to function names, with the meaning described by the
following axioms:

q(y1 +y2,t) = q(y1,t) + q(y2, 1), (6.4)
q(y1 — ya2, ) = q(y1,t) — q(ya, 1), (6.5)
q(y1 X y2,t) = q(y1,t) x q(y2, 1), (6.6)
q(y1/y2,t) = q(y1,t)/q(y2, 1) (6.7)

Furthermore, we introduce the functions constant, linear and quadratic of sort ), with one,
two and three real arguments respectively. We utilize these parameters to name real functions of
time as follows:

q(constant(rg),t) = rg, (6.8)
q(linear(rg,rr),t) = rp + 15 X 1,
q(quadratic(ry,rr,74),t) = Tq + 17 X t + 0.5 X 15 X 12. (6.10)

We also introduce derivatives with respect to time. We use the function d : Y — ), some of
whose properties are:

d(y) = constant(0) = (Irg) y = constant(ry), (6.11)
d(y) = constant(ry) = (3r,) y = linear(rg, ), (6.12)
d(y) = linear(rg,rr) = (374) ¥y = quadratic(ry,rr,74)- (6.13)

These properties of the derivatives of polynomial functions could have been obtained from a set
of general axioms about derivatives of real functions. However, this approach would take us too far
afield. We prefer not to deal with these complications since they fall beyond the scope of this work.
Other well known properties of the derivatives of functions could be added to the list (6.11)-(6.11).
However, in our examples we only make use of these ones.

In the next section, we utilize the extension of the situation calculus that was just introduced to
model natural processes. In particular, we show how to write effect axioms to describe the effects
of natural events. Furthermore, we discuss how to derive successor state axioms for fluent terms of
the form p = y.

6.2.3 Functional Fluents.

An alternative to the approach presented in the previous subsection is to eliminate the use of the
sorts P and Y and use functional fluents instead. Functional fluents are functions whose denotations
vary from situation to situation. Thus, if under(z) is a function denoting the object that is under
z, then the denotation of under(z) will vary from situation to situation. In order to accommodate
functional fluents in the language of the situation calculus with reified fluents, we need to reify
equality. Thus:

holds(under(Dyw) = Dy, )
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would be true if in situation s the object under Dy is Djs. Thus, if we want to state that the
height of some object is given by the function of time 5 4+ 6 X t in some state S, then we write:

(Vt) holds(height(t) =6 x t+5,5). (6.14)

A clear advantage of this approach is that its syntax is much more appealing. However, an
important objection to the use of functional fluents is that we want to treat functions of time as
domain objects. In our approach, we do so using the names of the functions, rather than the
functions themselves. The need to treat functions of time as objects is common when reasoning
about physical processes. For instance, in later examples we describe the effects of certain actions
by appealing to the derivatives of the real functions of time. This is only possible in a language
that allows to treat these functions of time as objects.

Another problem with functional fluents is that they serve to write sentences that describe
instantaneous values for physical parameters. In contrast, the approach that utilizes parameters
and function names serves to describe behaviors over situations. Thus, if we were to obtain successor
state axioms for the approach based on functional fluents this would describe change or non-change
of values of parameters at individual time points. Using our approach, successor state axioms state
whether or not the overall behavior of some physical parameter changes or not.

6.3 Representation of Natural Processes.

6.3.1 Preliminaries.

In the previous section, we extended the ontology of the situation calculus to include the notions
of parameter and names for real function of time. With these new sorts of objects we can model
simple physical phenomena using equations on real quantities. We would like to incorporate those
models into a logical theory based on the situation calculus extended with occurrences.

We consider only phenomena which can be modeled using a deterministic mathematical model.
These deterministic systems are such that if we know the initial conditions, the complete future
evolution of the system is described using the model. These mathematical models describe the
behavior of closed systems. That is, systems in which there are no external perturbations. By
integrating these models with the situation calculus we obtain a language in which we may describe
the interactions between active agents and physical systems.

As an example, consider a billiards table scenario in which there are two balls. Furthermore,
assume that we know the initial position and parameters of each ball (i.e., their position, velocity,
acceleration, etc.), an accurate mathematical model will tell us the behavior of the system at all
future times. If the balls are moving towards each other, then a collision will occur and such a
collision will change the way in which the balls move. When studying these systems, physicists
perform “piece-wise” analyses. In the example, the trajectories of each ball would be described
mathematically before and after the collision. Thus, the collision would be seen as an event that
changes the parameters of the system.

Within the situation calculus framework, we follow the same approach. For example, assume
that we place a cartesian coordinate system in the billiards table. Also, assume that the X and
Y axes coincide with two perpendicular sides of the table and that X = 1 and Y = 1 represent
the other two sides of the table. Let X* and Y denote the parameters position of the ball i with
respect to the X and Y axes respectively. Furthermore, assume that the following are the initial
conditions:

holds(Y'* = constant(0.5), Sp) A holds(Y? = constant(0.5), Sp),
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holds(X' = linear(1,0), Sp) A holds(X? = constant(0.5), Sp).

Thus, ball 1 is moving horizontally (i.e., parallel to X-axis) from position X =0, Y = 0.5 towards
ball 2, which is motionless in the middle of the table (see fig. 6.1a). Therefore, we would like to
infer that if no agents are present in the environment, the balls will collide when ball 1 reaches the
initial position of ball 2.

Furthermore, if we introduce the action constant Collision, then a correct axiomatization of
this problem within the framework of the situation calculus would let us infer the following:

e The collision is possible in Sy if and only if start(do(Collision, Sp)) = 0.52. Thus, the time in
which the Collision may occur in Sy is fixed.

o After the collision in the initial situation, i.e. in situation do(Collision, Sy), the motion of
both balls is affected (see fig. 6.1b). Thus, ball 1 will no longer move according to its original
trajectory, and ball 2 will start moving.

Y Y
A A
b O o ob]
"X X
(a) Situation Sp. (b) Situation do(Collision, Sp).

Figure 6.1: The Billiards Table Scenario.

Let us consider a second scenario in the billiards table. Assume now that the initial situation
changes so that:

holds(Y'! = constant(0.4), Sy) A holds(Y? = constant(0.6), Sy),
holds(X! = linear(1,0), Sy) A holds(X? = linear(2,0), Sp).

o—

o

= X

Figure 6.2: The Second Billiards Table Scenario.

To describe this scenario, we introduce new action constants ReachFEdge; and ReachEdges.
Initially, in Sy, both balls are moving parallel to the X-axis (see figure 6.2). The second ball
moves faster than the first one. Given that there are no agents that could introduce perturbations,

2We ignore the dimension of the balls.
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we would like to infer that ball 1 reaches the edge of the table at time ¢ = 1, and that ball 2 reaches
it at time ¢ = 0.5. Here, there are two independent events, ReachEdge; (ball 1 reaches the edge)
and ReachEdge; (ball 2 reaches the edge). Let us assume that the edge absorbs all the energy
of the balls and that they stop at the point of collision. In these circumstances, the evolution
of the billiards world is completely determined. There is no uncertainty. Thus, what we should
conclude is that the only event that is possible in Sy is Reach Edges, and that the only event possible
in do(ReachEdges, Sy) is ReachEdge;. Thus, ReachEdge; is impossible in Sy. Therefore, if we
eliminate from the tree of situations all those situations that are reached by performing impossible
events, we end up with a single line of possible situations. This should not be surprising, since it is a
reflection of the fact that the laws of physics along with the initial conditions completely determine
the evolution of the world (at least for the kind of models we are working with). Hence, the only
way in which we could obtain a branching future is by introducing a form of incompleteness with
regards to the actions that may occur. This incompleteness arises when there are agents that can
choose from a gamut of actions. Each choice is represented by a branch in the situation tree.

Thus, in regards to this chapter, we understand a natural process to be a process whose behavior
is completely determined from:

e A description of the initial conditions of the system.
e The physical laws governing the phenomenon.

All events whose occurrences are dictated by these physical laws will be called natural. In this
section, we present an axiomatization of natural events to characterize the properties we just
described. Basically, our view of natural processes is reflected on the structure of the situation
calculus trees in the following way: In each situation there is at most one natural action or event
possible. This follows from the axiomatization presented below.

6.3.2 Axiomatization.

In this section we present an approach to axiomatize problems involving natural phenomena. We
make several assumptions that greatly simplify the presentation. In particular, we assume that no
natural events occur concurrently. In general, this assumption is too strong, and in section 6.4 we
discuss how to extend the approach to allow for concurrency.

In this axiomatization we distinguish natural events from the other events (or actions) intro-
ducing the predicate natural C A. The most important characteristic of natural events is that
when the conditions for their occurrence arise, they must occur. In this framework, a complete
specification of the predicate natural has to be provided by the axiom writer.

To describe some important properties of natural actions we introduce a new predicate II; C
A x 8§ x T which is domain dependent. IIi(a,s,t) is true whenever the conditions at the time
start(s) are such that at time ¢ action a would occur. For example, given the initial situation in
figure 6.1a, the literal II;(Collision, Sy, 0.5) should be true. That is, in Sy the conditions are such
that if things follow the course predicted at the start of Sy, then a collision is possible at time 0.5.
Furthermore, the collision can be guaranteed to occur if no other events occur before time 0.5.

In the same manner as with natural, we assume that we have a complete axiomatization for
IT;. Based on the predicates just introduced, we now describe some essential properties of natural
events.

First, if a situation s starts at time %5, then the situation s would be ended by some natural
action a at the first time greater than ¢, for which I1;(a, s,t) was true. This is written as follows:

natural(a) Al (a, s,t) A =(3t)[start(s) <t <t Al(a,s,t')] D end(s,a) = t. (6.15)
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Also, we use the predicate II; to completely characterize the predicate Poss. Thus, unlike the
case with discrete non-natural actions, we may write a general form for a definition of Poss for
natural events:

natural(a) O Poss(a, s) = [IIi(a, s,end(s,a)) A (6.16)
=(3d,t").natural(a’) ATy(a', s,t') A start(s) < t' < end(s,a)].

That is, natural action a is possible in state s if, given the conditions at the start of s, the action
is possible® at the time end(s,a), and no other natural action could have occurred between the
start of s and end(s,a). For instance, in the example of figure 6.2, II;(ReachEdge;, Sy, 1) should
be true but Poss(ReachEdge;,Sy) should not. On the other hand, II;(ReachEdges, Sy, 0.5) and
Poss(ReachEdges, Sy) should be true.

Another essential aspect of any natural action a is described by the following axiom:

[natural(a) A Poss(a,s) A Poss(a',s) A —natural(a’)] D end(s,a’) < end(s,a). (6.17)

Thus, if a is a natural action that is possible in situation s, then no other action is possible after
the time at which a would occur (i.e., end(s,a)). For instance, in the example of figure 6.2, if an
action is possible in Sy, it must bring Sy to an end at a time before 0.5 (i.e., (Va).Poss(a, Sy) D
end(Sp,a) < 0.5).

An immediate consequence of the above axioms is:

Observation 6.1

natural(a) A natural(a’) A Poss(a, s) A Poss(a’,s) D a=d'.

Thus, at most one natural action is possible in a given situation.

Finally, assume that some natural event a is possible in a situation s. Furthermore, assume
that nothing occurs before end(s,a). Under these assumptions, the event a must occur. This is
formalized as follows:

natural(a) A Poss(a,s) A =(3a’) [occurs(a’, s) A end(s,a’) < end(s,a)] D occurs(a,s). (6.18)

For example, in the billiards ball scenario of figure 6.1, if nothing occurs prior to time 0.5, we infer
that the Collision occurs.

The structure of logical theories for natural processes is similar to the structure for theories with
occurrences described in chapter 4. In fact, let 3,,4; denote one of these theories. 3,4 will contain:

e 3,. General axioms for the situation calculus. These are: basic axioms of section 2.1. Axioms
(4.1)-(4.11) and (4.23) which describe the structure of occurrences. Axiom (6.3), which estab-
lishes the properties of the function =. Situation independent axioms (6.4)-(6.11). Axioms
(6.15)-(6.18) that constrain the structure of the situation tree and the assignment of starting
times to situations.

e 3, state independent axioms.

o T),s. Same as the set Ty, for the theories studied in earlier chapters, except that no Poss
axioms are provided for natural events.

3 As described by TI;.
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e Tyee. Same as the set T, for the theories studied in chapter (4).

o T71,. In order to describe the conditions under which natural actions are possible, we appeal to
the predicate Poss. Which is true of a situation s and an action a whenever the preconditions
for the execution of @ in s hold. However, as discussed before, Poss may be completely
characterized for natural actions after II; is given. Therefore, we include in 77, a set of
sentences that completely specifies II;.

o Ti, effect axioms.
e Tg,, specification of the initial conditions.

e T, state constraints.

To illustrate the approach, we make use of the ball in the shaft example, originally proposed by
Erik Sandewall [50]. In this example, a ball is moving along a horizontal surface at a positive speed
towards a shaft (see figure 6.3). If the ball reaches the edge of the shaft, it will fall into it with
acceleration G. In this scenario, there is only one object: the ball, which is considered point-like.
The vertical axis (V) is taken as pointing downwards, whereas the horizontal axis (H) points to
the right. The coordinates of the relevant points are indicated in the figure as pairs (H,V). In
order to write a theory to describe this scenario, we introduce the action constants Fall, HitW all
and HitBottom, and the parameter constants P}, and P,.

