Specifying Event Logics for Active Databases

lHuju Kiringa
Department of Computer Science
University of Toronto, Toronto, Canada
kiringai @s.toronto. edu

Abstract

Active databases are usually centered around the notion of Event-Condition-Action
(ECA) rules. An ECA rul€'s action is executed upon detection of an event whenever the
rule’'sconditionistrue. Events are traditionally described using an event algebra. Virtu-
ally every proposed active database management system (ADBMS) brings about a differ-
ent event algebra. Thismakesit very difficult to analyze these proposal sin auniformway
by spelling out what they may have in common, or how they may differ. Typically, logic
might act as aframework for dealing with theseissues. This paper treats eventsas (some-
what constrained) formulas of the situation calculus, a (second order) logic for reasoning
about actionsin generd, and database updates and transactionsin particular. We provide
aframework for devising the semantics of complex eventsin thislogic. Such semantics,
formulated as theories of a special kind, are used for reasoning about the occurrence and
consumption modes, which are an important dimension of events.

1 Introduction

An ADBMS capturesthe (re)active behavior of application domainsby offering the possibility
of automatic actions in response to relevant happenings called events. A reactive behavior
involves an association of events with actions that should be performed automatically by the
system once these events occur; it also involvesaway of detecting the occurrences of events;
it finally involvesa specification of how the system should perform the actionsassociated with
the events that may have occurred.

Tobean ADBMS, aDBMS should necessarily support mechanismsfor defining and man-
aging ECA-rules by providing syntactic means for defining events, conditions, and actions,
and it should al so have awel|-defined execution model capable of detecting event occurrences,
evaluating conditions, and executing actions, having awell-defined execution semantics, and
incorporating some user defined or predefined mechanism for resolving conflicts among rules
whose events have occurred (triggered rules). An ADBMSisaDBMS extended with at least
the mandatory dimensions of active behavior ([10]). So an ADBMS has two main compo-
nents. areactivemodel, also considered as aknowledge model ([10]), for defining eventsand
associating them with actions; and an execution model for monitoring events and reacting to
detected events.

Theknowledgemodel isexpressedin ECA-rules. Thesehavethreeparts: event, condition,
and action. Usingan ADBM Srulelanguage, one syntactically specifiesthedesired knowledge
model of adatabase. Each of the parts of aruleis specified using a specific language: an event
language for events, a condition language for conditions, and an action language for actions.

Events are traditionally described using an event algebra ([16]). Virtually every ADBMS
bringsabout adifferent event algebra. Thismakesit very difficult to analyzethese proposalsin

auniformway by spelling out what they may have in common, or how they may differ. Logic
might act asaframework for dealing with theseissues. However, which logicissuited for such
atask? Since database events occur in adomain whose dynamicsistheresult of the execution
of actions, it seems natural to pick alogic for reasoning about actionsfor the task of capturing
event algebras. In this paper, we argue and show that the situation calculus ([9],[12]) can act
as such alogic. With such alogic in hand, one may tackle the issue of comparing two given
event algebras by first capturing them using theories of actions of asuitableform. If onehasa
particularly desirable property that both algebras haveto fulfill, then one hasto formulateit as
a sentence of the situation calculus. Now, one may check, for example, whether this sentence
isentailed by the theories of actions capturing the two algebras. In this way, one knows that
both algebras could be chosen for one’s purposes. To give an example of the usefulness of our
approach, wewill, among other things, find out how difficult it can beto establishwhether two
or more events are the same.

We treat complex events as (somewhat constrained) formulas of the situation calculus, a
(second order) logic for reasoning about actions in general, and database updates and trans-
actionsin particular. We provide a framework for devising the semantics of complex events
in thislogic. Such semantics, formulated as theories of a special kind, are used for reason-
ing about the occurrence and consumption modes, an important dimension of events. In this
setting, we define event detection, and find out that thistask isformally identical to posing a
situation cal culus query against a background theory representing the active database domain.
As such, event detection amountsto establishingalogical entailment of the posed query from
the background theory.

2 Situation Calculus

The situation calculus is a many-sorted second order language with equality specificaly de-
signed for representing dynamically changing worlds. We consider three sorts for the follow-
ing:

Actions: These arefirst order terms consisting of an —ary action function symbol. In mod-
eling ADBMS, they typically will correspond to database updates or transactional actions.!

Situations. These are first order terms denoting a sequence of actions. These sequences are
represented using a binary function symbol de; do(«, s) denotes the sequence resulting from
adding the action « to the sequence s. The specia constant .S, denotes the initial situation,
namely the empty action sequence []. In modeling ADBMS, situations will correspond to
database | ogs which are sequences of primitive database actions.

Objects. Theseconstituteacatch-all sort representing everything el se depending on the database
domain of application.

