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We consider a class of knowledge-based Golog programs with sense actions. These programs refer
explicitly to an agent’s knowledge, and are designed to execute on-line, and under a dynamic
closed-world assumption on knowledge. On-line execution of sense actions dynamically updates
the background axioms with sentences asserting knowledge of the sense actions’ outcomes. We
formalize what all this might mean, and show that under suitable assumptions the knowledge
modality in such programs can be implemented by provability. This leads to an on-line Golog
interpreter for such programs, which we demonstrate on a knowledge-based program with sensing
for the blocks world.

Categories and Subject Descriptors: 1.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—representation languages; modal logic; F.4.1 [Mathematical Logic
and Formal Languages|: Mathematical Logic—modal logic; computational logic

General Terms: Languages, Theory
Additional Key Words and Phrases: Situation calculus, situation calculus programming languages,
sensing and knowledge, dynamic closed-world assumption, theorem-proving

1. INTRODUCTION

Our concern will be with knowledge-based programs, specifically, Golog programs
[Levesque et al. 1997] that appeal to knowledge and actions, including sense actions.
As an example, we consider the blocks world, and a program that explicitly refers to
an agent’s knowledge, and to the sense actions she can perform to gain information
about the world. We imagine that initially the agent is positioned in front of a
table of blocks, with no prior knowledge about which blocks are where. The only
information she is given in advance is an enumeration of all the (finitely many)
blocks. Of course, the agent needs to know that this is a blocks world, so we
include suitable successor state and action precondition axioms. But the agent
definitely knows nothing about the initial configuration of blocks. For that matter,
neither do we, the program designers. Our program will allow the agent to gain the
information she needs, and to carry out the actions required to place all the blocks
onto the table:
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2 . Ray Reiter

proc allToT able(b)
Knows((Vz)ontable(x))? |
(mx).x ¢ b7
if “-KWhether(clear(z)) then senseceqr(z) endIf;
if Knows(—clear(z)) then allToTable({x}Ub)
else if - KWhether(ontable(z)) then sense,niapie(z) endIf;
if Knows(ontable(z)) then allToTable({z}Ub)
else moveT oTable(x) ; allToTable({ }) endIf
endIf
endProc

This procedure appeals to Golog operators that should be intuitively clear, with the
possible exception of that for nondeterministic choice, (7 z)a(z), whose reading is
“Nondeterministically choose an x, and for that choice, do the program a(z).” The
parameter b in allToT able(b) stands for the set of those blocks that the agent has
considered, and rejected, as candidates for moving to the table since her previous
moveT oT able action. The test action x ¢ b? prevents her from ever reconsidering
such a block. Thus, the initial call to this procedure is with alliToTable({ }). The
procedure assumes two knowledge-producing actions,

senseontabic () and sensecieqr(x),

whose action preconditions are always true. This program attempts to minimize
the number of sense actions the agent performs by first checking that she doesn’t
currently know the truth value of the sensed fluent. For example, the program
fragment if “-K'Whether(clear(z)) then sensecq-(x) endIf instructs the agent
to sense whether z is clear only when she does not already know whether z is clear.

While on the face of it this program seems perfectly intuitive, there are a number
of technical problems lurking behind the scenes, particularly what it would take to
implement it:

(1) Knowledge and lack of knowledge. The background axiomatization must
characterize the agent’s knowledge about the initial situation, and also her lack
of knowledge. So, for example, her ignorance about which blocks are where can
be represented by

(Vz,y)-KWhether(on(z,y), So)-

Representing lack of knowledge can be problematic when an agent has complex
knowledge about the initial situation:

Knows((Vz).red(z) D ontable(x),So), Knows(red(B) V red(C),Sy),
Knows(on(A, B) Von(A,C),Sy), Knows((Iz)on(z,C),Sy),
Knows((Vz,y, 2).on(y,z) ANon(z,z) Dy = 2,5).

Assuming that the above characterizes all that the agent knows, what does the
agent not know in this example? Whatever that might be, it must somehow
be axiomatized because it does represent a truth about the agent’s knowledge.
This is a very commonly occurring problem. We begin with a collection X of
axioms about what an agent does know, and we want to make a closed-world
assumption about knowledge to the effect that I captures everything that the
agent knows; any knowledge sentences not following logically from K are taken
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to be false. The problem here, of course, is to somehow capture this closed-
world assumption in a way that relieves the designer from having to figure out
the relevant lack of knowledge axioms when given what the agent does know.

(2) On-line execution. Because the program appeals to sense actions, it is de-
signed for on-line execution. This means that it must never backtrack over a
sense action; once such an action is performed, it cannot be undone. Knowledge-
based programs that invoke information-gathering actions must be carefully de-
signed to prevent execution traces that include sense actions but that eventually
lead to dead-ends. The above program has this property.

(3) Implementing sense actions. What should be done when such a program
encounters a sense action? The program is executing on-line, so that each ac-
tion in an execution trace is meant to be performed as it is generated during a
program run. Performing an ordinary action, like moveT 0T able(A), is unprob-
lematic; in a setting where the program is controlling a robot, the robot would
simply perform the action, and the action term would be added to the situation
history being constructed by the program interpreter. Performing a sense action
on-line is a different matter. Consider the robot receiving the on-line program
request senseceqr(A) when the current action log is S. It will respond with one
of “yes” or “no”, depending on the outcome of its sense action. If “yes” then the
robot now knows that A is clear: Knows(clear(A),do(sensecieqr(4),S5)). If
“no” then Knows(—clear(A), do(sensecieqar(A),S)). Normally, neither of these
facts will be logical consequences of the underlying axioms; they provide new
information about the robot’s world. Therefore, to provide an on-line imple-
mentation of the sense action senseceqr(A), dynamically add one of

Knows(clear(A), do(sense iear(A), S)),
Knows(—clear(A), do(senseciear(4),5)),

to the background axioms, depending on the sense action’s actual outcome.

(4) A knowledge-based Golog interpreter. For knowledge-based programs
like allT 0T able above, we cannot depend on a conventional Golog interpreter
[Levesque et al. 1997], which relies on a closed initial database, and which,
in any case, would have to be augmented with the ability to reason about
knowledge.

For the above reasons, it is problematic to directly execute knowledge-based
programs like allToT able using a closed-world Golog interpreter. The stance we
shall take here is to view such programs as specifications for agent behaviours, and
seek an alternative representation for them that can be executed under standard
closed-world Golog.

2. FORMAL PRELIMINARIES

We rely on the description of the situation calculus of [Pirri and Reiter 1999], with
specific reference to the successor state axioms and action precondition axioms of
basic action theories, and we refer the reader to that paper for the details. We
rely also on the approach of [Scherl and Levesque 1993] for representing knowledge
and sensing actions in the situation calculus, and we assume that the reader is
familiar with their approach. We remind the reader that, following [Moore 1980;
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1985], Scherl and Levesque introduce an accessibility relation K into the situation
calculus; the intended reading of K (s',s) is that situation s’ is accessible from
situation s. With the accessibility relation K in hand, one then defines knowledge
as an abbreviation:

Knows(d, s)déf(Vs’).K(s’,s) D ¢[s'].

