LPSP: A Linear Plan-level Stochastic Planner

Ronen |. Brafman
Department of Math and CS
Ben-Gurion University
Beer Sheva, Israel 84105
braf man@s. bgu. ac. il

Abstract

We describe L PSP, a domain-independent planning algorithm
that searches the space of linear plans using stochastic local
search techniques. Because linear plans, rather than propo-
sitional assignments, comprise the states of LPSP's search
space, we can incorporate into its search various operators
that are suitable for manipulating plans, such as plan-step
reordering based on action dependencies, and limited for-
ward/backward search. This, in turn, leadsto a flexible plan-
ning algorithm that outperformsthe SATPLAN planner on dif-
ficult blocks world problems.

1 Introduction

The last severa years have witnessed the emergence of
a number of novel classica planning agorithms, includ-
ing Ginsberg's approximate planning [Gin96], Blum and
Furst’'s GRAPHPLAN [BF95], Kautz and Selman’s SAT-
PLAN [KS96] constraint-based planning [JP96] and refine-
ment planning [KKY95]. While considerable research has
been directed in the last decade toward the development of
| east-commitment plannersthat search in plan space—with a
notablelineage defined by TWEAK [Cha87], SNLP [MR91]
and UCPOP [PW92]—these new agorithms employ ideas
that differ, sometimes considerably, from those underlying
more classic work in generative planning.

SATPLAN, in particular, is a very different form of plan-
ner, seemingly relying on almost none of the intuitions used
to develop state-space or plan-space planners in the past.
While similar in some respects to constraint-based planning,
it embodies none of the concepts usualy used to direct the
search for plans, such as projection, regression, means-ends
analysis, producers, consumers, causa links, threats, clob-
berers, and so on (at least not explicitly). Instead, using a
propositiona encoding of a planning problem, it searches
stochastically for a satisfying assignment, from which a plan
can be extracted.! On many problems, it outperforms other
planning approaches by orders of magnitude.

While SATPLAN'’s success is certainly good news for
those concerned with the prospects for generative planning,
one cannot but admit a certain disappointment that many of

! Depending on the choice of encoding, these propositional mod-
els may encode plan steps, intermediate states, or both.

Holger H. Hoos
Department of Computer Science
Darmstadt University of Technology
D-62483 Darmstadt, Germany
hoos@ nf or mati k. t u- dar nst adt . de

Craig Boutilier
Department of Computer Science
University of British Columbia
Vancouver, BC V6T 174, Canada
cebly@s. ubc. ca

our intuitionsabout planning, embodied in such el egant algo-
rithms such as SNLP and UCPOP, may have outlived their
usefulness. Although many new and interesting questions
ariseinthe context of satisfiability-based planning, onemight
hopethat notionssuch as means-ends analysis, threats, causal
links, etc. might still have arole to play in computationally
effective planning.?

In this paper, we propose anovel planning algorithm that,
like SATPLAN, is based on stochastic local search; but un-
like SATPLAN, our method searches over the space of linear
plans and uses explicit plan construction steps—involving
means-end analysis, projection and threat remova—to deter-
mine successors in state space. The LPSP agorithm (linear,
plan-space, stochastic planner) thusrequires search operators
that are substantially more expensive computationally than
those of SATPLAN, yet it is able to finds solutionsto very
large problemsin avery small number of steps. For instance,
on the large blocks world problems discussed in [KS96],3
LPSP is able to find the optimal solution between 2 to 10
times faster than SATPLAN using roughly 100 steps.