Thelanguageal so includesafinite number of predicates call ed fluents, which represent the
database rel ations and whose truth values vary from situationto situation. Fluents are denoted
by predicate symbols with last argument a situation term. For any fluent F'(Z, s), we shall
have database update actions I'_insert(Z,t) and I’ _delete(Z,t) with the obvious meaning;
the argument ¢ denotes the transaction that issues the update action.

Finally, thelanguage includes special predicates Poss, and C; Poss(a, s) meansthat the
action a ispossiblein the situation s, and s C s’ states that the situation s’ is reachable from
s by performing some sequence of actions. InADBMSterms, s C s’ means that s isa proper
sublog of thelog s’. Thelogical symbols of the language are — and 3. Other logical symbols
are introduced as abbreviationsin the usual way.

Transactional actions are, e.q., Begin, Commit, Rollback, etc.

2

A database domain is axiomatized in the situation cal culus with axioms which describe
how and under what conditionsthe domain is changing or not changing as aresult of perform-
ing actions. Such axioms are called basic action theory in [12] and have been extended to
relational theoriesin [7].2 The later comprise the following: domain independent founda-
tional axioms for situations; integrity constraint axioms; action precondition axioms, one for
each database update, and one for each transactional action, stating the conditions of change;
successor state axioms, one for each fluent, stating how change occurs; dependency axioms,
stating how database transactions interact with each other; unique names axioms for action
terms; and axioms describing the initial situation. Finally, by convention, a free variable will
always beimplicitly bound by a prenex universal quantifier.

Examplel Consider a stock trading database ([14]), whose schema has the following rela-
tions: price(stock_id, price,time, trans, s),stock(stock_id, price, closingprice,trans, s),
and customer(cust_id, balance, stock_id, trans, s), which arerelational fluents. Theexpla-
nation of theattributesisasfollows:. stock _id istheidentificationnumber of a stock, price the
current price of a stock, time the pricing time, closingprice the closing price of the previous
day, cust _id the identification number of a customer, balance the balance of a customer, and
trans isatransactionidentifier. O

The database domain described in Example 1 can be axiomatized as the following rela-
tional theory.3 We may enforce any set of tractable functional dependencies such as primary
key congtraints; e.g.,

stock(st_id, price, closPr, s) A stock(st_id, price’, closPr', s) D pr = pr', closPr = closPr';
and we can verify the integrity constraint
customer(cust_id, bal, stock_d, s) D bal > 0
at the end of transactions.
~ Uniquenameaxiomsaregiven asinbasic actiontheories. A sampleinitial database axiom
IS

price(s_d, price, time,trans, So) =s-id = STy A pr = $100 At = 100100 : 4PM Vv
siid = STy Apr=$110 At =100100:9AM V
siid = STs Apr=9$50At=100100: 1PM.

Thefollowing is the action precondition axiom for the update price insert:

Poss(price_insert(stock_id, price, time,t),s) = =(3t')price(stock_id, price, time,t’, s) A
IC(do(priceansert(stock_id, price,time,t),s)) A running(t, s).
This says that the database update price insert is possible in situation s iff the tuple to be

inserted is not aready in the appropriate relation, the integrity constraints 7C' are enforced in
the resulting situation, and of course the transaction executing the update is running. Similar

2In fact, relational theories were first used in [11], where, however, they did not capture the dynamics of
database domains.

3We omit precondition axioms for transactional actions and the dependency axioms; they play no role in the
sequel of this paper. Furthermore, we assume classical flat transactions as the underlying transaction mechanism

(8.

axioms are given for stock_insert, stock_delete, customer insert, and customer _delete.
The successor state axiom for the fluent price is:

price(stock_id, price,time,t,do(a,s)) =
{[(3t1)(a = price_insert(stock_id, price, ty, time) V
(Tta)price(stock_id, price,time, ta, s) A
—(3t3)a = price_delete(stock_id, price, ts, time)) A =(Ft')a = Rollback(t')] Vv
(3t")[a = Rollback(t') A Restore Begin(price, (stock_id, price,time),t', s)]}.

Thisintuitively means that the tuple (stock _id, price, time) isin therelation price in the sit-
uation do(a, s), which results from the execution of the action « in the situation s, when the
action a is price_insert or the tuple was aready there in the situation s and was not deleted
(e isnot price_delete); but when a isarollback action, then the relation price isreset to the
valueit had at the beginning of the transaction that modified it. Reseting values of fluentsin
that way is captured by RestoreBegin(F, Z,t, s) which meansthat I’ getsthevalueit had at
the beginning of transaction # for the arguments #. Successor state axioms for fluents stock
and customer are similar.