Here, ¢ is a situation-suppressed expression, and ¢[s'] is that situation calculus
formula obtained from ¢ by restoring the situation argument s’ to all predicate and
function symbols of ¢ that take situation arguments.

2.1 Two Simplifying Assumptions

In the interest of simplifying the presentation of this paper, we shall make two
notationally undesirable but otherwise inessential assumptions about the underlying
language of the situation calculus:

(1) The language has no functional fluents, which are function symbols that take
situation arguments. Non fluent function symbols are permitted. To represent
a functional fluent, e.g., numberO f BlocksOnT able(s), the axiomatizer should
use a relational fluent, e.g., numberO f BlocksOnTable(n, s), and should en-
force, via its truth value in the initial database and via its successor state
axiom, that n must always exist and be unique.

(2) Except for the equality predicate, C and Poss, the language has no non flu-
ent predicate symbols. To represent such “eternal” relation, for example,
isPrimeNumber(n), the axiomatizer is required to use a relational fluent, e.g.,
isPrimeNumber(n,s), and to assign it the successor state axiom

isPrimeNumber(n,do(a, s)) = isPrimeNumber(n, s).
Moreover, any assertion about isPrimeNumber(n) in the initial database must
be made in terms of isPrimeNumber(n, Sp).
2.2 Basic Action Theories with Knowledge and Sensing

Based on Scherl and Levesque’s proposal, we can define a basic action theory taking
the form

D=YUD,, U Dap U Dyna UDg, UKrpit
where,

(1) X consists of the following foundational axioms for the situation calculus with
knowledge:

Uniqueness of Situations
do(a1, s1) = do(az,s2) D a; =az A sy = sa
Subhistories
-s C S
sCdo(a,s')=sC s
Induction
(VP).(Vs)[Init(s) D P(s)] A (Va, s)[P(s) D P(do(a,s))] D (Vs)P(s).
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Here, we have introduced the abbreviation:
Init(s) e —(3a, s")s = do(a, s").

Any model of these axioms will consist of a forest of isomorphic trees, one
rooted at Sy, the others rooted at the other initial situations in the model. All
these roots can serve in specifying a K relation over initial situations.

Accessible Initial Situations
K (s,s") D [Init(s) = Init(s")]. (1)

Dss is a set of successor state axioms including the following axiom for the
accessibility relation K:

K(s',do(a, s)) =
(3s*).s' = do(a,s*) A K(s*,s) A (2)
(VZ1)[a = sensey, (F1) D Y1 (L1,5*) = Y1 (&1, )] A -+ A
(VEm)[a = sensey,, (Tm) D Ym(Zm, s*) = Ym(Zm, s)].

Here, each sense action sensey,(#;), @ = 1,...,m, is associated with a con-
dition ;(%;, s) whose truth value in situation s the action is designed to de-
termine. Scherl and Levesque also treat read actions, whose purpose is to
determine the denotations of functional fluents, but since we are assuming no
functional fluents in our situation calculus language, we do not consider these.

It remains only to pin down the permissible syntactic forms that ¢ may take
in sense actions sensey(Z).
DEFINITION 2.1. (Objective situation-suppressed expressions).
(a) If F(t,0) is a relational fluent atom, then F(#) is an objective situation-
suppressed expression.
(b) If ¢t; and t2 are terms not of sort situation, then t; = o is an objective
situation-suppressed expression.
(c) If ¢ and 4 are objective situation-suppressed expressions, so are —@, ¢V 1,
and (Jv)y, where v is not a situation variable.
Objective expressions are statements only about the world, not the agent’s
mental state; they do not involve expressions of the form Knows(¢). An
objective situation-suppressed sentence is an objective situation-suppressed ex-
pression without any free variables. In what follows, we shall simply say “¢ is
objective” in place of the long-winded “¢ is an objective situation-suppressed
sentence.”

We require that every sense action sensey(Z) be such that ¢(£) is an objective
situation-suppressed expression. So the idea is that an agent can sense objec-
tive sentences—truths about the external world—but not, reasonably enough,
truths about his own knowledge.

The No Side-Effects Assumption for Sense Actions. For fluents other
than K, we suppose that they are provided with successor state axioms in the
usual way. But in the presence of sense actions, there is always the possibility
that such actions can affect these fluents, as in, for example

eyesOpen(do(a, s)) = a = senseForObstacle V
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6 . Ray Reiter

eyesOpen(s) A a # closeEyes.

However, we will not allow knowledge-producing actions to have such side-
effects on ordinary fluents; in the formal story we develop here, such actions
are only permitted to affect the K fluent. In other words, for each sense action
sensey, and each relational fluent R, we require that R’s successor state axiom,
together with the other background axioms, will entail

(VZ, 7, s)R(Z, do(sensey(¥), s)) = R(Z, s).

This no side-effects condition is needed to obtain the above successor state
axiom for K. It also guarantees the intuitively necessary property that by
virtue of performing a knowledge-producing action, an agent will come to know
the outcome of that action. We shall make extensive use of this assumption in
what follows.

One might argue that the no side-effects assumption is unreasonable, that sense
actions often produce a change in the state of ordinary fluents, as in the above
senseForObstacle example. The counter-argument is that indeed certain pre-
conditions (e.g., eyesOpen) may be necessary for sense actions to occur, but
then separate actions—not sense actions—should be provided by the axioms to
achieve these preconditions (e.g., openEyes). Then to perform a sense action,
one must first perform the appropriate state-changing actions to establish that
sense action’s preconditions. This is the perspective we adopt here.

(3) D,y is a set of action precondition axioms.
(4) Dyng is the set of unique-names axioms for actions.

(5) Krnit is any set of initial accessibility axioms specifying the K relation in the
initial situation; these must have the property that, by virtue of the successor
state axiom for K, they will be true in all situations. In particular, using induc-
tion, this property can be shown to hold for the following standard accessibility
relations in initial situations.

(a) Reflexive in initial situations:

(Vs).Init(s) D K(s,s).
(b) Symmetric in initial situations:

(Vs, s").Init(s) A Init(s') D [K(s,s") D K(s',3)].
(c) Transitive in initial situations:

(Vs, ', s").Init(s) A Init(s') A Init(s") D [K(s,s") ANK(s',s") D K(s',s").
(d) Euclidean in initial situations:

(Vs, s, s").Init(s) A Init(s') A Init(s") D [K(s',8) N K(s",s) D K(s',s")].
For example, with reference to the symmetry property, the following is a conse-
quence of the foundational axioms and the [Scherl and Levesque 1993] solution
to the frame problem for K:

(s, s")[Init(s) A Init(s') D [K(s,s") D K(s',3)]]

D (Vs,s').K(s,s") D K(s',s).
(6) Ds, is a set of first-order sentences describing the initial state of the world

being axiomatized. To pin these down, we need a couple of definitions.
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DEFINITION 2.2. (Formulas about o). Let o be a term of sort situation. The

formulas about ¢ are defined inductively:

(a) A relational fluent atom F(f, o) is a formula about o.

(b) If 1 and t2 are terms not of sort situation, then t; = t5 is a formula about
ag.

(c) If ¢ is an admissible situation-suppressed expression (defined below), then
Knows(¢, o) is a formula about o.

