
Local Conditional High-Level Robot Programs

(extended version)

Sebastian Sardiña

Department of Computer Science
University of Toronto

Toronto, Canada M5S 1A4
ssardina@cs.toronto.edu,

WWW home page: http://www.cs.toronto.edu ~ssardina

Abstract. When it comes to building robot controllers, high-level pro-
gramming arises as a feasible alternative to planning. The task then is to
verify a high-level program by finding a legal execution of it. However,
interleaving offline verification with execution in the world seems to be
the most practical approach for large programs and complex scenarios
involving information gathering and exogenous events.
In this paper, we present a mechanism for performing local lookahead for
the Golog family of high-level robot programs. The main features of such
mechanism are that it takes sensing seriously by constructing conditional
plans that are ready to be executed in the world, and it mixes perfectly
with an account of interleaved perception, planning, and action. Also, a
simple implementation is developed.

1 Motivation

In general terms, this paper is concerned with how to conveniently specify the
behavior of an intelligent agent or robot living in an incompletely known dy-
namic world. One popular way of specifying the behavior of an agent is through
planning — the generation of a sequence of actions achieving or maintaining a
set of goals. To cope with incomplete knowledge, some sort of sensing behavior is
usually assumed [1, 2], resulting in conditional or contingency plans [3–5], where
branches are executed based on the outcome of perceptual actions or sensors.
The task of a conditional planner is to find a tree-structured plan that accounts
for and handles all eventualities, in advance of execution.

However this type of conditional planning is computationally difficult and
impractical in many robot domains. The non-conditional planning problem is
already highly intractable, and taking sensing into account only makes it worse.

High-level logic programming languages like Golog [6] and ConGolog [7] offer
an interesting alternative to planning in which the user specifies not just a goal,
but also constraints on how it is to be achieved, perhaps leaving small sub-
tasks to be handled by an automatic planner. In that way, a high-level program
serves as a “guide” heavily restricting the search space. By a high-level program,
we mean one whose primitive instructions are domain-dependent actions of the

robot, whose tests involve domain-dependent fluents affected by these actions,
and whose code may contain nondeterministic choice points.

Instead of looking for a legal sequence of actions achieving some goal, the
task now is to find a sequence that constitutes a legal execution of a high-level
program. Originally, Golog and ConGolog programs were intended to be solved
offline, that is, a complete solution was obtained before committing even to the
first action. Also, sensing behavior was not considered so that the approach to
uncertainty resembles more that of conformant planners [8]. While Lakemeyer
[9] suggested an extension of Golog to handle sensing and contingent plans,
De Giacomo and Levesque [10] provided an account of interleaved perception,
planning, and action [11, 12] for ConGolog programs.

In this paper, we propose to combine both improvements by suggesting a
method of executing high-level robot programs that is both conditional (in the
sense of Lakemeyer) and local (in the sense of De Giacomo and Levesque.) The
advantages are twofold. First, we can expect to deal with much larger programs,
assuming planning is locally restricted. Second, the offline verification of sub-
tasks will handle sensing and provide contingent solutions. Although this may
seem initially a trivial intersection of the two pieces, it is not. For one, sGolog
semantics is given as a macro expansion while an incremental execution is defined
with a single-step semantics. Furthermore, sGolog does not handle ConGolog
constructs, namely those for concurrency and reactive behavior, which we do
not want to give up.

The rest of the paper is organized as follows: in the next two sections, we give
brief introductions to the situation calculus, high-level programs, and their exe-
cutions. Section 4 is devoted to our approach to offline verification of programs.
In Section 5, we develop a simple and provably sound Prolog implementation.
We draw conclusions and discuss future lines of research in Section 6.

2 Situation Calculus and Programs

In this section, we start by explaining the situation calculus dialect on which
all the high-level approach is based on, and after that, we informally show what
high-level programs look like.

The situation calculus is a second order language specifically designed for
representing dynamically changing worlds [13, 14]. We will not go over it here
except to note the following components: there is a special constant S0 used
to denote the initial situation where no actions have yet occurred; there is a
distinguished binary function symbol do where do(a, s) denotes the successor
situation to s resulting from performing action a; relations whose truth values
vary from situation to situations are called fluents, and are denoted by predi-
cate/function symbols taking a situation term as their last argument; there is a
special predicate Poss(a, s) used to state that action a is executable in situation
s. Depending on the type of action theory used we may have other predicates
and axioms to state what are the sensing results of special sensing actions [4] or
the outcomes of onboard sensors [2] at some situation. Finally, by a history σ

we mean a sequence of pairs (a, µ) where a is a primitive action and µ encodes
the sensing results at that point.1 A formula Sensed[σ] in the language can be
defined stating the sensing results of history σ. Lastly, end[σ] stands for the situ-
ation term corresponding to history σ. Informally, while Sensed[σ] extracts from
σ all the sensing information already gathered, end[σ] extracts the sequence of
actions already performed.

On top of the situation calculus, we can define logic-based programming
languages like Golog [6] and ConGolog [7], which, in addition to the primitive
actions of the situation calculus, allow the definition of complex actions. Indeed,
Golog offers all the control structures known from conventional programming
languages (e.g., sequence, iteration, conditional, etc.) plus some nondeterministic
constructs. It is due to these last control structures that programs do not stand
for complete solutions, but only for sketches of them whose gaps have to be
filled later, usually at execution time. ConGolog extends Golog to accommodate
concurrency and interrupts. As one may expect, both Golog and ConGolog rely
on an underlying situation calculus axiomatization to describe how the world
changes as the result of available actions, i.e. a theory of action. For instance,
basic action theories [15] or the more general guarded action theories [2] may be
used for that propose.

To informally introduce the syntax and some of the common constructs of
these programming languages, we show next a possible ConGolog program for a
version of the well-known airport problem [4, 9, 16]. Suppose that the ultimate
goal of an agent is to board its plane. For that, she first needs to get to the
airport, go to the right airline terminal, and once there, she has to get to the
correct gate, and finally board her plane. In addition, she probably wants to buy
something to read and drink before boarding the plane. The following may be a
ConGolog control program for such agent:

proc catch plane1
(πa.a)∗; at(airport)?;
(goto(term1) | goto(term2));
(buy(magazine) | buy(paper));
if gate ≥ 90 then { goto(gate); buy(coffee) } else

{ buy(coffee); goto(gate) }
board plane;

end proc

where δ1; δ2 stands for sequence of programs δ1 and δ2; πx.δ(x) for nondetermin-
istic choice of argument x; δ1|δ2 for nondeterministic selection between programs
δ1 and δ2; and δ∗ for nondeterministic iteration of program δ (zero, one, or more
times). Finally, action (φ)? checks that condition φ holds. As it is easy to observe,
the above program has many gaps due to nondeterministic points that need to
be resolved by an automated planner. For example, the first two complex actions
(πa.a)∗; at(airport)? require the agent to select some number of actions (pick up

1 The outcome of a itself in basic theories, or the values of all sensors in guarded
theories.

the car key, get in the car, drive to the airport, etc.) so that after their execution
she would eventually be at the airport. As the reader may have noticed, that
particular sub-task is very similar to classical planning.2 Once in the airport,
the agent has to decide whether to head to terminal 1 or 2 (another gap to be
filled) and, after that, whether to buy a magazine or a newspaper. Finally, she
would buy something to drink and board the airplane. However, in case the gate
number is 90 or up, it is preferable to buy coffee at the gate, otherwise it is
better to buy coffee before going to the gate.