Let D be arelational theory for some domain, as described above, and let)(s) be asitu-
ation calculus formula— the query — with one free situation variable s. Moreover, let the log
S = do(ay,, do(ay—1,- -, do(aq, Sp) - - +)) beaground situation term, that is, one that men-
tionsno free variables. We definethe querying problemin the situation cal culusas the problem
of determining whether D = Q(.S). The answer to) relativeto S is“yes’ iff D = Q(9).
The answer is“no” iff D = —Q(S). Let D denote the relational theory of Example 1. Then
thefollowing isasample query:

D = customer(Ray, $100000, ST'1,T, do(customer _insert(Ray, $100000, S71,7),
do(price_insert(STy,$100,100100: 4PM)))),

which is the question whether the theory D logically entailsthe fact that customer Ray has a
balance of $100000 and stocks of .57°1 in the situation following the execution of the updates
price_insert(STy,$100, 100100 : 4PM) and customer_insert(Ray,$100000, ST'1,7T) in
this order.

In[8], GOLOG, asituation cal cul us-based programming language, isintroduced for defin-
ing complex actionsin terms of aset of primitive actions axiomatized as basic action theories.
In[6, 7], relational theoriesare used as background axioms. Among other constructs— mainly
the standard control structuresof most Algol-likelanguages—, GOL OG hastest actionsof the
form ¢?, i.e., test thetruth value of expression ¢ in the current situation. Thus, given an actua
situation s, a GOLOG interpreter will in fact pose a situation calculus query ¢(s) to test the
truth vaue of ¢ in s. At the GOLOG language level, ¢ isa situation suppressed formula, that
is, onein which the situation arguments of all fluents have been removed.

3 Specifying the Reactive M odel
3.1 ECA-Rules
An ECA ruleisaconstruct of the following form:
<t:R:71:((%) = a(f)>. @y

In this construct, ¢ specifies the transaction that fires the rule, = specifies the event that trig-
gerstherule, and R is a constant giving the rule’s identification number (or name). A rule

4

<trans : Update_stocks : price_inserted :
(Fc, time, bal, price’)[price_inserted(s_id, price,time) A
customer(c, bal, s_id) A stock(s_id, price’, clos_pr)]
N
stock _insert(s_id, price, clos_pr) >

<trams : Buy_100shares : priceinserted :
(3 new_price, time, bal, pr, clos_pr)[price_inserted(s_id, new_price, time) A
customer(c, bal, s1id) A stock(s_id, pr, clos_pr) A new_price < 50 A clos_pr > 70]
N
buy(c, sid, 100) >

Figure 1: Rules for updating stocks and buying shares

istriggered if the event specified in its event part occurs. The relationship between the event
occurrence and the triggering of aruleis dictated by consumption modes, which determine
when an event that occurred will cease to be considered as having occurred. In its simplest
form, the semantics of event consumptionisthat aruleistriggered if the event specifiedinits
event part occurred sincethe beginning of the open transactioninwhich that event partiseval -
uated. Eventsareoneof thepredicates I’ _inserted(r, t, s) and I’ _deleted(r, t, s),called event
fluents, or a combination thereof using logical connectives. The(part specifiestherule'scon-
dition; it mentionspredicates F'_inserted(r, Z,t, s) and I’ deleted(r, ¥, t, s) called transition
fluents, which denotethetransition tables ([14]) correspondingto insertionsinto and deletions
fromtherelation /. In (1), agumentst, k2, and s are suppressed from all the fluents; the two
first ones are restored when (1) is trandated to a GOLOG program, and s is restored at run
time. Finaly, « givesa GOLOG program which will be executed upon the triggering of the
rule once the specified condition holds. Actions aso may mention transition fluents. Notice
that 7 are free variables mentioned by ¢ and contain all the free variables 77 mentioned by «.

Example2 Consider the following active behavior for Example 1. Each customer’sstock is
updated whenever new pricesare notified. When current prices are being updated, the closing
priceisalso updated if the current notification is the last of the day; moreover, suitabletrade
actions areinitiated if some conditions become true of the stock prices, under the constraint
that bal ances cannot drop bel ow a certain amount of money. Two rulesfor thisactive behavior
areshowninFigurel. O

In what follows, it is appropriate to define what counts as a term or aformulawhose rule
and transaction arguments have been either suppressed or restored. weintroduce the concepts
of ruleid and transaction id suppressed terms and formulas, and rule id and transaction id
restored terms and formulas, respectively.

Definition 1 Therid and tid suppressed-ter ms(rts-terms) and for mulas(rts-formulas) areterms
/ formulasin which the rid and tid arguments of fluents have been removed.

“Transition tables stores the tuplesinserted into or deleted from relations.

Definition 2 Therid and tid restored-terms (rtr-terms) and formulas(rtr-formulas) areterms
/ formulasin which previously removed rid and tid arguments of fluents have been restored.
Whenever ¢ and ¢ are rts-term and rts-formula, respectively, and rid and tid are rule and
transaction identifiers, respectively, we use the notation t[rid, tid] and ¢[rid, tid] to denote
the corresponding rtr-term and rtr-formula, respectively.