(d) If ¢ and v are formulas about o, so are ¢, ¢ V 1, and (Fv)yp, where v is
not a situation variable.

DEFINITION 2.3. (Admissible situation-suppressed expressions). These are

inductively defined as follows:

(a) If F(t,0) is a relational fluent atom, then F(#) is an admissible situation-
suppressed expression.

(b) If ¢; and t2 are terms not of sort situation, then t; = ¢, is an admissible
situation-suppressed expression.

(¢) If ¢ and ¢ are admissible situation-suppressed expressions, so are —¢, V1,
Knows(¢), and (Fv)e), where v is not a situation variable.

Compare this with Definition 2.1 of the objective situation-suppressed expres-
sions. The objective expressions are always admissible, but unlike the former,
the latter are permitted to express properties of the agent’s mental state, i.e.,
they may mention expressions of the form Knows(¢).

We can now define Dg, to be any set of sentences about Sp.

ExAaMPLE 2.1. Here, we give the action precondition, and successor state axioms
for the blocks world that underlies the allToT able knowledge-based program.
Action Precondition Axioms

Poss(move(x,y), s) = clear(x,s) A clear(y,s) Nx # vy,
Poss(moveToTable(x), s) = clear(z, s) A —ontable(z, s).
Successor State Axioms

clear(zx,do(a, s)) =
(F){[(32)a = move(y, z) V a = moveT oTable(y)] A on(y,z,s)} V
clear(z, s) A —(Jy)a = move(y, z),

on(z,y,do(a, s)) = a = move(z,y) V
on(z,y,s) A a # moveToTable(x) A —(3z)a = move(z, 2),
ontable(z,do(a, s)) = a = moveT oT able(x) V
ontable(z, s) A =(Jy)a = move(z,y).

2.3 Satisfiability of Basic Action Theories with Knowledge

The main result about a basic action theory D with knowledge is the following:
THEOREM 2.1. (Relative Satisfiability).

(1) D is satisfiable iff Dgy U Dyng U Kinst U {(1)} is satisfiable.
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8 . Ray Reiter

(2) Moreover, whenever Kz consists of any subset of the accessibility relations
Reflexive, Symmetric, Transitive, Euclidean, D is satisfiable iff Ds, U Dynqe U
Krnit s satisfiable.

PRrROOF. Very much like the proof of relative satisfiability for basic action theories
without knowledge of [Pirri and Reiter 1999]. Essentially, one shows how a model
of Dgy U Dyne U Krnit can be extended to a model of D. We omit the lengthy
details. O

3. REDUCING KNOWLEDGE TO PROVABILITY FOR THE INITIAL SITUATION

The starting point for our implemention of knowledge-based programs is the obser-
vation that, in a certain important special case, knowledge is reducible to provabil-
ity. Here, we describe what we mean by this, and we give suitable conditions under
which it will be true. Specifically, we shall be concerned with characterizing en-
tailments of the form D = Knows(¢, Sp) in terms of provability of knowledge-free
sentences.

First we need a simple consequence of the Relative Satisfiability Theorem 2.1:

THEOREM 3.1. Suppose that Knows(¢, Sy) is a sentence about So. Then,

(1) D = Knows(¢,So) iff Ds, U Dyna U Krnit U {(1)} E Knows(¢, Sp).
(2) Moreover, whenever Kz consists of any subset of the accessibility relations
Reflexive, Symmetric, Transitive, Euclidean, then

D E Knows(¢, So) iff Dsy U Duna U Kinit = Knows(¢, Sp).

ProOF. D = Knows(¢,Sy) iff DU {-Knows(¢, Sp)} is unsatisfiable. Observe,
that because ~Knows(¢, Sg) is a syntactically legal sentence to include in an initial
database, then DU{-Knows(¢, Sp)} is a basic action theory with knowledge whose
initial database is Dg, U {7 Knows(¢, So)}. Now use Theorem 2.1. [

Next, we introduce a special class of initial databases. Suppose the sentences of
Dg, are all of the form Knows(k;, Sp),i = 1,...,n, where each k; is objective. In
other words, the initial database consists exclusively of sentences declaring what
the agent knows about the world he inhabits, but there are no sentences declaring
what is actually true of the world, or what he knows about what he knows. So for
objective K1, ..., kn, Ds, = {Knows(x1,S0),. .., Knows(k,, So)}, and since this
is logically equivalent to Knows(r1 A - - - Akyp, Sp), we can simply suppose that Dg,
consists of a single sentence of the form Knows(k, Sp), where « is objective, and
that is what we shall do from here on.

LEMMA 3.1. Suppose that ¢ is objective, that Dg, = Knows(k, Sy) where k is
objective, and that IC;pix consists of any subset of the accessibility relations Reflexive,
Symmetric, Transitive, Fuclidean. Then,

D E Knows(¢, S0) iff Duna U {[So]} E ¢[So)-

ProOF. The < direction follows from the fact that, because the axioms of D,
are situation independent, they are known in Sy, and the fact that all logical con-
sequences of what is known are also known.

(=). By Theorem 3.1, it is sufficient to prove:
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If Kinit U Dyng U Ds, = Knows(e, Sp), then Dynq U {k[So]} E ¢[So]-

By hypothesis, Kinit U Dyng U {Knows(k, Sp), " Knows(¢, So)} is unsatisfiable.
Then it must continue to be so with K(s,s') taken to be s = s'. With this choice
for K, all sentences of K;,;; become tautologies, Knows(k, Sp) simplifies to x[Sp],
and —Knows(¢, So) simplifies to —¢[Sp]. Therefore, Dynq U {K[So], ~#[So]} is un-
satisfiable, and therefore, Dyn, U {£[So]} E #[So]. O

Therefore, for the initial situation, we have reduced the entailment problem for
knowledge sentences to that of knowledge-free sentences. This result relies on the
stated assumptions that:

(1) Ds, consists of a sentence of the form Knows(k,Sy), where k is objective.
Therefore, Knows((Vz).clear(z)Vontable(x), So) qualifies; the following would
not:

(3z)Knows(k(z),So), Knows(Knows(k),Sy), —Knows(k,Ss),
Knows(k1, So) V Knows(ka, Sp).

(2) The sentence to be proved has the form Knows(¢, Sp), where ¢ is objective.

Lemma 3.1 gives us a provability story for entailments from D of the form
Knows(¢, Sg). What about entailments of the form —-Knows(¢,Sy)? We defer
treating negative knowledge until Section 5 below, where we shall introduce the
closed-world assumption on knowledge, whose effect will be that entailments of
negative knowledge will reduce to non provability of knowledge-free sentences.

4. ON-LINE EXECUTION OF KNOWLEDGE-BASED PROGRAMS

As discussed earlier, we have in mind executing knowledge-based programs like
allToT able on-line. This means that each time a program interpreter adds a new
program action to its action history, the robot also physically performs this action.
Some of these actions will be sense actions; since these normally increase the robot’s
knowledge of its world, this means that its axioms must be augmented by knowledge
about the outcomes of its on-line sense actions.! To capture this idea formally, we
need some notation for describing this incrementally growing set of axioms. Initially,
before it has performed any actions on-line, the robot’s background consists of a
basic action theory D, as defined in Section 2.2. Suppose that o is the current
situation recording all the actions performed on-line by the robot. We can suppose
that o mentions no variables, since it makes no sense to perform a non ground action
on-line. We want to define the result of augmenting D with knowledge about the
outcomes of all the sense actions occurring in o.