—

(0,0) (1,0) [(2,0)

1,1) (2,1)

Figure 6.3: The ball in the shaft.

We axiomatize Sandewall’s example as follows:

e Y;: There are only three possible events, thus?:
(Va).a = FallV a = HitWall V a = HitBottom. (6.19)
Also, all the events in this problem are natural:

(Va) natural(a). (6.20)

Furthermore, the only parameters in this problem are P, P, for the position of the ball with
respect to the H and V axes. Also, the parameters are distinct:

P, # P,.

® Tphos. In this problem, all actions are natural. Thus, no domain specific axioms about Poss
are given.

4Remember that we assume unique names axioms for actions.
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o T7,.
The conditions for Fall to occur are that the vertical position of the ball be 0, and that the
horizontal motion of the ball be such that an edge of the shaft is reached while moving in the
direction of the shaft:
II;(Fall,s,t) = (3yp).holds(Py = yp, s) A holds(P, = constant(0), s) A (6.21)
la(yn,t) = 1 Aq(d(yn),t) > 0V q(yn,t) =2 Aq(d(yn),t) <0
We must emphasize that this axiomatization is very simplified. A better axiomatization would

consider the sum of the forces on the ball as the determining factor for the ball’s motion. In
future research we will attempt to provide a more general theory that incorporates these views.

In (6.21), we appeal to the fact that if y names the function that describes the position of an
object, then d(y) would denote its speed.

The ball hits the wall if its vertical position is inside the shaft and its horizontal position
coincides with one of the walls of the shaft and its motion is towards that wall.

I (HitWall, s, t) = (6.22)
(yn, yy)-holds(Py, = yp, s) A holds(Py = yy, s) A q(yy,t) > 0 A
[a(yn, t) = 1 Aq(d(yn),t) <OV qyn,t) =2 Aq(d(yn),t) > 0.
Finally, a HitBottom event occurs when its coordinates coincide with some point along the
bottom of the shaft and it is moving towards it.
II;,(HitBottom, s,t) = (yn, yy)-holds(Py, = yn, s) A holds(P, = yy,s) A (6.23)
[a(yn,t) 2 1 A q(yn,t) < 2N q(d(yw),t) > 0 A qlys,t) = 1].

e T,.;. When the ball hits a wall, it bounces without losing any energy. Thus, its vertical motion
is unaffected, while its horizontal motion changes direction. This effect is modeled by changing
the sign of the ball’s speed, while maintaining the other parameters:

Poss(HitWall, s) A (Jyp) [holds(Py, = yp, s) Ad(yp,) = constant(—1) x d(yp) A
q(yp,, end(s, HitWall)) = q(yp, end(s, HitWall))] D holds(Py, = y},, do(HitWall, s)).

The Fall does not affect the horizontal motion of the ball. However, it starts a free fall, as
reflected by a change in its vertical motion:

Poss(Fall,s) D holds(P, = quadratic(0,0,G),do(Fall, s)).

In this effect axiom, we set the arguments for y, assuming that the initial conditions for the
fall are that the height and vertical velocity are zero. A more general effect axiom would state
that these initial conditions are determined by the value of the parameters in the previous
situation.

When the ball hits the bottom of the shaft (HitBottom), all its energy is absorbed. Thus, as
a result, motion in both directions stops.
Poss(HitBottom, s) A (yy) [holds(Pn, = yp,s) A
yp, = constant(q(yn, end(s, HitBottom)))] D holds(P;, = y;,, do( Hit Bottom, s)).
Poss(HitBottom, s) A (yy) [holds(Py = yy, s) A
yl, = constant(q(yy, end(s, HitBottom)))] D holds(P, = y.,do(HitBottom, s)).
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These effect axioms can be easily rewritten to conform to the standard form of positive (2.27)
and negative effect axioms (2.28). In fact, we can combine them to obtain a single positive
effect axiom of the form (2.27) as described later.

o Ts,:
holds(Py, = linear(1,0), So) A holds(P, = constant(0), Sp). (6.24)

e T, In the example, we do not require domain specific state constraints. However, to illustrate
their use, assume that we introduce parameters to denote the speed of the ball with respect
to each axis (e.g. P,). In this case, the following would be a state constraint:

holds(P, = d(y), s) = holds(P, =y, s).

6.3.3 Natural Processes and the Frame and Ramification Problems.

So far, we have presented an extension of the situation calculus that allows us to write theories
about natural processes. A question that arises is whether or not this extension can be adequately
integrated with the solution to the frame and ramification problems studied in chapters 2 and 3.
To argue that this is indeed the case, we simply show that axiomatizations of natural processes are
a special case of the theories of action with occurrences discussed in 4.

First, the set 34 of state independent domain axioms are present in both types of theories. The
general axioms (6.4)-(6.11), can be considered part of .

In ¥4, the axioms in T}, U T1r, along with general axiom (6.16) play the role of T}, in the
theories of action with occurrences. That is, these axioms specify the predicate Poss.

The axioms in the sets T,.. of occurrence axioms, Ty of effect axioms for natural events, and
Ts, of initial conditions have the same form as in previously studied theories of action. The only
difference, is that we include general axiom (6.18) as an occurrence axiom.

The axioms in T, are as before. Therefore, if the state constraints are of the kind discussed in
chapter 3, we will be able to derive successor state axioms from T}, and T,s. Also, axiom (6.3) is
included in the set T,.. Fortunately, the contrapositive form of this axiom corresponds to a binary
state constraint:

[=(V?) q(y1,t) = q(y2,t)] D —holds(p = y1,s) V =holds(p = ya, s). (6.25)

Clearly, this axiom is a constraint of the form (3.1). Therefore, it can be used to obtain new effect
axioms following the procedure of chapter 3.

Finally, axioms (6.15) and (6.17) establish constraints on the temporal relationships between
situations in the situation calculus tree, and can be considered part of the basic axioms of the
theories of action.

The Ball in the Shaft.

Here, we show how the solution to the frame and ramification problems is applied to the ball in
the shaft example.
First, we rewrite the effect axioms as a single positive effect axiom like (2.27):

Poss(a,s) A v;iy(a, s) D holds(p = y,do(a, s)), (6.26)
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where fypiy(a, s) denotes the formula:

a = HitWall A (3yp) [holds(Py, = yn, s) A d(y) = constant(—1) x d(yp) A
q(y, end(s, HitWall)) = q(yp, end(s, HitWall))] V
a = Fall Np = P, Ay = quadratic(0,0,G) V
a = HitBottom A (3yp) [p = Py A holds(Py, = yp, ) A
y = constant(q(yn, end(s, HitBottom)))] V
a = HitBottom A (y,) [p = Py A holds(P, = yy, s) A
y = constant(q(yy, end(s, Hit Bottom)))].

Also, from (6.25) and (6.26), we obtain the effect axiom:
POSS(CI,, 3) A 7;;2}(0" 3) A _'(Vt) Q(yat) = q(y',t) ) _'hOIdS(p =y, do(a, 3))

With respect to the ball in the shaft example, this means that the ball may not follow two different
trajectories. To obtain the set of successor state axioms for each of the fluents, we follow the same
procedure outlined in chapter 3. We obtain:

Poss(a, s) D holds(p = y,do(a, s)) = 'y;'. (a,s) V holds(p =y, s) A (6.27)

P (a,8) A (Y1) alus ) = a(y's )]

p=y

Given that in the ball in the shaft example we assume that there are no external agents, we
should be able to determine what happens with the ball at all times. In fact, we can show that:

Proposition 6.1 In the theory X, for the ball in the shaft example, it follows that:

occurs(Fall, Sp), (6.28)
occurs(HitBottom, s) D —(3a) occurs(a,do( Hit Bottom, s)), (6.29)
(V s).occurs(a,s) N s > Sy D a = HitWall V a = HitBottom. (6.30)

Proof: (6.28) states that the first occurrence is a Fall event. The proof is as follows: From (6.21)
and (6.24) we obtain:

II;(Fall, Sp,t) = [g(linear(1,0),t) = 1 A g(d(linear(1,0)),t) >0V (6.31)
q(linear(1,0),t) = 2 A q(d(linear(1,0)),t) < 0].

From (6.8) we know that linear(1,0) = ¢, and from (6.11) d(linear(1,0)) = constant(1). Thus, it
follows that we can rewrite (6.31) as:

II;(Fall, So,t) = [t = 1 A g(constant(1),t) > 0Vt =2 A g(constant(1),t) < 0].
Which can be rewritten as:
II(Fall,Sp,t) =[t=1A1>0Vt=2A1<0]
At this point in the proof, we need to ask our Oracle whether:

@t)y=1A1>0Vi=2A1<0.
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To which the Oracle will reply true and give an assignment ¢ = 1. Then we may ask whether:
(Ft)t#1A[ly=1A1>0Vt=2A1<0).
To which the Oracle would reply false. Thus, we conclude that:
II;(Fall, Sp,t) =t = 1.
Also, from (6.15), we conclude that:
end(Sy, Fall) = 1.
Now, from (6.22):
I, (HitWall, s, t) = g(constant(0),t) >0A[t=1A1<0Vt=2A1>0].

By consulting the Oracle we know that 0 > 0 is false, therefore II,(HitWall, Sy, t) is also false. A
similar proof leads us to conclude that II,(HitBottom, Sy,t) is false. Therefore, we arrive at the
conclusion that:

Ii(a, So,t) =a= Fall ANt =1.

From (6.16), (6.19) and (6.20), we infer that Poss(a, Sy) = a = Fall. Furthermore, from (6.18), it
follows that occurs(Fall, Sp).
To prove (6.28), it is simple to show (from T11,) that after a HitBottom occurs in s:

I1;(a, do( Hit Bottom, s),t) = false.

We omit the proof.
Finally, to prove (6.28) we use the induction axiom (2.1) with:

o(s) = occurs(a,s) A s> Sy D a= HitWall A
[holds(yy, do(HitW all, s)) = holds(y,, do(Fall,Sy))] V a = HitBottom.

©(Sp) is vacuously true. Assuming that for an arbitrary S, ¢(S) is true, we need to show that
w(do(a', S)) is also true, for an arbitrary a’. This is trivial to show by using the effect axioms and
appealing to the Oracle.

a

6.3.4 Relationship to Sandewall’s approach.

Conceptually, the work presented in this chapter is related to Sandewall’s [50, 51]. Sandewall
proposes to combine logic and differential equations for describing real world systems. In Sandewall’s
words:

The method applies to piecewise continuous physical systems, i.e. systems whose possible
histories over time may contain a number of significant time-points called breakpoints,
and where all parameters of the system are assumed to be continuous in the intervals
between breakpoints. [50, p.412]
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Sandewall’s significant time-points correspond to the times at which events occur. However, in
our approach we do not require all parameters to be continuous in the intervals between breakpoints.
Rather, we require that the parameters be fully described by some function of time.

Another essential difference between Sandewall’s approach and ours is that he appeals to non-
monotonic reasoning in order to study the relationship between parameters before and after the
breakpoints. In fact, the problem of determining what paramters are discontinuous at a breakpoint
is a special form of the frame problem. Sandewall’s solution to the frame problem is a variant
of Yoav Shoham’s chronological minimization [58] which is called Chronological Minimization of
Discontinuities.

Unfortunately, as shown by Rayner [43], Sandewall’s approach fails to sanction the intuitively
correct answers in some simple problems. Sandewall’s approach is such that if two models coincide
in the changes that are produced up to some time point ¢, then the model that is preferred is the
one that has a minimal set of discontinuous parameters at ¢ (regardless of what the models say
about the parameters at times after ¢, hence the term chronological). The problem arises when
there are multiple minimal models. Rayner’s example is a variation of the ball in the shaft problem
studied earlier. In his example, in the bottom half of the shaft there is a radiation field. The
radiation field changes the pattern of heat exchange between the ball and its environment. Thus,
if the ball enters the radiation field, then the parameter describing the temperature of the ball will
suffer a discontinuous change. The problem is that when the ball reaches the field’s boundary it
may either bounce (changing its motion but not the nature of the heat exchange), or it may cross
the field (changing the nature of the heat exchange but not its motion). Thus, the chronological
minimization of discontinuities cannot distinguish between the two models. However, the intended
conclusion corresponds to the model in which the ball enters the radiation field.

It is important to point out that the deficiency that Rayner found on Sandewall’s approach
is due to an inadequate solution to the frame problem and not, we believe, to the conceptual
underpinnings of his approach. In fact, if we use Reiter’s solution to the frame problem, Rayner’s
problem does not arise. Basically, each breakpoint is associated with some event, whose effects are
described using effect axioms. Thus, in the previous example, the event of reaching the boundaries
of the radiation field will have effects on the thermal parameters of the ball but not on its motion.
Hence, the successor state axioms will not relate such an event to a change in the ball’s motion.

