
Specifying Event Logics for Active Databases

Iluju Kiringa
Department of Computer Science

University of Toronto, Toronto, Canada
kiringai@cs.toronto.edu

Abstract

Active databases are usually centered around the notion of Event-Condition-Action
(ECA) rules. An ECA rule’s action is executed upon detection of an event whenever the
rule’s condition is true. Events are traditionally described using an event algebra. Virtu-
ally every proposed active database management system (ADBMS) brings about a differ-
ent event algebra. This makes it very difficult to analyze these proposals in a uniform way
by spelling out what they may have in common, or how they may differ. Typically, logic
might act as a framework for dealing with these issues. This paper treats events as (some-
what constrained) formulas of the situation calculus, a (second order) logic for reasoning
about actions in general, and database updates and transactions in particular. We provide
a framework for devising the semantics of complex events in this logic. Such semantics,
formulated as theories of a special kind, are used for reasoning about the occurrence and
consumption modes, which are an important dimension of events.

1 Introduction

An ADBMS captures the (re)active behavior of application domains by offering the possibility
of automatic actions in response to relevant happenings called events. A reactive behavior
involves an association of events with actions that should be performed automatically by the
system once these events occur; it also involves a way of detecting the occurrences of events;
it finally involves a specification of how the system should perform the actions associated with
the events that may have occurred.

To be an ADBMS, a DBMS should necessarily support mechanisms for defining and man-
aging ECA-rules by providing syntactic means for defining events, conditions, and actions;
and it should also have a well-defined execution model capable of detecting event occurrences,
evaluating conditions, and executing actions, having a well-defined execution semantics, and
incorporating some user defined or predefined mechanism for resolving conflicts among rules
whose events have occurred (triggered rules). An ADBMS is a DBMS extended with at least
the mandatory dimensions of active behavior ([10]). So an ADBMS has two main compo-
nents: a reactive model, also considered as a knowledge model ([10]), for defining events and
associating them with actions; and an execution model for monitoring events and reacting to
detected events.

The knowledge model is expressed in ECA-rules. These have three parts: event, condition,
and action. Using an ADBMS rule language, one syntactically specifies the desired knowledge
model of a database. Each of the parts of a rule is specified using a specific language: an event
language for events, a condition language for conditions, and an action language for actions.

Events are traditionally described using an event algebra ([16]). Virtually every ADBMS
brings about a different event algebra. This makes it very difficult to analyze these proposals in

1

a uniform way by spelling out what they may have in common, or how they may differ. Logic
might act as a framework for dealing with these issues. However, which logic is suited for such
a task? Since database events occur in a domain whose dynamics is the result of the execution
of actions, it seems natural to pick a logic for reasoning about actions for the task of capturing
event algebras. In this paper, we argue and show that the situation calculus ([9],[12]) can act
as such a logic. With such a logic in hand, one may tackle the issue of comparing two given
event algebras by first capturing them using theories of actions of a suitable form. If one has a
particularly desirable property that both algebras have to fulfill, then one has to formulate it as
a sentence of the situation calculus. Now, one may check, for example, whether this sentence
is entailed by the theories of actions capturing the two algebras. In this way, one knows that
both algebras could be chosen for one’s purposes. To give an example of the usefulness of our
approach, we will, among other things, find out how difficult it can be to establish whether two
or more events are the same.

We treat complex events as (somewhat constrained) formulas of the situation calculus, a
(second order) logic for reasoning about actions in general, and database updates and trans-
actions in particular. We provide a framework for devising the semantics of complex events
in this logic. Such semantics, formulated as theories of a special kind, are used for reason-
ing about the occurrence and consumption modes, an important dimension of events. In this
setting, we define event detection, and find out that this task is formally identical to posing a
situation calculus query against a background theory representing the active database domain.
As such, event detection amounts to establishing a logical entailment of the posed query from
the background theory.

2 Situation Calculus

The situation calculus is a many-sorted second order language with equality specifically de-
signed for representing dynamically changing worlds. We consider three sorts for the follow-
ing:

Actions: These are first order terms consisting of a ��������� action function symbol. In mod-
eling ADBMS, they typically will correspond to database updates or transactional actions.1

Situations: These are first order terms denoting a sequence of actions. These sequences are
represented using a binary function symbol 	�
 ; 	�
��������� denotes the sequence resulting from
adding the action � to the sequence � . The special constant ��� denotes the initial situation,
namely the empty action sequence ��� . In modeling ADBMS, situations will correspond to
database logs which are sequences of primitive database actions.

Objects: These constitute a catch-all sort representing everythingelse depending on the database
domain of application.

The language also includes a finite number of predicates called fluents, which represent the
database relations and whose truth values vary from situation to situation. Fluents are denoted
by predicate symbols with last argument a situation term. For any fluent ������ � ��� , we shall
have database update actions � ! � ��" ��# ���� � # � and � 	�"�$�" # "����� � # � with the obvious meaning;
the argument # denotes the transaction that issues the update action.

Finally, the language includes special predicates %&
���� , and ' ; %&
(����� � � ��� means that the
action � is possible in the situation � , and �)'*��+ states that the situation ��+ is reachable from
� by performing some sequence of actions. In ADBMS terms, �,'-��+ means that � is a proper
sublog of the log � + . The logical symbols of the language are . and / . Other logical symbols
are introduced as abbreviations in the usual way.

1Transactional actions are, e.g., 02143�576 , 8:9<;=;>57? , @A9 BCBCDFE<G4H , etc.