DEFINITION 4.1. (Sense Outcome Function). A sense outcome function is any
mapping 2 from ground situation terms to sets of knowledge sentences, such that:

1) Q(So) ={},
(2) If a is not a sense action,
Q(do(a, 0)) = Q(0).
'In this respect, our work has much in common with prior approaches to on-line sensing, for
example, [Pirri and Finzi 1999; Lakemeyer 1999].
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10 . Ray Reiter

(3) If a is a sense action sensey(g),
Q(do(a, o)) = Q(0) U {Knows(1(§), do(sensey(g),0))} or
Q(do(a,0)) = Qo) U {Knows(—1)(7), do(sensey(§), o))}

In general, we shall be interested in D U Q(c), namely, the original basic action
theory D, augmented by knowledge about the outcomes of all sense actions in
the action history o, according to the sense outcome function Q. To analyze the
properties of this dynamically growing theory, we need the concept of regression.

4.1 Regression

Regression [Waldinger 1977; Pednault 1994; Pirri and Reiter 1999] is the principal
mechanism in the situation calculus for answering queries about hypothetical fu-
tures. The intuition underlying regression is this: Suppose we want to prove that
a sentence W is entailed by some basic action theory. Suppose further that W
mentions a relational fluent atom F(Z,do(c,0)), where F’s successor state axiom
is F(Z,do(a, s)) = ®r(ZF,a,s). Then we can easily determine a logically equivalent
sentence W' by substituting ®r (f, a, o) for F(f,do(c, 0)) in W. After doing so, the
fluent atom F'(, do(w, o)), involving the complex situation term do(c, ), has been
eliminated from W in favour of ®x(f,a, 0), and this involves the simpler situation
term . In this sense, W' is “closer” to the initial situation Sy than was W. More-
over, this operation can be repeated until the resulting goal formula mentions only
the situation term Sy, after which, intuitively, it should be sufficient to establish
this resulting goal using only the sentences of the initial database. Regression is
a mechanism that repeatedly performs the above reduction starting with a goal
W, ultimately obtaining a logically equivalent goal Wy whose only situation term
is Sp. In [Pirri and Reiter 1999], the soundness and completeness of regression is
proved for basic action theories without knowledge and sensing actions. [Scherl and
Levesque 1993] defines regression for formulas involving knowledge, but we shall not
need that notion in this paper; our definition will be for knowledge-free formulas,
and is really a simpler version of that in [Pirri and Reiter 1999].

DEFINITION 4.2. (The Regressable Formulas). A formula W is regressable wrt a
situation term o iff:

(1) W is a fluent atom F(%,0), or an equality atom #; = ¢, where ¢; and ¢, are
not situation terms, or

(2) W has the form =Wy or W1 VW, or (3z)W; where z is not a situation variable,
and W; and W, are regressable wrt o.

W is regressable iff it is regressable wrt o for some ground situation term ¢.2

We can now define the regression operator for regressable formulas.

DEFINITION 4.3. (The Regression Operator). The regression operator R when
applied to a regressable formula W is determined relative to a basic theory of actions

2This definition is less general than the definition of the regressable formulas given in [Pirri and
Reiter 1999]; it has the virtue of being simpler, and it will be sufficient for the purposes of this
paper.
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On Knowledge-Based Programming with Sensing in the Situation Calculus . 11

that serves as a background axiomatization. In what follows, ¢ is a tuple of terms,
a is a ground term of sort action, and o is a ground term of sort situation.

(1) Suppose W is an atom. Since W is regressable, we have two possibilities:
(a) W is an equality atom between non situation terms, or W is a fluent atom
of the form F(¢t,Sp). In these cases,

RW]=W.
(b) W is a relational fluent atom of the form F(,do(c,o)). Let F’s successor
state axiom in D,, be

F(Z,do(a, s)) = ®r(&,a, s).

Without loss of generality, assume that all quantifiers (if any) of @ (Z, a, s)
have had their quantified variables renamed to be distinct from the free
variables (if any) of F(f,do(c,0)). Then

RIW] = R[®F(,a, 0)].
In other words, replace the atom F'(t,do(a, o)) by a suitable instance of the
right-hand side of the equivalence in F’s successor state axiom, and regress
this formula. The above renaming of quantified variables of ®p(Z,a, s)
prevents any of these quantifiers from capturing variables in the instance
F(t,do(a, 7).
(2) For the remaining cases, regression is defined inductively.
RI-W) = R[]
R[Wl A WQ] = R[Wl] A R[W2],
R[(Fv)W] = (3v)R[W].
We shall also need to regress certain kinds of situation-suppressed expressions.

DEFINITION 4.4. (Regression for situation-suppressed expressions). Recall that
when ¢ is a situation-suppressed expression, and o a situation term, then ¢[o] is
that situation calculus formula obtained from ¢ by restoring the situation argument
o to every predicate of ¢ that takes a situation argument. Let ¢ be an objective
situation-suppressed expression. Therefore, ¢ is the result of suppressing the situ-
ation argument in some regressable formula of the situation calculus. Introduce a
“one-step” regression operator, R!(¢,a), whose role is to perform a single regres-
sion step for ¢ through the action « as follows: R!(¢, a) is that situation-suppressed
expression obtained from ¢ by first replacing all fluents in ¢[do(a, s)] with situation
argument do(a,s) by the corresponding right-hand sides of their successor state
axioms (renaming quantified variables if necessary), and next, suppressing the situ-
ation arguments in the resulting formula. Clearly, R!(¢, a)[s] is logically equivalent
to @[do(a, s)] relative to the successor state axioms.

Finally, we define the “multi step” regression operator on situation-suppressed
expressions. Let o be a ground situation term. R(¢,o) is the regression of the
situation-suppressed expression ¢ through the actions of o, defined by

R(¢7 SO) = ¢7
R(¢, do(a, o)) = R(R($, @), 0).
We are here overloading the R notation. The one-argument version, R[W] regresses
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12 . Ray Reiter

regressable formulas W of the situation calculus (to obtain a formula about Sp); the
two-argument version R(¢, o) regresses situation-suppressed expressions ¢ through
the actions of . Clearly, R(¢,0)[So] and R[@[o]] are logically equivalent, relative
to the background basic action theory.

4.2 Reducing Knowledge To Provability for On-Line Programs

Here, we focus on conditions under which the theory D U Q(g), consisting of the
original theory D augmented by the outcomes of all sense actions in o, entails
sentences of the form Knows(¢, o).

