
LPSP: A Linear Plan-level Stochastic Planner

Ronen I. Brafman
Department of Math and CS

Ben-Gurion University
Beer Sheva, Israel 84105

brafman@cs.bgu.ac.il

Holger H. Hoos
Department of Computer Science

Darmstadt University of Technology
D-62483 Darmstadt, Germany

hoos@informatik.tu-darmstadt.de

Craig Boutilier
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, Canada
cebly@cs.ubc.ca

Abstract

We describe LPSP, a domain-independent planning algorithm
that searches the space of linear plans using stochastic local
search techniques. Because linear plans, rather than propo-
sitional assignments, comprise the states of LPSP’s search
space, we can incorporate into its search various operators
that are suitable for manipulating plans, such as plan-step
reordering based on action dependencies, and limited for-
ward/backward search. This, in turn, leads to a flexible plan-
ning algorithm that outperforms the SATPLAN planner on dif-
ficult blocks world problems.

1 Introduction
The last several years have witnessed the emergence of
a number of novel classical planning algorithms, includ-
ing Ginsberg’s approximate planning [Gin96], Blum and
Furst’s GRAPHPLAN [BF95], Kautz and Selman’s SAT-
PLAN [KS96] constraint-based planning [JP96] and refine-
ment planning [KKY95]. While considerable research has
been directed in the last decade toward the development of
least-commitment planners that search in plan space—with a
notable lineage defined by TWEAK [Cha87], SNLP [MR91]
and UCPOP [PW92]—these new algorithms employ ideas
that differ, sometimes considerably, from those underlying
more classic work in generative planning.

SATPLAN, in particular, is a very different form of plan-
ner, seemingly relying on almost none of the intuitions used
to develop state-space or plan-space planners in the past.
While similar in some respects to constraint-based planning,
it embodies none of the concepts usually used to direct the
search for plans, such as projection, regression, means-ends
analysis, producers, consumers, causal links, threats, clob-
berers, and so on (at least not explicitly). Instead, using a
propositional encoding of a planning problem, it searches
stochastically for a satisfying assignment, from which a plan
can be extracted.1 On many problems, it outperforms other
planning approaches by orders of magnitude.

While SATPLAN’s success is certainly good news for
those concerned with the prospects for generative planning,
one cannot but admit a certain disappointment that many of1Depending on the choice of encoding, these propositional mod-
els may encode plan steps, intermediate states, or both.

our intuitionsabout planning, embodied in such elegant algo-
rithms such as SNLP and UCPOP, may have outlived their
usefulness. Although many new and interesting questions
arise in the context of satisfiability-basedplanning, one might
hope that notionssuch as means-ends analysis, threats, causal
links, etc. might still have a role to play in computationally
effective planning.2

In this paper, we propose a novel planning algorithm that,
like SATPLAN, is based on stochastic local search; but un-
like SATPLAN, our method searches over the space of linear
plans and uses explicit plan construction steps—involving
means-end analysis, projection and threat removal—to deter-
mine successors in state space. The LPSP algorithm (linear,
plan-space, stochastic planner) thus requires search operators
that are substantially more expensive computationally than
those of SATPLAN, yet it is able to finds solutions to very
large problems in a very small number of steps. For instance,
on the large blocks world problems discussed in [KS96],3
LPSP is able to find the optimal solution between 2 to 10
times faster than SATPLAN using roughly 100 steps.

This research is part of a more extensive research program
aimed at understanding stochastic planning and stochastic lo-
cal search. We were in part motivated by the question of
whether the use of a detailed, low-level propositional rep-
resentation of planning problems is an essential aspect of
stochastic-search based planning, and specifically the suc-
cess of SATPLAN. LPSP shows that by returning to more
traditional search spaces, we can benefit from many of the
intuitions developed in past planning research. During this
ongoing quest, we have come to appreciate the error in the
illusory view that SATPLAN is devoid of such insights. For
example, if one examines the detailed interactions of linear
encodings of a planning problem [KMS96] with the Walksat
search mechanism [SKC94], we can see that SATPLAN has
a bias toward (implicitly) extending valid (or near valid) ac-
tions sequences. In other words, the encoding provides cer-
tain information that can be exploited in a way that appears2Of course, it has not been claimed that stochastic planning out-
performs more traditional approaches on all domains, and an un-
derstanding of the nature of domains on which it is better/worse re-
mains an issue.3That is, bw-large.d: a 19 block problem (18 step optimal plan);
and bw-large.c: a 15 block problem (14 step optimal plan).



to embody certain planning intuitions; but this interaction is
often accidental, and can be hard to verify. Furthermore, it
can be almost impossible to apply new planning intuitions to
search guidance: one must devise a new encoding whose in-
teraction with stochastic search embodies these intuitions.