With reference to the syntax of an ECA rule (see (1)), the notation (Z)[r, | means the
result of restoring the arguments r and ¢ to all event fluents mentioned by r, and {(Z)[r, ¢]
means the result of restoring the arguments r and ¢ to all transition fluents mentioned by ¢.
For example, if 7 isthe complex event

price_inserted A customer_inserted,
then r[r,t] is

price_inserted(r,t) A customer_inserted(r,t).

3.2 Transtion Fluentsand Neteffect Policy

To characterizethenotionsof transitiontablesand events, weintroducethefluent considered(r, t, s)
which intuitively means that the rule » can be considered for execution in situation s with re-
spect to the transaction ¢. The following gives an abbreviation for considered(r,t, s):

considered(r,t,s) =q (3t').running(t', s) A ancestor(t',t, s). (2

Intuitively, thismeansthat, aslong as an ancestor of ¢ isrunning, any rule » may be considered
for execution. In actual systems this concept is more sophisticated than this scheme.®

For each databasefluent F'(Z, t, s), weintroducethetransitionfluents I’ inserted(r, Z,t, s)
and F'_deleted(r, %, t, s). The following successor state axioms characterizes them:

F_inserted(r, 7,t,do(a, s)) = considered(r,t,s) A (It')a = F_insert(F,t")] Vv
Flinserted(r, ,t,s) A ma = F_delete(Z,t). ©)

F_deleted(r, Z,t,do(a, s)) = considered(r,t,s) A (3t')a = F_delete(Z,t)] v 4
F_deleted(r, Z,t,s) A ~a = F_insert(Z,t).)
Axiom (3) means that atuple 7' is considered inserted in situation do(«, s) iff theinterna ac-
tion F_insert(Z,t") was executed in the situation s whilethe rule r was considered, or it was
aready inserted and « is not the internal action F'_delete(%,t'); here, t' is a transaction that
can be different than ¢. This captures the notion of net effects ([14]) of a sequence of actions.
The net effects are policiesfor accumulating only changes that really affect the database, thus
ignoring transient changes; inthis case, if arecord isdeleted after being inserted, thisamounts
to nothing having happened. Further net effect policies can be captured in this axiom, but we
leave thistopic out of this paper.

3.3 Primitiveand Complex Event Fluents

Events that trigger ECA rules are generally associated with the data manipulation language
of the underlying database. In the situation calculus, for each database fluent F'(7,t, s), we
introduce the primitive event fluents F'_inserted(r,t, s) and F _deleted(r,t, s).

SFor example, in Starburst ([14]), r will be considered in the future course of actions only from the time point
whereit last stopped being considered.

The primitive event fluent /' _inserted(r, t, s) corresponding to an insertion into the rela-
tion /" has the following successor state axiom:

F_inserted(r,t,do(a, s)) = (3t')a = F_insert(T,t') A considered(r,t,s)V
F_inserted(r,t,s).

Q)

The primitive event fluent F'_deleted(r,t, s) corresponding to a deletion from the relation ¥’
has asimilar successor state axiom:

F_deleted(r,t,do(a,s)) = (3t)a = F_delete(T,t') A considered(r,t, s)V
(6)
F_deleted(r,t,s).

Definition 3 (Primitive Event Occurrence) A primitive event e occurs in situation s with
respect toaruler and a transactiont iff D = e[r, t, s]. Here D isa relational theory incor-
porating the successor state axiomsfor the primitive event fluents.

So, on this definition, an event occurrence (or, equivalently, event detection) isasituation cal-
culus query in the sense of Section 2. Following [2], we call thisan event query.

As stated earlier, complex events are usually built from simpler, and ultimately, the prim-
itive ones using some event algebra ([2], [16]). Using logical means, we now specify the se-
mantics of complex events that accountsfor the active dimension of consumption mode. This
development will ultimately lead to alogic for events, instead of an algebra.

That complex events are built from simpler ones is just one of the intuitive assumptions
that one can make about events. In [16], Zimmer and Unland make five basic assumptions
about events, which we adopt in the context of the situation calculus as follows:

— Eventsare interpreted over a set of situations (logs).
— Primitive events are detected at situations, in the order at which they occurred.
— Complex events are built from primitive ones (components) using logical connectives, and
many complex events can independently be built from the same set of simpler ones.
— Thesituation at which acomplex event occursisthat situation at which the very last (“last”
in the sense of the ordering of situation mentioned above) of its components occurs.
—Many events may occur at the same situation, that is, simultaneously.

In order to build complex events, we use the usual logical connectives and symbolsA, V,
-, ¥, aswell asthe ordering predicate C. These logica symbolsand predicates will be used
to introduce complex eventsin the form of abbreviations. The following fluents express some
basic constructsfor buildingcomplex events: seq_ev(r,t, e1, €3, s), simult_ev(r,t, e1, €3, s),
conj_ev(r,t, ey, €,s), disj_ev(r,t, ey, eq,), and neg_ev(r,t, e, s). Table 1 givestheinfor-
mal semantics of these fluents.