LEMMA 4.1. Let ¢(Z) be an objective, situation-suppressed expression. Then:
(1) When A(Y) is not a sense action,
D | (VZ,7, s). Knows($(Z), do(A(%), s)) = Knows(R' (¢(Z), A(7)), 5)-
(2) D |= (VZ, 9, s). Knows(¢(Z), do(sensey (), s)) =

{¥(7,8) D Knows((§) D ¢(7),s)} A
{—(7, 5) D Knows(—¢)(¥) D ¢(&),s)}-

ProOF. First use the successor state axiom (2) for K. For 1, use the fact that,
when ¢(&) is an objective, situation-suppressed expression,

D | (VZ,§,5).0(Z, do(A(7), 5)) = R' (8(2), A(9)), 5)-
For 2, use the fact that, when ¢(%) is an objective, situation-suppressed expression,
D = (V,7,s).¢(Z, do(sensey (7), s)) = ¢(Z, s)
by the no side-effects assumption for sense actions. []
COROLLARY 4.1.
D |= (Y4, 5). Knows(£4(7), do(sensey (7)), s)) = £¢(7, s) V Knows(+¢(7), 5)*
PRrROOF. Take ¢ to be ¢ in item 2 of Lemma 4.1. O
COROLLARY 4.2. When Kppi includes the reflezivity aziom,
D |= (V7, s). Knows(x¢(y), do(sensey (§), s)) = £9(7, s).

ProOF. Use Corollary 4.1, and the fact that when reflexivity holds in the initial
situation, it holds in all situations, so that what is known in s is true in s. [

LEMMA 4.2. When K, includes the reflexivity axiom,

D E (VZ,7, s). Knows(+¢ (%), do(sensey (), s)) D
Knows(¢(Z), do(sensey (7),s)) = Knows(+¢(3) D ¢(Z), s).

PrROOF. By item 2 of Lemma 4.1 and Corollary 4.2. O
We shall need the following bit of notation:

DEFINITION 4.5. Q% (). Suppose Q is a sense outcome function, and o is a
ground situation term.

0%(0) = AM{R(%(9), 0") | Knows(4(§), do(sensey(§),0")) € o)} A

3The notation %1 occurring in a sentence means that two sentences are being expressed: one in
which =1 is uniformly replaced by v in the sentence, the other in which it is replaced by —.
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MR(=4(9),0") | Knows(—(g), do(sensey(§),0")) € (o)}
So, for example, if

Q(0) = {Knows(1)1, do(sensey, ,01), Knows(—t)s, do(sensey,, 02),
Knows(—3, do(sensey,,03)},

then

OR(0) = R(¢1,01) AR(—h, 02) A R(—P3, 03).
Notice that Q2% (¢) is a situation-suppressed sentence. By convention, 2% (o) = true
when Qo) ={ }.

LEMMA 4.3. If Krpi includes the reflezivity aziom, then Q(co) and Q% (0)[So)
are logically equivalent,® relative to D. Recall that the notation Q% (0)[So] stands
for the result of restoring situation argument Sy back into the situation-suppressed
sentence Q% (o).

Proor. Corollary 4.2. O
LEMMA 4.4. Suppose ¢ is objective, o is a ground situation term, and Krni
includes the reflexivity axiom. Then
DU (o) E Knows(¢, o) = Knows(Q%(0) D R(,0),So).
PRrROOF. Induction on the number of actions in . When this is 0, o is Sy, and
the result is immediate. For the inductive step, there are two cases:
Case 1. Suppose « is not a sense action. Then by item 1 of Lemma 4.1,
DU Q(do(a,0)) = Knows(¢, do(a,0)) = Knows(R!(4,a),0).
By induction hypothesis,
DUQ(0) E Knows(RY(4,a),0) = Knows(Q% (o) D R(RY (4, a),0),S0)-

The result now follows from the fact that when « is not a sense action, Q% (o) =
QR (do(a, o)) and the fact that R(R' (¢, a),0) = R(¢,do(a, o).

Case 2. « is a sense action, say sensey(§). Without loss of generality, assume that
Vs sense outcome is 1(§), so Q(do(a, o)) = Q(o) U{Knows(1)(§),do(a, c))}. Then
by Lemma 4.2,

DU Q(do(a, 0)) = Knows(¢,do(a, 0)) = Knows(y(g) D ¢,0).
By induction hypothesis,

DUQ(o) E Knows(¥(§) D ¢,0) = Knows(Q% (o) D R(¥(7) D ¢,0),S0).

The result now follows because Q% (a) D R(¥(g) D ¢,0) is the same as Q% (o) A
R(Y(F),0) D R(¢,0), which is the same as Q% (do(a,0)) D R(p,0). O

DEFINITION 4.6. (Deciding equality sentences). Suppose T is any situation cal-
culus theory. We say that T decides all equality sentences iff for any sentence 8
over the language of T whose only predicate symbol is equality, T |= 8 or T = —f.

4We are slightly abusing terminology here; strictly speaking, we should say that the conjunction
of the sentences in (o) is logically equivalent to 27 (a)[So].
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The following is a purely technical lemma that we shall find very useful in estab-
lishing our principal results.

LEMMA 4.5. Suppose that Dg, = Knows(k, So) where & is objective, that DypqU
{k[So]} decides all equality sentences, and K;niz consists of any subset of the acces-
sibility relations Reflexive, Symmetric, Transitive, Euclidean. Suppose further that
Yo, - - -, ¥ are objective, and that

D = ¥0[So] V Knows(¢1,Sp) V - - - V Knows(¢,,, Sp).
Then for some 0 <i < n, D = Knows(¢;, S)).

PRroor. This takes a bit of proof theory. By hypothesis,

D U {Knows(k, Sp), "%0[So], "Knows(¢, Sp), - . ., "Knows(¢,,, Sp) }
is unsatisfiable. Therefore, by item 2 of Theorem 2.1,

Kinit U Dyna U {Knows(k, Sp), 7o[So], "Knows(¢1, Sp), . . ., "Knows(¢,,, So) }
is unsatisfiable. Therefore, after expanding the Knows notation, we have that

Kinit U Dynq U {(Vs).K (s, So) D K[s], "%o[So], (35).K (s, S0) A =th1(s), ...,

(35)-K (s, 50) A "¢n(s)}

is unsatisfiable. Therefore, after skolemizing the existentials, we get that

}Cinit ) Duna )
{(Vs).K(s,50) D k[s], "¢0[So], K (01, S0), %1(01), - - -, K(0n, So), ~¢n(0n)}
is unsatisfiable. It remains unsatisfiable if we take K (s, s') to be the complete graph
on {S(), Oly.--y Un}, i.e.,
K(s,s)=(s=8Vs=01V---Vs=o,)A(s =5 Vs =01V---Vs =o0p,).
With this choice for K, all sentences of ;s become tautologies, and we have that
Duna U {£[S0], ~0[So]} U {&lo1], =¢p1[o1]} U - - - U {K[on], ~¢n[on]}
must be unsatisfiable. Let
{{slor], [0}, - .. . {Klom], =bm[om]}}
be a minimal subset of
{{K/[Ul]a _'wl [Ul]}a LR {n[an], _'¢n[o-n]}}
such that
Duna U {£[So], ~%0[So]} U{klo1], ~1[o1]} U - - - U{Klom], 7¢m[om]}
is unsatisfiable. If m = 0, then Dyn. U {k[So], "%0[So]} is unsatisfiable, so by

Lemma 3.1, the result is immediate. Therefore, we can suppose that m > 1. By
the above minimal subset property,