Thisresearch ispart of amore extensive research program
aimed at understanding stochastic planning and stochasticlo-
ca search. We were in part motivated by the question of
whether the use of a detailed, low-level propositiona rep-
resentation of planning problems is an essential aspect of
stochastic-search based planning, and specifically the suc-
cess of SATPLAN. LPSP shows that by returning to more
traditional search spaces, we can benefit from many of the
intuitions developed in past planning research. During this
ongoing quest, we have come to appreciate the error in the
illusory view that SATPLAN isdevoid of such insights. For
example, if one examines the detailed interactions of linear
encodings of a planning problem [KMS96] with the Wal ksat
search mechanism [SKC94], we can see that SATPLAN has
abiastoward (implicitly) extending valid (or near valid) ac-
tions sequences. In other words, the encoding provides cer-
tain information that can be exploited in away that appears

20f course, it has not been claimed that stochastic planning out-
performs more traditional approaches on all domains, and an un-
derstanding of the nature of domainson which it is better/worse re-
mains an issue.

*That s, bw-large.d: a19 block problem (18 step optimal plan);
and bw-large.c: a 15 block problem (14 step optimal plan).

to embody certain planning intuitions; but thisinteractionis
often accidental, and can be hard to verify. Furthermore, it
can be amost impossibleto apply new planningintuitionsto
search guidance: one must devise a new encoding whose in-
teraction with stochastic search embodies these intuitions.

The approach taken in LPSP is to provide a representa-
tion that alows these explicit planning intuitions and oper-
ators to impact search. In fact, as we describe in the con-
cluding section, LPSP is a specific instance of a more gen-
eral approach that admits different plan representations and
search procedures. Our LPSP algorithm is quite simple; it
operates roughly as follows. We generate an initial linear
plan (sequence of actions of fixed size) from which search
proceeds. We al so assume the existence of ascoring function
that measures the degree of conflict exhibited by aplan: plans
with a higher score are “less vaid” than plans with a lower
score. We then compute plan successors by considering the
replacement of each action with a different action. We then
apply the best replacement (i.e., choose the successor with
theminimal score), unlessno replacement improvesthe score
of the current plan. In this case, we do one of two things: if
the current plan score is sufficiently high (i.e, it has alarge
number of conflicts), we perform a stochastic shuffling of the
plansactions; if thescoreislow (i.e., itispromising) we per-
form an optimization step involving the (stochastic) applica-
tion of various plan construction techniqueswith limited for-
ward search. Thisoptimizationstep differentiatesL PSP from
SATPLAN to great degree, and relies on the choice of plan
space as our search space. It isalso crucial to the success of
LPSP—without it the planner’s performance is abysmal.

The rest of this paper is organized as follows. Following
a brief review of the classical planning problem, we present
amore detailed description of the LPSP. Thisisfollowed by
a description of our experimental results comparing LPSP to
SATPLAN, and a short discussion.

2 ThePlanning Problem

We focus on the well-known classical Al planning problem.
We assume we are given an initia state 7, aset of goal states
G, and a set of actions A (i.e., partia functions mapping
dtates to states). Our task is to find a sequence of actions
(a1, -+, an) such that the sequential application of these ac-
tion in this order starting at / will yield a state in &' (i.e,,
an(tn_1(---(a1(I)---))) € G). The complexity of this
planning problem depends on the language used for describ-
ing 7, G and A [ENS95].

We adopt the popular STRIPS language for representing
actions [FN71]. We consider problems formulated using a
propositional STRIPS representation, where the states corre-
spond to propositional assignments, goa states are described
via conjunctionsof propositions, and actions are represented
using two lists: the precondition list, containing a conjunc-
tion of propositions, and the effect list, contai ning a conjunc-
tion of literals* An instance of the move action from the
blocksworld domainisshownin Figure1l. Theaction can be

*We assumeabasic familiarity with theseideas. For awell writ-
ten introduction, see [Wel94].

MOVE(A, B, C) --
preconditions: ON(A B) & CLEAR(A) & CLEAR(Q
effects: ON(A, ©) & CLEAR(B) & -CLEAR(Q)

Figure 1: Aninstance of the MOVE action

applied in al states in which the list of preconditionsis sat-
isfied, and itsresult is obtained by adding to the current state
description al positive literalsin the effect list and negating
all those propositionsthat appear as negative literals.