The approach taken in LPSP is to provide a representa-
tion that allows these explicit planning intuitions and oper-
ators to impact search. In fact, as we describe in the con-
cluding section, LPSP is a specific instance of a more gen-
eral approach that admits different plan representations and
search procedures. Our LPSP algorithm is quite simple; it
operates roughly as follows. We generate an initial linear
plan (sequence of actions of fixed size) from which search
proceeds. We also assume the existence of a scoring function
that measures the degree of conflict exhibited by a plan: plans
with a higher score are “less valid” than plans with a lower
score. We then compute plan successors by considering the
replacement of each action with a different action. We then
apply the best replacement (i.e., choose the successor with
the minimal score), unless no replacement improves the score
of the current plan. In this case, we do one of two things: if
the current plan score is sufficiently high (i.e., it has a large
number of conflicts), we perform a stochastic shuffling of the
plans actions; if the score is low (i.e., it is promising) we per-
form an optimization step involving the (stochastic) applica-
tion of various plan construction techniques with limited for-
ward search. This optimizationstep differentiates LPSP from
SATPLAN to great degree, and relies on the choice of plan
space as our search space. It is also crucial to the success of
LPSP—without it the planner’s performance is abysmal.

The rest of this paper is organized as follows. Following
a brief review of the classical planning problem, we present
a more detailed description of the LPSP. This is followed by
a description of our experimental results comparing LPSP to
SATPLAN, and a short discussion.

2 The Planning Problem
We focus on the well-known classical AI planning problem.
We assume we are given an initial state I, a set of goal statesG, and a set of actions A (i.e., partial functions mapping
states to states). Our task is to find a sequence of actionsha1; � � � ; ani such that the sequential application of these ac-
tion in this order starting at I will yield a state in G (i.e.,an(an�1(� � � (a1(I) � � �))) 2 G). The complexity of this
planning problem depends on the language used for describ-
ing I;G and A [ENS95].

We adopt the popular STRIPS language for representing
actions [FN71]. We consider problems formulated using a
propositional STRIPS representation, where the states corre-
spond to propositional assignments, goal states are described
via conjunctions of propositions, and actions are represented
using two lists: the precondition list, containing a conjunc-
tion of propositions, and the effect list, containing a conjunc-
tion of literals.4 An instance of the move action from the
blocks world domain is shown in Figure 1. The action can be4We assume a basic familiarity with these ideas. For a well writ-
ten introduction, see [Wel94].

MOVE(A,B,C) --
preconditions: ON(A,B) & CLEAR(A) & CLEAR(C)
effects: ON(A,C) & CLEAR(B) & -CLEAR(C)

& -ON(A,B)

Figure 1: An instance of the MOVE action

applied in all states in which the list of preconditions is sat-
isfied, and its result is obtained by adding to the current state
description all positive literals in the effect list and negating
all those propositions that appear as negative literals.

The basic structure used in this paper is a linear plan.
A linear plan is simply a sequence of actions ha1; � � � ; ani.
Such a plan is called valid with respect to initial state I,
if for each i � n, the action ai can be applied at stateai�1(ai�2(� � �a1(I) � � �)); that is, ai’s preconditions hold in
this state. A valid plan is a solution (w.r.t. I, G) if the appli-
cation of each action results in the some state in G. Follow-
ing [MR91], we introduce two artificial actions: an action a0
that must be executed first in any valid plan, whose effect is
to produce the initial state I; and action a1 that must occur
last in any valid plan, and whose preconditions are the goal
conditions. This ensures that finding a valid plan automati-
cally produces a successful plan (by removing a0 and a1).

3 The LPSP Algorithm
The LPSP algorithm searches through the space of linear
plans for a solution. We describe the algorithm assuming that
plans of a fixed length n are being searched. We deal with
arbitrary plans using techniques similar to those described in
[BF95, KS96]. Its basic structure is as follows.