Duyna U {&[S0], 7100[So]} U {&[o1], 1[o1]} U - - - U {k[om—1], "m-1[om-1]} (3)

is satisfiable. By the Craig Interpolation Theorem, there exists a sentence I in the
intersection language of (3) and Dypnqe U{&[om], " ¥m[om]} such that (3) U{-I} and
Duna U {1, k[om], "m[om]} are both unsatisfiable. But the intersection language
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consists of equality sentences only,® so I is such a sentence, and since Dyy,q U{£[So]}
decides all such sentences, either Dypq U {K[So]} I or Dyne U {k[So]} £ —I. The
latter case is impossible by the satisfiability of (3). We earlier concluded that
Duna U {1, k[om], "¥m[om]} is unsatisfiable. It remains unsatisfiable when Sy is
uniformly substituted for o, so that Dyne U {I, k[So], 7¢m[So]} is unsatisfiable.
This, together with the fact that Dyne U {k[S0]} |E I implies the unsatisfiability of
Duna U {K[So], 7%¥m[So]}. Therefore, by Lemma 3.1, D = Knows (¢, So). O

Something like the assumption that Dy, U{k[So]} decides all equality sentences
in the above lemma seems necessary. To see why, consider:

ExaAMPLE 4.1. Let F and G be unary fluents, and let k be the conjunction of
the following three sentences:

a=bVe=d, a=bDF, ¢c=dDQG.
Then it is easy to see that
Knows(k, Sy) = a = bV Knows(F, Sy) V Knows(G, Sp),
but
Knows(xk, Sy) £ Knows(a = b, Sp), Knows(k, So) £ Knows(F,Sy) and
Knows(k, Sy) £ Knows(G, Sp).

THEOREM 4.1. Suppose that ¢ is objective, Ds, = Knows(k, Sg) where k is
objective, Dyng U {k[So]} decides all equality sentences, o is a ground situation
term, and Krpie includes the reflexivity axiom. Then

DUQ(0) E Knows(¢, ) iff Duna U {K[So], 2% (0)[Se]} E Rlo[o]]-

PROOF. The (<) direction follows from Lemmas 3.1 and 4.4.
For the (=) direction, suppose D U (o) = Knows(¢, o). By Lemma 4.4,

DU Qo) E Knows(QR(a) D R(¢,0),5)-
By Lemma 4.3,
DU {2%(0)[S]} E Knows(Q2%(c) D R(¢,0),So).
Therefore,
D | =0 (0)[So] V Knows(Q2R(0) D R(¢,0),So).
By Lemma 4.5,
D |= Knows(—Q%(0), Sp) or D = Knows(Q2%(0) D R(¢,0),So)-
If the latter is the case, we are done. Suppose the former. Then certainly,
D | Knows(—Q% (o) V R(¢,0), So),

ie, D | Knows(Q%(c) D R(¢,0),S). The result now follows from Lemma
3.1. O

This is the central result of this section; it completely characterizes entailments of
the form Knows(¢, o) relative to D U (o) in terms of provability, in the initial

5Recall that we assume the underlying language of the situation calculus has no non fluent pred-
icate symbols and no functional fluents (Section 2.1).
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situation, for knowledge-free sentences. What about entailments of sentences of the
form ~Knows(¢,c)? That is the topic of the next section.

5. THE DYNAMIC CLOSED-WORLD ASSUMPTION

We now consider the problem, discussed in item 1 of Section 1, of characterizing an
agent’s lack of knowledge, and we begin first by considering knowledge in the initial
situation Dg, = Knows(k, Sp). Here, we shall make the closed-world assumption
on knowledge, namely, that Knows(k, Sy) characterizes everything that the agent
knows initially, and whatever knowledge does not follow from this will be taken
to be lack of knowledge. How can we characterize this closed-world assumption in
a way that relieves the axiomatizer from having to figure out the relevant lack of
knowledge axioms when given what the agent does know? We propose the following;:

closure(D) = DU {-Knows(6,S)) | 8 is objective and D = Knows(6, Sp)}.

Under the closed-world assumption on knowledge, the official basic action theory
is taken to be closure(D). To make her life easier in specifying the initial database
of a basic action theory, we ask the axiomatizer only to provide a specification of
the positive initial knowledge Dg, that the robot has of its domain, but this is
understood to be a convenient shorthand for what holds initially, and closure(D),
as defined above, specifies the actual basic action theory.

ExAMPLE 5.1. Here, we specify the positive initial knowledge available to the
agent inhabiting the blocks world of Example 2.1. While she knows nothing about
which blocks are where, this does not mean she knows nothing at all. There are state
constraints associated with this world, and we must suppose the agent knows these.
Specifically, she must know that these constraints hold initially, and therefore, her
initial database consists of the following;:

Knows((Vz, y).on(z,y) D —on(y, z), So),
Knows((Vz,y, z).on(y,z) Aon(z,z) Dy = z,5),
Knows((Vz,y, 2).on(z,y) Aon(z,z) Dy = 2,5).

By making the closed-world assumption about this initial database, the axiomatizer
need not concern herself with writing additional lack of knowledge axioms like
—-Knows((3z,y)on(z,y), So), or “Knows((Ix).clear(x) A ontable(z), So). Neither
does she have to worry about whether she has succeeded in expressing all the
relevant lack of knowledge axioms. The closed-world assumption takes care of
these problems for her.

However, as noted above, the axioms of D are being continuously augmented by
sentences asserting knowledge about the outcomes of the sense actions that have
been performed during the on-line execution of a program, and D U Q(o) specifies
what these axioms are, when the program is currently in situation o. Therefore,
under the closed-world assumption in situation o, we are supposing that D U Q(o)
characterizes all of the agent’s positive knowledge about the initial situation, so we
are actually interested in the closure of Dg, relative to D U Q(o). So here we are
actually making a dynamic closed-world assumption.

DEFINITION 5.1. Dynamic Closed-World Assumption on Knowledge.
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closure(D U Q(0)) =
DU Q(o) U{—-Knows(6,Sp) | 0 is objective and D U Qo) = Knows(8,So)}.

Under the dynamic closed-world assumption on knowledge, the official basic action
theory, when the on-line execution of a program is in situation o, is taken to be
closure(D U Q(a)).

This closed-world assumption on knowledge is a metalevel account of a special
case of Levesque’s logic of only knowing [Levesque 1990]. His results have been
considerably extended (to include an account of knowledge within the situation
calculus) in [Levesque and Lakemeyer 2001; Lakemeyer and Levesque 1998].

Next, we need to study the properties of closure(D U (o)), with the ultimate
objective of reducing negative knowledge to non provability.

LEMMA 5.1. Suppose that Ds, = Knows(k, So) where & is objective, Dyng U
k[So] decides all equality sentences, and Krniz includes the reflexivity aziom, to-
gether with any subset of the accessibility relations Symmetric, Transitive, Eu-
clidean. Then

closure(D U (o)) is satisfiable iff Dyna U {K[So], 2% (0)[So]} is satisfiable.

PROOF.
(=) Suppose Dyna U {K[So], 2%(0)[So]} is unsatisfiable. Then by Lemma 3.1,
D E Knows(—Q%(0),Sp). By reflexivity, D = —Q%(0)[S,], and therefore, D U
{OR(0)[So]} is unsatisfiable. Because, by Lemma 4.3, Q%(0)[So] and Q(o) are
logically equivalent (relative to D), D U Q(o) is unsatisfiable, and therefore, so is
closure(D U Q(0)).