3 Incremental Execution of Programs

Finding a legal execution of high-level programs is at the core of the whole
approach. Indeed, a sequence of action standing for a program execution will
be taken as the ultimate agent behavior. Originally, Golog and ConGolog pro-
grams were conceived to be executed (verified) offline. In other words, we look
for a sequence of actions [a1, ..., am] such that Do(δ, s, do([a1, ..., am], S0))

3 is en-
tailed by the specification, where Do(δ, s, s′) is intended to say that situation
s′ represents a legal execution of program δ from the initial situation s. Once a
sequence like that is found, the agent is supposed to execute it one action at a
time. Clearly, this type of execution remains infeasible for large programs and
precludes both runtime sensing information and reactive behavior. To deal with
these drawbacks, De Giacomo and Levesque [10] provided a formal notion of
interleaved planning, sensing, and action [11, 12] which we support for cognitive
robotic applications. In their account, they make use of two predicates defined
in [7] in order to give a single-step semantics to ConGolog programs:

– Trans(δ, s, δ′, s′) is meant to say that program δ in situation s may legally
execute one step, ending in situation s′ with program δ′ remaining;

– Final(δ, s) is meant to say that program δ may legally terminate in situation
s.

Both predicates are defined inductively for each language construct. As an exam-
ple, we list the axioms corresponding to the nondeterministic choice of program
and sequence:4

Trans(δ1|δ2, s, δ
′, s′) ≡ Trans(δ1, s, δ

′, s′) ∨ Trans(δ2, s, δ
′, s′)

Trans(δ1; δ2, s, δ
′, s′) ≡ Trans(δ1, s, δ

′, s′′) ∧ δ′ = (δ′′; δ2) ∨

Final(δ1, s) ∧ Trans(δ2, s, δ
′, s′)

Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)

Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

2 In fact, one would prefer to avoid this kind of sub-tasks and write more detailed
programs since the search space required for such sub-tasks will be huge.

3 do([a1, ..., am], S0)) denotes the situation term do(am, do(am−1, ..., do(a1, S0))...).
4 From now on, we assume all free variables are universally quantified.

From now on, we use Axioms to refer to the set of axioms defining the
underlying theory of action, the axioms for Trans and Final, and those needed
for the encoding of programs as first-order terms (see [7].) Also, Trans∗ stands
for the second-order definition of the transitive closure of Trans.

Definition 1. An online execution of a program δ0 starting from a history σ0

is a sequence (δ0, σ0), . . . , (δn, σn), such that for i = 0, .., n− 1:

Axioms ∪ Sensed[σi] |= Trans(δi, end[σi], δi+1, end[σi+1])

σi+1 =

σi, if end[σi+1] = end[σi]
σi · (a, µ), if end[σi+1] = do(a, end[σi])

and µ is the sensing outcomes after a

Furthermore, the online execution is successful if:

Axioms ∪ Sensed[σn] |= Final(δn, end[σn])

Among other things, with an online (incremental) execution, it is possible to
gather information after each transition. However, given that an incremental
execution requires committing in the world at each step and programs may
contain nondeterministic points, some lookahead mechanism is required to avoid
unsuccessful (dead-end) executions. To that end, in [10] a new language construct
Σ, the search operator, is provided as a local controlled form of offline verification
where the amount of lookahead to be performed is under the control of the
programmer. As with all the other language constructs, a single-step semantics
for it can be defined such that Σδ selects from all possible transitions of (δ, s)
those for which there exists a sequence of further transitions leading to a final
configuration (δ′, s′). Formally,

Final(Σδ, s) ≡ Final(δ, s)

Trans(Σδ, s, δ′, s′) ≡ ∃γ, γ′, s′′.δ′ = Σγ ∧ Trans(δ, s, γ, s′) ∧
Trans∗(γ, s′, γ′, s′′) ∧ Final(γ′, s′′)

Nonetheless, we recognize some important limitations of this search operator.
In particular, we are concerned with its limitation to explicitly handle sensing
and the fact that it does not generate solutions that are ready to be carried
out by the agent. This is because search only calculates the next “safe” action
the agent should commit to, even though there may be a complete (conditional)
course of action to follow. What we propose here is a new search operator which
overcomes both issues.

3.1 Offline Verification with Sensing

As already noted, one way to cope with incomplete information, especially when
sensors are cheap and accurate, or effectors are costly, is by gaining new infor-
mation through sensing and adopting a contingent planning strategy. Consider

a revised version of the airport example in which the agent does not know the
gate number, but can learn it by examining the departure screen at the right
terminal.

proc catch plane2
(πa.a)∗; at(airport)?;
(goto(term1) | goto(term2));
watch screen; /* Sensing Action! */
(buy(magazine) | buy(paper));
if gate ≥ 90 then { goto(gate); buy(coffee) } else

{ buy(coffee); goto(gate) }
board plane;

end proc

Conformant planning (like [8]), the development of non-conditional plans that
do not rely on sensory information, cannot generally solve our example because
there is no linear course of action that solves the program under any possible
outcome of the sensing action watch screen. It should be clear then that neither
Golog nor ConGolog would find any successful offline execution for catch plane2.
An online execution, however, would adapt the sequence depending on the in-
formation observed on the boarding panel.

In [9], it was argued that, yet, “there is a place for offline interpretation of
programs with sensing.” In fact, Lakemeyer suggested an extension of Golog,
namely sGolog, that handles sensing actions offline by computing conditional
plans instead of linear ones. These plans are represented - in the language - by
conditional action trees (CATs) terms of the form a · c1 or [φ, c1, c2], where a is
an action term, φ is a formula, and c1 and c2 are two CATs. Roughly, an sGolog
solution for our airport example would look as follows:

c = goto(airport) · goto(term2) · watch screen · buy(paper)
· [gate ≥ 90, goto(gate) · buy(coffee) · board plane,

buy(coffee) · goto(gate) · board plane]

sGolog extends Golog’s Do(δ, s, s′) to Dos(δ, s, c) which expands into a for-
mula of the situation calculus augmented by a set of axioms AxCAT for dealing
with CAT terms. Dos(δ, s, c) may be read as “executing the program δ in sit-
uation s results in CAT c.” It is worth noting that although sGolog is able to
build conditional plans as the above one, it requires programs to use a special
action branch on(φ) to state where to split and how. Intuitively, a branch on(φ)
tells the planner that it should split w.r.t. the condition φ(s). In that sense, the
above CAT c is not a seen as a legal solution for program catch plane2, but it
is a legal one for the following version of it:

proc catch plane2b
(πa.a)∗; at(airport)?;
(goto(term1) | goto(term2));
watch screen; /* Sensing Action! */
(buy(magazine) | buy(paper)); branch on(gate ≥ 90);

if gate ≥ 90 then { goto(gate); buy(coffee) } else

{ buy(coffee); goto(gate) }
board plane;

end proc

From now on, we denote by δ− to the program δ with all its “branch on”
actions suppressed (e.g., catch plane2b− = catch plane2).

4 Conditional Lookahead

Lakemeyer argued that many programs with a moderate number of sensing ac-
tions can very well be handled with his approach. Even though we are skeptical
about doing full offline execution of any (large) program, we consider his ar-
gument a much more plausible one if offline execution were restricted to local
places in a program. In what follows, we define a new search construct providing
a local lookahead mechanism that takes potential sensing behavior seriously and
fits smoothly with the incremental execution scheme from Section 3. We begin
by defining a subset of useful high-level programs.

Definition 2. A Golog program δ is a conditional program plan (CPP) if

– δ = nil, i.e., δ is the empty program;
– δ = A, A is an action term;
– δ = (A; δ1), A is an action term, and δ1 is a CPP;
– δ = if φ then δ1 else δ2, φ is a fluent formula, and δ1, δ2 are CPPs.

Under our approach, CPPs will play the role of conditional-plan solutions. Notice
they are no more than regular deterministic high-level programs where only
sequence of actions and conditional splitting (branching) are allowed. It is easy
to state an axiom defining the relation condP lan(δ), which, informally, holds
only when δ is a CPP.