The basic structure used in this paper is a linear plan.
A linear plan is simply a sequence of actions {ay, - - -, a,).
Such a plan is called valid with respect to initia state I,
if for each i < n, the action «; can be applied at state
ai—1(ai—2(---ar(I)--)); that is, a;’s preconditions hold in
thisstate. A valid planisasolution (w.r.t. I, () if the appli-
cation of each action results in the some state in . Follow-
ing [MR91], weintroducetwo artificia actions: an action ag
that must be executed first in any valid plan, whose effect is
to produce the initia state 7; and action a.., that must occur
last in any valid plan, and whose preconditions are the goal
conditions. This ensures that finding avalid plan automati-
cally produces a successful plan (by removing a; and a.).

3 TheLPSP Algorithm

The LPSP agorithm searches through the space of linear
plansfor a solution. We describe the al gorithm assuming that
plans of afixed length n are being searched. We deal with
arbitrary plans using techniques similar to those described in
[BF95, KS96]. Itsbasic structureis as follows.

Repeat until a solution has been found or a maximum
number of iterations have been tried

1. Initidizecurrent plan P
2. Repeat until a solution has been found or a maximum
number of search steps have been tried

(8 Let.S = s(P) bethecurrent plan score

(b) Call ChooseAction(P, S)

(c) Let a; be action chosen for replacement and S, =
s(P') where P’ is obtained by thisreplacement in P

(d) If Spew < S, let current plan be P/;

(e) Elseif S < ¢, call Optimize(P, S) and let current plan
be resulting plan;

(f) Elsecal Shuffle(P, S) and let current plan be resulting
plan.

The algorithm assumes that amethod for generating initial
plans has been given and that a scoring function s measuring
the “degree of conflict” in a plan has been provided. It uses
aprocedure ChooseAction(P, S) that greedily selects an ac-
tion ax, in plan P to bereplaced by some new action a/,. This
selection is based on the improvements in score offered by
candidate replacements. If the selected replacement actually
results in an improvement, we update the current plan and
proceed with the search. Otherwise, replacement offers no
improvement and we consider two alternatives. If thecurrent

plan scoreis bel ow some optimizationthreshold ¢, we apply
an optimization procedure to P; intuitively, if P is reason-
ably good, we will perform some plan-directed search. If the
threshold is exceeded, we apply arandom Shuffle procedure.
We describe each of these componentsin turn.

3.1 Initialization and Scoring

The search procedureisrestarted with anew plan after amax-
imum number of search steps and search is stopped after a
maximum number of tries. Thisgeneral scheme can befound
in many stochastic local search algorithms, such as GSAT
[SLM92] or Walksat [SKC94] A planisinitialized at the be-
ginning of asearch try using bi-directiona search. If theplan
length isn, we choosethelast »n/2 actions by performing re-
gression from the goa state. If multiple actions can be ap-
plied, oneis chosen randomly. We choose the first n/2 ac-
tions using an ana ogous forward search through state space
(again randomly choosing from among multiple applicable
actions). Thus the initial plan consists of two “vaid” frag-
ments that are (highly) unlikely to match where they meet.

The scoring function s is defined as follows. For each ac-
tion in the plan, its required atoms are those ground atoms
that appear in some literal in its precondition list (i.e., these
are preconditions without polarity). For any action a; in P
and required atom ¢, the most recent action for {ay, ¢) isthe
latest occurring action a; in P, j < k, that has an effect on
q.° If theeffect of a; agreeswith thispreconditionof ay (i.e,
if a; produces ¢ and a;, needs ¢, or if a; produces —~¢ and ay,
needs —¢), we let o(ay, ¢) = 0. Intuitively, thismeans there
isno conflict in the plan with regard to a;’s preconditionin-
volving ¢. Otherwise, there is a conflict in the plan in this
regard, andwelet o(ag, q) = (k—j)? + (n—k)%. Thescore
s(P) is given by the sum of the scores o (ax, ¢) for each ay,
in P and each of a;’srequired atomsg.

