Some Contributions to the Metatheory of the Situation
Calculus

Fiora Pirn
Dipartimento di Informatica e Sistemistica
Universita degli Studi di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

pirri@assi.dis.uniromal .it

Ray Reiter
Department of Computer Science

University of Toronto
Toronto, Canada M5S 1A4

reiter@ai.toronto.edu

December 28, 1998

Abstract

We focus on a rich axiomatization for actions in the situation calculus that includes,
among other features, a solution to the frame problem for deterministic actions. Our
work is foundational in nature, directed at simplifying the entailment problem for these
axioms. Specifically, we make four contributions to the metatheory of situation calculus
axiomatizations of dynamical systems:

1. We prove that the above-mentioned axiomatization for actions has a relative satis-
fiability property; the full axiomatization is satisfiable iff the axioms for the initial
state are.

2. We define the concept of regression relative to these axioms, and prove a sound-
ness and completeness theorem for a regression-based approach to the entailment
problem for a wide class of queries.

3. Our formalization of the situation calculus requires certain foundational axioms
specifying the domain of situations. These include an induction axiom, whose
presence complicates human and automated reasoning in the situation calculus.
We characterize various classes of sentences whose proofs do not require induction,
and in some cases, some of the other foundational axioms.

4. We prove that the logic programming language GOLOG never requires any of the
foundational axioms for the evaluation of programs.



1 Introduction

The situation calculus ([22]) has been a part of the artificial intelligence zeitgeist almost
from the very beginning of the field. It is included in the standard material of every
introductory course on Al, and it is the language of choice for investigations of various
technical problems that arise in theorizing about actions and their effects (e.g. [19], [8],
[13]). But only recently has it been taken seriously as a foundation for practical work
in planning, control, simulation, database updates, agent programming and robotics (e.g.
[18, 9, 17, 34, 33, 2, 14, 16]). In parallel with these developments of its applications, there
have emerged axiomatizations for the situation calculus, and explorations of some of their
metamathematical and computational properties (e.g. [32, 21]). This paper continues these
explorations, focusing on a rich axiomatization for actions in the situation calculus that
includes, among other features, a solution to the frame problem for deterministic actions.
Our work is foundational in nature, directed at simplifying the entailment problem for these
axioms. Specifically, we make four contributions to the metatheory of situation calculus
axiomatizations of dynamical systems:

1. We prove that the above-mentioned axiomatization for actions has a relative satisfia-
bility property; the full axiomatization is satisfiable iff the axioms for the initial state
are.

2. We define the concept of regression relative to these axioms, and prove a soundness
and completeness theorem for a regression-based approach to the entailment problem
for a wide class of queries.

3. Our formalization of the situation calculus requires certain foundational axioms spec-
ifying the domain of situations. These include an induction axiom, whose presence
complicates human and automated reasoning in the situation calculus. We charac-
terize various classes of sentences whose proofs do not require induction, and in some
cases, some of the other foundational axioms.

4. We prove that the logic programming language GOLOG [18] never requires any of the
foundational axioms for the evaluation of programs.

2 Formal Preliminaries

2.1 The Language of the Situation Calculus

The language Lsitcqic that we adopt in this paper is a second order language with equality.
It has three disjoint sorts: action for actions, situation for situations, and a catch-all sort
object for everything else depending on the domain of application. Apart from the standard
alphabet of logical symbols — we use A, = and 3, with the usual definitions of a full set of
connectives and quantifiers — Lg;4.41. has the following alphabet:



Countably infinitely many individual variable symbols of each sort. We shall use
s and a, with subscripts and superscripts, for variables of sort situation and action,
respectively. We normally use lower case roman letters other than a, s, with subscripts
and superscripts for variables of sort object. In addition, because Lsitcqre is second
order, its alphabet includes countably infinitely many predicate variables of all arities.

Two function symbols of sort situation:

1. A constant symbol Sy, denoting the initial situation.

2. A binary function symbol do : action X situation — situation. The intended
interpretation is that do(a, s) denotes the successor situation resulting from per-
forming action a in situation s.

A binary predicate symbol C: situation X situation, defining an ordering relation on
situations. The intended interpretation of situations is as action histories, in which
case s C s’ means that s is a proper subhistory of s'.

A binary predicate symbol Poss : action x situation. The intended interpretation of
Poss(a, s) is that it is possible to perform the action @ in situation s.

For each n > 0, countably infinitely many predicate symbols with arity n, and sorts
(action U object)”. These are used to denote situation independent relations like
human(John), primeNumber(n), moving Action(run(person,locl,loc2)), etc.

For each n > 0, countably infinitely many function symbols of sort (actionUobject)™ —

object. These are used to denote situation independent functions like sqrt(z), height(Mt Everest),

agent(run(person,locl,loc2)), etc.