2

A database domain is axiomatized in the situation calculus with axioms which describe
how and under what conditions the domain is changing or not changing as a result of perform-
ing actions. Such axioms are called basic action theory in [12] and have been extended to
relational theories in [7].2 The later comprise the following: domain independent founda-
tional axioms for situations; integrity constraint axioms; action precondition axioms, one for
each database update, and one for each transactional action, stating the conditions of change;
successor state axioms, one for each fluent, stating how change occurs; dependency axioms,
stating how database transactions interact with each other; unique names axioms for action
terms; and axioms describing the initial situation. Finally, by convention, a free variable will
always be implicitly bound by a prenex universal quantifier.

Example 1 Consider a stock trading database ([14]), whose schema has the following rela-
tions: � � !��<"�� � #
���� ! 	 ��� � !��<" � # !�� " � #4����� � ����� , � #
������ � #
���� !F	 ��� � !��<" �	�<$
���! ��
 � � !��<" � # ����� � � ��� ,
and ��� � #
�� " � ���� � # !F	 ��� � $ ��� �<" � � #
���� ! 	 � # ����� � � ��� , which are relational fluents. The expla-
nation of the attributes is as follows: � #
���� !F	 is the identification number of a stock, � � !��<" the
current price of a stock, # !�� " the pricing time, �<$�
���! ��
 � � !��<" the closing price of the previous
day, ��� � # !F	 the identification number of a customer, � � $ ��� �<" the balance of a customer, and#4�(��� � is a transaction identifier. �

The database domain described in Example 1 can be axiomatized as the following rela-
tional theory.3 We may enforce any set of tractable functional dependencies such as primary
key constraints; e.g.,

� #
�������� # !F	 ��� � !��<" ���<$
���% � � ����� � #
������ � # ! 	 ��� � !��<" + �	�<$�
���% � + � ������� ��� � � + �	�<$�
(��% ��� �<$�
(��% � +��
and we can verify the integrity constraint

��� � #
�� " � ���� � # ! 	 �	� � $4��� #
���� !F	 � ������� � $�� �
at the end of transactions.

Unique name axioms are given as in basic action theories. A sample initial database axiom
is:

� � !��<"���� ! 	 ��� � !��<" � # !�� " � #4�(��� � ��� � �"!�� !F	 � �"#%$&�'� �(�*)�+ �,�-� #"�.+ �,� + �/�10�2�%(354
� !F	 � �"#&6%�'� �(�*)�+/+ �-� #"�.+ �,� + �/�10/7/8�394
� !F	 � �"#;:"�'� �(�*)/< �=� #"�.+ �/� + �/�10 + %(3?>

The following is the action precondition axiom for the update � � !��<" ! � ��" ��# :
%&
������@� � !��<" ! � ��" ��# � � #
���� !F	 ��� � !��<" � # !�� " � # �<� ���&! . ��/ # + �� � !��<"���� #
���� !F	 ��� � !��<" � # !�� " � # + � �����A,B ��	�
�@� � !��<" ! � ��" ��# ��� #
���� !F	 ��� � !��<" � # !�� " � # �<� ��� ��� � � � � ! ��
 � # ������>
This says that the database update � � !��<" ! � ��" ��# is possible in situation � iff the tuple to be
inserted is not already in the appropriate relation, the integrity constraints

A/B
are enforced in

the resulting situation, and of course the transaction executing the update is running. Similar

2In fact, relational theories were first used in [11], where, however, they did not capture the dynamics of
database domains.

3We omit precondition axioms for transactional actions and the dependency axioms; they play no role in the
sequel of this paper. Furthermore, we assume classical flat transactions as the underlying transaction mechanism
([6]).

3

axioms are given for � #
���� ! � ��" ��# , � #
���� 	�"�$�" # " , ��� � #
�� " � ! � ��" ��# , and ��� � #
�� " � 	�"�$�" # " .
The successor state axiom for the fluent � � !��<" is:

� � !��<"�� � #
���� ! 	 ��� � !��<" � # !�� " � # � 	�
 � � � ��� �;!� � ��/ # $ ��� �1� � � !��<" ! � ��" ��# ��� #
���� !F	 ��� � !��<" � # $ � # !�� "��;4
� / # 6 �� � !��<"���� #
���� !F	 ��� � !��<" � # !�� " � # 6 � ���&�
. � / # : � �1� � � !��<" 	�"�$�" # "���� #
���� ! 	 ��� � !��<" � # : � # !�� "�� �;� . ��/ # + � � ���
�$�$� � ����� # + � �,4
� / # + �<� �(���
�$�$� � ����� # + ��� � "�� #
 � "��,"
 ! � �@� � !��<" �(��� #
���� !F	 ��� � !��<" � # !�� "��<� # + � ��� ��� >

This intuitively means that the tuple � � #
���� !F	 ��� � !��<" � # !�� "�� is in the relation � � !��<" in the sit-
uation 	�
� � ����� , which results from the execution of the action � in the situation � , when the
action � is � � !��<" ! � ��" ��# or the tuple was already there in the situation � and was not deleted
(� is not � � !��<" 	�"�$�" # "); but when � is a rollback action, then the relation � � !��<" is reset to the
value it had at the beginning of the transaction that modified it. Reseting values of fluents in
that way is captured by � "�� #
 � "���"
 ! � ������� � # ����� which means that � gets the value it had at
the beginning of transaction # for the arguments �� . Successor state axioms for fluents � #
����
and ��� � #
�� " � are similar.