(«=) Suppose closure(D U (o)) is unsatisfiable. Therefore,
DUQ(o) U{—=Knows(6,Sy) | 0 is objective and DU Q(o) £ Knows(8,S)}
is unsatisfiable. Therefore, by Lemma 4.3,

DU {Q2%(0)[So]} U
{=Knows(0, Sy) | € is objective and D U Q(o) ¥~ Knows(d,Sy)}

is unsatisfiable. By item 2 of Theorem 2.1,

Kinit U Duna U {Knows(x, So), 2% (a)[So]} U
{=Knows(0,Sy) | 8 is objective and D U Q(o) ¥~ Knows(d,S0)}

is unsatisfiable. By compactness, there is a finite, possibly empty subset of
{=Knows(0, So) | 6 is objective and D U Q(o) ¥ Knows(,So)},

say
{=Knows(01,S5), ..., Knows(b,,So)}

such that

Kinit U Duna U {Knows(x, Sp), 2% (a)[So]} U
{=Knows(01,5), ..., Knows(b,So)}

is unsatisfiable. Therefore,
DU {Q%(0)[S]} U {~Knows(61,5), - .., "Knows(0y,So)}
is unsatisfiable, so
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D | Q% (0)[So] V Knows(01,50) V - - - V Knows(6n, So).

By Lemma 4.5, D = Knows(—Q%(c), Sp), or for some i, D = Knows(0;,Sp). The
latter case is impossible, because for i = 1,...,n DUQ(0) £ Knows(6;,So). There-
fore, D | Knows(=Q%(0),Sp), and by Lemma 3.1, Dyne U {[So], 2% (0)[So]} is
unsatisfiable. [

LEMMA 5.2. Suppose Ds, = Knows(k,Sy) where k is objective, Dynq U K[So]
decides all equality sentences, o is a ground situation term, and K, includes the
reflexivity aziom. Suppose further that closure(D U Q (o)) is satisfiable. Then

closure(D U Q(0)) E Knows(¢, o) iff Dyuna U {6[S0], % (2)[S0]} E R[é[c]]-

PRrROOF. The (<) direction follows from Theorem 4.1.

(=) If DU Qo) = Knows(¢,0), the result is immediate by Theorem 4.1. If
DU Q(o) £ Knows(¢,0), then by Lemma 4.4, D U Q(0) [~ Knows(Q%(s) D
R(¢,0),S0). Hence, closure(D U Q(o)) E —Knows(Q%(s) D R(¢,0),5). By
Lemma 4.4, closure(D U Q(c)) = ~Knows(¢$,0), contradicting the hypothesis
that closure(D U Q(0)) is satisfiable. [

DEFINITION 5.2. (Subjective Sentences). We say a sentence is a subjective sen-
tence about a ground situation term o iff it has the form Knows(3, o), where 3 is
objective, or it has the form =W, where W is a subjective sentence about o, or it
has the form W; vV W5, where W, and W, are subjective sentences about o.

LEMMA 5.3. Suppose Krnir includes the reflexivity axiom. Then for any subjec-
tive sentence W about a ground situation term o,

closure(D U Q(0)) E W or closure(D U Q(0)) E -W.

Proor. Induction on the syntactic form of W, using Lemma 4.4 to help prove
the base case. [
We can now combine Lemmas 5.1, 5.2, and 5.3 to obtain our main result:
THEOREM 5.1. Let Q) be a sense outcome function. Suppose that
1) Ds, = Knows(k, So), where k is objective.
2) Dyna U {K[So]} decides all equality sentences.

4) Duna U {K[So), 2% (0)[So]} is satisfiable.
5) Krnit consists of the reflexivity axiom, together with any subset of the accessi-
bility azioms Symmetric, Transitive, Fuclidean.

Then,
(1) When ¢ is objective,

closure(D U Q(0)) E Knows(é, ) iff Duna U {£[So], Q% ()[Se]} = R[é[c]]-
(2) When W is a subjective sentence about o,

closure(D U Q(o)) E —W iff closure(DU Q(0)) = W.
(83) When Wy and Wy are subjective sentences about o,

closure(D U Q(0)) E W1 vV Wy iff
closure(D U Q(0)) E W1 or closure(D U Q(o)) E Wa.

(1)
(2)
(8) o is a ground situation term.
(4)
(5)
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AN INTERPRETER FOR KNOWLEDGE-BASED PROGRAMS WITH SENSING

Under the stated conditions, Theorem 5.1 justifies the following decisions in imple-
menting an interpreter for an on-line knowledge-based program.

1)
2)

3)

If Ds, = Knows(k, Sp), the implementation uses k[So] as its initial database.

Whenever a sensey(§) action is performed by the program in a situation o, the
implementation adds the regression of 9(§, o) or (g, o) to the current initial
database, depending on the outcome of the sense action.

Suppose a test condition W is evaluated by the program in a situation o. Using
items 2 and 3 of Theorem 5.1, the implementation recursively breaks down
W o] into appropriate subgoals of proving, or failing to prove, sentences of the
form Knows(¢,0). By item 1, these reduce to proving, or failing to prove,
the regression of ¢[o] relative to the current initial database. So for these base
cases, the implementation performs this regression step, then invokes a theorem
prover on the regressed sentence, using the current initial database (plus unique
names for actions) as premises. Notice the assumption here, required by the
theorem, that every test condition W of the program will be such that, at
evaluation time, W[o] will be a subjective sentence about o.

Guarded Sense Actions. Condition 4 of Theorem 5.1 requires that Dy, U
{k[S0], Q% (c)[So]} be satisfiable. Therefore, an implementation must perform
this satisfiability test, and it must do so after each sense action. However, there
is one natural condition on a knowledge-based program that would eliminate
the need for such a test, and that is that every sensing action in the program
be guarded. By this, we mean that a sense action is performed only when
its outcome is not already known to the robot. In the allToTable program,
the statement if - KWhether(clear(z)) then sensecieqr(z) endIf provides
such a guard for the sensegeq,r action. Whenever the program guards all its
sense actions, as allToTable does, then condition 4 of Theorem 5.1 reduces to
requiring the satisfiability of Dynqe U {k[So]}, and this can be performed once
only, when the initial database is first specified. This is the content of the
following:

PROPOSITION 6.1. Assume the conditions of Theorem 5.1. Assume further
that sensey(g) is a ground sense action, and that
closure(DU Q(o)) E “KWhether(¢(g), o).
Then Dyna U {K[So], Q% (do(sensey (§),))[So]} is satisfiable.
Proor. Without loss of generality, assume that Q’s sense outcome is ¥(g),
)
Q(do(sensey(§),0)) = (o) U {Knows(y)(§),do(a, 0))}.