Although we arrived at this scoring function empirically,
we believethat itsmain effect isto favor resolution of a con-
flict between action a;'s effects and a;,’ spreconditionsby in-
sertion of an action between «; and ay, if possibleat position
J+(k—j)/2): thisleadstothe greatest reductionin the score
of the plan (in thisdimension).®

3.2 Sdecting Actionsfor Replacement

Having described the scoring function and the planinitializa-
tion step, we now describe the main subroutines of LPSP. As
mentioned above, given a current plan with score S, wefirst
attempt to replace one of itsactionstoimproveitsscore. This
is the function of the ChooseAction procedure which is de-
tailed in Figure 3.2. Intuitively, we caculate for each plan
step a; an action aj, such that substituting «j, for a; in P
yields the plan P’ with the lowest score among all possible
replacements of a;, (letthisscorebesyg). If thereare multiple
candidates for a, (i.e., multipleactionswith the same lowest
score), oneischosen at random. Next, all minimal scores s;,
0 < ¢ < n, arecompared. Let i, betheindex of the ac-
tion that has the smallest value s, _,,. One possible strategy

®1f no “true” action has an effect on ¢, then action ao will.
® Thesecondterm (n—k)? hasonly minor effect ontheplanner’s
performance.

Procedure choose_action()

-Let s = score of current plan

- Choose a random pernutation tau over 1,...,n

(where n is plan size)

-enough = FALSE

-Repeat for all plan steps in the order

determined by tau or until enough = TRUE
-Let t be the current step; for every
possi bl e action cal cul ate the score
obt ai ned by replacing the current action
inthe stept by it

-Let a’ be the action that mnimzes this
score, and let s’ be its score
-If s < s then
-with probability 0.8, enough = TRUE
-s_new = s’
-act = a’
-k =t

-return s_new, act, k;

Figure 2: Choosing Actionsfor Replacement

for selecting thenext planisto smply replaceactiona; .. by
a; . . Such agreedy replacement step is reminiscent of the
means-ends anaysisunderlying GPS[NS63] and the STRIPS
planning algorithm [FN71]. In GPS, for instance, steps are
added to aplanin order to reduce the difference between cur-
rent plan steps. In LPSP, the score can be viewed as quanti-
fying the degree of conflict between plan steps, and step re-
placement is used to reduce this conflict level.”

As described above, the search has only a small stochas-
tic component. As shown in Figure 3.2, we actualy use a
dlightly more stochastic hill-climbing approach: rather than
pursuing the steepest descent, aless greedy stochastic choice
ismade. In particular, a permutation = of [1, - - -, n] is cho-
sen, andwe caculate s, (1, s7(2), . . . until wefind i such that
s7(;) ISsmaller thanthecurrent score s. At thispoint, we stop
examining the remaining steps with probability 0.8. Thisre-
duces the computationa costs of certain steps and allowsfor
additiona stochasticity in the replacement choice.

3.3 Optimization and Shuffling

Actions that reduce the conflict level are not always avail-
able. When s, .. > s, rather than replace an action we at-
tempt to revise the current plan P in away that reorders the
actions. If s is below some threshold () (i.e, if P isrd-
atively conflict free), we perform an optimization procedure
by applying various plan construction operations to the ac-
tionsin P. Otherwise, we perform arandomization step—in
particular, we randomly choose a (random) number of action
pairs and exchange their place.®

The shuffling stage is important one for LPSP, adding an
important stochastic element to the planner that helps it es-
cape fromlocal minima. The optimization step, however, is
themost crucia step in LPSP. A variant of LPSP without this

A natural extension would beto permit the addition, aswell as
replacement, of plan steps that reduce conflict level.