Next, we introduce a two-place function run–our version of Lakemeyer’s cdo
function–which takes a CPP δ and a situation s, and returns a situation which is
obtained from s using the actions along a path in δ.5 Briefly, run follows a certain
branch in the CPP depending on the truth value of the branch-conditions.

run(nil, s) = s

run(a, s) = do(a, s)

run((a; δ), s) = run(δ, do(a, s))

φ(s) ⊃ run(if φ then δ1 else δ2, s) = run(δ1, s)

¬φ(s) ⊃ run(if φ then δ1 else δ2, s) = run(δ2, s)

Lastly, predicate knowHow(δ, s) is intended to mean that “we know how to
execute δ starting at situation s.” By this we mean that at every branching

5 A CPP can be easily seen as a tree with actions and conditional splittings as nodes.

point in the CPP δ, the branch-formula is known to be true or false. In order to
enforce this restriction, programs would generally have some sensing behavior
that will guarantee that each formula in a CPP will be known. A high-level
description of the corresponding axioms for run is the following:

knowHow(nil, s) ≡ TRUE

knowHow(a, s) ≡ TRUE

knowHow((a; δ), s) ≡ knowHow(δ, do(a, s))

knowHow(if φ then δ1 else δ2, s) ≡ Kwhether(φ, s) ∧

φ(s) ⊃ knowHow(δ1, s) ∧

¬φ(s) ⊃ knowHow(δ2, s)

Observe that the last axiom makes use of predicate Kwhether(φ, s) defined
in [17], which gives us a solution to knowledge in the situation calculus. Rela-
tion Kwhether(φ, s) is intended to say that the condition φ will be eventually
known (true or false) in situation s.6 Although it is possible to use more general
definitions of “knowing how to execute a program” we stick to the above one for
the the sake of simplicity.

We now have all the machinery needed to define our new mechanism of
controlled lookahead. Namely, we introduce a conditional search operator Σc

that, instead of only returning the next action to be performed, it computes
a whole (remaining) CPP that solves the original program and is ready to be
executed online. To that end, we define Final and Trans for the new operator.
For Final, we have that (Σcδ, s) is a final configuration if (δ, s) itself is.

Final(Σcδ, s) ≡ Final(δ, s)

For Trans, a configuration (Σcδ, s) can evolve to (δ′, s) if δ′ is a CPP that the
agent knows how to execute from s, and such that every possible and complete
path through δ′ represents a successful execution of the original program δ.

Trans(Σcδ, s, δ
′, s′) ≡ s′ = s ∧ condP lan(δ′) ∧ knowHow(δ′, s) ∧

∃δ′′.T rans∗(δ, s, δ′′, run(δ′, s)) ∧ Final(δ′′, run(δ′, s))

While the first line defines what the “form” of a legal solution is, the second
one makes the connection between the CPP δ′ and the original program δ. Notice
we want this sentence to be true in every interpretation, and, therefore, the se-
quence of actions produced by run(δ′, s) must always correspond to a (complete)
sequence of transitions for δ. This is very important since not every CPP will be
acceptable, but only the ones that are “hidden” in δ. It is important to remark
that different interpretations could lead to different “runs” and transitions.

From now on, we assume the above two axioms for Σc, together with the
axioms for run, condP lan and knowHow, are all included into the already men-
tioned set of axioms Axioms. If, for example, we execute Σccatch plane2 we get

6 See [17] for a complete coverage of knowledge and sensing in the situation calculus.

that

Axioms ∪ Sensed[σ0] |= Trans(Σccatch plane2, S0, δ
′, S0)

where

δ′ = goto(airport); goto(term2); watch screen; buy(paper);
if gate ≥ 90 then {goto(gate); buy(coffee); board plane}

else {buy(coffee); goto(gate); board plane}

In this case, run(δ′, S0) would have two different interpretations w.r.t. the
set Axioms ∪ Sensed[σ0]. In the models where gate ≥ 90, function run(δ′, S0)
denotes the situation

do([goto(airport), goto(term2), watch screen,
buy(paper), goto(gate), buy(coffee), board plane], S0)

On the contrary, in those models where gate < 90, function run(δ′, S0) de-
notes the situation term

do([goto(airport), goto(term2), watch screen,
buy(paper), buy(coffee), goto(gate), board plane], S0)

The point is that, in either case, run(δ′, S0) is supported by the original
program catch plane2.

By inspecting the above Trans axiom for Σc, one can see that Σc performs
no action step, but calculates a remaining program δ′ (in particular, a CPP one)
that is ready to be executed online, and that has previously considered how fu-
ture sensing will be managed. This implies that the final sequence of actions will
eventually depend on the future sensing outcomes; in our example, after commit-
ting to action watch screen. Furthermore, the CPP returned has already solved
all nondeterministic points in the original program as well as all concurrency in-
volved on it. In some sense, Σc can be visualized as an operator that transforms
an arbitrary complex ConGolog program into a simple and deterministic CPP
without requiring it to know in advance how future sensing will turn out.

The following are some useful properties of Σc.

Property 1

Trans((Σcδ1)|(Σcδ2), s, δ
′, s′) ≡ Trans(Σc(δ1|δ2), s, δ

′, s′)

i.e., search distributes over the nondeterministic choice of program. An in-
teresting example comes up with programs δ1 = (a; φ; b) and δ2 = (a;¬φ; c).
Even though not trivial to see, the CPP δ′ = (a; if φ then b else c) is a so-
lution for both Σc(δ1|δ2) and (Σcδ1)|(Σcδ2). The former case is easy; the
latter, though, involves realizing that, in the interpretation where φ holds,
the program Σcδ1 is the one that performs the transition and a “run” of δ′

is action a followed by action b. However, in the interpretation where ¬φ
holds, the program chosen for the transition is Σcδ2, and a “run” of δ′ is
action a followed by action c.

Property 2

Trans(Σcδ, s, δ
′, s′) ⊃ Final(Σδ, s)∨ ∃δ′′.s′′.T rans(Σδ, s, δ′′, s′′)

This means that whenever there is a transition w.r.t. Σc, there is also a
transition w.r.t. Σ. However, the converse does not apply.

Property 3

Trans(Σc(δ1; δ2), s, δ, s) ≡ ∃δ
′

1.T rans(Σcδ1, s, δ
′

1, s) ∧
∃δ∗.T rans(Σcδ2, run(δ′1, s), δ

∗, run(δ′1, s)) ∧ extCPP (δ′1, δ, δ
∗, s)

i.e., a solution for δ1; δ2 can be seen as some solution for δ1 extended, at each
leaf, with a conditional plan that solves δ2. Relation extCPP (δ′, δ, δ∗, s) is
the analogous one to sGolog’s ext(c′, c, c∗, s). Informally, extCPP (δ′, δ, δ∗, s)
means that CPP δ is obtained by extending the CPP δ′ with the CPP δ∗ after
executing δ′ from situation s. The axioms for such relation can be obtained
by a straightforward reformulation of ext’s axioms given in [9]. Technically,
extCPP (δ′, δ, δ∗, s) is defined to be logically equivalent to the conjunction of
the following formulas:

δ = nil ⊃ δ′ = δ∗

δ = a ⊃ δ′ = a; δ∗

δ = a; δ1 ⊃ (∃δ′1.δ
′ = a; δ′1 ∧ extCPP (δ′1, δ1, δ

∗, do(a, s)))

δ = if φ then δ2 else δ3 ⊃ (∃δ′2, δ
′

3.δ
′ = if φ then δ′2 else δ′3 ∧

φ(s) ⊃ extCPP (δ′2, δ2, δ
∗, s)) ∧

¬φ(s) ⊃ extCPP (δ′3, δ3, δ
∗, s))

Property 4

Trans(Σcδ, s, δ
′, s′) ⊃ Final(δ, s) ∨

∃δ′′, s′′, δ∗, s∗.T rans(δ, s, δ′′, s′′) ∧ Trans(Σcδ
′′, s′′, δ∗, s∗)

This property is closely related to Property 2 for Σ given in [10]. Intuitively,
search can be seen as performing one single step while propagating itself to
the program that remains after such step.