Let � be a relational theory for some domain, as described above, and let � ����� be a situ-
ation calculus formula – the query – with one free situation variable � . Moreover, let the log
� � 	�
���
	 � 	�
����	�;$ ���������	�
��� $<� � �<��������� � be a ground situation term, that is, one that men-
tions no free variables. We define the querying problem in the situationcalculus as the problem
of determining whether ��� � � ��� � . The answer to � relative to � is “yes” iff ��� � � � ����>
The answer is “no” iff ��� � .�� ��� ��> Let � denote the relational theory of Example 1. Then
the following is a sample query:

��� � ��� � #
�� " � � �&��� �)�+ �/�/�/�/� � �%# + � # � 	�
���� � #
�� " � ! � ��" ��# � �&��� �)�+ �/�/�/�,�� � # + � #=�<�
	�
�@� � !��<" ! � ��" ��# � �"# $ �)�+ �/� � + �/� + �,��0,2�%(3 � � � �<�

which is the question whether the theory � logically entails the fact that customer �&��� has a
balance of)�+ �/�,�/�/� and stocks of �"# + in the situation following the execution of the updates
� � !��<" ! � ��" ��# ��� # $ �)�+ �/�� + �/� + ���10/2�%(3 � and ��� � #
�� " � ! � ��" ��# � �&��� �)�+ �/�/�/�,�� �%# + � #=� in
this order.

In [8], GOLOG, a situation calculus-based programming language, is introduced for defin-
ing complex actions in terms of a set of primitive actions axiomatized as basic action theories.
In [6, 7], relational theories are used as background axioms. Among other constructs — mainly
the standard control structures of most Algol-like languages —, GOLOG has test actions of the
form ��� , i.e., test the truth value of expression � in the current situation. Thus, given an actual
situation � , a GOLOG interpreter will in fact pose a situation calculus query �2����� to test the
truth value of � in � . At the GOLOG language level, � is a situation suppressed formula, that
is, one in which the situation arguments of all fluents have been removed.

3 Specifying the Reactive Model

3.1 ECA-Rules

An ECA rule is a construct of the following form:
� # 0 � 0�� 0�� ���� ��� ������ � �*> (1)

In this construct, # specifies the transaction that fires the rule, � specifies the event that trig-
gers the rule, and � is a constant giving the rule’s identification number (or name). A rule

4

� # ����� � 0��=� 	 � # " � #
����� 0�� � !��<" ! � ��" ��# "�	 0
��/���� # !�� " ��� � $4�� � !���" + �<� � � !��<" ! � ��" ��# "�	 ��� ! 	 ��� � !��<" � # !�� "�� �
��� � #
�� " � ����	� � $4��� !F	�� � � #
������ � ! 	 ��� � !��<" + ���<$�
�� � � � �

�
� #
���� ! � ��" ��# � � !F	 ��� � !��<" ����$�
�� � � � �

� # ����� � 0 �1� � + �/� ��� ��� "��*0�� � !��<" ! � ��" ��# "�	 0
��/ � "�� � � !��<" � # !�� " ��� � $4�� � � �<$
�� � � �<� � � !��<" ! � ��" ��# "�	 ��� ! 	 � � "�� � � !��<" � # !�� "��;�
��� � #
�� " � ����	� � $4��� !F	�� � � #
������ � ! 	 ��� � ���<$
�� � � �&� � "�� � � !��<" � < ��� �<$�
�� � � ���/���

�
��� � ���� � !F	 � + �,� ���

Figure 1: Rules for updating stocks and buying shares

is triggered if the event specified in its event part occurs. The relationship between the event
occurrence and the triggering of a rule is dictated by consumption modes, which determine
when an event that occurred will cease to be considered as having occurred. In its simplest
form, the semantics of event consumption is that a rule is triggered if the event specified in its
event part occurred since the beginning of the open transaction in which that event part is eval-
uated. Events are one of the predicates � ! � ��" ��# "�	 � � � # � ��� and � 	�"�$�" # "�	 � � � # ����� , called event
fluents, or a combination thereof using logical connectives. The � part specifies the rule’s con-
dition; it mentions predicates � ! � ��" ��# "�	 � � ��� � # � ��� and � 	�"�$�" # "�	 � � ��� � # ����� called transition
fluents, which denote the transition tables ([14]) corresponding to insertions into and deletions
from the relation � .4 In (1), arguments # , � , and � are suppressed from all the fluents; the two
first ones are restored when (1) is translated to a GOLOG program, and � is restored at run
time. Finally, � gives a GOLOG program which will be executed upon the triggering of the
rule once the specified condition holds. Actions also may mention transition fluents. Notice
that �� are free variables mentioned by � and contain all the free variables �� mentioned by � .

Example 2 Consider the following active behavior for Example 1. Each customer’s stock is
updated whenever new prices are notified. When current prices are being updated, the closing
price is also updated if the current notification is the last of the day; moreover, suitable trade
actions are initiated if some conditions become true of the stock prices, under the constraint
that balances cannot drop below a certain amount of money. Two rules for this active behavior
are shown in Figure 1. �

In what follows, it is appropriate to define what counts as a term or a formula whose rule
and transaction arguments have been either suppressed or restored. we introduce the concepts
of rule id and transaction id suppressed terms and formulas, and rule id and transaction id
restored terms and formulas, respectively.

Definition 1 The rid and tid suppressed-terms (rts-terms) and formulas (rts-formulas)are terms
/ formulas in which the rid and tid arguments of fluents have been removed.

4Transition tables stores the tuples inserted into or deleted from relations.