& Procedure Shuffle simply chooses a random number 1 < k <
n, chooses k random pairs of integers (i, 7) and exchanges action
a; and ay in P for each such pair.

Procedure optim ze()
-For i=1 to n-1
-For j= i+l ton

-if i depends on j then
exchange steps i and j
-For i=1 to n-1
-For j= i+l ton
-if i threatens j then
exchange steps i and j
-1f new_score not better than old_score then
-let S be the initial state
-make all actions in plan unchosen

-whi |l e possible
-choose an unchosen action whose
-preconditions are satisfied at
mark it chosen
-Reassign to S the state obtained by
appl ying the chosen action to S

S and

Figure 3: The Optimization Procedure

optimization step performs very poorly. Without optimiza-
tion, the LPSP variant is often able to generate plans con-
taining many or all of the steps that appear in some vaid so-
[ution. Unfortunately, their order is usualy incorrect. Since
the random shuffling of actionsis highly unlikely to stumble
upon thecorrect ordering, and because the cost of each search
step (especially action replacement) is considerably higher
than the cost of oneassignment step of typical stochastic SAT
engines, we cannot afford the luxury of waiting for random
shuffling of actionsto bring about the correct ordering.

The optimization procedure is detailed in Figure 3. It is
a based on the heuristic application of some simple intu-
itions regarding ordering constraints. Intuitively, we attempt
to identify incorrectly ordered, but dependent, actionsin the
current plan and fix the ordering. We proceed in two stages.

We say that action a; depends on action «; if k < [, a;
has an effect that isa precondition of a;, and no action prior
to a; hasthis effect. We say that aj, threatens a; if & < [
and a;, has an effect that negates some precondition of «;,
and no action a¢; (k < j < () has this precondition as an
effect. Intuitively, if a;, depends on «;, swapping their posi-
tion in the plan has the potentia to satisfy the unmet precon-
dition of ag; and if a; threatens a;, swapping has the poten-
tial to remove this threat and satisfy this precondition of «;.
Notice that these steps do not completely propagate ordering
congtraints as might be found in a partial order planner. The
reasoning used is“incomplete’ but very efficient.’

The first stage of optimization examines each actionin P
in turn, determining whether it depends on some following
action; if so, the actions are exchanged in P. Next, we again
examine each action to see whether it is threatened by some
previous action, and if so, we reverse their ordering. Al-
though thisreordering isincomplete (i.e., it does not always
generate a correct ordering of the existing actions), it is suc-
cessful with surprising frequency.

We have considered the use of more complete reasoning about
plan constraintsin LPSP. We plan to implement such a mechanism
in the near future, but suspect that the large overhead with these
more complicated search steps may prove detrimental.

The second stage of optimization takes place if the first
fallstoyieldasolution. Thisreordering phaseisbased onfor-
ward (state-space) search. Fromtheinitial state /, we choose
an action from P that can be applied at / and add it to anew
plan P’. We then repeatedly choose actions from the (re-
mainder of) current plan that can be added to the end of the
new plan P’ (i.e, applied vaidly). This continues until no
applicable actions can be selected from those left in P. The
remaining actions are appended in random order to P’ to ob-
tainthe new plan. We notethat when multipleactionsare ap-
plicableat aparticular stage of P, theaction used is selected
randomly.'©

4 Experimental Results

The current version of LPSP is implemented in C++. Due
toitsearly stage of development, a general interface able to
read any domain descriptionis not yet available. Rather, the
action choice procedures have been hand-coded for each do-
main. However, this has been done without adding domain
dependent information. The main implication of thisis that
the overhead of compiling adomain descriptionintotheform
used by the planner is saved. However, we anticipate this
stage to be less costly than the plan encoding and the unit
resolution stage of SATPLAN, and to take time insignificant
compared to planning time.