It is not surprising that sGolog solutions are solutions under conditional
search as well. To show that, we make use of a one-place function CATtoCPP
that takes a CAT and returns its analogous CPP. We will refer with AxCATtoCPP

to the set of axioms defining such function, namely

CATtoCPP (ε) = nil

CATtoCPP (a · c) = a; CATtoCPP (c)

CATtoCPP ([φ, c1, c2]) = if φ then CATtoCPP (c1) else CATtoCPP (c2)

Theorem 1. Let δ be a sGolog program, and let σ be some history the agent has
already committed to. Then, the set of axioms Axioms ∪ Sensed[σ] ∪ AxCAT ∪
AxCATtoCPP entails the following sentence:

Dos(δ, end[σ], c) ⊃ Trans(Σcδ
−, end[σ], CATtoCPP (c), end[σ])

The opposite, though, does not hold, because conditional search is more
general than sGolog in that it allows for splittings at any point. In contrast, and
as already stated, sGolog splits only at the points explicitly stated by the user
via the special action branch on. As a matter of fact, the CAT c of Section 3.1
is a solution for catch plane2b, but not for catch plane2. On the other hand,
program δ′ above is indeed a solution for (Σccatch plane2) itself, since Σc need
not be told where to split.7

4.1 Restricted Conditional Search

We finish this section by noting that it is easy to slightly modify our axioms to
define a restricted version of Σc, say Σcb, such that splittings in CPPs occurs only
where the programmer has explicitly said so via a special action branch on(φ)
(as done in sGolog.) The main motivation for defining Σcb is to provide a simple
and clear semantics to our implementation.

We then make use of a special action branch on(φ), whose “effect” is to in-
troduce a new conditional construct into the solution, i.e., into the CPP. Fortu-
nately, we can achieve this by simply treating branch on(φ) as a normal primitive
action that is always possible. Intuitively, a transition on a branch action is used
to leave a “mark” in the situation term so as to force a conditional splitting at
that point. Given that, at planning time, the branch action will be added to the
situation term (as done with any other primitive action), we should guarantee
that it has no effect on any of the domains fluents. In other words, every fluent in
the domain should have the same (truth) value before and after a branch action.

In addition, we change the last axiom of function run to the following one:

φ(s) ⊃ run(if φ then δ1 else δ2,s) = do(branch on(φ), run(δ1, s))

¬φ(s) ⊃ run(if φ then δ1 else δ2,s) = do(branch on(φ), run(δ2, s))

Now, a “run” of the program leaves a “mark” on the situation term, namely
a branch on(φ) action term, to account for a conditional splitting.

It worth observing that, by using the same Trans and Final axioms given for
Σc, all conditional constructs in the CPP solution are now required to perfectly
coincide with the branch statements mentioned in the program. Finally, it is
very important to remark that a branch action will never be mentioned in any
CPP δ′ obtained by search. In that sense, a branch on(φ) action can be viewed
as a (meta-level) action whose direct effects are seen only at “planning time.”

7 However, under Σc, there may be strange solutions due to naive and useless splittings
(e.g., splittings w.r.t. tautologies are always allowed.)

It is not difficult to prove that all four properties listed for Σc are properties
of Σcb as well.8 What is more important, it can be proved that Σcb and sGolog
are equivalent for Golog programs. In addition, all solutions of Σcb are also
solutions of Σc. We will refer with Axioms′, instead of Axioms, when using the
modified axioms of Σcb.

Theorem 2. Let δ1 be an sGolog program and δ2 a ConGolog one. Let σ be some
history the agent has already committed to. Then, the set of axioms Axioms′ ∪
Sensed[σ] ∪ AxCAT ∪ AxCATtoCPP entails the following sentence:

Dos(δ1, end[σ], c) ≡ Trans(Σcbδ1, end[σ], CATtoCPP (c), end[σ])

Furthermore, if Axioms′ ∪ Sensed[σ] |= Trans(Σcbδ2, end[σ], δ′, s′), then

Axioms ∪ Sensed[σ] |= Trans(Σcδ
−

2 , end[σ], δ′, s′)

Once again, the restricted version of search is not interesting in terms of the
specification itself, as it is less general than Σc; but it is convenient in terms of
implementation issues as we will see in the following section.

5 A Simple Implementation

In this section, we show a simple Prolog implementation of the restricted condi-
tional search construct Σcb under two main assumptions borrowed from [9]:
(i) only the truth value of relational fluents can be sensed; (ii) whenever a
branch on(P) action is reached, where P is a fluent, both truth values are con-
ceivable for P . Assumption (ii) allows us to safely use hypothetical reasoning
on the two possible truth values of P . For that, we use two auxiliary actions
assm(P) and assm(neg(P)) whose only effect is to turn P true and false re-
spectively. We also assume the following code is already available:

1. A set of trans/4 and final/2 clauses constituting a correct implementation
of Trans and Final predicates for all ConGolog constructs (see [7, 18]);

2. A set of clauses implementing the underlying theory of action used. In par-
ticular, this set will include facts of the form action(a) and fluent(f)
defining each action name a and each fuent name f respectively;

3. A set of kwhether/2 clauses implementing predicate Kwhether(P, s). For
basic action theories, we can make a simplification by checking whether the
fluent in question was sensed earlier and not changed since then [9]. For
guarded theories, where inertia law may not apply, one may check that the
fluent can be regressed up to a situation where a sensing axiom is applicable.

With all these assumptions, the restricted search implementation arises as a
nice, but still not trivial, mixture between the implementation of sGolog and the

8 Nonetheless we should replace Σδ by Σδ− in Property 2; for, branch actions make
no sense in the scope of Σ.

one for ConGolog. The reader will quickly notice that the code below reuses the
clauses for Trans and Final of all the other constructs. Besides, it is independent
of the background theory used, in particular independent on how sensing is
modeled, as long as the above requirements are met.9

trans(searchcr(E),S,CPP,S):- build_cpp(E,S,CPP).

trans(branch_on(P),S,[],[branch_on(P)|S]).

build_cpp(E,S,[]) :- final(E,S).

build_cpp([E1|E2],S,C):- E2\=[], !, build_cpp(E1,S,C1),

ext_cpp(E2,S,C1,C).

build_cpp(branch_on(P),S,if(P,[],[])):- !, kwhether(P,S).

build_cpp(E,S,C) :- trans(E,S,E1,[branch_on(P)|S]),

build_cpp([branch_on(P)|E1],S,C).

build_cpp(E,S,C) :- trans(E,S,E1,S), build_cpp(E1,S,C).

build_cpp(E,S,[A|C]) :- trans(E,S,E1,[A|S]), fluent(P),

A\=branch_on(P), build_cpp(E1,[A|S],C).

/* ext_cpp(E,S,C,C1) recursively descends the CPP C. On a */

/* leaf, build_cpp/3 is used to extend the branch wrt program E.*/

ext_cpp(E,S,[A|C],[A|C2]):- action(A), ext_cpp(E,[A|S],C,C2).

ext_cpp(E,S,if(P,C1,C2),if(P,C3,C4)):-

ext_cpp(E,[assm(P)|S],C1,C3), ext_cpp(E,[assm(neg(P))|S],C2,C4).

ext_cpp(E,S,[],C):- build_cpp(E,S,C). /* leaf of CPP */

Roughly speaking, build cpp(δ, s, C) builds a CPP C for program δ at situa-
tion term s by calling trans/4 to obtain a single step, and ext cpp/4 to extend
intermediate already-computed CPPs. Relying on the correctness of trans/4,
final/2, and kwhether/2, it is possible to show that the above program, which
we will refer as P , is occur-check and floundering free [19].

Lemma 1. Let δ be a ground ConGolog program term, and let s be a ground
situation term. Then, the goal G =build cpp(δ, s, C) is occur-check and floun-
dering free w.r.t. program P , assuming a correct implementation of trans/4,
final/2, action/1, fluent/1, and kwhether/2. 10

Finally, we show that whenever the above implementation succeeds, a con-
ditional program plan supported by the specification as a legal solution of both
Σcb and Σc is returned (by binding variable P below.) In contrast, whenever the
implementation finitely fails, we can only guarantee that the specification of Σcb

supports no solution at all.