Repeat until a solution has been found or a maximum
number of iterations have been tried

1. Initialize current plan P
2. Repeat until a solution has been found or a maximum

number of search steps have been tried
(a) Let S = s(P ) be the current plan score
(b) Call ChooseAction(P; S)
(c) Let ak be action chosen for replacement and Snew =s(P 0) where P 0 is obtained by this replacement in P
(d) If Snew < S, let current plan be P 0;
(e) Else if S < �, call Optimize(P; S) and let current plan

be resulting plan;
(f) Else call Shuffle(P; S) and let current plan be resulting

plan.

The algorithm assumes that a method for generating initial
plans has been given and that a scoring function s measuring
the “degree of conflict” in a plan has been provided. It uses
a procedure ChooseAction(P; S) that greedily selects an ac-
tion ak in plan P to be replaced by some new action a0k. This
selection is based on the improvements in score offered by
candidate replacements. If the selected replacement actually
results in an improvement, we update the current plan and
proceed with the search. Otherwise, replacement offers no
improvement and we consider two alternatives. If the current



plan score is below some optimization threshold �, we apply
an optimization procedure to P ; intuitively, if P is reason-
ably good, we will perform some plan-directed search. If the
threshold is exceeded, we apply a random Shuffle procedure.
We describe each of these components in turn.

3.1 Initialization and Scoring
The search procedure is restarted with a new plan after a max-
imum number of search steps and search is stopped after a
maximum number of tries. This general scheme can be found
in many stochastic local search algorithms, such as GSAT
[SLM92] or Walksat [SKC94] A plan is initialized at the be-
ginning of a search try using bi-directional search. If the plan
length is n, we choose the last n=2 actions by performing re-
gression from the goal state. If multiple actions can be ap-
plied, one is chosen randomly. We choose the first n=2 ac-
tions using an analogous forward search through state space
(again randomly choosing from among multiple applicable
actions). Thus the initial plan consists of two “valid” frag-
ments that are (highly) unlikely to match where they meet.

The scoring function s is defined as follows. For each ac-
tion in the plan, its required atoms are those ground atoms
that appear in some literal in its precondition list (i.e., these
are preconditions without polarity). For any action ak in P
and required atom q, the most recent action for hak; qi is the
latest occurring action aj in P , j < k, that has an effect onq.5 If the effect of aj agrees with this precondition of ak (i.e.,
if aj produces q and ak needs q, or if aj produces :q and ak
needs :q), we let �(ak; q) = 0. Intuitively, this means there
is no conflict in the plan with regard to ak’s precondition in-
volving q. Otherwise, there is a conflict in the plan in this
regard, and we let �(ak; q) = (k�j)2+(n�k)2. The scores(P ) is given by the sum of the scores �(ak; q) for each ak
in P and each of ak’s required atoms q.

Although we arrived at this scoring function empirically,
we believe that its main effect is to favor resolution of a con-
flict between action aj’s effects and ak’s preconditions by in-
sertion of an action between aj and ak, if possible at positionj+(k�j)=2): this leads to the greatest reduction in the score
of the plan (in this dimension).6
3.2 Selecting Actions for Replacement
Having described the scoring function and the plan initializa-
tion step, we now describe the main subroutines of LPSP. As
mentioned above, given a current plan with score S, we first
attempt to replace one of its actions to improve its score. This
is the function of the ChooseAction procedure which is de-
tailed in Figure 3.2. Intuitively, we calculate for each plan
step ak an action a0k such that substituting a0k for ak in P
yields the plan P 0 with the lowest score among all possible
replacements of ak (let this score be sk). If there are multiple
candidates for a0k (i.e., multiple actions with the same lowest
score), one is chosen at random. Next, all minimal scores si,0 < i � n, are compared. Let imin be the index of the ac-
tion that has the smallest value simin. One possible strategy5If no “true” action has an effect on q, then action a0 will.6The secondterm (n�k)2 has only minor effect on the planner’s
performance.