Since closure(D U Q(0)) | “Knows(—(§), o) and since closure(D U Q(0)) is
satisfiable,

DU (o)) # Knows(=(4(9),0)-
Therefore, by Lemma 4.4,
D i Knows(2%(0) > R(~4(§), ), So)-
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Hence, by Lemma 3.1,

Duna U {6[So]} £ {07 (0) O R(=(7), o) }[Sol,
and therefore, Dy, U {K[So], 2% (0)[So] A "R (9 (F),o)[So]} must be satisfi-
able. The result now follows because =R (—¢(g),0)[So] is the same thing as
R(¥(§),0)[So], and because Q= (a) A R(1(§), o) is Q% (do(sensey(§),0)). O

7. COMPUTING CLOSED-WORLD KNOWLEDGE

The reduction of knowledge to provability under the closed-world assumption on
knowledge makes little computational sense for full first-order logic, because its
provability relation is not computable. Therefore, in what follows, we shall restrict
ourselves to the quantifier-free case. Specifically, we shall assume:

(1) The only function symbols not of sort action or situation are constants.
(2) Ds, includes knowledge of unique names axioms for these constants:

Knows(C # C',Sy), for distinct constant symbols C' and C'.

(3) All quantifiers mentioned in Dg,, and all quantifiers mentioned in test expres-
sions of a knowledge-based program are typed, and these types are abbrevia-
tions for descriptions of finite domains of constants:

d
7(x) éf:z::Tlv---V;z::Tk,
where there will be one such abbreviation for each type 7.

Therefore, typed quantifiers can be eliminated in formulas in favour of conjunctions
and disjunctions, so we end up with sentences of propositional logic, for which the
provability relation is computable. Because the agent has knowledge of unique
names, DynqUDsg, will decide all typed equality sentences. Therefore, the conditions
of Theorem 5.1 will hold.

8. PUTTING IT ALL TOGETHER

We have implemented an on-line Golog interpreter for knowledge-based programs
based on Theorem 5.1. It assumes that all sense actions in the program are guarded,
and it therefore does not perform the consistency check required by condition 4 of
Theorem 5.1. Here, we include the principal new features that need to be added to
a standard Golog interpreter [Reiter 2001] to obtain this knowledge-based program
interpreter.

A Golog Interpreter for Knowledge-Based Programs with Sense Actions Using
Provability to Implement Knowledge

The clauses for do remain as for standard Golog, except that an extra clause is
added to treat sense actions by interactively asking the user for the outcome of
the action, and updating the initial database with the regression of this outcome.
This clause for sense actions appeals to a user-provided declaration
senseAction(A,Sensed0utcome), meaning that A is a sense action, and SensedOutcome
is the formula whose truth value the action A is designed to determine.
restoreSitArgThroughout(W,S,F) means F is the result of restoring the situation
argument S into every fluent mentioned by the formula W.

2T ST 52 T e e oo

do(A,S,do(A,S)) :- senseAction(A,SensedOutcome), poss(A,S),
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queryUser(SensedOutcome,YN), restoreSitArgThroughout(SensedOutcome,S,0utcome),
regress(Outcome,R),
(YN = y, updateInitDatabase(R) ; YN = n, updateInitDatabase(-R)).

queryUser(SensedOutcome,YN) :- nl, write("Is "),
write(SensedOutcome), write(" true now? y or n."), read(¥YN).

% Add the following clauses to those for holds in the standard Golog interpreter.
holds(kWhether(W),S) :- holds(knows(W),S), ! ; holds(knows(-W),S).
% Implementing knowledge with provability .

holds(knows(W),S) :- restoreSitArgThroughout(W,S,F), prove(F).

In the above interpreter, two Prolog predicates were left unspecified:

(1) The theorem prover prove. Any complete propositional prover will do. We
use one that supposes the current initial database is a set of prime implicates.
There is no significance to this choice; we simply happen to have had available
a prime implicate generating program. prove(F) first regresses F, converts the
result to clausal form, then tests these clauses for subsumption against the
initial database of prime implicates.

(2) updateInitDatabase(R), whose purpose is to add the sentence R, which is the re-
gression of the outcome of a sense action, to the initial database. Because in our
implementation this is a database of prime implicates, updateInitDatabase (R)
converts R to clausal form, adds these to the initial database, and recomputes
the prime implicates of the resulting database.

Here is an execution of the allT 0T able program, with a four block domain, using
this prover and the above Golog interpreter.5

Running the Program for Four Blocks

[eclipse 2]: compile. % Compile the initial database to prime implicate form.

Clausal form completed. CPU time (sec): 0.06 Clauses: 34
Database compiled. CPU time (sec): 0.04 Prime implicates: 34

yes.
[eclipse 3]: run.

Is clear(a) true now? y or m. y.
Is ontable(a) true now? y or n. y.
Is clear(b) true now? y or n. n.
Is clear(c) true now? y or n. y.

Is ontable(c) true now? y or n. n.

6 All code needed to run this blocks world example is available, on request, from the author.
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Performing moveToTable(c).
Is clear(b) true now? y or n. n.
Performing moveToTable(d).

Final situation: [senseClear(a), senseOnTable(a), senseClear(b), senseClear(c),
senseOnTable(c), moveToTable(c), senseClear(b), moveToTable(d)]

Notice how smart the program is: after learning that a is clear and need not be
moved, and after moving c to the table and learning that b is still not clear, it
figures that d must therefore be on b and that b must be on the table, so it simply
moves d.

9. DISCUSSION

The concept of knowledge-based programming was first introduced in [Halpern and
Fagin 1989]. Chapter 7 of [Fagin et al. 1995] contains an extensive discussion, with
specific reference to the specification of communication protocols. Knowledge-based
programs play a prominent role in the literature on agent programming; see, for
example, [Shoham 1993].

The closed-world assumption on knowledge is also made in [de Giacomo et al.
1996], where they reduce the entailment problem for knowledge to entailment of
knowledge-free sentences. Their work differs from ours in two essential ways: theirs
is an epistemic description logic, and their epistemic modality is for the purposes
of planning, not knowledge-based programming.

This paper is a close relative of [Pirri and Finzi 1999]. There, Pirri and Finzi give
a mechanism for on-line execution of action sequences, with sense actions. Their
concept of sense actions and their outcomes is more sophisticated than ours, partly
because they allow for perceptions that may conflict with an agent’s theory of the
world, but in one special case—the so-called safe action sequences—their treatment
of a sense actions outcome is the same as ours: update the initial database with the
regression of this outcome. Their concept of safety also corresponds closely to our
notion of guarded sense actions. The basic differences between us is that our action
theories are formulated with knowledge, while theirs are not, and we are interested
in the on-line execution of programs, not just action sequences. Nevertheless, it
seems that one way of viewing (some of) the results of this paper is as a specifica-
tion of agent behaviours in terms of knowledge and the closed-world assumption,
for which the Pirri-Finzi account is a provably correct implementation. But this
possibility raises so many issues, they are best dealt with in future work.

10. POSTSCRIPT

It is particularly gratifying to be able to provide this paper in honour of Bob Kowal-
ski’s 60th birthday because he has long been an advocate of metalevel reasoning,
especially for reasoning about modalities. So although Bob has not been a great fan
of the situation calculus,” I expect he would approve of my reduction to provability

"But who knows, perhaps he has had a change of heart recently; turning 60 does have certain
mellowing effects.
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of the knowledge modality. I do hope so, because this is my birthday gift to him,
and there is no exchange policy where it came from.
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