5

Definition 2 The rid and tid restored-terms (rtr-terms) and formulas (rtr-formulas) are terms
/ formulas in which previously removed rid and tid arguments of fluents have been restored.
Whenever # and � are rts-term and rts-formula, respectively, and � !F	 and # ! 	 are rule and
transaction identifiers, respectively, we use the notation # � � ! 	 � # ! 	�� and �:� � ! 	 � # !F	 � to denote
the corresponding rtr-term and rtr-formula, respectively.

With reference to the syntax of an ECA rule (see (1)), the notation ������ �<� � � # � means the
result of restoring the arguments � and # to all event fluents mentioned by � , and � ���� �<� � � # �
means the result of restoring the arguments � and # to all transition fluents mentioned by � .
For example, if � is the complex event

� � !��<" ! � ��" ��# "�	(� ��� � #
�� " � ! � ��" ��# "�	 ,

then � � � � # � is

� � !��<" ! � ��" ��# "�	 � � � # �;� ��� � #
�� " � ! � ��" ��# "�	 � � � # � .

3.2 Transition Fluents and Neteffect Policy

To characterize the notionsof transitiontables and events, we introduce the fluent �<
 � ��!F	�" � "�	 � � � # � ���
which intuitively means that the rule � can be considered for execution in situation � with re-
spect to the transaction # . The following gives an abbreviation for �<
 � ��!F	�" � "�	 � � � # ����� :

�<
 � ��!F	�" � "�	 � � � # ����� ����� ��/ # + � > � � � � ! ��
 � # + �����;� ��� �<"�� #
 � � # + � # � ����> (2)

Intuitively, this means that, as long as an ancestor of # is running, any rule � may be considered
for execution. In actual systems this concept is more sophisticated than this scheme.5

For each database fluent ������ � # ����� , we introduce the transitionfluents � ! � ��" ��# "�	 � � ��� � # � ���
and � 	�"�$�" # "�	 � � ��� � # � ��� . The following successor state axioms characterizes them:

� ! � ��" ��# "�	 � � ��� � # ��	�
� � � ��� �&!*�<
 � ��! 	�" � "�	 � � � # � ����� � / # + � �'� � ! � ��" ��# ���� � # + � � 4
� ! � ��" ��# "�	 � � ��� � # � ��� � . �'� � 	�"�$�" # "����� � # � > (3)

� 	�"�$�" # "�	 � � ��� � # � 	�
� � � ��� �&!*�<
 � ��!F	�" � "�	 � � � # ������� � / # + � � � � 	�"�$�" # "����� � # + � �,4
� 	�"�$�" # "�	 � � ��� � # �����;� . �'� � ! � ��" ��# ���� � # � > (4)

Axiom (3) means that a tuple �� is considered inserted in situation 	�
� � � ��� iff the internal ac-
tion � ! � ��" ��# ���� � # + � was executed in the situation � while the rule � was considered, or it was
already inserted and � is not the internal action � 	�"�$�" # "����� � # +C� ; here, # + is a transaction that
can be different than # . This captures the notion of net effects ([14]) of a sequence of actions.
The net effects are policies for accumulating only changes that really affect the database, thus
ignoring transient changes; in this case, if a record is deleted after being inserted, this amounts
to nothing having happened. Further net effect policies can be captured in this axiom, but we
leave this topic out of this paper.

3.3 Primitive and Complex Event Fluents

Events that trigger ECA rules are generally associated with the data manipulation language
of the underlying database. In the situation calculus, for each database fluent ������ � # � ��� , we
introduce the primitive event fluents � ! � ��" ��# "�	 � � � # ����� and � 	�"�$�" # "�	 � � � # � ��� .

5For example, in Starburst ([14]), � will be considered in the future course of actions only from the time point
where it last stopped being considered.

6

The primitive event fluent � ! � ��" ��# "�	 � � � # ����� corresponding to an insertion into the rela-
tion � has the following successor state axiom:

� ! � ��" ��# "�	 � � � # ��	�
� � � ��� �;! ��/ # + � �1� � ! � ��" ��# ���� � # + �&� �<
 � ��! 	�" � "�	 � � � # � ����4
� ! � ��" ��# "�	 � � � # � ��� > (5)

The primitive event fluent � 	�"�$�" # "�	 � � � # ����� corresponding to a deletion from the relation �
has a similar successor state axiom:

� 	�"�$�" # "�	 � � � # ��	�
� � � ��� ��! ��/ # + � �1� � 	�"�$�" # "����� � # + �;� �<
 � ��!F	�" � "�	 � � � # ������4
� 	�"�$�" # "�	 � � � # � ��� > (6)

Definition 3 (Primitive Event Occurrence) A primitive event " occurs in situation � with
respect to a rule � and a transaction # iff ��� � " � � � # � � � . Here � is a relational theory incor-
porating the successor state axioms for the primitive event fluents.

So, on this definition, an event occurrence (or, equivalently, event detection) is a situation cal-
culus query in the sense of Section 2. Following [2], we call this an event query.

As stated earlier, complex events are usually built from simpler, and ultimately, the prim-
itive ones using some event algebra ([2], [16]). Using logical means, we now specify the se-
mantics of complex events that accounts for the active dimension of consumption mode. This
development will ultimately lead to a logic for events, instead of an algebra.

That complex events are built from simpler ones is just one of the intuitive assumptions
that one can make about events. In [16], Zimmer and Unland make five basic assumptions
about events, which we adopt in the context of the situation calculus as follows:

– Events are interpreted over a set of situations (logs).
– Primitive events are detected at situations, in the order at which they occurred.
– Complex events are built from primitive ones (components) using logical connectives, and
many complex events can independently be built from the same set of simpler ones.
– The situation at which a complex event occurs is that situation at which the very last (“last”
in the sense of the ordering of situation mentioned above) of its components occurs.
– Many events may occur at the same situation, that is, simultaneously.