Procedure choose_action()
-Let s = score of current plan
-Choose a random permutation tau over 1,...,n
(where n is plan size)

-enough = FALSE
-Repeat for all plan steps in the order
determined by tau or until enough = TRUE
-Let t be the current step; for every
possible action calculate the score
obtained by replacing the current action
in the step t by it
-Let a’ be the action that minimizes this
score, and let s’ be its score
-If s’ < s then

-with probability 0.8, enough = TRUE
-s_new = s’
-act = a’
-k = t

-return s_new, act, k;

Figure 2: Choosing Actions for Replacement

for selecting the next plan is to simply replace action aimin bya0imin. Such a greedy replacement step is reminiscent of the
means-ends analysis underlyingGPS[NS63] and the STRIPS
planning algorithm [FN71]. In GPS, for instance, steps are
added to a plan in order to reduce the difference between cur-
rent plan steps. In LPSP, the score can be viewed as quanti-
fying the degree of conflict between plan steps, and step re-
placement is used to reduce this conflict level.7

As described above, the search has only a small stochas-
tic component. As shown in Figure 3.2, we actually use a
slightly more stochastic hill-climbing approach: rather than
pursuing the steepest descent, a less greedy stochastic choice
is made. In particular, a permutation � of [1; � � � ; n] is cho-
sen, and we calculate s�(1); s�(2); : : :until we find i such thats�(i) is smaller than the current score s. At this point, we stop
examining the remaining steps with probability 0:8. This re-
duces the computational costs of certain steps and allows for
additional stochasticity in the replacement choice.

3.3 Optimization and Shuffling
Actions that reduce the conflict level are not always avail-
able. When simin � s, rather than replace an action we at-
tempt to revise the current plan P in a way that reorders the
actions. If s is below some threshold �(n) (i.e., if P is rel-
atively conflict free), we perform an optimization procedure
by applying various plan construction operations to the ac-
tions in P . Otherwise, we perform a randomization step—in
particular, we randomly choose a (random) number of action
pairs and exchange their place.8

The shuffling stage is important one for LPSP, adding an
important stochastic element to the planner that helps it es-
cape from local minima. The optimization step, however, is
the most crucial step in LPSP. A variant of LPSP without this7A natural extension would be to permit the addition, as well as
replacement, of plan steps that reduce conflict level.8Procedure Shuffle simply chooses a random number 1 � k �n, chooses k random pairs of integers hi; ji and exchanges actionai and aj in P for each such pair.



Procedure optimize()
-For i=1 to n-1
-For j= i+1 to n

-if i depends on j then
exchange steps i and j

-For i=1 to n-1
-For j= i+1 to n

-if i threatens j then
exchange steps i and j

-If new_score not better than old_score then
-let S be the initial state
-make all actions in plan unchosen
-while possible

-choose an unchosen action whose
-preconditions are satisfied at S and
mark it chosen
-Reassign to S the state obtained by
applying the chosen action to S

Figure 3: The Optimization Procedure

optimization step performs very poorly. Without optimiza-
tion, the LPSP variant is often able to generate plans con-
taining many or all of the steps that appear in some valid so-
lution. Unfortunately, their order is usually incorrect. Since
the random shuffling of actions is highly unlikely to stumble
upon the correct ordering, and because the cost of each search
step (especially action replacement) is considerably higher
than the cost of one assignment step of typical stochastic SAT
engines, we cannot afford the luxury of waiting for random
shuffling of actions to bring about the correct ordering.

The optimization procedure is detailed in Figure 3. It is
a based on the heuristic application of some simple intu-
itions regarding ordering constraints. Intuitively, we attempt
to identify incorrectly ordered, but dependent, actions in the
current plan and fix the ordering. We proceed in two stages.

We say that action ak depends on action al if k < l, al
has an effect that is a precondition of ak, and no action prior
to ak has this effect. We say that ak threatens al if k < l
and ak has an effect that negates some precondition of al,
and no action aj (k < j < l) has this precondition as an
effect. Intuitively, if ak depends on al, swapping their posi-
tion in the plan has the potential to satisfy the unmet precon-
dition of ak; and if ak threatens al, swapping has the poten-
tial to remove this threat and satisfy this precondition of al.
Notice that these steps do not completely propagate ordering
constraints as might be found in a partial order planner. The
reasoning used is “incomplete” but very efficient.9

The first stage of optimization examines each action in P
in turn, determining whether it depends on some following
action; if so, the actions are exchanged in P . Next, we again
examine each action to see whether it is threatened by some
previous action, and if so, we reverse their ordering. Al-
though this reordering is incomplete (i.e., it does not always
generate a correct ordering of the existing actions), it is suc-
cessful with surprising frequency.9We have considered the use of more complete reasoning about
plan constraints in LPSP. We plan to implement such a mechanism
in the near future, but suspect that the large overhead with these
more complicated search steps may prove detrimental.