For each n > 0, a finite or countably infinite number of function symbols of sort
(action U object)” — action. These are called action functions, and are used to de-
note actions like pickup(z), move(A, B), etc. In most applications, there will be just
finitely many action functions, but we allow the possibility of an infinite number of
them.

Notice that we distinguish between function symbols taking values of sort object and
those — the action functions — taking values of sort action. In what follows, the latter
will be distinguished by the requirement that they be axiomatized in a particular way
by what we shall call action precondition axioms.

For each n > 0, a finite or countably infinite number of predicate symbols with arity
n+1, and sorts (actionUobject)” x situation. These predicate symbols are called rela-
tional fluents. In most applications, there will be just finitely many relational fluents,
but we do not preclude the possibility of an infinite number of them. These are used
to denote situation dependent relations like ontable(z,s), husband(Mary, John, s),
etc. Notice that relational fluents take just one argument of sort situation, and this
is always its last argument.



e Lor each m > 0, a finite or countably infinite number of function symbols of sort
(action U object)™ x situation — action U object. These function symbols are called
functional fluents. In most applications, there will be just finitely many functional
fluents, but we do not preclude the possibility of an infinite number of them. These are
used to denote situation dependent functions like age(M ary, s), primeMinister(Italy, s),
etc. Notice that functional fluents take just one argument of sort situation, and this
is always its last argument.

Notice that only two function symbols of Lg;seqic — So and do — are permitted to take values
in sort situation.

2.2 Foundational Axioms for the Situation Calculus

Here, we focus on the domain of situations. The primary intuition about situations that we
wish to capture axiomatically is that they are finite sequences of actions. We want also to
be able to say that a certain sequence of actions is a subsequence of another. By modifying
earlier proposals of Reiter [33], Lin and Reiter [20] and Pinto [29], we adopt the following
four foundational axioms for the situation calculus.!

do(ay, s1) = do(az, $2) D a1 = az A s1 = sg, (1)

(VP).P(So) A (Ya,s)[P(s) D P(do(a,s))] D (Vs)P(s). (2)

Axiom (1) is a unique names axiom for situations; two situations are the same iff they
are the same sequence of actions. Two situations S; and Sy may be different, yet assign
the same truth values to all fluents. So a situation in the version of the situation calculus
presented here must not be identified with the set of fluents that hold in that situation, i.e
with a state. The proper way to understand a situation is as a history, namely, a sequence
of actions; two situations are equal iff they denote identical histories. The second axiom
(2) is second order induction on situations. The importance of induction for the situation
calculus is described by Reiter [32].

There are two more axioms:

-8 C So, (3)
sC do(a,s') =sC s. (4)

Here s C s’ is an abbreviation for s C s’ V s = s’. The relation C provides an ordering
relation on situations. Intuitively, s C s’ means that the action sequence s’ can be obtained
from the sequence s by adding one or more actions to the front of 5.2

'In what follows, lower case Roman characters will denote variables in formulas. Moreover, free variables
will always be implicitly universally prenex quantified.

?Readers familiar with the programming language LISP will have noticed that in the situation calculus,
the constant Sp is just like NIL, and do acts like cons. Situations are simply [lists of primitive actions.
For example, the situation term do(C,do(B,do(A, Sp))) is simply an alternative syntax for the LISP list
(C B A) (= cons(C,cons(B,cons(A,nil)))). Notice that to obtain the action history corresponding to this



The above four axioms are domain independent. They provide the basic properties of sit-
uations in any domain specific axiomatization of particular fluents and actions. Henceforth,
we shall call them 3.3

2.3 Basic Theories of Actions

Our concern in this paper will be with axiomatizations for actions and their effects that have
a particular syntactic form. These are called basic action theories, and we next describe
these.

Definition 2.1 The Uniform Formulas
Let o be a term of sort situation. The terms of Lg;scq1. uniform in o are the smallest set of
terms such that:

1. Any term that does not mention a term of sort situation is uniform in o.
2. o is uniform in o.

3. If g is an n-ary function symbol other than do and Sy, and ¢y, ..., ¢, are terms uniform
in 0 whose sorts are appropriate for g, then g(t1,...,%,) is a term uniform in o.

The formulas of Lg;scqrc uniform in o are the smallest set of formulas such that:

1. If ¢; and t5 are terms of the same sort object or action, and if they are both uniform
in o, then t; =t is a formula uniform in o.

2. When P is an n-ary predicate symbol of Lg;scq10, other than Poss and C, and ¢4, ...,%,
are terms uniform in o whose sorts are appropriate for P, then P(tq,...,t,) is a
formula uniform in o.

3. Whenever Uy, Uy are formulas uniform in o, so are =U;, Uy AU, and (Jv)U; provided
v is an individual variable, and it is not of sort situation.