In order to build complex events, we use the usual logical connectives and symbols � , 4 ,
. , � , as well as the ordering predicate ' . These logical symbols and predicates will be used
to introduce complex events in the form of abbreviations. The following fluents express some
basic constructs for building complex events: ��"�� "�� � � � # � " $ � " 6 ����� , ��!�� � $ # "�� � � � # ��" $ � " 6 ����� ,
�<
 ��� "�� � � � # � " $ � " 6�� ��� , 	�!F� � "�� � � � # ��"�$ ��" 6�� ��� , and � "
 "�� � � � # � " � ��� . Table 1 gives the infor-
mal semantics of these fluents.

In the absence of consumption modes, the formal situation calculus based-semantics of
complex events in terms of simpler ones is as follows:

� "
 "�� � � � # � " � ��� ����� ��/ � + � .2" � � + � # ����� � (7)

��"�� "�� � � � # � " $ � " 6 ����� � ��� ��/ � + � " 6 � � + � # � � � � ��/ � + + ��� + ��> � + '-� � " $ � � + + � # ��� + �4� (8)

��!�� � $ # "�� � � � # � " $ ��" 6�� ��� ��� � ��/ � + � " $�� � + � # � � � � ��/ � + + � " 6�� � + + � # ����� � (9)

�<
 ��� "�� � � � # ��" $ ��" 6 � ��� � ��� ��/ � $ � ��"�� "�� � � $ � # � " $ � " 6 �����&4
��/ � 6�� ��"�� "�� � � 6�� # � " 6 � "�$<� ���&4 ��/ � : � ��!�� � $ # "�� � � : � # ��"�$ ��" 6������<� (10)

	�!F� � "�� � � � # � " $ � " 6�� ��� ����� ��/ � + � "�$�� � + � # ����� 4 ��/ � + + � " 6�� � + + � # � ��� > (11)

Definition 4 (Complex Event Occurrence) A complex event " occurs in situation � with re-
spect to a rule � and a transaction # iff � � � " � � � # � � � . Here � is a relational theory incorpo-
rating the abbreviations above for the complex event fluents.

7

Fluent Informal semantics
��"�� "�� � � � # � " $ � " 6�� ��� event " $ occurs before event " 6 in �

��!�� � $ # "�� � � � # � " $ � " 6 � ��� events " $ and " 6 occur simultaneously in �
�<
 ��� "�� � � � # � " $ � " 6������ events " $ and " 6 occur together in any order in �
	�!F� � "�� � � � # ��"�$ ��" 6�� ��� either event " $ or event " 6 occurs in �

� "
 "�� � � � # � " ����� event " does not occur in �
Table 1: Informal semantics of basic complex events

Following [16], we emphasize the following good language design principles with respect to
complex events of any logic for events: minimality, i.e., the logic must provide a very small
minimal core of unambiguous constructs; symmetry, i.e., the constructs must semantically be
context free; orthogonality, i.e., the core language must be expressive enough.

From the basic constructs (7)–(11) above, the set
� ��"�� "�� � � � # � " $ � " 6 � ���<� " $ ���������" 	 � is the

minimal core from which all the others complex events are built, where the "��4� ! � + �������� � ,
are primitive event fluents. Any other construct not belonging to that core must satisfy the
good language design principles of symmetry and orthogonality listed above.

3.4 Event Fluents and Consumption Modes

Once we have specified a way of building a complex event " from simpler ones, we still have
to specify which occurrences of the component of " must be selected in order for " to occur
(event occurrence selection), and what to do with those occurrences once they have been used
in the occurrence of " (occurrence consumption). Consumption modes are used to determine
the event occurrence selection and consumption of the events.

Presumably, it suffice to assign consumptionmodes to the minimal core
� ��"�� "�� � � � # ��",$ � " 6������<�

"�$��������� " 	 � of the logic for events.
As for primitive event fluents, occurrence selection is trivial: from axioms (5) and (6) we

see clearly that the first occurrence of a primitive event fluent may trigger any considered ECA
rule. From axioms (5) and (6), we also see that a primitive event fluent remains unconsumed
for any later considered rule. So this way we achieve a no-consumption scope. To achieve a
global consumption scope, we must change (5) and (6) respectively to

� ! � ��" ��# "�	 � � � # � 	�
 � � ����� �;! ��/ # + � � � � ! � ��" ��# ���� � # + � ���<
 � ��! 	�" � "�	 � � � # � ���<� (12)

and

� 	�"�$�" # "�	 � � � # � 	�
 � � � ��� �;! ��/ # + � �%� � 	�"�$�" # "����� � # + � ���<
 � ��! 	�" � "�	 � � � # � ��� > (13)

A particular consumption mode is imposed upon the sequence fluent ��"�� "�� � � � # ��"/$ ��" 6�� ���
by defining a conjunct

����� � # ������ ��� such that

��"�� "�� � � � # � " $ � " 6������ ����� ��/2���� ���	��
 � # ���� � ���;� ����� � # ������ ���<� (14)

where
���	��
 � # ���� ����� is a situationcalculus formula specifying the semantics of ��"�� "�� � � � # � ",$ ��" 6�� ���

(i.e, the right-hand side of (8));
����� � # ���� ����� is a situation calculus formula that specifies the

consumption mode used.