In the absence of consumption modes, the forma situation cal culus based-semantics of
complex eventsin terms of simpler onesis asfollows:

neg_ev(r,t, e, s) =q (3r')=e[r',t, 5], (7
seq_ev(r,t,e1, eq,8) =4 (Ar')ea[r' t, 8] A (3Ir",s').s' T snelr” t,], (8)
simult_ev(r,t, e, ez, 8) =g (Ir')er[r',t, s] A (Tr")eq[r" ¢, 5], 9)
conj_ev(r,t,e1, eq,8) =qf (Ir1)seq-ev(ri,t,er,ez,s)V (10)
(Fra)seq-ev(ra, t, ea, e, 8) V (Irg)simult_ev(rs, t, eq, €z, s),
disj_ev(r,t,er,ez,8) =g (Ar)er[r',t, 8]V (3r')eq[r",t, s]. (1)

Definition 4 (Complex Event Occurrence) A complex event e occursin situation s with re-
specttoaruler and a transactiont iff D |= e[r, t, s]. Here D isarelational theory incorpo-
rating the abbreviations above for the complex event fluents.

7

Fluent Informal semantics

seq_ev(r,t, ey, €,) event e; occurs beforeevent e, in s
stmult_ev(r,t, e, ez,) events e; and e, occur simultaneously in s
conj_ev(r,t,e1,ez,5) | eventse; and ey occur together in any order in s
disj_ev(r,t, ey, e,) either event e; or event e, occursin s
neg-ev(r,t, e, s) event e does not occur in s

Table 1: Informal semantics of basic complex events

Following [16], we emphasi ze the following good |anguage design principles with respect to
complex events of any logic for events: minimality, i.e., thelogic must provide avery small
minimal core of unambiguousconstructs, symmetry, i.e., the constructs must semantically be
context free; orthogonality, i.e., the core language must be expressive enough.

From the basic constructs (7)—(11) above, theset { seq_ev(r,t, ey, €2,5), €1, -+ , €, } iSthe
minimal core from which al the others complex events are built, wherethee;,i = 1,--- , n,
are primitive event fluents. Any other construct not belonging to that core must satisfy the
good language design principles of symmetry and orthogonality listed above.

34 Event Fluentsand Consumption M odes

Once we have specified a way of building acomplex event e from simpler ones, we still have
to specify which occurrences of the component of e must be selected in order for e to occur
(event occurrence selection), and what to do with those occurrences once they have been used
in the occurrence of e (occurrence consumption). Consumption modes are used to determine
the event occurrence selection and consumption of the events.

Presumably, it sufficeto assign consumptionmodestotheminimal core{seq_ev(r,t, e, €2, s),
e1,- -+, e, Of thelogicfor events.

Asfor primitive event fluents, occurrence selectionistrivial: from axioms (5) and (6) we
see clearly that thefirst occurrence of aprimitiveevent fluent may trigger any considered ECA
rule. From axioms (5) and (6), we also see that a primitive event fluent remains unconsumed
for any later considered rule. So thisway we achieve a ho-consumption scope. To achieve a
globa consumption scope, we must change (5) and (6) respectively to

F_inserted(r,t,do(a, s)) = (3t)a=F_insert(Z,t') Aconsidered(r,t,s), (12)
and
F_deleted(r,t,do(a,s)) = (3t')a= F_delete(F,t') Aconsidered(r,t, s). (13)

A particular consumption mode isimposed upon the sequencefluent seq_ev(r, ¢, e, €3, s)
by defining aconjunct Wy (¢, 5, s) such that

seq_ev(r,t, ey, ez,5) =g (35)Wseq(t, 5,5) A Venm(t, 5,), (14)

whereV,., (¢, 5, s) isasituationcalculusformulaspecifyingthesemanticsof seq_ev(r, ¢, ey, ez, s)
(i.e, theright-hand side of (8)); Wcas(t, 5, s) isasituation calculus formula that specifiesthe
consumption mode used.

If £ isadistinguished fragment of the situation calculussuch that W (¢, S, s) € £, then
thisinduces the consumption mode class C' M. In general, £ can be any fragment of the sit-
uation calculus. Of course, formulas ¥z (2, §, s) used in practice must belong to logics £
that enjoy particularly desirable properties(e.qg., tractability) with respect to specific problems
such as the eguivalence of two given complex events ([2]).

To deal with consumption modesfor sequences, weintroducefurther terminol ogy adapted
from [16]. Supposee = seq_ev(r,t, ey, e, s); then ey is caled theinitiator and e, the ter-
minator of e. An component ¢’ of a sequence e is said to be consumed iff it no longer can
contribute to the detection of e.

By virtueof the Zimmer-Unland assumptionsabout events, asequenceseq_ev(r, t, €1, €2, s)
occurs when itsterminator e, occurs, provided that itsinitiator occurred according to agiven
consumption mode.