Experiments were performed on a Sun Ultra 2 worksta-
tion with a 200MHz processor and 256 MB RAM. We com-
pared LPSP and SATPLAN on the large blocks world prob-
leminstancesthat are described in[KS96], where SATPLAN
using stochastic local search (Walksat) and a linear problem
encoding was shown to outperform both GRAPHPLAN and
alternate versions of SATPLAN itself. The problems are:
bw.l ar ge. a, whichinvolves9blocksand can be optimally
solved using 6 steps; bw.| ar ge. b (11 blocks, 9 step plan);
bw.l ar ge. c (15 blocks, 14 step plan); and bw.l ar ge. d
(19 blocks, 18 step plan).

To ensure a fair comparison, we repeated the SATPLAN
experiments on our machine, using the parameter settings
found in the public SATPLAN distribution. Because loca
search stepsin LPSP and SATPLAN/Walksat are difficult to
compare, we compared the planners using CPU times.!! For
both L PSP and Walksat we ran 100 tries on each problemin-
stance. Asin[KS96], therun-timesfor SATPLAN do notin-
clude the time required for transforming the planning prob-
lem into a propositional theory and for decoding the solution
from SAT into the planning domain.

The results appear in Table 1. The parameters used to ob-
taintheseresultsare shownin Table 2. Ascan be seen, LPSP
issubstantially better on thelarge blocksworld problems, but
marginally slower on the smaller problems. Thisisduetothe

19This stage is implemented very simply by choosing a random
permutation of the actionsin P, picking applicable actions in the
order they occur in this permutation, and then swapping them into
the correct position in the plan being generated.

1 Even for the largest instance, LPSP always finds a solution
in less than 1000 steps, while SATPLAN requires approximately
ten million steps. But SATPLAN/Walksat performs about 30,000
steps/sec, while L PSP steps might take more than a second each.

SATPLAN/Wsat LPSP
Problem mean | stddev mean | median | stddev
bw_large.a 0.45 0.43 201 145 1.74
bw_Targeb 19.14 21.76 26.21 2274 20.73
bw_large.c | 513.65 | 503.45 72.99 4373 69.36
bw_larged | 68450 | 588.58 || 322.13 | 199.73 | 353.10

Table 1: Experimental results: Comparing SATPLAN and
LPSP on hard blocks world planning instances. All dataare
CPU timesin seconds.

SATPLAN/Wsat LPSP
Problem cutoff noise || MaxSteps | Opt.Thr. §
bwlargea | 100k 0.5 1000 -400
bwlargeb | 100k 0.35 1000 -1100
bw_ Targe.c | 3000k 0.2 1000 -1100
bwTarge.d | 6000k 02 1000 -2100

Table 2: Parameter settingsfor SATPLAN and LPSP

much greater cost of each plan transformation step. Hence,
despite thefact that only a few steps are required for finding
asolution, the overall timeisgreater than that spent by SAT-
PLAN. However, onthelarger problems, thereductioninthe
number of stepsrequired iswell worth the extra cost.

We also point out that SATPLAN uses a highly opti-
mized implementation of the underlying local search algo-
rithm Walksat, while our LPSP implementation is compara-
tively crude. In addition, we have yet to expend significant
effort to optimize the parameters used by LPSP. For SAT-
PLAN/Walksat, it is known that its performance critically
depends on the settings for the cutoff and noise parameters.
Thus, we expect that LPSP can be improved considerably.

Thelarge standard deviationswhich can be observed inthe
running times of both agorithms on specific problems indi-
cate avery large variability in the run-time behavior of these
stochastic local search agorithms. To study thisin more de-
tail, we plotted the cumulative run-time distributions (rtds)
for LPSP on each of the blocks world instancesin Figure 4.
As can be clearly seen from the plots, the shapes of the rtds

H
g
g
55‘5‘2
s
S5
A4
o
Yl
)
=)

- x ;

60

40 §

20

/

#

#

[
IRIANR%Y.