8

If � is a distinguished fragment of the situation calculus such that
� ��� � # ���� ��������� , then

this induces the consumption mode class
B 3�� . In general, � can be any fragment of the sit-

uation calculus. Of course, formulas
����� � # ���� ����� used in practice must belong to logics �

that enjoy particularly desirable properties (e.g., tractability) with respect to specific problems
such as the equivalence of two given complex events ([2]).

To deal with consumption modes for sequences, we introduce further terminology adapted
from [16]. Suppose " � ��"�� "�� � � � # � " $ � " 6������ ; then " $ is called the initiator and "�6 the ter-
minator of " . An component " + of a sequence " is said to be consumed iff it no longer can
contribute to the detection of " .

By virtue of the Zimmer-Unland assumptions about events, a sequence ��"�� "�� � � � # � " $ � " 6 � ���
occurs when its terminator " 6 occurs, provided that its initiator occurred according to a given
consumption mode.

Some possible consumption modes for event sequences are6:

First: Selects the oldest occurrence of the initiator, after which this occurrence is consumed.
Consumed Last: Selects the most recent occurrence of the initiator, after which this occur-
rence is consumed.
Non-Consumed Last: Selects the most recent occurrence of the initiator, which remains un-
consumed as long as there is no occurrence of the initiator.
Cumulative: Selects all occurrences of the initiator up to the situation where the terminator
occurs, after which all these occurrences of the initiator are consumed.
FIFO: Selects the earliest occurrence of the initiator that has not yet been consumed, after
which this occurrence is consumed.
LIFO: Selects the latest occurrence of the initiator that has not yet been consumed, after which
this occurrence is consumed.

Now we spell out details of these consumption modes.

First. Take
����� � # ���� � ��� in (14) as

� � ���<� > � + '-��� '-� � � ��/ � $ � " $ � � $ � # ����� � 4 . ��/ � 6�� " 6�� � 6�� # � ��� � ��> (15)

So to detect the sequence under this mode, we have to establish the entailment

��� � � / � + � " 6 � � + � # � ���/� ��/� + � � + + �<� � + '-� � " $ � � + + � # ��� + � �
� � � � ��> � + ' � � '-�'�*� ��/ � $ � " $ � � $<� # ��� � � 4 . ��/ � 6<� " 6�� � 6�� # � � � � � � > (16)

Consumed Last. We express this by taking
����� � # ���� � ��� in (14) as

� � � � ��> � + '-� � ' � � . � / � $ � " $ � � $ � # ��� � � � . ��/ � 6<� " 6�� � 6�� # � � � � > (17)

Therefore, detecting the sequence under this mode amounts to establishing the entailment

��� � ��/ � + � " 6�� � + � # ����� � ��/� + � � + + � � � + '-� � "�$�� � + + � # � � + � �
� � � � � > � + '-� � '-�'� . ��/ � $ � " $ � � $ � # � � � ��� . ��/ � 6 � " 6 � � 6 � # ��� � �7� > (18)

Non-Consumed Last. We express this by taking
� ��� � # ���� � ��� in (14) as

� � � � ��> � + '-� � '-� � . ��/ � $ � " $ � � $<� # ��� � � > (19)

So to detect the sequence under this mode, we have to establish the entailment

��� � ��/ � + � " 6�� � + � # � � �,� � /� + � � + + �<� � + ' � � " $�� � + + � # � � + � �
� � ���<��> � + '-���>'-�'� . ��/ � $ � "�$<� � $<� # � ���4�7� > (20)

6In [16] and [2] some of these are used, sometimes under different names.

9

Cumulative: Here, we take
����� � # ������ ��� in (14) as

� � � � ��> � + '-� � ' � � . � / � 6 � " 6 � � 6 � # ��� � � > (21)

So to detect the sequence under this mode, we have to establish the entailment

��� � � / � + � " 6�� � + � # � ��� � ��/� + � � + + �<� � + '-� � " $�� � + + � # ��� + � �
� � � � ��> � + ' � � '-�'� . ��/ � 6<� " 6�� � 6�� # � � � �7� > (22)

FIFO: Here,
����� � # ���������� in (14) is

� � � � � � � � '-�'� . � ��/ � $ � " $ � � $ � # � � � � � ��"�� "�� � � � # � " $ � " 6 � � � � � � �
� � � � � � � � '-� + � � ��/ � $ � " $ � � $<� # ��� � � �*��/� � � � � � � ' � � ��"�� "�� � � � # ��"�$ ��" 6�� � � � � �7� > (23)

So to detect the sequence under this mode, we must establish the entailment

��� � � / � + � " 6�� � + � # � ��� � ��/� + � � + + �<� � + '-� � " $�� � + + � # ��� + � �
� � ���<�<� ���>'-� � . ��"�$<� � � # � ��� � � ��"�� "�� � � � # ��"�$ � " 6�� ��� � � �,�
� � � � �<� � � '-� + � � ��/ � $ � "�$�� � $ � # � � � � �*��/� � � � � � � '-� � ��"�� "�� � � � # � " $ � " 6�� � � � � �7�7� >(24)

LIFO: Here,
����� � # ���� � ��� in (14) is

� � � � �<� � � '-� � . � ��/ � $ � " $�� � $<� # � � � � � ��"�� "�� � � � # ��"�$ ��" 6�� � � � � � �
� � � � �<� � + ' � � '-�'� � � / � $ � " $ � � $ � # � � � � �*� /� � � � � � � '-� � ��"�� "�� � � � # � " $ � " 6 ��� � � � �7� > (25)