6.4 Concurrency, Continuity and Natural Processes.

So far, we have discussed continuity and natural processes in the context of non-concurrent events.
This has allowed us to simplify the presentation of our approach. However, in practice, it is
important to be able to consider actions or events that occur concurrently. There are several
minor complications that arise when considering natural concurrent events. Basically, we need to
re-study and replace axioms (6.15)-(6.18) in the context of an extended language that incorporates
the notion of concurrent actions. Thus, we extend the language as indicated in section (5.2) with
the predicates occurs® and €, along with the action function symbol +. With respect to concurrent
natural actions, we need to add the following axiom:

natural(a + a') = natural(a) A natural(a'). (6.32)

Thus, for any pair of natural actions a and a’, the concurrent action a + a’ is also natural.
Since the axioms for concurrent actions we provided before were meant to describe concurrency
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between non-natural actions, we need to qualify axiom (5.7). Thus, we replace it with:

—natural(ai) V —natural(az) D [Poss(ai + ag, s) = Poss(a1, s) A Poss(ag, s) A —precInt(ay,as)].
(6.33)
Now, axiom (6.15) has to be replaced with:

natural(a) Aa € a Al(a,s,t) A =(3t)[start(s) <t' < t Alli(a,s,t')] Dend(s,a) =t. (6.34)

On the other hand, axiom (6.16) defines Poss for non-concurrent natural actions. The corre-
sponding axiom for concurrent natural actions is more complex. We still want to provide necessary
and sufficient conditions for Poss to be true of some natural concurrent action. The axiom is as
follows:

natural(ay,) O Poss(ay, s) = (6.35)
(Va)[natural(a) A primitive(a) D [a € oy, = Ii(a, s, end(s, ap))]] A
—=(3d,t').natural(a’) A primitive(a’) ATi(a’,s,t') A start(s) < t' < end(s, o).

This axiom is similar to (6.16), it only adds the condition that all natural actions that may occur
concurrently must be present in «,, for it to be possible. Thus, if o, is a concurrent natural action,
and a, is possible in a situation s, then all primitive natural actions that are possible (according
to IIy) at time end(s, ;) must be in «y,. Also, no other natural action could be possible before
end(s, ay).

Also, we replace (6.17) with:

[natural(a) A Poss(a,s) A Poss(d',s) Aa € a] D end(s,a’) < end(s, ). (6.36)

Thus, given that Poss is completely characterized, it establishes conditions on the temporal rela-
tionships of possible situations. This axiom can also be read as stating that for a concurrent action
to be possible in a situation s, it must terminate s before any natural action would.

Finally, we replace (6.18) with:

natural(a) A Poss(a,s) A =(3ad') [occurs(a’,s) A end(s,a’) < end(s,a)] D occurs®(a,s). (6.37)

This axiom is a simple variation of (6.18). It states that if nothing happens before the time in
which some natural action is possible, then the natural action must occur.

As a simple example, consider the scenario of figure 6.2, but with different initial conditions.
The axiomatization is given below. We introduce the action constants ReachFEdgel, ReachEdge2
and Catchl, the parameter constants X', Y', X2, and Y?,

e >, state independent axioms:
(Va).primitive(a) = a = ReachEdgel V a = ReachEdge2 V a = Catchl, (6.38)
(Va).primitive(a) D natural(a) = a = ReachEdgel V a = ReachEdge2, (6.39)
PrecInt(Catchl, ReachEdgel). (6.40)
Thus, Catchl is the only non-natural action.

o Thos:
Poss(Catchl, s).

Thus, it is always possible to perform Catchl.
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o Tfy,:

I1;(ReachEdgel, s, t) = (Jyy) holds(X' = ys,5) A q(ye,t) = 2 A q(d(ys),t) >0,  (6.41)
II;(ReachEdge2, s, t) = (3yz) holds(X? = yz, 8) A q(ys,t) = 2 A q(d(yz),t) > 0.  (6.42)

[ J ef:
Poss(a,s) A Catchl € a A holds(X' = y,, s) A holds(Y' = y,,8) D
holds(X* = constant(q(ye, end(s,@))),do(a, s)) A
holds(Y' = constant(q(yy, end(s,))),do(a, )),
Poss(a,s) A ReachEdgel € a A (3y,) [holds(X? = yg, s) A q(d(yz), end(s,a) > 0)] D
holds(X' = constant(1), do(a, s)),
Poss(a,s) A ReachEdge2 € a A (3y,) [holds(X? = yg, s) A q(d(yz), end(s,a) > 0)] D
holds(X? = constant(1),do(a, s)).
In the last two effect axioms, the geometry of the table is implicit in the constant utilized
(i.e., using the term constant(1)).
o Ts,:
holds(Y'! = constant(0.4), Sp) A holds(Y? = constant(0.6), Sp),
holds(X* = linear(0.5,0), So) A holds(X? = linear(0.5,0), Sp).

Thus, both balls start at the same X coordinate and with the exact same motion towards the
right end of the table. Given these conditions, the balls will arrive at the right edge at the
same time, unless Catchl is performed before time 2.

e T.: None.
For this example, and given the axiomatization for concurrent natural processes, we have:
Proposition 6.2

—Poss(ReachEdgel, Sy), (6.43)
Poss(ReachEdgel + ReachEdge2,Sy), (6.44)
—Poss(ReachEdgel + ReachEdge2 + Catchl, Sp), (6.45)
end(Sp, Catchl) < 1. (6.46)

Proof: From Ty, Ts,, along with the Oracle, it follows that:

II;(ReachEdgel, Sy,t) =t =
I1;(ReachEdge2, Sy, t) =t =

From (5.5), we infer that ReachEdge2 ¢ ReachEdgel. Also, (6.34) implies that
end(Sy, ReachEdgel) = 2.

These facts, along with (6.47), (6.47) and (6.35) lead us to conclude (6.43).



84 CHAPTER 6. CONTINUITY AND NATURAL EVENTS.

From (6.32) it follows that ReachFEdgel + ReachEdge2 is a natural action. Hence, a direct
application of (6.35), leads us to conclude that (6.43) holds.

From (6.38) and (5.8), it follows that (6.43) holds as well. Conceptually, the reason for the
impossibility of executing ReachFEdgel + ReachFEdge2+Catchl is that C'atchl and ReachFEdgel are
said to have interacting preconditions (precInt), making it impossible to execute them concurrently.

Finally, (6.43) follows from (6.36) and (6.43).

O

6.5 Discussion.

In this chapter we have presented a novel approach to deal with continuity within the situation
calculus. Also, we presented an axiomatization to model natural phenomena utilizing the concept
of occurrences introduced in an earlier chapter. The greatest advantage of the approach presented
is that it builds upon a solid foundation based on the situation calculus. In particular, we make use
of Reiter’s solution to the frame problem, as well as of Lin and Reiter’s approach to the ramification
problem.

The enriched situation calculus is an attempt to provide a formal foundation for the specification
of dynamic systems with continuous variables. Also, we believe that this language can be used to
address many of the representational concerns in the area of qualitative reasoning. We have not
addressed these issues directly and they are left for future investigation.

There are a number of issues that we have not addressed and which merit some further research.
We briefly discuss some of these below.

First, an essential limitation of our approach is that the set of times at which events or actions
occur have to be discrete. Otherwise, the induction axiom for situations would be violated. Fur-
thermore, the approach presented is limited by the power of the Oracle and the expressive power of
the interaction language. It would be clearly advantageous to study the power of existing systems
for dealing with real equations and inequalities. For instance, until we properly characterize the
behavior of the Oracle, it is not possible to describe the computational properties of the task of
reasoning with continuous systems.

In particular, recall that when the Oracle is asked whether or not an expression of the type
(6.1):

R E (3x) o(x).

is true, the Oracle answers “false” or it responds with an assignment for x that makes the expression
“true”. However, in order to predict the future behavior of a dynamic system, we are interested in
obtaining an answer to the following question: given that

(3t) (t) (6.49)

is true, what is the smallest non-negative real number that satisfies (6.49)% Such a question arises
when we use axiom (6.16) to determine what is the next time that some natural action is expected
to occur. However, the query language that we have defined for the Oracle is not powerful enough
to express such a request. Given these expressive limitations, it turns out that there is no bound
in the number of queries necessary to determine when the next action may occur. This arises if
(6.49) has an infinite number of solutions over a finite interval of time.

The evaluation of the predicate Poss(a,s) for natural actions using (6.16) involves finding the
earliest time that satisfies a sentence of the form (6.49) along with evaluating some fluents in the
state s. Thus, the evaluation of Poss for a given natural action in a situation whose state is known
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takes a time proportional to the time it takes to find the earliest ¢ for which a formula of the form
(6.49) is satisfied. Furthermore, given the state of a situation, determining the next natural action
that is possible takes time that is proportional to the the number of distinct natural actions in the
domain, times the time it takes to evaluate Poss for some natural action in a known state.

On the surface, it appears that there are many problems that cannot be addressed using the
extension of the situation calculus studied here. For example, consider the problem of modeling
the bouncing of a rubber ball. If the behavior of the ball is modeled in such a way that Zeno’s
paradox arises [12], we may face a contradictory theory. In fact, if the ball bounces an infinite
number of times in a finite time interval, and if we model each bounce of the ball as a natural
event, then there will be a line of situations that contains an infinite number of situations lapsing
a finite time. Problems arise if we state that some situation exists after the ball stops bouncing.
In fact, the infinite number of bounces (each one represented as an occurrence), coupled with an
existing situation after the ball stops, is reflected in a structure of situations that is not consistent
with the induction axiom (2.1).

A possible way around the problem mentioned above, is to model the bouncing of the ball with
a single function of time and without treating the bounce as an event. Thus, we would have a real
function of time completely describing the behavior of the ball with its many bounces. Furthermore,
we would state that there is a single situation in which the ball follows the trajectory dictated by
this function. Clearly, this solution is not general. In fact, a function to describe the complete
behavior of the system may not be available. Furthermore, one of the reasons to model natural
phenomena as sequences of natural events is to avoid having to specify real functions to model the
entire behavior of the dynamic system.

Unfortunately, even if we model the behavior of the system as described above, we still need to
ensure that the axioms for natural processes do not introduce inconsistencies with the induction
axiom for situations. It seems that the only way to do this is by providing extra-logical proofs that
infinite series of natural events in finite time may not arise.

Another issue that we did not address has to do with inherent uncertainty. In fact, we stated
that we only deal with processes whose mathematical models are completely determinate. Thus, we
assumed that, given a complete specification of the initial situation, there is only one way in which
the world may evolve. As we saw before, this is reflected in the situation tree by the fact that,
in the absence of non-natural actions, all possible events line up in a single branch. This reflects
a view of the world in which there is no uncertainty. However, if we want to model situations in
which there is uncertainty with regards to which natural events may arise, we can simply allow for
more than one natural action to be possible in some situations.

There are several problems regarding continuous properties that we have not addressed. For
instance, we may want to provide a taxonomy of properties of objects that must obey certain
continuity properties. For example, we may want to state that the derivative of the function that
describes the position of an object in space must always exist, except in break points (e.g., points
in which some action abruptly modifies the behavior of the parameter). Problems of these nature
are analyzed by Sandewall [50] in the framework of another temporal logic. A problem that arises
is that we might need to introduce inter-state constraints, which we have not considered. For
example, we might want to state that for any action a and situation s, the position of an object
at the end of s must be the same as the position at the start of do(a,s). Thus, adding a more
general description of physical phenomena may require us to re-study the solution to the frame and
ramification problems in the presence of inter-state constraints.



Chapter 7

The Situation Calculus and Other
Temporal Logics.

7.1 Introduction and Motivation.

In the early chapters of this work, we presented the discrete situation calculus. This logic is based
on John McCarthy’s original work in which he proposed the language of the situation calculus as a
logical tool to write theories of action and time. Also within the framework of the situation calculus,
we discussed how to approach two outstanding problems in knowledge representation research,
namely the frame and ramification problems. Later on, we discussed how to extend this theoretical
framework to address some important problems in logical representation of knowledge about action
and time. In particular, we addressed the problem of knowledge representation with a linear
temporal structure in a framework with branching time. We studied how to extend the ontology of
actions to deal with concurrent actions, and we studied the problems of representing properties of
the world that vary continuously with time. Some of the same issues raised in this work have been
previously addressed within the framework of other temporal logics. In this chapter, we discuss
the relationship that exists between the work presented here and some alternative frameworks for
temporal reasoning. We study three different temporal logics, chosen because they represent the
most widely utilized frameworks for reasoning about action and time in Knowledge Representation.

First, we discuss the Interval Temporal Logic proposed by James Allen [2, 3]. Basically, we
discuss the issues that were the primary motivation for the development of the interval logic, and
how their treatment contrasts with the approach used in this work.

Secondly, we carefully analyze Kowalski and Sergot’s calculus of events [25], which is a theory
of time based on logic programming. We argue that this approach has certain technical flaws when
interpreted as a first order theory. Furthermore, we present a situation calculus based logic program
as an alternative to the one based on the calculus of events.

Finally, we discuss the relationship between modal temporal logics of time and our version of the
situation calculus. In particular, we show that the propositional modal temporal logic presented
in [19] can be embedded within the situation calculus. This embedding suggests that much of the
expressiveness of temporal logics of time is present in the situation calculus.

86
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7.2 Interval Temporal Logic.

In [2, 3], James Allen proposed a linear temporal logic in which the structure of time is based
on intervals. Thus, the primitive temporal element is an interval. Allen introduces a set of 13
binary relations that are possible among temporal intervals (e.g., equal, before, during, etc.). In
the Interval Temporal Logic, the structure of time is such that temporal intervals can always be
subdivided in sub-intervals, with the exception of moments. In this framework, moments are non-
zero length intervals without internal structure. Thus, aside from moments, all other intervals can
be subdivided into smaller subintervals. Allen argues that “the formal notion of a time point, which
would not be decomposable, is not useful ” [2, p. 834].