The second stage of optimization takes place if the first
fails to yield a solution. This reordering phase is based on for-
ward (state-space) search. From the initial state I, we choose
an action from P that can be applied at I and add it to a new
plan P 0. We then repeatedly choose actions from the (re-
mainder of) current plan that can be added to the end of the
new plan P 0 (i.e., applied validly). This continues until no
applicable actions can be selected from those left in P . The
remaining actions are appended in random order to P 0 to ob-
tain the new plan. We note that when multiple actions are ap-
plicable at a particular stage of P 0, the action used is selected
randomly.10

4 Experimental Results
The current version of LPSP is implemented in C++. Due
to its early stage of development, a general interface able to
read any domain description is not yet available. Rather, the
action choice procedures have been hand-coded for each do-
main. However, this has been done without adding domain
dependent information. The main implication of this is that
the overhead of compiling a domain description into the form
used by the planner is saved. However, we anticipate this
stage to be less costly than the plan encoding and the unit
resolution stage of SATPLAN, and to take time insignificant
compared to planning time.

Experiments were performed on a Sun Ultra 2 worksta-
tion with a 200MHz processor and 256 MB RAM. We com-
pared LPSP and SATPLAN on the large blocks world prob-
lem instances that are described in [KS96], where SATPLAN
using stochastic local search (Walksat) and a linear problem
encoding was shown to outperform both GRAPHPLAN and
alternate versions of SATPLAN itself. The problems are:
bw large.a, which involves 9 blocks and can be optimally
solved using 6 steps; bw large.b (11 blocks, 9 step plan);
bw large.c (15 blocks, 14 step plan); and bw large.d
(19 blocks, 18 step plan).

To ensure a fair comparison, we repeated the SATPLAN
experiments on our machine, using the parameter settings
found in the public SATPLAN distribution. Because local
search steps in LPSP and SATPLAN/Walksat are difficult to
compare, we compared the planners using CPU times.11 For
both LPSP and Walksat we ran 100 tries on each problem in-
stance. As in [KS96], the run-times for SATPLAN do not in-
clude the time required for transforming the planning prob-
lem into a propositional theory and for decoding the solution
from SAT into the planning domain.

The results appear in Table 1. The parameters used to ob-
tain these results are shown in Table 2. As can be seen, LPSP
is substantiallybetter on the large blocks world problems, but
marginally slower on the smaller problems. This is due to the10This stage is implemented very simply by choosing a random
permutation of the actions in P , picking applicable actions in the
order they occur in this permutation, and then swapping them into
the correct position in the plan being generated.11Even for the largest instance, LPSP always finds a solution
in less than 1000 steps, while SATPLAN requires approximately
ten million steps. But SATPLAN/Walksat performs about 30,000
steps/sec, while LPSP steps might take more than a second each.



SATPLAN/Wsat LPSP
Problem mean stddev mean median stddev
bw large.a 0.45 0.43 2.01 1.45 1.74
bw large.b 19.14 21.76 26.21 22.74 20.73
bw large.c 513.65 503.45 72.99 43.73 69.36
bw large.d 684.59 588.58 322.13 199.73 353.10

Table 1: Experimental results: Comparing SATPLAN and
LPSP on hard blocks world planning instances. All data are
CPU times in seconds.

SATPLAN/Wsat LPSP
Problem cutoff noise MaxSteps Opt.Thr. �
bw large.a 100k 0.5 1000 -400
bw large.b 100k 0.35 1000 -1100
bw large.c 3000k 0.2 1000 -1100
bw large.d 6000k 0.2 1000 -2100

Table 2: Parameter settings for SATPLAN and LPSP

much greater cost of each plan transformation step. Hence,
despite the fact that only a few steps are required for finding
a solution, the overall time is greater than that spent by SAT-
PLAN. However, on the larger problems, the reduction in the
number of steps required is well worth the extra cost.