So to detect the sequence under this mode, we must establish the entailment

��� � ��/ � + � " 6�� � + � # ����� � ��/� + � � + + � � � + '-� � "�$�� � + + � # � � + � �
� � � � �<� � � '-�'� . ��" $ � � � # ��� � ��� ��"�� "�� � � � # � " $ � " 6���� � � � � �
� � � � �<� � + '-� � ' � � � ��/ � $ � "�$<� � $ � # � � � � � ��/� � � � � � � '-� � ��"�� "�� � � � # ��"�$ � " 6���� � � � �7� � >(26)

For the purpose of characterizing (some of) the consumption modes, the set of operators
of first order past temporal logic can be introduced using a set of appropriate abbreviations as
follows ([1]):

Definition 5 (First order past temporal logic)

� � "���!F
�� ��$ � � �:����� ����� � /� + ����/ � ��> � � 	�
� � � � + �&� �2��� + �<�
� � � # � �:����� ����� ��/� + ��> � � � � + '-� � �2��� + �<�
� $ � ��� ��� � ����� � ��� ��/� + � > � � � � + '-�'� �2��� + �<�
��! � �<"�� �:���>� ��� ����� ��/� + � � � � � � + '-� ���&��� + ��� � � � + + ��> � + ' � + + � � � � � � + � � >

First order past temporal formulas expressed in the situation calculus are formulas that may
include the logical connectives . , � , 4 and � , quantification over individuals of sort
�� � " � # � ,
and the predicates abbreviated above. In the abbreviations above, � and � are first order past
temporal formulas.

In the context of the situation calculus, the whole development above leads to the concept
of an event logic which we now formally express as a definition.

10

Definition 6 (Event Logic) An event logic is a triple ��� � B � � � , where � is a set of event flu-
ents,

B
is a set of event connectives, together with the predicate ' , and � is a fragment of the

situation calculus specifying the consumption mode associated with event sequences.

Once we have an event logic and a set of events, we would want to establish whether these
events are the same. This is to give an example of the usefulness of our approach. We would
also want to find out how difficult it can be to establish whether two or more events are the
same. The following definition and theorem serve this purposes.

Definition 7 (Implication and Equivalence Problems for an Event Logic) Suppose " � � � # � � �
and " + � � � # � � � are two events of a given event logic � . Then the implication and equivalence
problems for � are the problems of establishingwhether, for given � and # , � � � � � ����> " � � � #>� � ���
" + � � � #=����� , and � � � � � ��� > " � � � #=����� ! " + � � � #>� � � , respectively. Here � specifies the seman-
tics of events according to the event logic � .

Suppose that ��"�� "���� � � � # ��"�$ � " 6�� ���<� ��"�� "��
���

� � � # � " $ � " 6������ , ��"�� "����
�
� � � # � " $ � " 6����7� , and

��"�� "��
�	� �

� � � # � " $ � " 6 ���7� denote event sequence fluents with the consumption modes First,
Consumed-Last, Non-Consumed-Last, and Cumulative, whose semantics have been given above.
Then we have the following result:7

Theorem 1 Suppose � � ��� � B � � � is the event logic given by:

 � � � � ! � ��" ��# "�	 � � � # �����<��� ! � ��" ��# "�	 � � � # � ���<� ��"�� "��
� �

� � � # � " $ � " 6������<�
��!�� � $ # "�� � � � # ��"�$ � " 6������<�	�<
 � � "�� � � � # � " $ � " 6������<��	�! � � "�� � � � # � " $ � " 6������<�� "
 "�� � � � # � " ����� � ,

with
B 3 �

� ��� B�� �� � � B � 3 � ;

 B � � .��	����' � ;

 � is the past temporal fragment of the situation calculus.

Then both the implication and the equivalence problems for � are in PSPACE.

4 Active Relational Theories

An active relational language is a relational language extended in the following way: for each����� -ary fluent ������ � # � ��� , we introduce two ����� -ary transition fluents � ! � ��" ��# "�	 � � ��� � # � ���
and � 	�"�$�" # "�	 � � ��� � # � ��� , and two � -ary event fluents � ! � ��" ��# "�	 � � � # ����� and � 	�"�$�" # "�	 � � � # ����� .
Definition 8 (Active Relational Theory) A theory ����� is an active relational theory iff it
is of the form � � ��������� ��� � � � � � � where

1. � ����� is a relational theory.8

2. ��� � is the set of axioms for transition fluents.

7Let us briefly mention the proof ideas. Theorem 1 is a corollary of the fact that the complexity of propositional
temporal linear logic with operators !576�G41 and " �41�#<5C9%$'&4B)(is in PSPACE (See [13] for similar results for propo-
sitional future temporal logic) and the fact that we in fact consider a past temporal logic that restricts situations
involved in the fluents to ground situations. The proof of Theorem 2 uses standard logical rules and will be found
in a longer version of this paper.

8We assume relational theories for classical databases.

11

3. � � � is the set of axioms and definitions for simple and complex event fluents which are
expressed in a given event logic.