Some possi ble consumption modes for event sequences are®:

First: Selectsthe oldest occurrence of the initiator, after which this occurrence is consumed.
Consumed Last: Selects the most recent occurrence of the initiator, after which this occur-
rence is consumed.
Non-Consumed L ast: Selects the most recent occurrence of theinitiator, which remains un-
consumed as long as there is no occurrence of the initiator.
Cumulative: Selects all occurrences of the initiator up to the situation where the terminator
occurs, after which all these occurrences of the initiator are consumed.
FIFO: Selects the earliest occurrence of the initiator that has not yet been consumed, after
which this occurrence is consumed.
LIFO: Selectsthelatest occurrence of theinitiator that has not yet been consumed, after which
this occurrence is consumed.

Now we spell out details of these consumption modes.

First. Take Weas(t, 5, s) in (14) as

(Vs*).s' C s* C s D ((3r1)er[r1,t, s*1V = (Ire)ez[ra, t, s). (15)

So to detect the sequence under this mode, we have to establish the entail ment
D 3 er' t,s] A (3, r")[s' T sAer[r” t, 8] A

16
(Vs*).s' C s C s D ((3ry)er[r, £, 8]V ~(Iry)esfra, t, s])]. (16)

Consumed Last. We expressthisby taking Uz (%, 3, s) in (14) as
(Vs*).s' C s* C s D =(Ir)erlri, t, s*] A =(3ry)ey[ra, t, s*]. (17)

Therefore, detecting the sequence under this mode amountsto establishing the entail ment
D E@rer' t,s]A (3, r")[s' T sAer[r” 1, STA
(Vs*).s' C s C s D =(3r1)e[r, t,] A =(Ira)eara, t, s*]]. (18)
Non-Consumed L ast. We expressthis by taking oz (%, 5, 5) in (14) as
(Vs*).s' C s* C s D —(3ri)eir,t, s (19)
So to detect the sequence under this mode, we have to establish the entail ment
D EGr)ey[r' t,s]A (', r")[s' T sAe[r”,t, ST A

20
(Vs*).s' C s* C s D =(Iry)er[rs, t, s*]]. 20

8In[16] and [2] some of these are used, sometimes under different names.

9

Cumulative: Here, wetake Wy (¢, &, s) in (14) as
(Vs*).s' C s* C s D ~(3ry)ealrs, t, 5. (21)
So to detect the sequence under this mode, we have to establish the entail ment
D E3req[r' t,s]A (3", r")[s' T s Aer[r”,t, 8T A 22)
(Vs*).s' C s* C s D =(3ry)ex[ra, t, s*]].

FIFO: Here, Uras (2, S,) in(14) is
(Vs*)[s* C s D —((Fr1)er[r1,t, 87| A seq_ev(r,t,er, e2,57))] A
(Vs*)[s* T ' D [(Fr1)ei[r1,t,s*] D (Is*)s™ T s A seq-ev(r,t, ey, €2, 5)]]. 23)

So to detect the sequence under this mode, we must establish the entailment
D E3req[r' t,s]A (s, r")[s' T s Aer[r”,t, 8T A
(Vs™)[s" C s D =(eq[r,t,s"] A seq_ev(r,t, e, e9,5%))| A
(Vs*)[s* C s’ D [(Fr1)er[r1,t,s*] D (3s™)s™ C s A seq-ev(r,t, ey, 62,5**)]]].(24)

LIFO: Here, W (t, 8, s) in(14) is

(\V/S*)[S* LsO _'((Elrl)el[rh t S*] A seq_ev(r, t,eq, e, S*))] A
(Vs*)[s' C s* T s D [(r1)er[r1, t, 8] D (Fs™)s™ T s A seq-ev(r, t, ey, ea, ,9**)]].(25)

So to detect the sequence under this mode, we must establish the entailment

D E@rexr' t,s]A (3, r")[s' T sAe[r”, 1, sTA
(Vs*)[s" T s D —(eq[r,t, s*] A seq_ev(r,t,eq,e3,5™))] A
(Vs*)[s' © s* C s D [(Fr1)er[r1,t,s*] D (Is*)s™ C s A seq_ev(r,t, e, €3, s**)fﬁG)
For the purpose of characterizing (some of) the consumption modes, the set of operators

of first order past temporal logic can be introduced using a set of appropriate abbreviations as
follows ([1]):

Definition 5 (First order past temporal logic)

previously(¢, s) =4 (3s')(Fa).s = do(a, s') A ¢(s'),

past(¢,s) =g (3').50 C ' T s A ¢(s),

always(¢, s) =q¢ (3s').50 C s’ C s D ¢(s),

since(d, v, s) =q (35')[So T s’ C s AP(s') A (Vs").s' T 8" C s D ¢(s)].
First order past temporal formulas expressed in the situation cal culus are formulasthat may
includethelogical connectives—, A, vV and D, quantification over individualsof sort objects,

and the predicates abbreviated above. In the abbreviationsabove, ¢ and ¢ arefirst order past
temporal formulas.