We also point out that SATPLAN uses a highly opti-
mized implementation of the underlying local search algo-
rithm Walksat, while our LPSP implementation is compara-
tively crude. In addition, we have yet to expend significant
effort to optimize the parameters used by LPSP. For SAT-
PLAN/Walksat, it is known that its performance critically
depends on the settings for the cutoff and noise parameters.
Thus, we expect that LPSP can be improved considerably.

The large standard deviations which can be observed in the
running times of both algorithms on specific problems indi-
cate a very large variability in the run-time behavior of these
stochastic local search algorithms. To study this in more de-
tail, we plotted the cumulative run-time distributions (rtds)
for LPSP on each of the blocks world instances in Figure 4.
As can be clearly seen from the plots, the shapes of the rtds

0

20

40

60

80

100

0.01 0.1 1 10 100 1000 10000
run-time [CPU sec]

bw_large.a
bw_large.b
bw_large.c
bw_large.d

Figure 4: Cumulative Run-time Distributions

are similar for all four instances. Intuitively, starting from
an “instance specific” minimal required time to solve a given
problem, the probability of finding a plan scales roughly lin-
early with exponentially increasing run-time; that is, to in-
crease the probability of solving the problem from p to p+k,
the run-time has to be multiplied by a constant factor. This
holds up to a certain maximal run-time after which the prob-
lem is almost certainly solved. Thus, despite the inherent in-
completeness of LPSP, it solves the blocks world instances
with a probability of almost one as the run-time approaches
a certain maximal value. Preliminary experiments indicate
that similar observations hold for SATPLAN/Walksat.

As can be easily verified, the shape of LPSP’s rtds also al-
lows the efficient use of a very simple parallelization strat-
egy: using independent tries on several processors, a linear
speedup can be achieved. Note that this form of paralleliza-
tion is very easy to implement because there is almost no in-
terdependence between the parallel processes.

We also performed some experiments on the logistics do-
main detailed in [KS96]. Here, SATPLAN substantially out-
performs LPSP. In fact, LPSP is currently unable to solve
problems that SATPLAN disposes of in roughly two seconds.
The difference can be explained by considering the repre-
sentation used by SATPLAN for these problems. The SAT-
PLAN results for the logistics domain were obtained using
a state-based encoding that allows one to consider the con-
current execution of non-interacting actions. In contrast, the
blocks world results were obtained using a linear encoding
(see [KMS96] on this distinction). As such, the SATPLAN
results should be viewed as those of two different planners.
The length of the optimal (linear) plans in the logistics do-
main are at least 47 steps, putting them beyond the reach of
LPSP. Using a state-based encoding, SATPLAN can solve
such problems because the optimal plan length when concur-
rent actions are allowed is only 13 steps. As we discuss be-
low, we do not consider these results discouraging.

5 Discussion
We have presented LPSP, the first implemented planning al-
gorithmbased on stochastic local search in the space of plans.
Our initial experimental results indicate that on certain types
of problems, LPSP scales up much better than SATPLAN and
therefore, other previous planners. On other domains, it is
hindered by its use of linear plan structures.

The main lesson we draw from our initial experience with
LPSP is that there is great potential for planners that use
stochastic local search techniques in the space of plans.
There are two main reasons for this conclusion:

1. LPSP scales up better than SATPLAN as a function of
the plan length on blocks world problems. While SAT-
PLAN exploits well-optimized SAT engines, we haven’t
yet had the opportunity to optimizing LPSP’s parameters.
Moreover, SATPLAN results are generally obtained using
different random-walk probabilities for different problem
instances.12 In contrast, the only problem specific param-12We base this observation on the material distributed with the

SATPLAN planner.



eter used in LPSP is the score threshold �(n) used to direct
plan optimization; this is due to the fact that average score
is highly dependent on plan length.

2. The use of an intuitive plan representation immediately
suggests the possibility of using of many novel concepts
(such as various plan representations, measures of plan
quality and plan transformations), developed in the classi-
cal planning community, by stochastic search algorithms.