Thus, a formula of Lgeq. is uniform in o iff it is first order, it does not mention the
predicates Poss or C, it does not quantify over variables of sort situation, it does not
mention equality on situations, and whenever it mentions a term of sort situation in the
situation argument position of a fluent, then that term is o.

term, namely the performance of action A, followed by B, followed by C, we read this list from right to left.
Therefore, when one reads situation terms from right to left, the relation s [ s’ means that situation s is
a proper subhistory of the situation s’. The situation calculus induction axiom (2) is simply the induction
principle for lists: If the empty list has property P and if, whenever list s has property P so does cons(a, s),
then all lists have property P.

®These foundational axioms are simpler than those presented by Reiter [33] and others. These earlier
axiomatizations for the situation calculus are all derivable from the four axioms given here.



Example 2.1 When f(-,), g(:,) are functional fluents, F'(-,+,) is a relational fluent, and
P(-,) is a non-fluent predicate, the following is uniform in o:

(Vo).x = flg(z,0),0) A (Fy)F(g(A,0),y,0) > ~P(z,B)V P(f(f(z,0),0),9(z,0)).

No formula that mentions Poss or C is uniform in any situation term o. The following are
not uniform in o:

holding(z, do(pickup(z), o)), do(a,c)# o, (3s)holding(z,s),
resigned(primeMinister(Canada, do(elect(p, o)), 0)).

Definition 2.2 Action Precondition Axiom
An action precondition axiom of Lgjscq1- i8 a sentence of the form:

Poss(A(z1,...,xn),8) =Ma(21,..., 20, s), (5)
where A is an n-ary action function symbol, and I4(21,...,2,,s) is a formula that is
uniform in s and whose free variables are among zq,...,z,,Ss.

For example, in a blocks world, we might typically have:

Poss(pickup(z), s) = (Vy)—holding(y, s) A ~heavy(z, s).

The uniformity requirement on Il 4 ensures that the preconditions for the executability
of the action A(zy,...,z,) are determined only by the current situation s, not by any other
situation.

Our decision to focus on sentences of the form (5) for axiomatizing action preconditions
stems from the so-called qualification problem [23] and its nonmonotonic formulations. In
those cases where closed-form solutions have been obtained to the associated circumscription
policy (e.g. [20]), they have been biconditionals of the form (5).

Definition 2.3 Successor State Axiom

1. A successor state axiom for an (n + 1)-ary relational fluent I’ is a sentence of Lgjscqic
of the form:

F(z1,...,2p,do(a,s)) = ®p(z1,...,2,,a,s), (6)
where ®p(21,...,2,,a,s) is a formula uniform in s, all of whose free variables are
among a, 8,1y, ..., &,. An example of such an axiom, taken from [31], is:

broken(z,do(a,s)) =
(3r){a = drop(r,z)A fragile(z, s)}V(Ib){a = explode(b) AnextTo(b, z,s)}V
broken(z,s) A —=(3r)a = repair(r, z).
This says that 2 will be broken in the successor situation do(a, s) iff  was fragile in
s and the action taking us to the successor situation was someone (r) dropping z, or



the action was some bomb b exploding, and b was next to z, or  was already broken,
and the action was not someone repairing z.

As for action precondition axioms, the uniformity of ®r guarantees that the truth
value of F(z1,...,2,,do(a,s))in the successor situation do(a, s) is determined entirely
by the current situation s, and not by any other situation. In systems and control
theory, this is often called the Markov property.

2. A successor state axiom for an (n + 1)-ary functional fluent f is a sentence of Lgtcalc
of the form:

flz1, .. zn,do(a,s) =y = ¢s(z1,...,20,9,0,5),

where ¢s(z1,...,2,,y,a,s) is a formula uniform in s, all of whose free variables are
among x1,...,ZI,, Y, a,s. A blocks world example is:

height(z,do(a,s)) =y = a = moveToTable(z) Ny=1V
(3z, h)(a = move(z, z) A height(z,s) =hAy=h+1) V
height(z,s) = y A a # moveT oTable(z) A =(3z)a = move(z, z).
As for relational fluents, the uniformity of ¢ in the successor state axioms for func-
tional fluents guarantees the Markov property: The value of a functional fluent in a

successor situation is determined entirely by properties of the current situation, and
not by any other situation.

Following earlier ideas of Pednault [27], Haas [12], Schubert [37] and Davis [4], Reiter [31]
shows how to solve the frame problem for deterministic actions.* The resulting solution
yields axioms with exactly the syntactic form of successor state axioms, which is why in
this paper we focus on these.

Basic Action Theories Henceforth, we shall consider theories D of Lgitcare of the fol-
lowing forms:
D =Y UDy, UD,, U Dy, U Ds,

where,
e Y are the foundational axioms for situations.

e D, is a set of successor state axioms for functional and relational fluents, one for each
such fluent of the language Lgiseaic-

e D,, is a set of action precondition axioms, one for each action function symbol of
[fsitcalc-

® Dy, is the set of unique names axioms for all action function symbols of Lgcq1.. For
distinct action function symbols A and B of Lg;calc,

*This solution does not take ramification constraints into account, but see [20, 25, 28] for possible ways
to do this, while preserving the successor state axiom approach.