In the context of the situation cal cul us, the whol e devel opment above leads to the concept
of an event logic which we now formally express as a definition.

10

Definition 6 (Event Logic) An event logicisatriple(F,C, L), where F isa set of event flu-
ents, C' isa set of event connectives, together with the predicate C, and £ isa fragment of the
situation cal culus specifying the consumption mode associated with event sequences.

Oncewe have an event logic and a set of events, we would want to establish whether these
events are the same. Thisisto give an example of the usefulness of our approach. We would
also want to find out how difficult it can be to establish whether two or more events are the
same. The following definition and theorem serve this purposes.

Definition 7 (Implicationand Equivalence Problemsfor an Event L ogic) Supposee][r, ¢, s]
and €'[r, t, s] are two events of a given event logic £. Then the implication and equivalence
problemsfor £ aretheproblemsof establishingwhether, for given Rand 7', D = (Vs).e[R, T, s] D
e'[R,T,sl,and D |= (Vs).e[R, T, s] = €'[R, T, s], respectively. Here D specifies the seman-
tics of events according to the event logic £.

Supposethat seq_ev™ (r,t, eq, €2, 5), seq_ev®T(r,t, 1, €9, 5), seqev™ (e, t, 1, 4, 9, and
seqev?UM(r t eq, eq, 9 denote event sequence fluents with the consumption modes First,

Consumed-L ast, Non-Consumed-L ast, and Cumul ative, whose semanti cs have been given above.
Then we have the following result:”

Theorem 1 Supposeé = (F, C, L) isthe event logic given by:

o I/ = {F_inserted(r,t,s), F_inserted(r,t,s),seqev®™ (r,t e, eq,5),
simult_ev(r,t, eq, eq, s), conj_ev(r,t, ey, eq,s),disjev(r,t, e, e, s),
neg_ev(r,t, e, s)},

WithCM € {F,CL,NL,CUM);
o U = {_'a/\a[:};
o [isthe past temporal fragment of the situation calculus.

Then both the implication and the equivalence problemsfor £ arein PSPACE.

4 ActiveRelational Theories
An activereational languageis arelational |anguage extended in the following way: for each

n+2-ary fluent F'(Z,t, s), we introducetwo n+3-ary transitionfluents F'_inserted(r, 7, t, s)
and F'_deleted(r, 7, t, s),and two 3-ary event fluents F'_inserted(r, t, s) and F'_deleted(r,t, s).

Definition 8 (ActiveRelational Theory) AtheoryD C 20 isan activerelational theory iff it
isof theformD = Dy,; U Dy U D¢, Where

1. Dy, isarelational theory.®

2. Dyy isthe set of axiomsfor transition fluents.

"Let usbriefly mention the proof ideas. Theorem 1 isa corollary of the fact that the complexity of propositional
temporal linear logic with operators Since and Previously isin PSPACE (See[13] for similar results for propo-
sitional future temporal logic) and the fact that we in fact consider a past temporal logic that restricts situations
involved in the fluents to ground situations. The proof of Theorem 2 uses standard logical rules and will be found
in alonger version of this paper.

8\We assume relational theories for classical databases.

11

3. D, isthe set of axioms and definitions for simple and complex event fluents which are
expressed in a given event logic.

Assume the notations of Theorem 1 above, and suppose that seq_ev™ 7O (r,t, €1, €4, 5)

and seq_ev™ O (r 1, e, €9, s) denote event sequencefluentswiththe consumption modes FIFO
and LIFO, respectively. Then we have the following result:

Theorem 2 SupposeD isactiverelational theorywith global consumption scopefor the prim-
itive event fluents. Then the foll owing equival ences can be established:

1. First, Consumed-Last and Cumulative consumption modes are equivalent; i.e.,

D k= seqev’ (r,t, eq, eq, s) iff
D = seqev I (rt,e1, e, 5) iff
D |= seq_evCUM(r t e, €9, 5).

2. Non-Consumed-Last, LIFO, and FIFO consumption modes are equivalent; i.e.,
D |= seq_evNT(r,t, eq, eq,5) iff
D |= seq_evTFO(r t, ey, ey, s) iff
D = seq_evFO(r t ey, e9,5).

It isimportant to make clear what the equival ences above means. Intuitively, the logical
equivalence of two consumption modes M and M, meansthat any given sequence will occur
at exactly the same situationsunder both A7y and M. Thisultimately leadsto the same active
behavior under both M, and M.