10 100 1000 10000
run-time [CPU sec]

Figure 4: Cumulative Run-time Distributions

are similar for al four instances. Intuitively, starting from
an “instance specific’ minimal required timeto solveagiven
problem, the probability of finding a plan scales roughly lin-
early with exponentially increasing run-time; that is, to in-
crease the probability of solvingthe problem from p top+ k,
the run-time has to be multiplied by a constant factor. This
holdsup to a certain maximal run-time after which the prob-
lemisamost certainly solved. Thus, despitethe inherent in-
completeness of LPSP, it solves the blocks world instances
with a probability of almost one as the run-time approaches
a certain maximal value. Preliminary experiments indicate
that similar observations hold for SATPLAN/Walksat.

Ascan be easily verified, the shape of LPSP' srtdsalso al-
lows the efficient use of a very simple parallelization strat-
egy: using independent tries on several processors, a linear
speedup can be achieved. Notethat thisform of paralleliza-
tionisvery easy to implement because thereisalmost noin-
terdependence between the parallel processes.

We also performed some experiments on the logistics do-
main detailed in [KS96]. Here, SATPLAN substantially out-
performs LPSP. In fact, LPSP is currently unable to solve
problemsthat SATPLAN disposesof inroughly two seconds.
The difference can be explained by considering the repre-
sentation used by SATPLAN for these problems. The SAT-
PLAN results for the logistics domain were obtained using
a state-based encoding that allows one to consider the con-
current execution of non-interacting actions. In contrast, the
blocks world results were obtained using a linear encoding
(see [KMS96] on thisdistinction). As such, the SATPLAN
results should be viewed as those of two different planners.
The length of the optimal (linear) plans in the logistics do-
main are at least 47 steps, putting them beyond the reach of
LPSP. Using a state-based encoding, SATPLAN can solve
such problems because the optimal plan length when concur-
rent actions are allowed is only 13 steps. As we discuss be-
low, we do not consider these results discouraging.

5 Discussion

We have presented LPSP, the first implemented planning al-
gorithmbased on stochasticlocal search inthespace of plans.
Our initial experimental resultsindicatethat on certain types
of problems, L PSP scal es up much better than SATPLAN and
therefore, other previous planners. On other domains, it is
hindered by its use of linear plan structures.

The main lesson we draw from our initial experience with
LPSP is that there is great potential for planners that use
stochastic local search techniques in the space of plans.
There are two main reasons for this conclusion:

1. LPSP scales up better than SATPLAN as a function of
the plan length on blocks world problems. While SAT-
PLAN exploits well-optimized SAT engines, we haven't
yet had the opportunity to optimizing LPSP's parameters.
Moreover, SATPLAN resultsare generally obtained using
different random-walk probabilities for different problem
instances.'? In contrast, the only problem specific param-

12\We base this observation on the material distributed with the
SATPLAN planner.

eter used in LPSP isthe score thresholdd(n) used to direct
plan optimization; thisis dueto thefact that average score
ishighly dependent on plan length.

2. The use of an intuitive plan representation immediately
suggests the possibility of using of many novel concepts
(such as various plan representations, measures of plan
quality and plan transformations), devel oped in the classi-
ca planning community, by stochastic search algorithms.

This last point is especially important. The disma per-
formance of LPSP on the logistics domain may suggest dim
prospects for LPSP. But we believe that the use of more so-
phisticated plan representati ons and search spaces, especially
those based on non-linear plans, constraint-based planning
representations, and those that allow concurrent action such
as GRAPHPLAN [BF95], offer great promise. Indeed, the
success of SATPLAN using a state-based encoding bodes
wel| for the extension of LPSP in that fashion.

Stochastic local search techniquesfor solving satisfiability
problems have started to gain wide attention in the Al com-
munity and, as aresult, considerable advances in the perfor-
mance of these methods have been achieved. The LPSP a-
gorithmisstill inits earliest stages of development. It isour
hope that similar improvements will be made in plan-level
stochastic local search techniques.