A®) # B()-
Identical action terms have identical arguments:

A(J;h SRy mn) = A(yh EEEY) yn) D1 =Y N ANTy = Yn.

e Dg, is a set of first order sentences that are uniform in Sy. Thus, no sentence of Dg,
quantifies over situations, or mentions Poss, C or the function symbol do, so that Sy
is the only term of sort situation mentioned by these sentences. Dg, will function
as the initial theory of the world (i.e. the one we start off with, before any actions
have been “executed”). Often, we shall call Dg, the initial database. The initial
database may (and often will) contain sentences mentioning no situation term at all,
for example, unique names axioms for individuals, like John # Mary, or “timeless”

facts like isMountain(MtFEverest), or dog(z) D mammal(z).

Definition 2.4 A basic action theory is any collection of axioms D of the above form that
also satisfies the following functional fluent consistency property:
Whenever f is a functional fluent whose successor state axiom in Ds; is

f(f7 do(a,s)) =y= ¢f(f7y7a78)7
then

Dyna U Ds, ): (Va,s) ( ) (Hy)qb (-)73/7‘1 5)
[(Yy,y).0¢(Z,y,a,8) N dp(, 4 a,8) Dy =yl

This consistency property provides a sufficient condition for preventing a source of in-
consistency in f’s successor state axiom. It says that the conditions defining f’s value in
the next situation do(a,s), namely ¢;, actually define a value for f, and that this value is
unique.

3 Relative Satisfiability of Basic Action Theories

We begin with a result that we shall need later, but that is of independent interest for the
metatheory of the situation calculus.

Theorem 1 (Relative Satisfiability) A basic action theory D is satisfiable iff Dypq U
Ds, is.

This result assures us that provided the initial database together with the unique names
axioms for actions are satisfiable, then unsatisfiability cannot be introduced by augmenting
these with the foundational axioms for the situation calculus, together with action precon-
dition and successor state axioms. In the absence of the above functional fluent consistency
property, it is easy to construct examples of basic action theories for which this theorem is
false.



Proof: Suppose Dy, UDgs, has a model My with domains Act for the sort action and Obj
for the sort object. Define a structure M as follows: M’s domains for the sorts action and
object are Act and Obj respectively. M’s domain Sit for the sort situation is the set of all
finite sequences of elements of Act. Next, we define how Sy and do are interpreted by M.
In the following, we use &V for the denotation of the symbol € in a structure M.

1. SM =], the empty sequence.
2. Whenever a € Act and [y, ..., a,] € Sit, do™(a,[ay,...,a,]) is defined to be the
sequence [y, ..., a,] with the element a added to its end:

do™ (e, [or, ..., 0p]) = [o1, ..., o, @]
3. o CM ¢’ iff the sequence o is a proper initial subsequence of o’.

While we have not yet finished specifying the structure M, it is immediate that M, as
specified thus far, satisfies all the axioms of X:

1. When interpreted in M, axiom (1) says that whenever two non-empty sequences are
equal, their last elements are equal, and the sequences obtained by deleting their last
elements are equal.

2. The induction axiom (2) simply says that Sit is the smallest set of sequences containing
[], and closed under the addition of an element of Act to the end of a sequence in the
set.

3. Axiom (3) says that no sequence can be a proper initial subsequence of the empty se-
quence, and (4) says that [aq, ..., @] is a proper initial subsequence of [, ..., B,, @]
iff it is an initial subsequence (not necessarily proper) of [51,..., 5,].

Next, we continue with the specification of M for interpreting predicate and function
symbols other than do.

1. Since M and My share the same domains for sorts object and action, we can let M
interpret situation independent predicates and functions exactly as does My. It follows
that, since My satisfies Dy, , so does M.

2. Next, we specify how M interprets functional and relational fluents and Poss at Sy.

(a) Let F be a relational fluent, and vy a variable assignment for variables of sorts
object and action for My. Since M and My share the same domains of sorts object
and action, it makes sense to define:

M, 140] ): F(f, 50) iff M(), 140 ): F(f, S())
When f is a functional fluent, define:
(@ wol, 551 = fM (&Tvo], So°)-

This is well defined because functional fluents take values of sort action or object,



never of sort situation.

Now, all the sentences of Dg, are uniform in Sy, which is to say, no such sentence
mentions the predicates Poss or C, no such sentence quantifies over situations,
and if such a sentence mentions a term of sort situation, that term is Sg. It
follows that because My is a model of Dg,, then M, as specified thus far, is also
a model of Dg, .