Assume the notations of Theorem 1 above, and suppose that ��"�� "�� ����� � � � � # � "�$ ��" 6�� ���
and ��"�� "��

�
��� � � � � # ��"�$ � " 6������ denote event sequence fluents with the consumption modes FIFO

and LIFO, respectively. Then we have the following result:

Theorem 2 Suppose � is active relational theory with global consumption scope for the prim-
itive event fluents. Then the following equivalences can be established:

1. First, Consumed-Last and Cumulative consumption modes are equivalent; i.e.,

� � � ��"�� "���� � � � # ��" $ ��" 6 � ��� iff
� � � ��"�� "��

���
� � � # � " $ � " 6 ����� iff

� � � ��"�� "��
��� �

� � � # ��"�$ ��" 6�� ����>
2. Non-Consumed-Last, LIFO, and FIFO consumption modes are equivalent; i.e.,

� � � ��"�� "�� �
�
� � � # � "�$�� " 6�� ��� iff

� � � ��"�� "�� ����� � � � � # � "�$�� " 6�� ��� iff
� � � ��"�� "��

�
� � � � � � # ��"�$ � " 6�� ����>

It is important to make clear what the equivalences above means. Intuitively, the logical
equivalence of two consumption modes 3 $ and 3 6 means that any given sequence will occur
at exactly the same situations under both 3 $ and 3 6 . This ultimately leads to the same active
behavior under both 3�$ and 3 6 .

5 Related Work

The problem of specifying complex events in active databases has been recognized not to be
trivial([3], [5], [4], [15]). Proposals for solving it can be classified in three groups. The first
group uses regular expressions and context-free grammars to specify complex events (see, e.g.,
[5]). The second group uses graph-based methods to specify them ([3], [4]). Finally, the third
group uses a logic-based approach (for good examples of this approach, see [5], [15]). Very
often, these approaches are expressible in form of an event algebra ([16]). Using a metamodel
for event algebras, Zimmer and Unland ([16]) provide a rich and systematic analysis of exist-
ing event algebras. Their metamodel, however, are not formal, contrary to the authors’ claim.
Our work, though, is most close to work reported in [2]. Here, the authors provide a logical
framework for studying expressiveness of particular event algebras and decision problems re-
lated to these algebras. We obtain some of the results of [2], using a different framework, and
we extend them on further consumption modes, especially First and Non-Consumed-Last, that
were not considered in [2].

6 Conclusion

Many avenues lead out of our work. One is to identify more fragments of the situation calculus
and study their expressiveness with respect to event logics. This meets one of the main moti-
vations behind metamodels of [16], and would ultimately lead to a logic-based comparison of
existing event algebras. A further avenue leads to studying tractable fragments which could
serve as a basis for implementating ADBMSs. Finally, implementing the active relational the-
ories is another avenue that is worth pursuing. We in fact provide implementable specifications
that would allow one to check desirable properties of interest to one’s intended system. The
logical foundations for such an endeavor are laid down in [12].

12

Acknowledgments

We thank members of the Cognitive Robotics Group at the U. of T. for helpful discussions.
Special thanks to Ray Reiter for insightful comments on what an event is. We also gratefully
mention the financial support by NSERC, IRIS (Institute for Robotics and Intelligent Systems),
and ITRC (Information Technology Research Centre of Ontario).

References
[1] M. Arenas and L. Bertossi. Hypothetical temporal queries in databases. In A. Borgida,

V. Chaudhuri, and V. Staudt, editors, Proceedings of the ACM SIGMOD/PODS 5th International
Workshop on Knowledge Representation meets Databases (KRDB’98), pages 4.1–4.8, 1998.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-10/.

[2] J. Bailey and S. Mikulás. Expressivemenss issues and decision problems for active database event
queries. In ICDT’2001, pages 69–82, 2001.

[3] S. Chakravarthy and D. Mishra. An event specification language (snoop) for active databases and
its detection. Technical Report UF-CIS-TR-91-23, University of Florida, 1991.

[4] S. Gatziu and K.R. Dittrich. Detecting composite events in active database systems using petri
nets. In Proceeding on Research Issues in Data Engineering, RIDE’94, pages 2–9, 1994.

[5] N.H. Gehani, H.V. Jagadish, and O. Shmueli. Composite event specification in active databases:
Model and implementation. In Proceedings of the 18th VLDB Conference, pages 327–338, Van-
couver, 1992.

[6] I Kiringa. Simulation of advanced transaction models using golog. In Proceedings of the 8th
Biennial Workshop on Data Bases and Programming Languages (DBPL’01), 2001.

[7] I. Kiringa. Towards a theory of advanced transaction models in the situation calculus (extended
abstract). In Proceedings of the VLDB 8th International Workshop on Knowledge Representation
Meets Databases (KRDB’01), 2001.

[8] H. Levesque, R. Reiter, Y. Lespérance, Fangzhen Lin, and R.B. Scherl. Golog: A logic program-
ming language for dynamic domains. J. of Logic Programming, Special Issue on Actions, 31(1-
3):59–83, 1997.

[9] J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University, 1963.

[10] N.W. Paton. Active Rules in Database Systems. Springer Verlag, New York, 1999.

[11] R. Reiter. Towards a logical reconstruction of relational database theory. In M. Brodie, J. My-
lopoulos, and J. Schmidt, editors, On Conceptual Modelling, pages 163–189, New-York, 1984.
Springer Verlag.

[12] R. Reiter. Knowledge in Action: Logical Foundations for Describing and Implementing Dynam-
ical Systems. MIT Press, Cambridge, 2001.

[13] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logics. Journal of
the ACM, 32:733–749, 1985.

[14] J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[15] C. Zaniolo. Active database rules with transaction-conscious stable-model semantics. In T.W.
Ling and A.O. Mendelzon, editors, Fourth International Conference on Deductive and Object-
Oriented Databases, pages 55–72, Berlin, 1995. Springer Verlag.

[16] D. Zimmer and R. Unland. On the semantics of complex events in active database managements
systems. In Proceedings of the International Conference on Data Engineering (ICDE), Sydney,
1999. Longer version at http://www.cs.uni-essen.de/dawis/publications/.

13