9 For legibility, we keep the translation between the theory and Prolog implicit.
10 In reality, the program used will be P union the code for trans/4, final/2,

kwhether/2, and the one implementing the underlying theory of action.

Theorem 3. Let δ be a ground program term without mentioning search, and let
σ be a history. Let G be the goal trans(searchcr(δ), end[σ], P, S). If G succeeds
with computed answer P = δ′, S = s′, then δ′ is a CPP, s′ = end[σ], and

Axioms′ ∪ Sensed[σ] |= Trans(Σcbδ, end[σ], δ′, s′)

Axioms ∪ Sensed[σ] |= Trans(Σcδ
−, end[σ], δ′, s′)

On the other hand, whenever G finitely fails, then

Axioms′ ∪ Sensed[σ] |= ∀δ′, s′.¬Trans(Σcbδ, end[σ], δ′, s′)

It is worth noting that our results rely heavily on the implementation of
trans/4, final/2, and kwhether/2. In particular, in order to assure correctness
for the first two predicates, we may need to impose extra conditions on both
programs and histories (e.g., see just-in-time histories and programs in [10, 18].)

Finally, we conjecture that it is possible to develop a better, and yet imple-
mentable, splitting strategy that does not rely on the user, and hence, does not
use any special branching action. A plausible approach may be to split whenever
the interpreter finds a condition φ that is not known at planning time. Clearly,
this means that at least one fluent mentioned in φ is unknown; if the fluent will
be known due to future sensing, we should branch w.r.t. to it. Observe that we
should not only consider the conditions mentioned in the program, but all the
formulas required to evaluate a transition (such as the actions’ preconditions.)
One point in favor of this strategy is that it is always sound w.r.t. Σc, due to the
fact that Σc allows for any branching at any point, even for naive and unnec-
essary ones. Put differently, any solution reported by Prolog will be supported
by the specification. On the other hand, it is not totally clear whether we can
capture the branching power of Σc completely. Furthermore, this strategy will
require considerable more computational effort during the search. Despite this
difficulties, we think these ideas deserve future attention in pursuit of a more
flexible and practical implementation.

6 Conclusions and Further Research

In this article, we have developed a new local lookahead construct for the Golog
family of robot programs. The new construct provides local offline verification
with sensing of ConGolog programs, produces complete conditional plans, and
moreover, it mixes well with an interleaved account of execution. In some sense,
the work here shows how easily one can extend Golog and ConGolog, together
with their implementations, to handle local contingent planning .

Many problems remain open. First, it would be interesting to investigate some
principled way of interleaving search in high-level programs since that determines
how realistic, practical, and complete our programs are. Second, there is much
to say regarding the relation between our search and the original one in [10]. For
instance, neither subsumes completely the other. Nonetheless, it can be shown
that, in some interesting cases, the original search Σ would actually execute an

“implicit” CPP which Σc would support as a solution. Third, as already said,
we would like to investigate some principled way of branching that does not
rely on the user and still be implementable. Last, but not least, our approach
may suggest the construction of more general (robot) plans than CPPs (in the
sense of [4, 21, 22].) Indeed, solutions where the length of a branch is finite, but
not bounded, cannot be captured with our conditional construct, but would be
captured with a more general framework using loops (e.g., the cracking eggs
example in [4].) There seems to be, however, a natural tradeoff between the
expressivity in the theory and its corresponding computational complexity.

Acknowledgements

I am grateful to Hector Levesque for many helpful discussions and comments.
Thanks also to Gerhard Lakemeyer for an early discussion on the subject of this
paper, and to the anonymous referees for their valuable suggestions.

References

1. Baral, C., Son, T.C.: Approximate reasoning about actions in presence of sensing
and incomplete information. In Maluszynski, J., ed.: International Logic Program-
ming Symposium (ILSP’ 97), Port Je erson, NY, MIT Press (1997) 387–401

2. De Giacomo, G., Levesque, H.: Projection using regression and sensors. In: Pro-
ceedingsof the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI), Stockholm, Sweden (1999) 160–165

3. Etzioni, O., Hanks, S., Weld, D.: An approach to planning with incomplete informa-
tion. In: Proceedings of 3rd International Conference on Knowledge Representation
and Reasoning. (1992)

4. Levesque, H.: What is planning in the presence of sensing? In: The Proceedings of
the Thirteenth National Conference on Artificial Intelligence, AAAI-96, Portland,
Oregon, American Association for Artificial Intelligence (1996) 1139–1146

5. Peot, M.A., Smith, D.E.: Conditional nonlinear planning. In: Proceedings of the
First International Conference on AI Planning Systems, College Park, Maryland
(1992) 189–197

6. Levesque, H., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.: GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31

(1997) 59–84
7. De Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a concurrent program-

ming language based on the situation calculus. Artificial Intelligence 121 (2000)
109–169

8. Smith, D., Weld, D.: Conformat graphplan. In: Proceedings of AAAI-98. (1998)
9. Lakemeyer, G.: On sensing and off-line interpreting in Golog. In: Logical Founda-

tions for Cognitive Agents, Contributions in Honor of Ray Reiter. Springer, Berlin
(1999) 173–187

10. De Giacomo, G., Levesque, H.: An incremental interpreter for high-level programs
with sensing. In Levesque, H.J., Pirri, F., eds.: Logical Foundation for Cognitive
Agents: Contributions in Honor of Ray Reiter. Springer, Berlin (1999) 86–102

11. Kowalski, R.A.: Using meta-logic to reconcile reactive with rational agents. In
Apt, K.R., Turini, F., eds.: Meta-Logics and Logic Programming. MIT Press
(1995) 227–242

12. Shanahan, M.: What sort of computation mediates best between perception and
action? In Levesque, H., Pirri, F., eds.: Logical Fundations for Cognitive Agents:
Contributions in Honor of Ray Reiter. Springer-Verlag (1999) 352–368

13. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4 (1969) 463–502

14. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

15. Reiter, R.: The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In Lifschitz, V., ed.: Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy. Academic Press, San Diego, CA (1991) 359–380

16. Lifschitz, V., McCain, N., Remolina, E. Tacchella, A.: Getting to the airport: The
oldest planning problem in AI. Logic-Based Artificial Intelligence (2000) 147–165

17. Scherl, R., Levesque, H.: The frame problem and knowledge-producing actions.
In: Proceedings of AAAI-93. (1993) 689–695

18. De Giacomo, G., Levesque, H.J., Sardiña, S.: Incremental execution of guarded
theories. ACM Transactions on Computational Logic (TOCL) 2 (2001) To appear.