(b) Now we specify how M interprets the predicate Poss on Sg. Let o € Act. There
are two possibilities:

(i) There is a variable assignment v assigning « to the variable a, and an action
function A of the language Lsiscalc, such that M, v = a = A(Z). Now A must have
an action precondition axiom of D,, of the form Poss(A(Z,s) = l14(%, s), where
IT4(Z,s) is a formula that is uniform in s and whose free variables are among
7, s. Because I14(Z,s) is uniform in s, 114(Z, Sg) has already been assigned a
truth value by M for every variable assignment. Now specify that

M, v |= Poss(a, Sy) iff M, v = [14(%), So).

There remains the possibility that this definition does not specify a unique truth
value for Poss(a, Sp) under M:

e Perhaps there is a variable assignment p that is just like v except that it
assigns a different tuple of domain elements to #, and M, y |= a = A(Z). But
this cannot happen because M satisfies the unique names axioms for actions.

e Perhaps there is a variable assignment p assigning o to @, and an action
function B of Lgtcalc different than A such that M,y = ¢ = B(y). But
again, this cannot happen because M satisfies the unique names axioms for
actions.

(ii) For every variable assignment v assigning « to a and every action function
A of Lsiteatey Myv £ a = A(Z). In this case, whenever y is a variable assignment
assigning « to a, we are free to specify whether or not M, u = Poss(a, Sy), so
we just arbitrarily say it does.

Notice that this construction guarantees that every action precondition axiom is
satisfied by M at S.

3. At this stage in its construction, M interprets all situation independent functions and
predicates. Moreover, M interprets Poss at Sy, and all functional and relational flu-
ents at Sy, and it does so in such a way that the action precondition axioms are all
satisfied at Sy. We now inductively extend this interpretation for Poss and for fluents
to situations other than Sg. So assume that M interprets Poss, and all functional
and relational fluents at a situation s; we specify how M interprets these at situa-
tion do(a, s). Moreover, we do so in such a way that the successor state and action
precondition axioms will be satisfied.

10



Formally, suppose ¢ € S'it, and that for every variable assignment v that assigns o to

the variable s, M, v has interpreted Poss(a,s), and F(Z,s) for every n-ary relational
fluent I, and that M, v has specified a value in Obj U Act for f(Z,s), for every n-ary

functional fluent f.

(a)

Suppose F is a relational fluent, with successor state axiom
F(Z,do(a,s)) = ®r(7,a,s).
For every variable assignment v assigning o to variable s, define:
M, v E F(Z,do(a,s)) iff M,v E ®r(Z,a, s).
This is well defined for two reasons:
(1) ®F(Z, a, s) is uniform in s, and therefore, has already been assigned a truth
value in s by M.
(2) The above truth assignments to F'(Z, do(a, s)) cannot conflict with any truth

assignments made to I’ at an earlier step of the construction of M because those
earlier truth assignments were made in situations different than do(a, s).

It follows from this definition that M now satisfies F’s successor state axiom at
do(a, s).

Suppose f is a functional fluent, with successor state axiom

f(# do(a,s)) =y = ¢s(Z,y,a,s).

Let v be a variable assignment assigning ¢ to variable s. Then define:

M, v | f(Z,do(a,s)) =y if M,v | ®4(Z,y,a,s). (7)

This is well defined for three reasons:

(1) ®¢(Z,y, a, s) is uniform in s, and therefore, has already been assigned a truth
value in s by M.

(2) The above value assignments to f(Z, do(a, s)) cannot conflict with any value
assignments made to f at an earlier step of the construction of M because those
earlier value assignments were made in situations different than do(a, s).

(3) The functional fluent consistency property states that:

Dyna U DSO |: (V(Z, S, f)(zly)d)f(fv Yy, a, 3) A
[(vya y,)¢f(f7 Yy, a, S) A ¢f(fa y,7 @, 8) oY= y/]

Since by construction, M satisfies D,,,,, U Dg,, it follows that

M, £ (V2).(3)é(F, y.0,5) A
[(Vy7 yl)¢f(fa Yy, a, S) A ¢f (f7 yl7 a, S) oY= y,]

In other words, (7) assigns one and only one value y to f(Z,do(a, s)).
It follows from this definition that M now satisfies f’s successor state axiom at

do(a, s).

11



(c) Finally, we need to specify how M, v interprets Poss(a’, do(a, s)), for every vari-
able assignment v that assigns o to variable s. The construction for this is exactly
parallel to that of case 2b above for Sy, using the fact that M, v now interprets
all fluents at do(a,s). A consequence of this construction is that M will satisfy
all of the action precondition axioms of D,, at do(a, s).

This completes the construction of M’s interpretation for Poss and fluents. By the
the nature of this construction, M satisfies all the action precondition and successor
state axioms of D.