In later work, Allen and Hayes [5] argue that the difference between interval based and point
based temporal structures is motivated by “different sources for intuitions.” While the interval
temporal logic is meant to model time as used in natural language, point-based time is used in the
realm of classical physics.

Interestingly, the original situation calculus does not deal with the issue of point versus interval
based time. In fact, no commitment is made with regards to time, other than it branches. In
the extended situation calculus presented in this work, we use a point based temporal structure.
Nonetheless, the lack of commitment about temporal granularity in the original situation calculus
makes it possible to utilize an interval based model of time. However, our choice of temporal
structure is partly motivated by our desire to integrate physical models of natural phenomena with
logical theories of action based on the situation calculus. Obviously, this requires that time be
modeled as isomorphic to the non-negative real numbers. Thus, we must impose a point based
temporal structure in our logic.

Naturally, the question arises as to whether there is some loss of expressive power when choosing
one structure of time over another. In [5], Allen and Hayes show that their logic accepts models
in which the structure of time is such that intervals are modeled as ordered binary tuples of real
numbers. Unfortunately, due to the properties of the reals, moments cannot be appropriately
modeled, thus they cannot exist. Hence, if intervals are modeled as pairs of distinct real numbers,
the temporal structure would satisfy the axioms of the interval temporal logic. Of course, it is
also important to determine whether or not any temporal structure that satisfies the interval logic
axioms can be mapped into the structure of the reals. It turns out that this is not generally
the case. First, Allen and Hayes moments are incompatible with the view of intervals as ordered
pairs of real numbers. Secondly, the interval logic is first order, thus it cannot be strong enough
as required to characterize the reals. Later, in section (7.3.2), we present a characterization of
intervals within the situation calculus. Given that we use a temporal structure isomorphic to the
reals, this characterization cannot include the notion of moment as defined by Allen.

So far, our discussion has been centered on the characteristics of the structure of time in the
interval temporal logic. Another important aspect of the logic has to do with the notions of events
and actions. In [3], Allen discusses the issue of integrating a notion of event with the logic’s
temporal structure. Naturally, given the interval based structure of time of the logic, events have
duration. Therefore, event occurrences may coincide, overlap, be one after the other, etc. Most of
the work on this temporal logic concentrates on the logical specification of events, and provides a
mechanism to specify the effects that events have on the world. However, until very recently [1],
the frame problem had not been addressed. In [1], Allen and Ferguson address the frame problem
by appealing to Schubert’s explanation closure axioms. However, they do not offer, as Reiter does
[47], a general mechanism to automatically generate frame axioms. Also, they do not address the
ramification problem. Furthermore, for their approach to work, they require a complete list of the
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actions that are attempted. This way it can be concluded that nothing happens unless explicitly
stated in the axioms of the theory.

There are several areas in which the interval temporal logic is more developed than the situation
calculus. First, they offer interesting taxonomies of actions (e.g., pushbutton actions, maintenance
actions, etc.[1]). They utilize the notion of trying to perform an action, as opposed to a simple
execution of the action. Another interesting development is the study of planning algorithms within
the interval temporal logic [6]. Unfortunately, this latter work seems to lack a careful analysis of
soundness and completeness with respect to the underlying theory. It seems, however, that it would
be very beneficial to study these issues in the realm of the situation calculus.

7.3 Calculus of Events.

7.3.1 A Critique.

The calculus of events was proposed as a general temporal logic framework. It was originally
presented as a logic program [25] in which negation as failure plays an essential role. We have
found it very difficult to ascribe a semantics to the calculus of events. In this section we point out
some of the difficulties we have encountered with this proposal as a formal theory of time.

These difficulties arise from the use of equality, the use of negation as failure, and the interaction
between negation as failure and incomplete knowledge.

As Kowalski and Sergot point out, their logic has been partly inspired by the interval temporal
logic. Thus, intervals of time are an essential component of their ontology. However, the first
problem that we encountered, arises from the treatment of temporal intervals. In the event calculus,
two functions, after and before, are used to deal with time periods. Both are two-place functions
that take an action and a fluent as arguments. According to Kowalski, a term of the form after(a, f)
“names” a time period. Furthermore, according to Kowalski and Sergot [25, p.87], the sentence:

Holds(p) (7.1)

“expresses that the relationship associated with p holds for the time period p.” For example, we
can write:
Holds(after(paint(Green), colour(Green)))

that can be taken to mean that paint(Green) is an event that starts a time period in which the
fluent colour(Green) is true. Now, if p1 and p2 are two time periods which are started and ended
by the same events, then they must be different names for the same temporal interval. Otherwise,
p in (7.1) could not denote a temporal interval. As an example, consider figure 7.1, in which we
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Figure 7.1: Simple Example

have three events E1, E2 and E3 occurring at times T1, T2 and T3 respectively. Moreover, suppose
that we have four fluents: W which holds only before T1 and after T3; B which holds only between
T1 and T2; R which holds only between T2 and T3; and D which holds only between T1 and T3.
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Among others, the time period after (E1,D) holds; this is the same as the time periods (T1 — T3)
and before (E3,D). Now, from rule G3 in Kowalski and Sergot’s program [25, p.88] we know that:

start(after(e,u),e). (7.2)

Therefore, we may infer that the time period after (E1,R) is started by E1 at time T1. Now,
we can easily provide axioms that make event E2 terminate only B and nothing else. Therefore,
the interval after (E1,R) would not be terminated by E2. However, we know that E3 must ter-
minate R. Therefore, we conclude that the time period denoted by after(E1,R) is terminated by
E3. Hence, after(E1,R) is the time period (T1 — T3), which we know holds. We conclude that
Holds(after (E1,R)) must be true, which is clearly unintended.

This problem stems from the choice of ontology, and seems to be caused by the Holds predicate,
which states that time periods hold. In [24, p. 142], Kowalski suggests that for a very specific class
of problems “time periods can be eliminated altogether.” This is suggested for computational,
rather than representational reasons. However, it seems that time periods should be eliminated
from the ontology for the proposal to work.

Another problem arises from the use of negation as failure. Assume that we query a temporal
reasoner based on the calculus of events with holdsAt(F,T), i.e. we want to know whether some
fluent F holds at time T. Furthermore, assume that we obtain a negative answer. How are we to
interpret this answer? In general, we want a clear characterization of what the system’s answers
mean. In this case, there are two possible interpretations:

1. Assuming complete information about the events that have occurred, and assuming complete
knowledge about the initial conditions and the effects of events, it is the case that F does not
hold in T.

2. We have been unable to ascertain whether F holds or not because of lack of information.

It is simple to imagine examples of the first case. The second possibility arises, for example,
with case 3 in [25, p.90], where two events e and e’ are known, the first one initiates a fluent u
and the second one terminates a fluent v/, with u and v’ mutually exclusive. It turns out that
some intervening event (or events) must have occurred between e and e’ which terminates u and
initiates u’. The problem is that for any particular time point T after e and before €', the query
holdsAt(u,T) will fail. This is a problem inherent to the use of negation as failure, which is, in
this case, too strong. Similar difficulties arise with concurrent events which are not precluded by
the event calculus.

In the event calculus, problems also arise with negation as failure in the presence of incomplete
information in settings having nothing to do with incompleteness about the temporal relations
between events. The event calculus appeals to case semantics. The basic idea is that events are
treated as first order objects which may be predicated by so-called cases. For example, events may
have agents, objects, etc. An apparent advantage of case semantics is that event cases need not
always be known in order to reason about events. Unfortunately, under negation as failure, this
advantage is not always realized. For example, assume that John gave a book away, but it is not
known to whom. Negation as failure will conclude that for each individual in the universe, it is not
the case that that individual owns the book. Therefore, nobody owns the book after John gave it
to somebody.

It is well known that logic programming is inappropriate for reasoning with non-categorical
theories. In fact, the extension of the logic programming paradigm to work with such theories
is a very active area of research [15]. Therefore, it should not be surprising that the examples
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of overcommitment mentioned above arise. Our concern with the event calculus, formulated as
it is as a logic program with negation as failure, is that it provides no clear guidelines to the
programmer about when overcommitments can arise, which is to say, it does not characterize a
class of sound programs. Of course, soundness is possible only relative to some prior, universally
accepted specification of the task. In this chapter, we provide such a specification for the kinds of
temporal reasoning tasks for which the event calculus was designed. In doing so, we shall appeal
to the extension of the situation calculus, enriched with time and event occurrences, as described
in chapter 4. With this specification in hand, we shall be in a position to derive a logic program
which is sound with respect to it.

Murray Shanahan [55, 56] has extended the calculus of events in several interesting ways. How-
ever, he bases his research on an event calculus which loosely corresponds to the original calculus
of events. In fact, Shanahan’s calculus of events avoids the problems we describe in this section
by eliminating the notion of temporal interval from the logical language altogether. His departure
from the original calculus is more extreme in his later work [56] in which he does not rely on
negation-as-failure as the non-monotonic approach to deal with the frame problem. It would be
interesting to study the logic programming implementation of Shanahan’s event calculus and how
it relates to our proposal.

7.3.2 Defining an Interval Based Ontology.

The version of the situation calculus we have introduced has an ontology based on time points. On
the other hand, the calculus of events and the interval temporal logic have an ontology in which the
primitive temporal objects are intervals of time. In this section we show how the expressiveness of
the interval based language can be realized within the situation calculus. To extend the language,
we borrow the terminology used in the calculus of events (using predicate names for terminations or
initiations of intervals, etc.). Therefore, when axiomatizing a given domain, one has the freedom to
choose whatever view of time seems most appropriate for the application. However, as mentioned
earlier, the notion of an undivisible interval (i.e., a moment) cannot be modeled with our temporal
structure.

Before introducing predicates on intervals, we extend the language of the situation calculus with
two functions pred and act which identify the unique predecessor of a situation and the action that
leads to that situation. From (2.1)-(2.1) it follows that:

s# 8y D (3la,s') s = do(a,s"). (7.3)

That is, every situation, except for Sy, has a unique predecessor. Also, there is a unique action
connecting a situation different from Sy to its predecessor. Thus, we use the function pred: S — S
to name the predecessor of a situation (we leave it undefined for Sy), and the function act : § — A
to name the action that leads to the situation (also left undefined for Sp). Therefore:

s # Sp D do(act(s), pred(s)) = s. (7.4)

Now, we introduce a set of predicates aimed at capturing the essential aspects of the language of
the calculus of events. These predicates are:

e term C F x S, which is true of a situation s and fluent f if s terminates f. Thus, f is true!
from some situation prior to s up to the situation s:

term(f,s) = —holds(f,s) A [s # So D holds(f,pred(s))]. (7.5)

!We say that f is true (or false) in a situation when f holds (or does not) in that situation.




7.3. CALCULUS OF EVENTS. 91

e init C F x S, which is true of a situation s and fluent f if f was false before s and true at s:

init(f,s) = holds(f,s) A\ [s # So D —holds(f,pred(s))]. (7.6)

e broken C F x 8 x &, which is true of a pair of situations s; and so, and fluent f if 51 < s9
and the fluent f does not hold in some situation between s; and sso.

broken(f,s1,32) = (3s)(s1 < s < s2) A —holds(f, s). (7.7)

e mazimal C S x § x F, which is true of a pair of situations s; and sg, and fluent f if 51 < s9,
f holds in all situations between s; and so, f also holds in s; and f does not hold in so. The
predicate maximal is used to define the notion of a maximal interval in which some fluent

holds.

maximal(sy, so, f) = (7.8)
(s1 < s2) A —broken(f,s1,s2) A
init(f,s1) A term(f, sq).

e Finally, incompatible C F x F, which is true of two fluents if they can not hold at the same
time.

incompatible(f, f') = [holds(f, s) = —~holds(f', s)]. (7.9)

These have the following consequences:

term(f,s) As # So D (3s")mazimal(s', s, ), (7.10)
[term(f, s) A incompatible(f, f') Aterm(f',s) As < s'] D

(3 s1)mazimal(s1, s', f') A s < s1, (7.11)
[init(f, s) A incompatible(f, f') Ainit(f',s') As < s'] D

(3 so)mazimal(s, so, f') A sy < &, (7.12)
[init(f,s) Aterm(f',s") A incompatible(f, f')] D

(Ts1,82)(s < 81 < 892 < 8')A (7.13)

mazimal(s, s1, f) A mazimal(ss, s, ).

The definition of mazimal (axiom (7.8)) and theorems (7.10)-(7.10) capture the intuitions be-
hind the cases of start and end points of intervals as discussed in [25, pp. 90-93].

It is important to note that the predicates introduced in this subsection do not depend on the
definition of actual. However, by integrating the notion of an interval with the notion of an actual
time line we gain the same representational features claimed for the event calculus.

Without a precise axiomatization for the calculus of events a formal argument that our language
subsumes that of the calculus of events cannot be made. The alternative we followed in the
definitions above, is to show that, within the extended situation calculus, an interval-based ontology
can be defined analogous to that of the event calculus. In other words, we argue that the extended
situation calculus is suitable for those applications where something like the event calculus provides
the right ontology.