19. Apt, K.R., Pellegrini, A.: On the occur-check free prolog program. ACM Toplas
16 (1994) 687–726

20. Sardiña, S.: Local conditional high-level robot program (extended version).
http://www.cs.toronto.edu/∼ssardina/papers/lchlrp-ext.ps (2001)

21. Smith, D.E., Williamson, M.: Representation and evaluation of plans with loops.
In: Working Notes of the AAAI Spring Symposium on Extended Theories of Ac-
tions. Formal Theory and Practical Applications., Stanford, CA (1995)

22. Lin, S.H., Dean, T.: Generating optimal policies for high-level plan. In Ghallab,
M., Milani, A., eds.: New Directions in AI Planning. IOS Press (1996) 187–200

A Proofs

A.1 Proofs of Properties

Proof (Property 1).
By definition of Σc, Trans((Σcδ1)|(Σcδ2), s, δ

′, s′) is equivalent to

[∃δ′′.T rans∗(δ1, s, δ
′′, run(δ′, s)) ∧ Final(δ′′, run(δ′, s))∧

condP lan(δ′) ∧ knowHow(δ′, s)]

∨

[∃δ′′.T rans∗(δ2, s, δ
′′, run(δ′, s)) ∧ Final(δ′′, run(δ′, s))

condP lan(δ′) ∧ knowHow(δ′, s)]

With that, the definition of | for Trans and Final, and the fact that Trans∗ is
the transitive closure of Trans, we obtain the equivalent sentence:

∃δ′′.T rans∗(δ1|δ2, s, δ
′′, run(δ′, s)) ∧ Final(δ′′, run(δ′, s))∧

condP lan(δ′) ∧ knowHow(δ′, s)

which is, in fact, equivalent to Trans(Σc(δ1; δ2), s, δ
′, s′). ut

Proof (Property 2). Assume that Trans(Σcδ, s, δ
′, s′) holds. Then, by definition

of Σc,

∃δ′′.T rans∗(δ, s, δ′′, run(δ′, s)) ∧ Final(δ′′, run(δ′, s))

holds as well. If ¬Final(Σδ, s) is the case, then ¬Final(δ, s) applies, and there
must be at least one transition of δ. Formally,

∃δ′′, δ∗, s∗.T rans(δ, s, δ∗, s∗) ∧ Trans∗(δ∗, s∗, δ′′, run(δ′, s)) ∧ Final(δ′′, run(δ′, s))

holds, and ∃δ′′, s′′.T rans(Σδ, s, δ′′, s′′) follows easily. ut

Proof (Property 3). (⇒) Suppose that Trans(Σc(δ1; δ2), s, δ, s) holds. By defi-
nition of Σc,

∃δ′′.T rans∗((δ1; δ2), s, δ
′′, run(δ, s)) ∧ Final(δ′′, run(δ, s))

is entailed. Now, given that Trans∗ is no more than the transitive closure of
Trans, we can truncate the CPP δ in each model M so as to obtain a new δ′1
that accounts only for the execution of δ1 in M .

Consider then a particular model M . In M , there is a finite sequence of
Trans’ followed by a Final for program δ1; δ2. By definition of Trans for se-
quence, this implies a sequence of Trans’ ended with a Final for δ1, followed by
a sequence of Trans’ and a Final for δ2. Clearly, this whole sequence is repre-
sented by a complete branch b in the CPP δ, since δ is a solution for Σc(δ1; δ2).
Roughly speaking, the new truncated CPP δ′1 is constructed by cutting branch

b as soon as an action on it correspond to a transition of δ2 in M . Formally,
cut(δ, M) = δ′ is defined inductively as

cut(nil, M) = nil

cut((A; δ), M) = A; cut(δ, M), if A is due to a δ1 transition in M

cut((A; δ), M) = nil, if A is due to a δ2 transition in M

cut(if φ then δ1 else δ2, M) = if φ then cut(δ1, M) else δ2, if M [φ] = true

cut(if φ then δ1 else δ2, M) = if φ then δ1 else cut(δ2, M), if M [φ] = false

Notice that the truncation is performed in the third rule, as soon as we get
to an action corresponding to a δ2’s step. Also, observe that the branches of δ
not considered by M remain the same. It is not hard to see that there exists δ′′1
such that

Trans∗(δ1, s, δ
′′

1 , run(δ′1, s)) ∧ Final(δ′′1 , run(δ′1, s))

holds in M since run(δ′1, s) encodes the complete execution of δ1 in M . Moreover,
there is a CPP δ∗, namely the one cut from δ, that extends δ′1 and accounts for a
complete execution of δ2 starting at run(δ′1, s). Formally, there is a δ∗ (the CPP
removed from δ), and a program δ′′2 such that

Trans∗(δ2, run(δ′1, s), δ
′′

2 , run(δ∗, run(δ′1, s))) ∧ Final(δ′′2 , run(δ∗, run(δ′1, s)))

Clearly, since δ is a CPP, so are δ′1 and δ∗. In addition, because knowHow(δ, s)
holds in M , both knowHow(δ′1, s) and knowHow(δ∗, run(δ′1, s)) hold in M as
well. For, the complete execution of δ in s is exactly the same as the one obtained
by executing δ′1 frist followed by δ∗. Putting all these together, we get that

Trans(Σcδ1, s, δ
′

1, s) ∧ Trans(Σcδ2, run(δ′1, s), δ
∗, run(δ′1, s))

holds in M . Finally, extending the CPP δ′1 with the CPP δ∗ shields the CPP δ.
For, δ′1 was obtained by removing δ∗ from δ. As a consequence, extCPP (δ′1, δ, δ

∗, s)
is true in M .

Given that all this applies for every model M satisfying Trans(Σ(δ1; δ2), s, δ, s),
the property follows.

(⇐) This way is similar to the right-hand side. The point is that, in each
model, it is possible to perform a sequence of transitions for δ1 corresponding
to a complete path in the CPP δ′1. From that, it is possible to follow a path in
the CPP δ∗, which extends δ′1, corresponding to transitions for program δ2. The
important thing is that the CPP δ will account for all the necessary extensions
at the leafs of the CPP δ′1 w.r.t. program δ2.

In that sense, following the CPP δ is the same as following first δ′1 as a
solution to δ1, and then following δ∗ as a solution for δ2. ut

Proof (Property 4).
Suppose that Trans(Σcδ, s, δ

′, s′) holds. By definition of Σc,

∃δ′′.T rans∗(δ1, s, δ
′′, run(δ′, s)) ∧ Final(δ′′, run(δ′, s))

is entailed. Take a model M and suppose that Final(δ, s) is not true. Thus, there
has to be at least one Trans step of δ1, i.e., either

∃δ′′, δ∗.T rans(δ, s, δ∗, s) ∧ Trans∗(δ∗, s, δ′′, run(δ′, s)) ∧ Final(δ′′, run(δ′, s))

is true in M (due to a test transition), or

∃δ′′, δ′′′, δ∗, a.T rans(δ, s, δ∗, do(a, s)) ∧
Trans∗(δ∗, do(a, s), δ′′, run(δ′′′, do(a, s))) ∧ Final(δ′′, run(δ′′′, do(a, s)))

is true in M (due to an action transition.) Notice that δ′′′ is the CPP that
remains after performing one single step of δ′ w.r.t. the model. In either case,

∃δ′′.δ′′′, δ∗.T rans(δ, s, δ∗, s′′) ∧ Trans(Σcδ
∗, s′′, δ′′′, s′′)

Because this applies for any model M , the property follows. ut

A.2 Proofs of Theorems

Proof (Lemma 1).
We will need the following terminology: A mode for an n-ary predicate symbol

p is a function mp : {1, ..., n} → {+,−}. Positions mapped to ′+′ are called
input positions of p, and positions mapped to ′−′ are called output positions of p.
Intuitively, queries formed by predicate p will be expected to have input positions
occupied by ground terms. We write mp in the form p(mp(1), ..., mp(n)). A family
of terms is linear if every variable occurs at most once on it. A clause is (input)
output linear if the family of terms occurring in all (input) output positions of
its body is linear.

An input-output specification for a program P is a set of modes, one for each
predicate symbol in P . A clause (goal) is well-moded if every variable occurring
in an input position of a body goal occurs either in an input position of the head,
or in an output position of an earlier body goal; and every variable occurring in
an output position of the head occurs in an input position of the head, or in an
output position of a body goal. A goal can be viewed as a clause with no head
and we will be interested only in goals with one atom, i.e. G =← A. A program
is called well-moded w.r.t. its input-output specification if all its clauses are.
The definition of well-moded program constrains “the flow of data” through the
clauses of the program. Lastly, a clause (goal) is strictly moded if it is well-moded
and output linear, and a program is strictly moded if every rule of it is.

It was proved in Apt and Pellegrini [[19], Corollary 4.5] that well-moded and
output linear programs (for some input-output specification) are occur-check free
w.r.t. well-moded goals. It was also proven there (Corollary 6.5) that a program
P is occur-check free w.r.t. a goal G if both P and G are strictly moded. Finally,
Theorem 8.5 in [19] says that if PD and G are well moded and all predicate
symbols occurring under not in PD and G are moded completely input, then
PD ∪ {G} does not flounder.