4 Regression

Regression [40] is a central computational mechanism that arises again and again in artificial
intelligence applications, forming the basis for many planning procedures and for automated
reasoning in the situation calculus. Typically, regression is used for addressing the so-called
projection problem. Roughly speaking, this is the problem of determining whether a sentence
is true of one or more “reasonably specified” future situations. For example, in a blocks
world, one might wish to know whether there are two different blocks such that it is possible
to move one to the table then move the other onto A, and whether after that, all blocks
other than A will be clear: Determine whether

D = (Jz,y).Poss(moveT ol able(z), So) A
Poss(move(y, A), do(moveToTable(z),So)) Az # y A (8)
(Vz).z # A D clear(z, do(move(y, A), do(moveT oTable(x), So))).

Or one might wish to know whether there is a sequence of two actions that leads to a state
containing a three block tower whose top block is that block that was initially the bottom
of tower A: Determine whether

D = (Ja,d’,z,y).ontable(z, do(a, do(a’, Sp))) A on(y, z, do(a, do(a’, Sp))) A
on(bottom(A, Sp), y, do(a, do(a’, Sp))) A (9)
clear(bottom(A, Sy), do(a, do(a’, Sp))).

Our purpose in this section is first to formally characterize a general notion of “reasonably
specified future situation” (via the regressable formulas defined below), next to define a
regression operator for the purposes of solving projection problems like those just given,
finally to prove the soundness and completeness of this method.

The intuition underlying regression is this: Suppose we want to prove that a sentence W
is entailed by some basic action theory. Suppose further that W mentions a relational fluent
atom F(f,do(a, o)), where F’s successor state axiom is F(Z,do(a, s)) = ®r(Z,a,s). Then
we can easily determine a logically equivalent sentence W’ by substituting (I>F(t-; a,0) for

12



F(t,do(a, ) in W. After we do so, the fluent atom F(Z,do(a, a)), involving the complex
situation term do(a, o), has been eliminated from W in favour of ®x(f,a, ), and this
involves the simpler situation term o. In this sense, W’ is “closer” to the initial situation
So than was W. Moreover, this operation can be repeated until the resulting goal formula
mentions only the situation term Sy, after which, intuitively, it should be sufficient to
establish this resulting goal using only the sentences of the initial database. Regression
is a mechanism that repeatedly performs the above reduction starting with a goal W,
ultimately obtaining a logically equivalent goal Wy whose only situation term is Sg. We
have only indicated how regression works by reducing relational fluent atoms in W3 there
is an analogous way of reducing functional fluent terms.

Notational Convention 4.1 Let a,...,a, be terms of sort action, and ¢ a term of sort
situation. Define

do([],0) = o,

do([ay, ..., o), 0) = do(ay, do([ay, ... an_1],0)) n=1,2,...

do([an, ..., o], 0) is a convenient notation for the situation term do(a,,, do(ay,—1, .. .do(ay,0) .. .)),
denoting that situation resulting from performing the action a4, followed by s, . . ., followed
by «,, beginning in situation o.

Definition 4.1 The Regressable Formulas. A formula W of Lgsea1c is regressable iff
1. W is first order.

2. Every term of sort situation mentioned by W has the form do([av, ..., a,],So) for
some n > 0, and for terms ay, ..., a, of sort action.

3. For every atom of the form Poss(«, o) mentioned by W, a has the form A(ty,...,1,)
for some n-ary action function symbol A of Lgcare-

4. W does not quantify over situations.®

Example 4.1 The sentences of (8) and (9) are regressable. These remain regressable if
one or more of their quantifiers are deleted. In other words, we treat formulas as well
as sentences. The availability of functional fluents allows quite complex (perhaps strange)
situations and regressable formulas to be represented. For example,

happy(Mary, do(pickup(Mary, favorite Book(.John, do(read(.John, MobyDick), Sp))),
do(walkTo(John, houseO f(Mary, do(divorce(Mary, John), Sp))),
do(marry(Mary, John), Sy))))

5Strictly speaking, this condition is of no real consequence. Because of condition 2, the variable s of
quantification in (Vs)W cannot be mentioned in W, so the quantifier is doing no real work. But this
no-quantification condition will slightly simplify the analysis to follow.
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claims that Mary would be happy as a result of the following sequence of actions: First,
Mary marries John, then John walks to the house that Mary would have owned had she
initially divorced John, then Mary picks up what John’s favorite book would be had he
initially read Moby Dick. The following are not regressable:

(Ja)Poss(a, Sp), holding(z, do(pickup(A),s)).

The essence of a regressable formula is that each of its situation terms is rooted at
So, and therefore, one can tell, by inspection of such a term, exactly how many actions
it involves. It is not necessary to be able to tell what those actions are, just how many
there are. In addition, when a regressable formula mentions a Poss atom, we can tell, by
inspection of that atom, exactly what is the action function symbol occurring in its first
argument position, for example, that it is a move action.