5 Related Work

The problem of specifying complex eventsin active databases has been recognized not to be
trivia([3], [5], [4], [15]). Proposasfor solving it can be classified in three groups. The first
group usesregular expressionsand context-free grammarsto specify complex events (see, e.g.,
[5]). The second group uses graph-based methods to specify them ([3], [4]). Findly, thethird
group uses a logic-based approach (for good examples of this approach, see [5], [15]). Very
often, these approaches are expressiblein form of an event algebra ([16]). Using ametamodel
for event algebras, Zimmer and Unland ([16]) provide arich and systematic analysis of exist-
ing event algebras. Their metamodel, however, are not formal, contrary to the authors' claim.
Our work, though, is most close to work reported in [2]. Here, the authors provide alogical
framework for studying expressivenessof particular event algebras and decision problemsre-
lated to these algebras. We obtain some of the results of [2], using a different framework, and
we extend them on further consumption modes, especially First and Non-Consumed-L ast, that
were not considered in [2].

6 Conclusion

Many avenueslead out of our work. Oneisto identify morefragmentsof the situation calculus
and study their expressiveness with respect to event logics. This meets one of the main moti-
vations behind metamodel s of [16], and would ultimately lead to a logic-based comparison of
existing event algebras. A further avenue leads to studying tractable fragments which could
serveasabasisfor implementating ADBMSs. Finally, implementing the activerelational the-
oriesisanother avenuethat isworth pursuing. Wein fact provideimplementabl e specifications
that would allow one to check desirable properties of interest to one's intended system. The
logical foundationsfor such an endeavor are laid downin [12].

12

Acknowledgments

We thank members of the Cognitive Robotics Group at the U. of T. for helpful discussions.
Specia thanksto Ray Reiter for insightful comments on what an event is. We also gratefully
mentionthefinancia support by NSERC, IRIS (Institutefor Roboticsand I ntelligent Systems),
and ITRC (Information Technology Research Centre of Ontario).

References

(1]

(2]
(3]
[4]
(5]

(6]
[7]

(8]

(9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

M. Arenas and L. Bertossi. Hypothetical temporal queries in databases. In A. Borgida,
V. Chaudhuri, and V. Staudt, editors, Proceedings of the ACM S GMOD/PODS5th I nternational
Workshop on Knowledge Representation meets Databases (KRDB'98), pages 4.1-4.8, 1998.
http://sunsite.informatik.rwth-aachen.de/Publicationss CEUR-WS/Vol - 10/.

J. Bailey and S. Mikulés. Expressivemenssissues and decision problemsfor active database event
queries. In ICDT 2001, pages 69-82, 2001.

S. Chakravarthy and D. Mishra. An event specification language (snoop) for active databases and
itsdetection. Technical Report UF-CIS-TR-91-23, University of Florida, 1991.

S. Gatziu and K.R. Dittrich. Detecting composite events in active database systems using petri
nets. In Proceeding on Research Issuesin Data Engineering, RIDE 94, pages 2—9, 1994.

N.H. Gehani, H.V. Jagadish, and O. Shmueli. Composite event specification in active databases.
Model and implementation. In Proceedings of the 18th VLDB Conference, pages 327-338, Van-
couver, 1992.

| Kiringa. Simulation of advanced transaction models using golog. In Proceedings of the 8th
Biennial Workshop on Data Bases and Programming Languages (DBPL’ 01), 2001.

I. Kiringa. Towards a theory of advanced transaction models in the situation cal culus (extended
abstract). In Proceedings of the VLDB 8th Inter national Workshop on Knowl edge Representation
Meets Databases (KRDB' 01), 2001.

H. Levesque, R. Reiter, Y. Lespérance, Fangzhen Lin, and R.B. Scherl. Golog: A logic program-
ming language for dynamic domains. J. of Logic Programming, Special Issue on Actions, 31(1-
3):59-83, 1997.

J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University, 1963.
N.W. Paton. Active Rulesin Database Systems. Springer Verlag, New York, 1999.

R. Reiter. Towards alogical reconstruction of relational database theory. In M. Brodie, J. My-
lopoulos, and J. Schmidt, editors, On Conceptual Modelling, pages 163—189, New-York, 1984.
Springer Verlag.

R. Reiter. Knowledgein Action: Logical Foundationsfor Describing and Implementing Dynam-
ical Systems. MIT Press, Cambridge, 2001.

A.P. Sistlaand E.M. Clarke. The complexity of propositional linear tempora logics. Journal of
the ACM, 32:733-749, 1985.

J. Widom and S. Ceri. Active Database Systems. Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

C. Zaniolo. Active database rules with transaction-conscious stable-model semantics. In T.W.
Ling and A.O. Mendelzon, editors, Fourth International Conference on Deductive and Object-
Oriented Databases, pages 5572, Berlin, 1995. Springer Verlag.

D. Zimmer and R. Unland. On the semantics of complex eventsin active database managements
systems. In Proceedings of the International Conference on Data Engineering (ICDE), Sydney,
1999. Longer versiona htt p: // ww. cs. uni - essen. de/ dawi s/ publ i cati ons/.

13