It is also worth noting that with the introduction of terminations and initiations (term, init
and maximal) we can use an efficient algorithm for dealing with the frame problem in the cases
in which complete information is at hand. Following Kowalski’s proposal [24, pp.138-142], we can
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define an algorithm to answer queries of the form holds(F, S), in which S is a completely determined
situation. Such an algorithm would deal with a unique sequence of actions, which is required to be
totally ordered, and the effects of each action have to be completely known. The algorithm uses
a simple table of terminations and initiations. For every action that is given in the sequence, the
algorithm keeps track of all the fluents that are affected by the action?. If a query is given with
regards to a fluent F', the algorithm looks in its data structure for the last action that affected that
fluent and answers whether the fluent holds based on the information encoded.

7.3.3 The Extended Situation Calculus and Logic Programming.

Here, we utilize the notion of actual line of situations axiomatized in chapter 4, along with the
notion of occurrences and argue that the extended situation calculus subsumes the expressivity
that is wanted for the calculus of events. We use our extended version of the situation calculus
[41] to derive a logic program for temporal reasoning. The program is based on the language we
presented in chapters 2 and 4 along with the addition of some defined predicates. These defined
predicates are added to facilitate the derivation of the logic program.

7.3.4 Basis for the Logic Program.

In this subsection we present the theorems of the situation calculus (as defined in chapters 2 and 4)
that we will use to develop the logic program presented later. First, our goal is to derive a program
to reason about which fluents hold or do not hold as a result of performing a completely specified
set of actions. Furthermore, as detailed later, we assume that this set of actions corresponds to the
set of all actions that occur. Hence, reasoning is constrained to the actual line of situations. Before
we do so, however, it is necessary to extend the language in two simple ways. First, we introduce
the definition:

holds(not(f),s) = —holds(f, s). (7.14)

Thus, for the derivation for the program, we do not use the notation holds(—f, s) as an abbreviation.
Rather, not is a new fluent function symbol. Also, we define the predicate start C S x 7 which
is introduced to replace the function symbol start for the purposes of the logic programming
implementation3. Since we are only concerned with the actual line of situations, start(s,t) is
defined for pairs (s,t) if s is an actual situation whose starting time is ¢. The predicate is defined
as follows:

start(s,t) =t = start(s) A actual(s). (7.15)

Proposition 7.1 From the basic situation calculus azioms Sp*, the azioms about the function start

(4.4)-(4-4) and the definition (7.15) it follows that:

start(s,t) A start(s,t') Dt =1,
start(s,t) A start(do(a,s),t') Dt <t
(

(

SOa O)a
start(s,t) A start(s',t') D [s < s =t <]

2The primitive fluents or their negations.

3In the axiomatization we distinguish between the predicate symbol start and the function symbol start from the
context.

“Recall that ¥, denotes the axioms (2.1)-(2.1) and (2.7)-(2.7).
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As discussed later, the information that the logic program will take as input corresponds to a set
of actions that are known to have occurred. For this reason, we need to make use of the following
propositions:

Proposition 7.2 The following can be easily established from (2.9) and (4.7):
actual(s) = s = Sy V (Ja, s').s = do(a, s') A occurs(a, s').

Furthermore, the definitions for holdst and during ((4.9) and (4.9)) can be rewritten in the fol-
lowing equivalent manner:

holds(f,t) = (3 s).during(t,s) A holds(f, s), (7.16)
during(t,s) = start(s,t1) ANt <t A
[((Fa,to).start(do(a, s),t2) Nt < t2) V (7.17)

(=(3a)actual(do(a, s)))].
We also make use of the following:

Proposition 7.3 From the definition of occurst in (4.8) and (7.15), it follows that:
occurs(a, s) = (3t).occursy(a,t) A start(do(a, s),t).

In the same manner as we introduced the defined predicate occursBet in 4.11, we introduce the
predicate occursBety(a,t1,t2)

occursBetr(a,t1,t2) = (It).t1 <t < ta A occursy(a,t). (7.18)
Proposition 7.4 From % (4.8), proposition 7.1 and (7.18), it follows that:
start(s,t) A start(do(a, s),t') D —~(3a’).occursBetr(d,t,t').
Also,
Proposition 7.5 From X, propositions 7.1-7.4 and (7.15) it follows that:
start(s,t) =
[s=SyAt=0]V

s
[(Ta,sp,tp).s = do(a, sp) A occurs(a,t) A
start(sp, tp) A =(3a’).occursBetr(d',tp,1)].

To facilitate the implementation described later, specifically, to eliminate a potential source of
non-terminating loops in the logic program corresponding to these axioms, we need:

Proposition 7.6 From %y, (4.1)-(4.1) and proposition 7.5, it follows that:

start(s,t) =
[s=SoAt=0]V
[(Ta,sp,tp).s = do(a, sp) A occurst(a,t) A
start(sp, tp) A ~(3a’).occursBetr(a',tp,t) A
tp <tA (tp =0V (Fap)occurst(ap,tp))]-
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7.3.5 A Logic Programming Implementation and a Soundness Argument.

In this section we describe a logic programming implementation of a fragment of our extended situ-
ation calculus axiomatization, and show its soundness with respect to Clark’s completion semantics
[11], under suitable circumstances. The program exhibits much of the functionality of the event
calculus, but in view of its soundness, is on firmer ground. Many of the assumptions we make in
what follows are clearly too strong, and can be relaxed; exactly how to do this will be the subject
of future research.

Problem Independent Clauses

holds(n(F),S) :- not holds(F,S).

/* If half of axiom (7.14). */
holdsT(F,T) :- during(T,S), holds(F,S).

/* If half of (7.16). */
actual(s_0). /* Part of if half of Proposition 7.2. */
actual(do(A,S)):- occurs(A,S).

/* Rest of if half of Proposition 7.2. */
occurs(A,S) :- occursT(A,T), start(do(A,S),T).

/* If half of Proposition 7.3. */

start(s_0,0). /* Part of if half of Proposition 7.6. */
start(do(A,S),T) :- occursT(A,T), /* Rest of if half x*/
(occursT(Ap,Ts) ;Ts=0), /* of Prop. 7.6 */
Ts<T,
not occursBetTp(Ts,T),
start(S,Ts).

occursBetTp(Tp,T) : - occursBetT(E,Tp,T) .

occursBetT(E,Tp,T) : - occursT(E,Tpp), Tp<Tpp, Tpp<T.
/* If half of Axiom 7.18. */

during(T,S) :- start(S,T1), /* Part of if half */
start(do(A,S),T2), /* of Axiom 7.16. x/
T1<T, T=<T2.

during(T,S):- start(S,T1), Ti<T, /* Rest of if half */
not actualAft(S)./* of 7.16. x/

actualAft(S) :- actual(do(A,S)).

Notice that, in the above, we use the if half of Proposition 7.6 instead of Proposition 7.5. This is to
eliminate a source of non-termination in the program, which the use of Proposition 7.5 would cause.
Furthermore, when translating the definition of during (7.16) and proposition 7.6 we introduce two
auxiliary predicates occursBetTp and actualAft. These predicates are used to properly translate
a subformula of the type —=(3a)p(a) into a literal.

Problem Specific Clauses

Initial State: We assume that the specification of the initial state consists of a sentence of the
form:

hOldS(f,S())Ef:Flv...\/f:Fk.

In other words, we assume complete initial information about the holds predicate. The if half of
such a specification yields the corresponding logic programming clauses:

holds(f1,s_0). holds(f2,s_0). ... holds(fk,s_0).
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Event Occurrences: We assume that the specification of event occurrences consists of a sentence
of the form:
occurst(e,t) =le=E1Nt=Ti|V...V[e=E, Nt =Tp).

In other words, we assume complete information about the occursy predicate. The if half of such
a specification yields the corresponding logic programming clauses:

occursT(el,t1). occursT(e2,t2). ..., occursT(ep,tp).

Notice that there are two possible ways to interpret a declaration that at time 7" an event E has
occurred:

1. The assertion occursy(E,T) is an implicit assertion that, in addition, Poss(E,S) is true,
where S is the state which includes time 7' (see axiom (4.1)). This perspective is problematic
in the logic programming setting (see Kowalski [25] for an example).

2. The preconditions of the event E are known to be true at time T'. In this case, event precondi-
tions are being treated as integrity constraints; before an assertion of the form occursy(E,T)
can be accepted by the database, the precondition (integrity constraint) Poss(FE,S) must
be proved true, where S is the state which includes time 7'. If the precondition is false (or
unknown), the update occursy(E,T) is rejected.

In this paper, we adopt the latter interpretation. This allows us to assume that all event precon-

ditions are identically true, i.e.
Poss(a, s) = true. (7.19)

Of course, this makes sense only when integrity constraint enforcement has been incorporated into
the temporal database, and is invoked whenever event occurrences are declared to the database.
We do not further discuss integrity maintenance in this paper.

Successor State Axioms: As discussed in section 2.2, these are sentences of the following form,
one for each fluent F:
Poss(a, s) D holds(F,do(a,s)) = ®r(a,s).

In view of our assumption about integrity maintenance (axiom (7.19)), successor state axioms
will have the particularly simple form:

holds(F,do(a,s)) = ®r(a,s).
For example, the following is a successor state axiom for the fluent rank in an education database:

holds(rank(z,y),do(e, s)) =
[(3z)e = promote(z, z,y) V e = hire(z,y) V
—[(3z)e = promote(z,y,z) V e = leave(z,y)] A holds(rank(z,y), s)]].

This has, as its if half, the logic programming clauses:

holds(rank(X,Y),do(E,S)):- E = hire(X,Y) ; E = promote(X,Yp,Y).
holds(rank(X,Y),do(E,S)) :- not E=promote(X,Y,Z),
not E=leave(X,Y), holds(rank(X,Y),S).

We shall assume that all logic programming clauses corresponding to successor state axioms are
if halves of such axioms.
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An Example.

As an example, in figure 7.2 we show a set of problem specific clauses to implement Kowalski and
Sergot’s promotion example. Of course, these clauses are in addition to the problem independent
clauses of Section 7.3.5 above.

holds(rank(X,Y),do(E,S)):- E = hire(X,Y) ; E = promote(X,Yp,Y).

holds(rank(X,Y) ,do(E,S)):- not E=promote(X,Y,Z), not E=leave(X,Y),
holds (rank(X,Y),S).

occursT(promote (mary,lecturer,assisProf),1).

occursT(promote (john,lecturer,assisProf),2).

occursT(leave (john,assisProf),3).

holds(rank(mary,lecturer),s_0).

holds(rank(john,lecturer),s_0).

Figure 7.2: The Promotion Example

7.3.6 A Soundness Argument.

We are now in a position to argue the soundness of the above description of a logic programming
implementation for temporal reasoning. Soundness will be with respect to the Clark completion
semantics of the program.

1. iff: All the program clauses are if halves of corresponding iff axioms in our extended situation
calculus.

2. Equality Theory: Unique names for states holds (immediate consequence of proposition
2.1), as they do for events (section 2.2). We assume they hold for all other domain functions,
for example, that AssisProf # AssocProf, etc. In other words, the axioms satisfy Clark’s
equality theory.

3. The Frame Problem: Our specification of a solution to the frame problem had two compo-
nents (section 4.3): successor state persistence and the assumption of no intervening events.
The former is handled by successor state axioms, which we have already incorporated into our
axiomatization. The latter involves minimizing event occurrences. It is easy to see that under
the assumption about event occurrences of Section 7.3.5, the models of the theory are all
already minimal with respect to the action occurrences. So the axioms satisfy the assumption
of no intervening events. It follows that the axioms satisfy our specification of a solution to
the frame problem.

The axioms satisfy all the conditions of the Clark completion semantics of the program. We
conclude that the program is sound with respect to Clark’s semantics.

7.3.7 Completeness.

An important assumption that has to be made when working with logic programs is that we work
with a Herbrand universe. Thus, we work with interpretations in which the objects that exist are
all and only the ones that have names.
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Proposition 7.7 Given the aziomatization of the situation calculus given in chapters 2 and 4,
along with the extensions introduced in this section, it follows that the above logic program is com-
plete for ground queries of the form holdsT(f,t), where £ is some fluent constant and t is a
numeric constant representing a time point.

The proof of this proposition is in the appendix. This proof is inductive and shows the completeness
of the program relative to the ground literals of the program. An alternative is to appeal to a more
general result due to Apt and Bezem [7]. It can be proven that the logic program presented in this
section falls in the category of acyclic logic programs defined by Apt and Bezem [7]. Acyclic logic
programs are defined in the following manner: Let P be a program and M be a mapping from the
elements of the Herbrand Base of the program to the natural numbers. A mapping M for program
P is acyclic if for any ground instance of a clause in P of the form:

A:—L1,...,Ln.

M is such that M(A)) > M(L;) (1 <i<n)and M(A) = M(—A). A logic program is acyclic if and
only if it has an acycling mapping.

It is not difficult to find an acyclic mapping for our program. We find such a mapping in
the following way: First, we map all ground unit clauses to 0 (this includes all occursT literals
along with the literals that specify the initial situation). All occursBetT literals are mapped to 1,
occursBetTp literals are mapped to 2. All other literals in the Herbrand Base name a situation
term. We build a mapping for these literals that increases monotonically with the length of the
situation term (measured by the nesting of the do term). Thus:

M (holds(f4,do(a;,do(az, s0)))) > M (holds(fy,do(as,so))).

Mappings for the other literals can be trivially found in a similar fashion.