Let M be the follwing mode for program P :

trans(+,+,-,-), final(+,+), =(+,+), prim_action(+), kwhether(+,+),

build_cpp(+,+,-), ext_cpp(+,+,+,-)

In the mode M , both P and G are well-moded. Moreover, every clause of P is
output linear. Then, by Corollary 4.5 in [19], P ∪ {G} is occur-check free.

Also, the only relation that appears in negative literals of P , namely =/2,
is moded completely input. By Theorem 8.5 in [19], we conclude that P ∪ {G}
does not flounder. ut

Proof (Theorem 1). By induction on the structure of the program δ. For sim-
plicity, let us refer with S to the situation term end[σ].

Base Case: consider the case δ = A, where A is an action. Given that
Dos(A, S, c) is entailed, it follows that Axioms∪Sensed[σ]∪AxCAT |= Poss(A, S)∧
c = A. First, it is trivial to check that Axioms |= condP lan(A)∧knowHow(A, S).
Second, from the definitions of Trans and Final, it follows that Axioms ∪
Sensed[σ] |= Trans(A, S, nil, do(A, S))∧Final(nil, do(A, S)). From the fact that
CATtoCPP (A) = A, we get that Axioms ∪ Sensed[σ] |= Trans(ΣcA, S, A, S).

The cases for δ =?(φ) and δ = nil are similar.

Induction Step: we will only show the cases of nondeterministic choice of pro-
gram and sequence. For the latter one, assume δ = δ1|δ2. Since Dos(δ1|δ2, S, c)
holds, Axioms ∪ Sensed[σ] ∪ AxCAT |= Dos(δ1, S, c) ∨ Dos(δ2, S, c). It is not
hard to see that we can safely apply the induction hypothesis to get that
Axioms ∪ Sensed[S] ∪ AxCAT ∪ AxCATtoCPP entails

Trans(Σcδ1, S, CATtoCPP (c), S) ∨ Trans(Σcδ2, S, CATtoCPP (c), S)

Using Property 1, Trans(Σcδ1, S, CATtoCPP (c), S) follows.
Finally, consider the case δ = δ1; δ2. From the definition of sGolog, the set of

axioms Axioms ∪ Sensed[σ] ∪ AxCAT entails

∃c′.Do(δ1, S, c′) ∧ ∃c∗.Do(δ2, cdo(c′, S), c∗) ∧ ext(c′, c, c∗, S)

By induction, we get that Axioms∪Sensed[σ]∪AxCAT∪AxCATtoCPP entails

∃c′.T rans(Σδ1, s, CATtoCPP (c′), S) ∧
∃c∗.T rans(Σδ2, cdo(c′, s), CATtoCPP (c∗), S) ∧ ext(c′, c, c∗, s)

Using the definition of Σc, the following is entailed:

∃c′, δ′′1 .T rans∗(δ1, S, δ′′1 , run(CATtoCPP (c′), S)) ∧
Final(δ′′1 , run(CATtoCPP (c′), S)) ∧

∃c∗, δ′′2 .T rans∗(δ2, cdo(c′, S), δ′′2 , run(CATtoCPP (c∗), cdo(c′, S))) ∧
Final(δ′′2 , run(CATtoCPP (c∗), cdo(c′, S))) ∧ ext(c′, c, c∗, S)

Next, from the fact that cdo(c, s) = run(CATtoCPP (c), s), the following is
entailed as well:

∃c′, c∗, δ′′2 .T rans∗((δ1; δ2), S, δ′′2 , run(CATtoCPP (c∗), cdo(c′, S))) ∧
Final(δ′′2 , run(CATtoCPP (c∗), cdo(c′, S))) ∧ ext(c′, c, c∗, S)

Finally, since c is an extension of c′ by means of each c∗ from each model,
we know that, in each of such models, it is the case that

run(CATtoCPP (c∗), cdo(c′, S)) = cdo(c, S) = run(CATtoCPP (c), S)

Hence, Axioms ∪ Sensed[σ] ∪ AxCAT ∪ AxCATtoCPP entails

∃δ′′2 .T rans∗((δ1; δ2), S, δ′′2 , run(CATtoCPP (c), S)) ∧
Final(δ′′2 , run(CATtoCPP (c), S))

Putting this together with the fact that CATtoCPP (c) is clearly a CPP, and
that knowHow(CATtoCPP (c), S) is entailed as well, we conclude that

Axioms ∪ Sensed[σ] ∪ AxCAT ∪AxCATtoCPP |=
Trans(Σ(δ1; δ2), S, CATtoCPP (c), S)

ut

Proof (Theorem 2 (first part)).
(⇒) the proof is the same as the one for Theorem 2 with the following

modifications: (i) Axioms is replaced by Axioms′; (ii) Σc is replaced by Σcb;
and (iii) program δ is replaced by program δ−.

(⇐) By induction on the structure of the program δ. For simplicity, let us
refer with S to the situation term end[σ].

Base Case: consider the case δ = A, where A is a domain action. Given
that Trans(ΣcbA, S, CATtoCPP (c), S) is entailed, it should be the case that
CATtoCPP (c) = A, and hence, c = A. Thus, Trans(A, S, nil, do(A, S)) holds,
which implies that Poss(A, S) holds. As a result, Dos(A, S, A) applies.

Consider next the case δ = branch on(φ). Given the fact that the set of
axioms entails Trans(Σcbbranch on(φ), S, CATtoCPP (c), S), it should be the
case that CATtoCPP (c) = (if φ then nil else nil), and hence, c = [φ, ε, ε].

Also, since knowHow(CATtoCPP (c)), s holds, we know that kwhether(φ, S)
is true. By the macro expansion definition of Dos, Dos(branch on(φ), S, [φ, ε, ε])
is entailed.

The cases for δ =?(φ) and δ = nil are similar.

Induction Step: we will show the case for sequence. Assume then that δ =
δ1; δ2, and that Trans(Σcb(δ1; δ2), S, CATtoCPP (c), S) is entailed from the ax-
ioms. By Property 3,

∃δ′1.T rans(Σcbδ1, S, δ′1, S) ∧ ∃δ∗.T rans(Σcbδ2, run(δ′1, S), δ∗, run(δ′1, S)) ∧
extCPP (δ′1, CATtoCPP (c), δ∗, S)

holds. Next, let c′1 and c∗ be two CATs such that CATtoCPP (c′1) = δ′1 and
CATtoCPP (c∗) = δ∗ respectively. Using the induction hypothesis,

∃c′1.Dos(δ1, S, c′1) ∧ ∃c
∗.Dos(δ2, run(CATtoCPP (c′1), S), c∗) ∧

extCPP (CATtoCPP (c′1), CATtoCPP (c), CATtoCPP (c∗), S)

is entailed by Axioms′ ∪ Sensed[σ] ∪ AxCATtoCPP ∪ AxCAT . The final step
is simple and based on the fact that run(CATtoCPP (c), s) = cdo(c, s), and that

Axioms′ ∪ Sensed[σ] ∪ AxCATtoCPP ∪ AxCAT |=
extCPP (CATtoCPP (c1), CATtoCPP (c2), CATtoCPP (c3), s) ≡ ext(c1, c2, c3, s)

for every situation s and CATs c, c1, c2, c3. This is saying that run and
extCPP are the analogous of sGolog cdo and ext. As a result,

Axioms′ ∪ Sensed[σ] ∪ AxCATtoCPP ∪ AxCAT |=
∃c′1.Dos(δ1, S, c′1) ∧ ∃c

∗.Dos(δ2, cdo(c′1, S), c∗) ∧ ext(c′1, c, c
∗, S)

ut

Proof (Theorem 2 (second part)). The second part of Theorem 2 is not hard and
follows easily by inspecting the differences between Σc and its restricted version
Σcb.