For the purposes of defining the regression operator, we require the following:

Definition 4.2 Prime functional fluent terms

A functional fluent term is prime iff it has the syntactic form f(Z,do([a1,. .., ay,], So)) for
n > 1 and each of the terms £, oy, ..., o, is uniform in Sg. Thus, for prime functional fluent
terms, Sy is the only term of sort situation (if any) mentioned by foon, ..., .

Remark 1 Suppose that g(7,do(a,0)) has the property that every term of sort situation
that it mentions has the form do([ay,...,a,], So) for some n > 0. Then ¢(7,do(a, o))
mentions a prime functional fluent term.

Proof: For n > 0, define the length of the situation term do([ay,...,ay], So) to be n.
Now use induction on the sum of the lengths of all terms of sort situation mentioned by
g(7,do(a, o)) (with base case 1). m

Example 4.2 Suppose f(-,,-), r(-) and h(-) are functional fluent symbols, and g(-,-) is an
ordinary function symbol. Then the functional fluent term

F{g((do(A, 50)), h(S0)), F(B, r(So), do(A, do( B, S0))), do(h(do(C' St)), 55)
mentions three prime functional fluent terms:

h(do(A, So)),

f(B,r(So),do(A,do(B, Sp))) and

h(do(C, Sp)).

Following Pednault [27], we now define the regression operator.®

6For the purposes of proving the soundness and completeness of regression (Theorem 3 below), our
definition differs in several significant ways from Pednault’s. In particular, we introduce the concept of a
prime functional fluent term to guarantee that the regression operator is well defined. Pednault himself
proves neither soundness nor completeness.
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Definition 4.3 The Regression Operator.

The regression operator R when applied to a regressable formula W of L ;.47 is determined
relative to a basic theory of actions of Lgjs0q1. that serves as a background axiomatization.
As we shall prove, when applied to a regressable sentence, the regression operator produces
a logically equivalent sentence whose only situation term is Sy. In what follows, £, 7 are
tuples of terms; «a, with or without subscripts and superscripts, is a term of sort action; o,
o' are terms of sort situation; and W is a regressable formula of £;cq1.. We emphasize here
that the regression operator is defined only for regressable formulas of Lgteqlc.

1. Suppose that W is a regressable equality atom between two situation terms, so it has
the form:

do([on, ..., ], So) = do([e, ..., al], So).
If m =0 (so do([avy, ..., ap), So) is simply Sp), and if n = 0, then

R[W] = true.
If m # n, then
R[W] = false.

If m=mn>1, then
RW]=Rlon =) A Aoy, = ol ].

2. Suppose that W is a regressable C atom, so it has the form:
do([ov, ..., ap], So) C do([af, ..., al], So).
If m=0and n > 1, then
RIW] = true.
If m > n, then
R[W] = false.
If 1 <m < n, then
RW]=Rlon =) A Aoy, = o]
3. Suppose W is a regressable Poss atom, so it has the form Poss(A(t-),a) for terms

A(t_j and o of sort action and situation respectively. Here, A is an action function
symbol of L cq1.. Then there must be an action precondition axiom for A of the form

Poss(A(Z),s) = 4(Z,s).

Without loss of generality, assume that all quantifiers (if any) of 114(Z,s) have had
their quantified variables renamed to be distinct from the free variables (if any) of
Poss(A(t), o). Then

RIW) = RIN4(F, o))
In other words, replace the atom Poss(A(t-),a) by its definition, and regress that
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expression. The above renaming of quantified variables of 114 F(Z, a, s) prevents any
of these quantifiers from capturing variables in the instance Poss(A(f), o).

4. For the remaining possibilities when W is a regressable atom:

(a)

(b)

If Sy is the only term of sort situation (if any) mentioned by W, then
RIW]=W.

Suppose that W mentions a term of the form ¢(7, do(a/, 0’)) for some functional

fluent g. Then by the fact that W is regressable and Remark 1, ¢(7, do(o/, 0"))

mentions a prime functional fluent term. Let this prime term have the form
f(t,do(a, 5)), and suppose f’s successor state axiom in Dy, is

f(Z do(a,s)) =y = ¢s(Z,y,a,s).
Without loss of generality, assume that all quantifiers (if any) of ¢¢(7,y, a, s)
have had their quantified variables renamed to be distinct from the free variables
(if any) of f(f,do(a,o)). Then

RIW] = R[(Iy).64(F,y, o, o) A W LD 7

Here, y is a variable not occurring free in W,i, or o. Notice that, relative
to f’s successor state axiom, we have simply replaced W by a logically equiva-

lent formula (Ely)qﬁf(t_: Y, 0, 0) A VV|f(t":l§(&’cr))7 and we next regress this formula.®
The above renaming of quantified variables of ¢ (&, y, a, s) prevents any of these
quantifiers from capturing variables in the instance f(f, do(a,a)).