This last point is especially important. The dismal per-
formance of LPSP on the logistics domain may suggest dim
prospects for LPSP. But we believe that the use of more so-
phisticated plan representations and search spaces, especially
those based on non-linear plans, constraint-based planning
representations, and those that allow concurrent action such
as GRAPHPLAN [BF95], offer great promise. Indeed, the
success of SATPLAN using a state-based encoding bodes
well for the extension of LPSP in that fashion.

Stochastic local search techniques for solving satisfiability
problems have started to gain wide attention in the AI com-
munity and, as a result, considerable advances in the perfor-
mance of these methods have been achieved. The LPSP al-
gorithm is still in its earliest stages of development. It is our
hope that similar improvements will be made in plan-level
stochastic local search techniques.

There are a number of optimizations that we hope to exam-
ine in the near future, both with respect to the implementation
and the underlying algorithm. For instance, we hope to soon
investigate the use of non-linear and least commitment plan
representations, and more sophisticated ordering techniques,
as discussed above. Another idea worth pursuing is direct
search in the space of variable-sized plans. This could fit well
with LPSP’s optimization steps, where actions that do not ex-
ist in the current plan could be added if needed, or where
existing actions could be deleted if not useful. In addition,
we envision many possible avenues of development. For ex-
ample, one could combine ideas from SATPLAN and LPSP
by, say, integrating LPSP’s optimization methods with SAT-
PLAN’s ability to reason with constraints; or by using SAT-
PLAN for the initial search phase of LPSP. It is our hope that
additional ideas from more traditional planning algorithms
will be combined with stochastic local search techniques to
yield improved planners.

References
[BF95] A. Blum and M. L. Furst. Fast planning through

planning graph analysis. In Proc. Fourteenth In-
ternational Joint Conference on AI, 1995.

[Cha87] D. Chapman. Planning for Conjunctive Goals. Ar-
tificial Intelligence, 32(3):333–377, 1987.

[ENS95] K. Erol, D. Nau, and V. Subrahmanian. Complex-
ity, decidability, and undecidability results for do-
main independent planning. Artificial Intelligence,
76(1-2):76–88, 1995.

[FN71] R. Fikes and N. Nilsson. Strips: A new approach
to the application of theorem proving to problem

solving. Artificial Intelligence, 2(3–4):189–208,
1971.

[Gin96] M. Ginsberg. A new algorithm for generative plan-
ning. In Proc. of the 5th Intl. Conf. on Principles
of Knowledge Representation. 1996.

[JP96] D. Joslin and M. E. Pollack. Is “‘early commit-
ment” in plan generation ever a good idea? In
Proc. of the 13th National Conf. on AI (AAAI ’96),
pages 1188–1193, 1996.

[KKY95] S. Kambhampati, C. Knoblock, and Q. Yang.
Planning as refinement search: A unified frame-
work for evaluating design tradeoffs in partial-
order planning. Artificial Intelligence, 88(1–
2):253–315, 1995.

[KMS96] H. Kautz, D. McAllester and B. Selman. Encod-
ing plans in propositional logic. In KR’96, 374–
384, 1996.

[KS96] H. Kautz and B. Selman. Pushing the enve-
lope: Planning, propositional logic, and stochastic
search. In Proc. of the 13th National Conference
on AI (AAAI ’96), pages 1194–1201, 1996.

[MR91] D. McAllester and D. Rosenblitt. Systematic non-
linear planning. In Proc. of the 9th National Conf.
on AI (AAAI ’91), pages 634–639, 1991.

[NS63] A. Newell and H. A. Simon. GPS, a program
that simulates human thought. In E. Feigenbaum
and J. Feldman, editors, Computers and Thought.
McGraw-Hill, 1963.

[PW92] J. S. Penberthy and D. S. Weld. Ucpop: A sound,
complete, partial order planner for adl. In Princi-
ples of Knowledge Representation and Reasoning:
Proc. Third Intl. Conf. (KR ’92), 1992.

[SKC94] B. Selman, H. Kautz, and B. Cohen. Noise Strate-
gies for Improving Local Search. In AAAI’94,
337–343, MIT press, 1994.

[SLM92] B. Selman, H. Levesque, and D. Mitchell. A New
Method for Solving Hard Satisfiability Problems.
In AAAI’92, 440–446, MIT press, 1992.

[Wel94] D. S. Weld. An introduction to least commitment
planning. AI Magazine, Winter 1994:27–61, 1994.