As shown by Apt and Bezem, acyclic programs enjoy many interesting properties. Of particular
relevance to us are: Firstly, acyclic programs are guaranteed to terminate for a wide class of goals.
In particular, ground queries of the sort we mention in proposition 7.7 belong to this class. Secondly,
if we add a domain closure axiom, the resulting theory is complete and decidable with respect to
a class of formulas that includes the ground queries of proposition 7.7.

Thus, the fact that our program is acyclic provides a stronger foundation to our approach to
temporal reasoning in logic programming.

7.4 The Situation Calculus and Modal Temporal Logics.

In this section, we show how the modal temporal logic of concurrency [19] can be embedded in the
situation calculus. This embedding shows that this modal logic is strictly less expressive than the
extended situation calculus we propose in chapter 4. Of particular interest is the fact that none of
the modal logics of which we are aware give first class status to events and their occurrences, which
is a major asset of the situation calculus.

In [38], McCarthy and Hayes argue, without proof, that the expressive power of modal logics
can be gained without the use of modalities using an ordinary truth-functional logic. The proposal
is to identify each “possible world” with a situation in a situation calculus language. In this section
we lend support to this intuition by showing how one particular such logic — the Temporal Logic
of Concurrency — can be embedded in the extended situation calculus.



98 CHAPTER 7. THE SITUATION CALCULUS AND OTHER TEMPORAL LOGICS.

7.4.1 The Temporal Logic.

The Temporal Logic of Concurrency (TL for short) [19] is a propositional modal logic, in which
the “possible worlds” are temporally ordered states. TL formulas are defined in terms of atomic
propositions by the following BNF expression:

Au=f|-A|A—>A|0OA| QA| AU A.

Informally, the meanings of the sub-expressions are as follows: f represents an elementary proposi-
tion that is true now; OA means A is true from now on. ()A means, true at the next state. AU B
means A is true until B is true; from then on, A is unrestricted. The formula —0O-A4 is abbreviated
as ©A% A model M of a TL theory is a structure (S,0,V), in which § is an enumerable set of
states, o is a surjective function from the non-negative integers to S (o; denotes the state resulting
from applying o to the non-negative integer i). The sequence 0y ...0; ... represents a temporally
ordered sequence of states. V is a function from the atomic formulas or propositions to a subset of
states in which the atomic formulas are true. M |=; A means that A is true in the state o;; M = A
means that A is true in every state. For a complete definition of the |=; relation see [19, p.72].

Axiom Schemata of TL:

O0(A — B) —» (DA — OB),

O(A = B) = (OA = OB),

O-4e-04,

0A — AN QOA,

04— QA) - (A— TA4), (7.20)
AU B — OB,

AUB <+ BV(ANO(AU B)).

TL also includes all tautologies.
Notice that (7.20) is an induction axiom.

Rules of Inference of TL:
e Detachment: from A and A — B infer B.

e Necessitation: from A infer OA and OA.

7.4.2 The Embedding.

It is important to observe that even though the logic just presented is called a temporal logic of
concurrency, it does not provide a mechanism for dealing with true concurrency. In fact, in this
setting, concurrency means that there might be multiple agents co-existing but it is not possible
for them to execute actions in a concurrent manner (i.e., simultaneously). Therefore, we do not
need true concurrent actions to embed TL in the situation calculus.

In order to perform the embedding, we give a translation of T'L formulas to the situation calculus,
and also provide a correspondence between the notions of =; and |= in 7L and entailment in our

5The other usual logical connectives (V, A, <) are defined in terms of negation (—) and implication (—) in the
standard way.
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version of the situation calculus that includes the notion of an actual line of situations (chapter 4).
Since TL takes time to be linear, we draw a correspondence between the states o; and the states
of the actual line. Furthermore, in what follows, all our axioms refer to actual states.

Syntactic Characterization. FEach atomic formula in TL is characterized by a constant of sort
fluent (F). Let A be an arbitrary formula in T'L. Its translation into the situation calculus is:

(V s).actual(s) D holds(A, s).
where holds(A, s) abbreviates a situation calculus formula defined as follows®:

holds(=A, s) = —=holds(A, s)

holds(A1 — A9, s) = holds(A1,s) D holds(As, s)

holds(OA,s) = (Vs').s' > s Aactual(s') D holds(A, s")

holds(QA, s) = (VY a).actual(do(a, s)) D holds(A, do(a, s))

holds(A1 U Ag,s) = (35').s' > s A actual (s') A holds(Aa,s") A
(Vs") [s < s" < 8" D holds(Ay,s")]

It is trivial to show that the abbreviation for holds(—O-A,s) is equivalent to the intuitively
correct expression:
(3s').s" > s Aactual(s") A holds(A, s').

Semantic Concerns. Models in TL are structures in which the function o defines an infinite
sequence of states. The intuition behind this sequence is that the world passes through each state
in this sequence in the order prescribed by it. In order to ensure that our models contain an infinite
sequence of actual situations, we need to add the following axiom:

(V s).actual(s) D (Fa).actual(do(a, s)).- (7.21)

This axiom says that every actual situation must have a next actual situation, which, given axiom
(4.1), is unique.

We must show that the translation of each instance of an axiom schema of TL is entailed by
our enriched situation calculus.

Proposition 7.8 If A is an instance of an axiom schema of TL, then
Y = (Vs).actual(s) D holds(A, s),

where 3 is the set of situation calculus azioms (2.1),(2.1),(2.1), (4.1), (4.1) and (7.21).

For most TL schemata, the proof is straightforward, but somewhat tedious. Perhaps, the most
interesting proof is that of the TL induction schema (7.20) which, not surprisingly, requires the use
of our situation calculus induction axiom (2.1).

Also:

5The translation of formulas involving the defined logical connectives (V, A, <) is straightforward.
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Proposition 7.9 The necessitation rules for O and () are sound, since it is trivial to show that if
¥ includes the situation calculus azioms (2.1),(2.1),(2.1), (4.1), (4.1) and (7.21):

Y = (Vs).actual(s) D holds(A,s) = X = (Vs).actual(s) D holds(OA, s),
as well as:
Y = (Vs).actual(s) D holds(A,s) = X | (Vs).actual(s) D holds(QOA, s).

Furthermore, let ®7; be an arbitrary set of TL sentences, and let ¢ be a sentence of TL. If @,
corresponds to the translation of &7 to the situation calculus, then it is not difficult to see that
O7r = ¢ iff DU, = (Vs).actual(s) D holds(p, s).

Finally, it is also the case that @7y, |=; ¢ iff:

YUPs = (Vay,...,ai).actual(do([a1, . .. ,a;],So)) D holds(p,do([ai,...,ai],So)), (7.22)
where do([a1, - .. ,a;],Sp), denotes the situation term:
do(a;,do(ai—1,...do(a1,Sp) ...)).

Since, by axiom (4.1), for any 7 there exists a unique sequence [a1,...,a;] of actions such that
do([a1,...,a;],So) is actual, we can write (7.22) as:

YU P = Jaq,...,ai).actual(do([a1, - - - ,a;], So)) A holds(¢p, do([a1, .. . ,a;],Sp)).

We conclude that every entailment of a TL theory is an entailment of its situation calculus
translation.
In summary:

Theorem 7.4.1 The extended situation calculus subsumes the temporal logic of concurrency.

7.4.3 Further Comments.

We have embedded the modal logic T'L in the situation calculus. The question arises: Is it possible
to realize this embedding without appealing to the extended situation calculus? The answer is yes.
However, the resulting language is greatly impoverished. To see why, consider the axiom schema:

O-4<-04,

which ensures that () acts as a functional operator, i.e., every state has exactly one successor. We
achieved this by mapping TL states to the extended situation calculus’ actual situations, which
also have a unique successor situation in the actual line. This can also be realized in the standard
situation calculus by allowing only one action. In this way, every situation would have exactly one
successor. The problem with this solution is that it gives up the ability to talk about arbitrary
actions. If only one action exists (whose only purpose is to produce a state change), then we lose
the ability to represent different actions and their effects.

With our approach, on the other hand, not only can we gain the same expressiveness of the
TL modal logic, but we retain the basic features of the original situation calculus, plus the ability
to talk about event occurrences. The only limitation introduced is that axiom (7.21) prevents us
from expressing deadlock situations, i.e., situations in which no actions are possible. This is not a
serious limitation since we can achieve the effect of a deadlock by introducing a Wait action with
no effects.

"®71, |= ¢ means that ¢ is true in all the states in all models of ®rr,



Chapter 8

Summary and Future Work.

8.1

Summary.

The main objective of this thesis is to design a logical language to represent knowledge about
dynamic domains. We chose to use the situation calculus as the basic logical language. This choice
is partly motivated by the expressive power of the language. However, a stronger motivation is
the availability of solutions to the frame problem within the framework. Also, we benefited from
the work of Lin and Reiter to approach the ramification problem within the situation calculus. As
emphasized in this thesis, an important contribution of our work has been to extend the situation
calculus language to deal with a wide variety of representational aspects of dynamic worlds. The
contribution of our work to the problem of representing knowledge about dynamic worlds can be
summarized as:

8.2

Extend Lin and Reiter’s work on the ramification problem by providing mechanisms to deal
with theories of action that include binary state constraints and/or stratified definitions.

Provide an approach to represent determinate knowledge about the future within the situation
calculus.

Extend the situation calculus to deal with concurrent actions. This problem is addressed
by separating the problem into a precondition interaction problem and an effect interaction
problem.

Present an enriched ontology of the situation calculus that allows the representation of knowl-
edge about continuous properties of the world.

Show that the situation calculus provides a better logical foundation for reasoning about
actions and time than other popular temporal logics.

Future Work.

The work reported in this thesis can be extended in many ways. Extensions are of two kinds.
First, we can enrich the language in order to deal with a wider variety of representational issues.

In particular:

Multiple Agents: In this thesis we have presented an approach that permits one to express
occurrences of external events. Also, we extended the discrete situation calculus to allow
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for concurrency. With these new elements, it should not be difficult to explicitly introduce
the notion of agent. Thus, we would probably introduce a new sort for agents, with actions
indexed by the agent that performs the action.

Complex Events and Concurrency: The work on concurrency that we presented in this thesis
deals with concurrent execution of primitive actions. We have not addressed the problem of
representing concurrency of complex events. Dealing with this problem is also essential for
settings in which there are multiple agents, each of which may be performing complex actions.

Complex Actions as First Class Citizens: In CR’s approach to complex actions that we dis-
cussed in chapter 5, these are treated as abbreviations. Thus, complex actions are not objects
in the language. This choice limits the representational capabilities of the language. Treat-
ing complex actions as objects in the language would allow to write general properties about
them.

Relationship to other approaches. As discussed in section 3.1, our approach to solve the frame
problem in the presence of binary state constraints is related to Vladimir Lifschitz’s approach
[28]. We are interested in establishing a formal relationship between both approaches.

Also, we are interested in establishing a relationship between Shanahan’s work on the represen-
tation of continuous change in the circumscriptive event calculus and our approach presented
in chapter 6.

The second kind of extensions of this research deals with possible applications. For example:

Specification of Dynamic Processes. The ability to deal with continuous change allows us
to represent physical processes that are commonly encountered in industry. Thus, with the
extended situation calculus described in this thesis, we provide a tool to specify these processes
utilizing what is commonly called a hybrid representational mechanism. Thus, all the processes
that can be modeled using standard mathematical models can be integrated with the models of
actions and effects of the discrete situation calculus. The extensions to the situation calculus
presented in chapters 4, 5 and 6 provide the foundations for such applications.

Planning with External Events. The planning approaches built around the situation calculus
normally consider single agent worlds in which all actions are the responsibility of the single
agent. Thus, we can investigate the extension of this planning research to problems in which
there are external events which may be the result of other agents present in the world, the
effects of nature, or simply delayed effects resulting from actions performed by the same agent.

Logic Programming Implementation. We would like to extend the logic program presented in
chapter 7 to deal with a wider variety of problems. For example, it should not be difficult to
extend the program to handle concurrent events and continuous change.
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Proofs.

Proposition 2.1.

(Vs). Sy < s. (A.1)

Let ¢(s) =[Sy < s]. Clearly ¢(Sp) is identically true. Furthermore, from (2.1) it follows that
So < 8D 8y < do(a,s). Therefore, the antecedent of (2.1) is true for our choice of ¢. Hence,
(A.1) follows.

(Va,s).—s <s. (A.2)
By contradiction using (2.1) with s; = s9 = s.
(Vs) ~s < Sp. (A.3)
This is easily proven by using (2.9), (2.1) and (2.9).
(Vs).s # Sy D (Fa,s').s = do(a, s'). (A4)
Let ¢(s) = [s # So D (Fa,s").s = do(a,s")]. ©(Sp) holds trivially. Since p(do(a,s)) is

identically true, (Va,s).p(s) D ¢(do(a,s)) follows. Therefore (Vs).¢(s) holds, thus (2.9)
holds as well.

(V31,$2, 83). 81 < 82N 8s2 <83 D 81 < 83. (A5)
Again, we use our induction axiom for situations. Let

©(s) = (Vs1,82).81 <82 As2 < 8D s <s.