If δ′ is a solution for Σcbδ2, then it should also be a solution for Σcδ
−

2 given
that the only difference between them is that Σc allows splittings at any point.

1. Clearly, Axioms∪Sensed[σ] |= condP lan(δ′)∧knowHow(δ′, end[σ]) as they
hold for Axioms′;

2. Every path in δ′ is represented by a successful sequence of Trans’ followed
by a Final w.r.t. Axioms∪Sensed[σ] and program δ−2 . This follows trivially
from the fact that δ−2 is δ2 with all its branch on actions suppressed, and the
fact that the run function does not introduce any branch term action into
the situation term. Hence, the sequence of Trans’ followed by the Final for
each path on δ′ is the same sequence of that for δ2 except that all transitions
of branch actions are discarded.

Putting both 1 and 2 together, we conclude

Axioms ∪ Sensed[σ] |= Trans(Σcδ
−

2 , end[σ], δ, end[σ])

ut

Proof (Theorem 3).
First part: This is proved by induction on the number of calls to build cpp/3

and relying on the soundness of trans/3 and final/2. We will refer with s to
the corresponding sequence of actions representing the situation term end[σ].

The base case is when only one call to build cpp/3 is performed, namely the
call in the trans/4 rule for searchcb(E). In that case, goal succeeds with the
first rule of build cpp/3, and soundness is obtained trivially from the soundness
of final/2.

For the induction step, suppose the goal build cpp(δ, s, C) succeeds with
n > 1 calls to do/4. Then, one of the following cases applies:

1. Case 1: δ = δ1; δ2 and goal build cpp(δ1; δ2, s, C) succeeds with C = δ′.
First, build cpp(δ1, s, C1) succeeds with C1 = δ′1. By induction hypothe-
sis, Axioms∪Sensed[σ] |= Trans(Σcbδ1, s, δ

′

1, s). Also, ext cpp(δ2, s, δ
′

1, C)

succeeds with C = δ′ itself. Now, by inspecting the three rules for do/4, it
is not hard to see that C is obtained by extending each possible path of the
CPP δ′ with a new conditional program plan. This is done by reasoning by
cases at each branch point of δ′ (legal due to assumption (ii) at the beginning
of Section 5.) By induction, every path extension of δ′ is sound, and do/4

bounds C to a conditional plan that completely extends (i.e., extends every
path) the CPP returned as a δ1 solution, i.e., the CPP δ′1, with new and
sound CPPs at every leaf. Formally,

∃δ∗.T rans(Σcbδ2, run(δ′1, s), δ
∗, run(δ′1, s)) ∧ extCPP (δ′1, δ, δ

∗, s)

is entailed by Axioms ∪ Sensed[σ]. Hence, by Property 2 for Σcb,

Axioms ∪ Sensed[σ] |= Trans(Σcb(δ1; δ2), end[σ], δ′, end[σ])

2. Case 2: δ = branch on(f) and goal build cpp(branch on(f), s, C) succeeds
with C = δ′ = if(f, nil, nil), where f is a domain fluent. Thus, the soundness
of search follows directly from the soundness of call kwhether(f, s).

3. Case 3: the fourth rule for build cpp/3 succeeds. In such a case, the sub-goal
trans(δ, s, E1, [branch on(P)|s]) succeeds with P = f and E1 = δ∗ for some
fluent f and program δ∗. Moreover, build cpp([branch on(f)|δ∗], s, C) suc-
ceeds with C = δ′. The key point is the fact that if δ makes a branch on(f)
step with a remaining program δ∗, then a solution for Σcb(branch on(f); δ∗)
is also a solution for Σcbδ itself. Intuitively, any potential legal next action
can be moved in front of the whole program safely, i.e., the solutions of
the transformed program will also be solutions of the original one (note the
converse is not true.) Knowing that, we simply have to use the induction hy-
pothesis on the new call build cpp([branch on(f)|δ∗], s, C) to reconstruct
the soundness of the original call to build cpp/3.

4. Case 4 and 5: either the fifth or the sixth rule succeeds. Those clauses corre-
spond to transitions of non-sequence programs where the transition involves
a test condition ?(φ) or the execution of a domain action A. Using the in-
duction hypothesis on the calls to build cpp/3, together with the soundness
of trans/4, we get the soundness of the original call to build cpp/3.

It follows then that Axioms′ ∪ Sensed[σ] |= Trans(Σcbδ, end[σ], δ′, end[σ]).
Also, Axioms ∪ Sensed[σ] |= Trans(Σδ−, end[σ], δ′, end[σ]) follows directly us-
ing Theorem 2.

Second part: Here, we prove that the top-level call to trans/4 finitely fails,
then the specification supports no solution w.r.t. Σcb. Notice we cannot guar-
antee that for Σc since Σc is more general and may find solutions by splitting
arbitrarily.

The proof is, again, by induction on the number of calls to build cpp/3 in the
finitely failed SLDNF-tree. The base case is when only one call to build cpp/3

is needed, namely, the call in the trans/4 rule. In that case, either δ = A, and
A is not possible; δ =?(φ), and φ does not hold; or δ = branch on(f) for some
fluent f that is unknown at s. All these cases are straightforward in that we only
need to refer to the (assumed) soundness of trans/4, final/2, and kwhether/2.

For the induction step, suppose the goal build cpp(δ, s, C) finitely fails with
n > 1 calls to build cpp/3. Then, one of the following cases applies:

1. Case 1: δ = δ1; δ2. The only eligible build cpp/3 rule is the second one, and
either (i) the sub-goal build cpp(δ1, s, C) finitely fails; or (ii) the sub-goal
build cpp(δ1; δ2, s, C1) succeeds with computer answer C1 = δ′, but the
sub-goal ext cpp(δ2, s, δ

′

1, C) finitely fails.
In the first case, we apply the induction hypothesis to get that Axioms′ ∪
Sensed[σ] |= ∀δ′, s′.¬Trans(Σcbδ1, s, δ

′, s′).
The second case deserves a little more attention. Since ext cpp(δ2, s, δ

′

1, C)

finitely fails, it has to be the case that some complete path of the CPP
δ′1 from situation s cannot be extended with a valid CPP for δ2. In other
words, after traversing a complete path of δ′1, the third rule of ext cpp/4

finitely fails, because its body call to build cpp/3 finitely fails when trying
to extend the path by using program δ2. Hence,

Axioms′ ∪ Sensed[σ] |= ¬∃δ∗.T rans(Σcbδ2, run(δ′1, s), δ
∗, run(δ′1, s))

since there is at least one complete path of δ1 for which there is no extension
w.r.t. δ2.
In either case (i) or (ii), by using Property 3, we conclude that

Axioms′ ∪ Sensed[σ] |= ∀δ′, s′.¬Trans(Σcb(δ1; δ2), end[σ], δ′, s′)

2. Case 2: In this case, δ is not a sequence program, and after all possible
transitions via trans/4 in the third, fourth, and fifth rules of build cpp/3,
the corresponding sub-goal call to build cpp/3 finitely fails. Given that we
assumed a correct trans/4 implementation, by the induction hypothesis on
each sub-goal call to build cpp/3, we conclude that

∀δ′′, s′′.T rans(δ, s, δ′′, s′′) ⊃ ∀δ∗, s∗.¬Trans(Σcbδ
′′, s′′, δ∗, s∗)

is entailed by the specification. Notice that the failure of the third clause
for build cpp/3 is a bit complicated; by moving the branch action to the
front of the program, the interpreter will try to build two separated CPPs,
one for each truth value of the branch-fluent. As a consequence of that, the
finitely failure of the sub-goal call to build cpp/3 (in the third clause of
build cpp/3) means that, for some truth value of the fluent in question,
there is no legal CPP extension. By Property 4,

Axioms′ ∪ Sensed[σ] |= ∀δ′, s′.¬Trans(Σcbδ,end[σ], δ′, s′)

ut