There are anumber of optimizationsthat we hopeto exam-
ineinthenear future, both with respect to theimplementation
and the underlying algorithm. For instance, we hope to soon
investigate the use of non-linear and least commitment plan
representations, and more sophisti cated ordering techniques,
as discussed above. Another idea worth pursuing is direct
search inthe space of variable-sized plans. Thiscould fit well
with LPSP’ s optimization steps, where actionsthat do not ex-
ist in the current plan could be added if needed, or where
existing actions could be deleted if not useful. In addition,
we envision many possible avenues of devel opment. For ex-
ample, one could combine ideas from SATPLAN and LPSP
by, say, integrating LPSP’s optimization methods with SAT-
PLAN’s ability to reason with constraints; or by using SAT-
PLAN for theinitial search phase of LPSP. It isour hopethat
additiona ideas from more traditional planning algorithms
will be combined with stochastic local search techniques to
yield improved planners.

References

A. Blumand M. L. Furst. Fast planning through
planning graph analysis. In Proc. Fourteenth In-
ternational Joint Conference on Al, 1995.

[BF95]

[Cha87] D.Chapman. Planningfor Conjunctive Goals. Ar-

tificial Intelligence, 32(3):333-377, 1987.

[ENS95] K. Erol, D. Nau, and V. Subrahmanian. Complex-
ity, decidability, and undecidability results for do-
main independent planning. Artificial Intelligence,
76(1-2):76-88, 1995.

R. Fikes and N. Nilsson. Strips: A new approach
to the application of theorem proving to problem

[FN71]

solving. Artificial Intelligence, 2(3-4):189-208,
1971

[Gin96] M. Ginsberg. A new agorithmfor generativeplan-
ning. In Proc. of the 5th Intl. Conf. on Principles
of Knowledge Representation. 1996.

[JP96] D. Jodinand M. E. Pollack. Is*“*early commit-

ment” in plan generation ever a good idea? In
Proc. of the 13th National Conf. on Al (AAAI ' 96),
pages 1188-1193, 1996.

[KKY95] S. Kambhampati, C. Knoblock, and Q. Yang.
Planning as refinement search: A unified frame-
work for evaluating design tradeoffs in partial-
order planning. Artificial Intelligence, 88(1—
2):253-315, 1995.

[KMS96] H. Kautz, D. McAllester and B. Selman. Encod-
ing plans in propositional logic. In KR 96, 374—
384, 1996.

H. Kautz and B. Selman. Pushing the enve-
lope: Planning, propositiona logic, and stochastic
search. In Proc. of the 13th National Conference
on Al (AAAI '96), pages 1194-1201, 1996.

D. McAllester and D. Rosenblitt. Systematic non-
linear planning. In Proc. of the 9th National Conf.
on Al (AAAI '91), pages 634-639, 1991.

A. Newell and H. A. Simon. GPS, a program
that simulates human thought. In E. Feigenbaum
and J. Feldman, editors, Computers and Thought.
McGraw-Hill, 1963.

J. S. Penberthy and D. S. Weld. Ucpop: A sound,
complete, partial order planner for adl. In Princi-
ples of Knowl edge Representation and Reasoning:
Proc. Third Intl. Conf. (KR’92), 1992.

[SKC94] B. Sdman, H. Kautz, and B. Cohen. Noise Strate-
gies for Improving Local Search. In AAAI'94,
337-343, MIT press, 1994.

[SLM92] B. Selman, H. Levesgue, and D. Mitchell. A New
Method for Solving Hard Satisfiability Problems.
In AAAI' 92, 440446, MIT press, 1992.

D. S. Weld. An introduction to least commitment
planning. Al Magazine, Winter 1994:27-61, 1994.

[KS96]

[MR91]

[NS63]

[PWO2]

[Wel94]