©(Sp) holds trivially (so < Sp is identically false). We have to show that ¢(s) D ¢(do(a, s)).
In fact, From (2.1), it follows that s; < s D s1 < do(a, s). Therefore:

o(s) D (Vs1,82) [s1 < s2/As2< 8D s <doa,s)]. (A.6)
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Now, from (2.1) and (A.2) it follows that:
s9 < do(a,8) Nsa # s =s2 < s.
Which allows to rewrite (A.6) as:
©(s) D (Vs1,s2) [s1 < s2 A sy <do(a,s) Asg#sD s <do(a,s)]. (A7)

From (2.1):
(V 51, 82).51 < 82 D s1 < do(a, s2).

Thus:
(Vs1,82).81 < 82 A sg < doa,s) Nsy=sD s <dofa,s).

Therefore, we can conclude that:
©(s) D (Vs1,82) [s1 < s2A 82 < do(a,s) D sy < do(a,s)]. (A.8)

In other words ¢(s) D ¢(do(a,s)), Finally, we conclude that (A.5) is a consequence of the
axioms.

(Va,s).s < do(a, s). (A.9)
Trivially follows from (2.1).
do(a1,s1) < do(ag, s2) D s1 < sa. (A.10)
Assume:
do(ay,s1) < do(ag, s2).
From (2.1):

do(ay,s1) < s9.

From (A.9) s; < do(a, s1), which along with (A.5) leads to:

s1 < S9.
So that (A.10) holds.
(Va,s,s').do(a,s) <s Ds<s. (A.11)
Follows trivially from (2.9) and (2.9).
(Va,s1,s2).do(a, s1) = do(a, s2) D s1 = so. (A.12)

This can be shown by contradiction. Let’s extend the language with new constants A, Sy,
and Sy such that:
dO(A, Sl) = dO(A, SQ) A Sl 75 SQ.

Obviously, S1 < do(A, S1), since do(A, S1) = do(A, S2), we get S1 < do(A,S2). From (2.1),
we obtain S; < Sy; since S; # S, we get S1 < S3. By symmetry, we also obtain Sy < Sy,
which contradicts (2.1). Therefore, (A.12) follows.
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(Va,s,s')=(s < s’ <do(a,s)),

follows directly from (2.1), (2.1) and (2.9).

(V 31,82).81 < 89 D 81 < 89. (A13)

This is shown by induction, using;:
o(s) = (Vs1) s1 <sD s <s.
Proposition 2.2. This proposition establishes that from axioms (2.1-2.1) and (2.20) it follows
that:

s1 < 82 A holds(f,s1) A —holds(f,s2) D
(Is,a) (s1 < do(a,s) < s3) Aab(f,a,s). (A.14)

The proof is by contradiction. We extend the language with new constants Sy, S2, and F, such
that:

S1 < Sy A hOldS(F, 51), (A.15)
—holds(F, S2), (A.16)

and:
(Vs,a) (S1 < do(a,s) < S2) D —ab(F,a,s). (A.17)

We will show that (A.15) and (A.17) contradict (A.15). The contradiction arises by applying
the law of inertia (2.20) and the induction axiom (2.1) with:

p(s) = (S1 < s < 83) D holds(F,s).

©(Sp) is immediately true, since (S1 < Sp < S2) D Sp = S1 and we assumed that holds(F, S1). We
now prove that ¢(s) D ¢(do(a, s)). We do this by cases:

e Here we prove that:
(Va,s) (51 < s < 52) Ap(s) D p(do(a, s)).

Assume that S is an arbitrary situation such that —(S; < § < S3). If S; < do(a,S) < S5 is
false, then trivially ¢(do(a, S)) is true. Now, if S1 < do(a, S) < Sy is true, then do(a, S) = Si,
otherwise (57 < S < S3) would hold. Since —ab(F, a,S1) follows from (A.17), we infer, using
the law of inertia, that holds(F,do(a,S)). Hence, ¢(do(a, s)) also holds in this case.

e Now we prove that:
(Va,s)(S1 <s<82) Ap(s) D p(do(a,s)).

Assume that S is an arbitrary situation such that (S; < S < S3) A ¢(S) is true. Obviously
holds(F, S) follows; this along with (A.17) ensures that ¢(do(a, S)) must also be true. (Notice
that if (Sl <S§5< SQ) D do(a,S) #* Sl).

Therefore, it follows that (Va,s)p(s) D ¢(do(a,s)). So, applying (2.1) we infer that (A.15) is
contradicted. Hence, the proposition must be true.
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Proposition 3.1. As mentioned in the text of the proposition, we show this by utilizing induction.
Thus, we assume that T.,(Sp) is true and use the induction axiom (2.1) with:

@(s) = 8o X 5D Tscy(5)-

Obviously, ¢(Sy) is true, given that we are assuming that T.,(Sp) is true. Hence, we need to show
that:

¢(s) O p(do(a, s)).

Which can be rewritten as:
(So = 8 D Tsey(8)) D (So X doa, s) D Tse,(do(a, s)))- (A.18)

We know that =Sy < s D =Sy <X do(a,s). If Sy < s is false, then (A.18) is trivially true. If
So =X s is true, then (A.18) translates to:

So X 8 A Tse,(s) A So = do(a, s) D Ty, (do(a, s)).
This is proven by contradiction. Thus, assume that:
So X 8 A Tse,(s) NSy = doa, s) N ~Tse,(do(a, s)).

If =Ty, (do(a, s)) holds, then there must be a state constraint in Ty, that is not satisfied. Thus,
let

a(s) = p(x,) D holds(f1(x1),s) V holds(f2(x2), s),

be an arbitrary such a constraint!. Since p(x,) is state independent, it follows that:
a(s) A —afdo(a, s)) D —p(x;).
Thus, it also follows that:

holds(f1(x1),s) V holds(fa(x2), s), (A.19)
=(holds(f1(x1),do(a,s)) V holds(fa2(x2), do(a, s))). (A.20)

Notice that the only way for this situation to arise is that the set 77 f contain effect axioms like:

Poss(a,s) Ay, (a,s) D —holds(fi(x1),do(a, s)), (A.21)
Poss(a,s) Avp,(a,s) D —holds(fa(x2),do(a, s)). (A.22)
Each of these effect axioms either belong to the original set of effect axioms T¢f or are a consequence

of Tse, UTes. In either case it follows that the original theory ¥, is inconsistent. Thus, the result
follows.

Theorem 3.1.1. This theorem is an immediate consequence of theorem 2.3.1 and proposition
3.1.

'Notice that the argument that follows works whether or not the holds literals are positive (as in this case) or
negative.
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Proposition 3.3.

a

1. To prove this result we show that there is a polynomial upper bound to the time it takes to

generate and evaluate the successor state axioms for each fluent constant in the language. Let
nes be the number of successor state axioms in 4. Let n; be the number of fluents in the
domain. To obtain the successor state axioms we do the following:

e Given T, and T,; we generate a set 7T, f of new effect axioms. Each element in 7T, f is
obtained from an axiom in Tpy and one of the state constraints. Independently of the
structure of the state constraints. At most ny —1 new effect axioms will be generated for
each of the n.s effect axioms in T,¢. Thus the size of Tey U T 7 has an upper bound of
nes X ny. Obviously, the set T 7 can be generated in a time polynomial in n.f, ny and
Nge-

e The derivation of the successor state axioms is done in time proportional to 7y X (nes +
ne;), where n,, corresponds to the size of Ty .

e The length of any successor state axiom is bounded by n.; + n;f times the size of the
longest effect axiom (which is constant).

e Finally, determining the state of do™(a,s) can be done by simple evaluation of each
successor state axiom in time proportional to the length of the successor state axioms.

. This is proven by reducing the 3-colouring of a graph problem to a problem of reasoning

about actions in the presence of ternary constraints®. In fact, for each node i in the graph we
introduce three fluents Red;, Green; and Blue;, along with the ternary constraint:

holds(Red;, s) V holds(Green;, s) V holds(Blue;, s).
If 7 and k are neighbouring nodes in the graph we also add the three constraints:
holds(Dummy, s) V —holds(Redj, s) V —holds(Redy, ),

holds(Dummy, s) V —holds(Green;, s) V =holds(Greeny, s),
holds(Dummy, s) V —holds(Bluej, s) V ~holds(Bluey, s).

Ts, contains holds(Dummy, Sy) along with:

holds(Red;, So) N holds(Green;, Sp) A holds(Blue;, Sp)

for every node i. A single action Colour is used with the effect axiom:

Poss(Colour, s) D —holds(Dummy, do(Colour, s)).

Obviously, the initial situation is such that the fluent associated to the colour of every node
is determined (every node has all colours). Now, after action Colour is performed, we need
to find a colouring scheme that satisfies the constraint that neighbours cannot share a colour.
In this colouring scheme a node may end up with more than one colour, but we could easily
add binary constraints to eliminate this possibility. In any event, determining the colour of
all nodes after C'olour is performed amounts to solving the 3-colouring of a graph problem.
Hence, the result follows.

2We are grateful to Bart Selman for suggesting this reduction (personal communication).
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Proposition 4.1. This proposition is proved by appealing to the induction axiom (2.1). The first
part of the proposition follows by taking:

w(s) = (Vs').s' < s D [actual(s) D actual(s')],
and the second one, by taking
o(s) = (Vs').actual(s) Aactual(s') Ds<s' Vs <sVs=s.
Straightforward manipulation leads to:
(Va,s).o(s) D ¢(do(a,s)).

Which directly implies the results.

Proposition 4.2. It follows by using the induction axiom (2.1) with:

o(s) = (Vs').s' < s D start(s’) < start(s).

Propositions 4.3 and 4.4. Both follow directly from the definitions of holdsy, during and
occursBet.

Proposition 4.5. Let Os; and O; denote the left and right side of the equivalence. First we show
that 05 D) Ot:
From proposition 4.2 and using a simple induction on the length of O, it follows that:

Oc(81,.--,8n) D Oc(start(s1), ..., start(sy))- (A.23)

In which the ordering < in the left side refers to the order relation between situations, and the <
on the right side refers to the order relation between the reals.
From (2.9), (4.7) and propositions 4.1 and 4.2 it follows that:

81 < s2 A occurs(ar, s1) A occurs(ag, s2) D do(a1, s1) < do(ag, s2). (A.24)
Thus, from (A.24) and a simple induction on the length of O. we obtain:
Os D O« (do(A1,S1),...,do(An, Sy)). (A.25)
From (A.23), (A.25) and (4.8) we obtain:

(3s1,--.,8n).Joccurs(Ai,s1) A ... Noccurs(An, sn) N O<(S1,...,5n)
D)
occurst(Ay, start(do(A1,s1))) A ... Aoccursy(Any, start(do(A1, s,))) A
O« (start(do(A1,s1)), ..., start(do(A1, s,)))]-

Thus, the we have proven that O; D Oy.
Now we show that O; D O,:
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From (4.8) we obtain:

(Ft1,...,tn).0ccursy(Ar,t1) A ... Aoccursy(An,tn) N Oc(t1,... tn) (A.26)
D
(Is1,-..,8n)-0ccurs(Ai,s1) A ... Noccurs(Ap, sp) A
O«(start(do(A1,51)),- .., start(do(A1, sp)))-

From (2.9) and propositions 4.1 and 4.2 it follows that:
start(do(a1, s1)) < start(do(az, s2)) A actual(do(ai, s1)) A actual(do(ag, $2)) D s1 < s2.  (A.27)

From (A.26) and (A.27) it immediately follows that O; D O;.
a

Proposition 7.1. The proof is direct from the axioms mentioned in the text of the proposition.

Proposition 7.2. From (2.9) it follows that:

actual(s) = s = Sy A actual(Sy) V (3a, s').s = do(a, s') A actual(do(a, s')).
From (4.1) and (4.7) it follows that:

actual(s) = s = Sy A actual(Sy) V (3a, s').s = do(a, s') A actual(do(a, s')).

a

Proposition 7.3. Simply replace occursy by its definition.

Proposition 7.4. From (2.9) and (4.11) it follows that:
—=(3a")occursBet(d', s,do(a, s)).
From here it is trivial to show that:
—=(3a")occursBetr(d', start(s), start(do(a, s))).

which leads us to the result.

Proposition 7.5. By equivalence preserving transformations using (2.9), (4.11), propositions 7.1
and 7.3 we obtain:

start(s,t) =s=SyAt=0V
(3 a,s')s = do(a, s') A occursy(a,t) A start(do(a, s'),t).

using the fact that:
—(3a)occursBety(a', start(s), start(do(a, s))).

the result follows.
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Proposition 7.7. First, observe that we require that occursT(A,T) be complete. Thus, we
know all the actions that occur along with their times of occurrence. Therefore, it follows that
the predicate occursBetT(E,Tp,T) is also completely determined as long as Tp and T are ground
terms. Therefore, occursBetTp is also complete for ground Tp and T.

Now, we show that start(S,T) is complete. Thus, we show that if the query start(S,T) is
given to the program, then every pair of ground literals (S,T) that satisfies the query is returned
by the program as an answer. We do so by induction:

e The initial step is trivial given that the pair s_0,0 is returned by the first start clause.

e Induction hypothesis. Assume that if a situation S starts at time T then the program returns
the ground literals S,T, as answer to the original query.

e Induction step. We need to show that the program will also return pair do(A,S),T when
start(do(A,S),T) is true. Notice that the first three literals on the right side of the second
start clause completely enumerate all the pairs A, T such that action A occurs at time T. After
these three literals have been proven true, the terms A, T, and Ts are instantiated and that
Ts<T holds. The next literal not occursBetTp(Ts,T), succeeds if Ts corresponds to the time
in which the situation S started. Thus, start (S,Ts) must succeed according to the induction
hypothesis.

Finally, the completeness of occurs follows directly from the completeness of start and
occursT. Thus, it follows that actual and during are also complete. Hence, it remains to be
shown that holdsT is indeed complete. This follows if holds is shown to be complete. Now,
holds is a domain specific predicate which is specified by a set of effect axioms as specified
earlier. It is simple to see that holds is complete from the assumptions made about the
program. In fact, we assume that holds(F,S) is complete determined when § is instantiated
with s_0, and that holds(F,do(A,S)) is completely given from the state of S and the effect
axioms. A simple induction argument yields the completeness of holds.

Proposition 7.8. We have to prove that:
Y = (Vs).actual(s) D holds(A, s), (A.28)

where A is replaced by each instance of an axiom schema of T'L. For this proof, we will prove the
right hand side of (A.28) making this assumption.

e A=0(A - B) —» (DA — OB). We have to show that:
(Vs).holds(O(A — B),s) D (holds(OA, s) D holds(OB,s)).
This is done by manipulating holds(O(A — B), s) and using the fact that:
(V%) (p(z) > a(@))] > [(Va) ple) > (V2) q(a)].

e A=A — B) - (OA — OB). Showing that this is true involves exactly the same steps as
the proof above, except that instead of quantifying over situations we quantify over actions.
e A=A+ - A. So, we need to show that:
actual(s) D [[(V a).actual(do(a, s)) D —holds(A,do(a, s))] = (A.29)
[~(Ya).actual(do(a, s)) D holds(A,do(a, s))]].
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For this proof we use the fact that every actual situation has exactly one successor actual
situation. This is so, since axiom (7.21) requires that each actual situation have at least one
successor actual situation; and axiom (4.1), says that every actual situation must have at most
one successor actual situation. With this observation, the proof from left to right is immediate,
since the only possibility for this not to hold is to have no action a with actual(do(a, s)) true.
From right to left is also very simple. In fact, the right hand side is equivalent to:

(Ja).actual(do(a, s)) A —holds(A, do(a, s)).
Since the a that exists is unique, then it is obvious that this implies:

(Va).actual(do(a, s)) D —holds(A,do(a, s)).

A=0A — AANQOA. Given that s is actual, we have to prove that:
holds(0A, s) D holds(A, s) A holds(OOA, s).
Now, holds(OA, s) abbreviates:
(Vs').(s" > s) Aactual(s') D holds(4,s'),
which is equivalent to:
holds(A,s) A (Vs').(s' > s) A actual(s") D holds(A,s').

Now, if s is actual, we know that there is a unique action a; such that do(as, s) is actual. It
is easy to show, using trichotomy for actual situations and axiom (2.1), that do(as,s) < &
follows. Therefore, the previous expression implies that:

holds(A, s) A [actual(do(as, s)) D (Vs').(s' > do(as, s)) A actual(s') D holds(A, s')],
which is equivalent to:
holds(A, s) A [actual(do(as, s)) D holds(DA, do(as, s))],
since a; is the only action such that actual(do(as, s)), we can derive:
holds(A, s) A (Y a).[actual(do(a, s)) D holds(OA, do(as, s))],

which is equivalent to:
holds(A, s) A holds(QUOA, s).

A=0(A4 - QA) - (A — OA). Given that s is actual, we show that:
holds(DO(A — QA) — (A — OA), s) (A.30)

follows from the situation calculus axioms. In fact, by applying the translation axioms we
arrive at the following equivalent expression:

holds(O(A — QA), s) A holds(A, s) D holds(OA, s). (A.31)
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From where we also obtain:

(Vs').[[s" > s A actual(s") A holds(A, s") D holds(QA, s')] (A.32)
A holds(A, s)] D holds(OA, s).

To prove this last expression, we introduce a new situation constant S, corresponding to an
arbitrary actual situation, to the language and prove that the same sentence is true for this
arbitrary constant (thus eliminating the quantifier). Furthermore, let us call the left hand
side of (A.32) LHS. In order to prove (A.32), we will assume LHS to be true, and use our
induction axiom (2.1) to infer that the right hand side of (A.32) must be true.

Let ¢(s) = s > S A actual(s) D holds(A,s). That is:
(Vs).@(s) = holds(OA, S).

Obviously ¢(Sp) is true, since Sy > S D Sy = S and from LHS we have holds(A, S). Now,
from LHS we get:

(Vs').s' > S Aactual(s') A holds(A, s") D holds(OA, s'). (A.33)
Further manipulation leads to:
(Va,s').s" > S Aactual(do(a, s")) A holds(A, s') D holds(A, do(a, s")). (A.34)
From (A.34) and assuming ¢(S’) to be true for an arbitrary constant S’ we obtain:
(Va).S" > S A actual(do(a, S")) D holds(A,do(a,S")). (A.35)
From where we infer (Va).p(do(a,S")). Therefore, we have proven that:
LHS D ¢(So) A (Vs).[p(s) D (Ya).p(do(a, s))]-
By direct application of (2.1) we get:
LHS D (Vs).p(s).
Which completes the proof.

A=AU B — OB. We show that holds(AU B — <©B,s) is true, given that s is actual. In
fact, by applying the transformation rules, this is equivalent to:

hold(A U B, s) D holds(¢B,s).
The left hand side gets translated to:

(35).(s" > s) Aactual(s") A holds(B, s') A
(Vs").[(s <" < §') D holds(A4, s")].

The first conjunct of this expression corresponds to holds(<$B, s), therefore, the implication
is immediate.
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e A=AUB < BV(ANO(AU B)). Here we will apply simple transformations to the left
hand side of the equivalence and transform it into the right hand side. Again, given that s
denotes an actual situation, holds(A U B, s) is translated as:

(3s").(s" > s) Aactual(s’) A holds(B, s') A
(Vs").[(s < 8" < 8') D holds(A, s")],

which is equivalent to:

(35").(s" = ) Aactual(s') A holds(B, s')
V(s' > s) Aactual(s') A holds(B,s") A
(Vs").[(s < 8" < 8') D holds(A, s")],
this can be written as:
holds(B,s) V
(3s").(s" > s) Aactual(s') A holds(B,s") A
(Vs").[(s <" < s") D holds(4,s")],
which can be rewritten as:
holds(B, s) V
holds(A, s) A (3s').(s' > s) A actual(s') A holds(B,s') A
(Vs").[(s < " < §") D holds(4,s")],
within the scope of the existential quantifier, s’ denotes an actual situation, therefore, the s”

within the scope of the universal quantifier must also be actual (since it is less than s'). It
can be easily proven that:

actual(s2) A s1 < s2 A actual(do(a, s1)) D do(a,s1) < sg.
Therefore, we can rewrite the previous expression as:

holds(B, s) V
holds(A, s) A (Y a).actual(do(a, s)) D
(3").(s' > do(a, s)) A actual(s') A holds(B, s") A
(Vs").[(do(a, s) < s" < s') D holds(A4,s")],

which corresponds to:
holds(BV (ANQO(A U B)),s).

a

Proposition 7.9. It follows directly from the induction axiom and the translation rules.
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Circumscription.

B.1 Parallel Circumscription.

The discussion in this section is based on [26].

In [36, 37] McCarthy proposed to base non-monotonic reasoning on the notion of truth in a set of
most preferred models of a logical theory. Preferred models are selected based on the minimization
of the extension of some predicate or predicates.

Assume that £ is a second order language. Let P be a tuple of predicate constants and Z be
a tuple of function and/or predicate constants disjoint with P. Let 3(P,Z) be a sentence in the
language £. The circumscription of P in ¥ with variable Z is denoted as':

Circ(2(P,Z2);P;Z).
and corresponds to the second order sentence:
%(P,Z) A=(3p,z)(3(p,z) Ap <P).

Where p and z are tuples of variables of the same type as those in P and Z respectively?. Further-
more, if Q and @' are two predicate constants, then @ < @' is an abbreviation for (Vz)Q(z) D Q'(x).
Furthermore, if P and P’ are tuples of predicates of the same type, then P < P’ is an abbreviation
for:

P <P/AN...P, <P

where P =Pj,..., P, and P' = P[,...,P!. P < P’ stands for P < P' A =P’ < P.

Here, we describe the model theoretic meaning of this circumscription. For a more comprehensive
discussion refer to [36, 37, 26, 46, 13].

Let M1 and M3 be two arbitrary models of the theory 3 in the language £ with the tuples P
and Z as before. We write M; <PZ M, if:

1. [M1|| = ||[M2]||. That is, M; and My share the same domain.

2. M1 and M, interpret every constant not in P,Z in the same way

Later we write Circ(Z; P; Z) for a theory X, in which case the sentence being circumscribed corresponds to the
conjunction of all the sentences in X.

*We consider a predicate or function constant R to be of the same type as R’ if they have the same arity and the
sorts of their respective arguments are the same.
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3. The interpretation of P; in M; is a subset (not necessarily proper) of the extension of P; in
My for every P; in P.

A model M of ¥ is minimal with respect to <F3% if there is no other model M’ of ¥ such that
M <PZ A Here, M' <Bi% M if M' <PZ M but not M <FZ M'. Also, we say that P in M,
is smaller than P in My if the interpretation of P; in M; is a subset (not necessarily proper) of
the extension of P; in Mj for every P; in P, and for some P; in P the interpretation of P; in M,
is a proper subset of the extension of P; in M.

Finally, it follows that M is a model of

Cire(32;P;Z)
if and only if M is a minimal model of ¥ with respect to <PZ.

B.2 Circumscribing Skolemized Theories

It is well understood that existential theories are not logically equivalent to their skolemized ver-
sions. One of the consequences of this fact is that skolemization may change the set of minimal
models of a theory [13]. On the positive side, we know that skolemization preserves satisfiability.
Now, we would like to know if it is possible to retain this property by changing the circumscription
policy. Thus, can we define a skolemized circumscription? In this appendix we show that this is
indeed possible. In summary, we show that we preserve satisfiability if we let the skolem function
symbols vary in the new circumscription policy.

Theorem B.2.1 Let:
e 3 be a theory in a second order language L.

o X% be a skolemized version of ¥ in the language L° = L U Sy, in which Sy denotes the tuple
of skolem function constants introduced by the skolemization.

o C = Circ(X;P;Z) be the circumscription of the predicates in P in the theory ¥ having the
interpretation of the tuple of predicates and/or function constants in Z vary.

e C° = Circ(X%;,P;Z,Sy) be the circumscription of the predicates P in the theory ¥° having
the interpretation of the tuple of predicates and/or function constants in Z and the skolem
function constants Sy vary.

o M and M’ denote interpretations for L.
o M?* and M*' denote interpretations for L*.

o sub(M?) denote the subinterpretation of M? in which the interpretations for the skolem func-
tion constants have been dropped. Thus, sub(M?®) is an interpretation for L.

The following holds:
1. For every model M of C there exists a model M* of C*, s.t. M = sub(M?).

2. If M?® is a model of C*, then sub(M?*) is a model of C.
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Thus, if ¢ is any sentence in the language £, then:

CEe

if and only if
C’ = .

In summary, if we use circumscription for a theory ¥, and we want to skolemize ¥, then we need
to let the skolem constants vary in the circumscription of the new theory in order to preserve
satisfiability. Furthermore, it is well known that if the constants are not allowed to vary the
previous result does not hold [13].

Before we present a proof of the theorem, we state the basic properties of skolemization in the
following lemma:

Lemma B.2.1 Using the notation of the statement of the theorem B.2.1, the following holds:
1. For every model M of ¥ there exists a model M?® of X5, s.t. M = sub(M?).
2. If M® is a model of %, then sub(M?) is a model of X.

We use these properties of skolemization to construct the proof of the theorem.

Proof of theorem B.2.1. In the proof we write < instead of <PZ and <* instead of <P3%:Sk.
The theorem is proved by contradiction:

1. Assume that there is a model M of C for which there is no model M? of C?, such that
M = sub(M?). Since M is a model of ¥, from the previous lemma we infer that there exists
a model M? of ¥ such that M = sub(M?*). From our assumption, M*® cannot be a model
of C*. Thus, there must be a model M*' of X% such that M <® M*. That is, P in M% is
smaller than P in M*. Furthermore, M? differs from M?*' only in the interpretation of P,
Z and Sy. From the lemma, it follows that sub(M?®') is a model of X. Also, sub(M?') and
sub(M?) only differ in the interpretation of P and Z. Also, the P in sub(M?') is smaller than
P in sub(M?®). Since M = sub(M?), M cannot be minimal and therefore cannot be a model
of C. Thus, the assumption is contradicted.

2. Assume that there is a model M?® of C® and that sub(M?®) is not a model of C. From the
lemma, sub(M?) is a model of 3. Since it is not minimal, there is some other model M, such
that M < sub(M?®). Thus, M differs from sub(M?) only in the way they interpret P and
Z. From the lemma, there is a model M?' of ¥% such that M = sub(M?'). Obviously, M*'
and M?* only differ on how they interpret P, Z and Sy. Furthermore, P in M?*' (which is
the same as the P in M) is smaller than P in M? (which is the same P in sub(M?)). Thus,
M <5 M3, Therefore, M?® cannot be minimal. Thus, M? is not a model C?®, contradicting
the initial assumption.
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