The remaining possibility is that W is a relational fluent atom of the form
F(t,do(a,)), and moreover, W does not mention a functional fluent term of
the form ¢(7,do(a’,6')). Let F’s successor state axiom in Dy be

F(Z,do(a,s)) = ®r(Z,a,s).

Without loss of generality, assume that all quantifiers (if any) of ®z (7, a, s) have
had their quantified variables renamed to be distinct from the free variables (if
any) of F'(t,do(a, a)). Then

R[W] = R[®r(f, o, 0)].
In other words, replace W by a suitable instance of the right hand side of the
equivalence in F’s successor state axiom, and regress this formula. The above
renaming of quantified variables of ®r(Z,a,s) prevents any of these quantifiers
from capturing variables in the instance F(f, do(a, o)).

"In general, when ¢ is a formula, and t and t' are terms, then ¢|§I denotes that formula obtained from ¢

by replacing all occurrences of t' in ¢ by t.

#Notice that, strictly speaking, R does not really define a function in this case, because W might mention

two (or more) prime functional fluent terms suitable for the above regression step (e.g. Example 4.2), and we
haven’t specified which of these is to be used. So, to be really precise, we can suppose a suitable lexicographic
ordering on functional fluent terms, and regress with respect to the least such prime term mentioned by W.
In view of our principal results about regression, proved below, none of this really matters.
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5. For non-atomic formulas, regression is defined inductively.
R[-W]=-R[W],
RIWy A W3] = R[Wi] A R[W3,
R[(Fv)W] = (Fv)R[W].

As described above, regression is defined only for regressable formulas of Lg;s0q1.. For
example, R[Poss(a, So)] is undefined, as is R[holding(z,do(pickup(A), s))], because in both
cases, the regression operator is being applied to non-regressable formulas.

The idea behind the regression operator R is to progressively reduce the length of
the situation terms of a regressable formula W by eliminating terms of the form do(a, o)
mentioned in W in favour of suitable instances of @ and ¢. Since ®r and ¢ are uniform
in s, they do not mention the function symbol do, so the effect of a single step of regression
is to replace W by a formula with one less total depth of nesting of the function symbol
do. Therefore, intuitively, the final result of regressing W should be a formula whose only
situation term is Sy. This is precisely the notion of goal regression in artificial intelligence
planning procedures, although there, functional fluents are not normally considered (but
see Pednault [26] for an exception).

That the regression operator is well defined is by no means obvious; the following the-
orem confirms that it is, and also that regressing W produces an equivalent formula about
the initial situation Sy only.

Theorem 2 Suppose W is a regressable formula of Lgicqic and D is a basic theory of
actions. Then R[W] is a formula uniform in Sy. Moreover,

D= (V)(W = R[W]),
where (Y)¢ denotes the universal closure of the formula ¢ with respect to its free variables.

Proof: For the purposes of giving an inductive proof of this theorem, we require a suitable
well-founded ordering relation, which we now define.

Consider the set A of all countably infinite sequences of natural numbers with a finite
number of non-zero elements, and the following binary relation < (the reverse lezicographic
order) on this set:

(A1, Agy o) < (A}, A, . L) iff for some m, A, < A, and for all n > m, A, = AL.

m?

(A, <) is well founded, with minimal element (0,0, ...). Next, let 3 be the set of all 3-tuples
of natural numbers. We overload the relation < by defining a reverse lexicographic ordering
on 3:

(my, ma, m3) < (n1,ng,ny) iff ms < nz or mz = ng and my < ng or
ms = n3 and mg = ny and my; < ny.

Finally (again overloading <), define an ordering on Ax 3 by:
MNH<WN,iffFf<florf=fand A< N.
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The relation < on Ax3 is well founded, with minimal element ((0,0,...),(0,0,0)), and
therefore can serve as a basis for an inductive proof.

For n > 0, define the length of the situation term do([a1, ..., a,], So) to be n. Whenever
g(t1, ... ty) is a term of Lgyeatc, t1,...,t, are said to be proper subterms of g(t1,...,t,).
An occurrence of a situation term in a formula W of Lgicaie 18 mazimal iff its occurrence is
not as a proper subterm of some situation term. Given a regressable formula W, define

index(W) = ((C, M\, Ay .. ), (P, ET)),

where:
1. C is the total number of logical connectives and quantifiers mentioned by W.

2. For m > 1, A, is the number of occurrences in W of maximal situation terms of
length m.

3. P is the number of atoms of the form Poss(«, o) mentioned by W, E is the number
of atoms of the form oy = 65 mentioned by W, and I is the number of atoms of the
form oy C o2 mentioned by W, where o1, o9 are terms of sort situation.

The proof of the theorem is by induction on the index of W relative to the ordering <.

When the index is ((0,0,...),(0,0,0)), W must be an atom that does not mention Poss,
C or equality between situations, and the only situation term (if any) mentioned by W is
So- In other words, W is uniform in Sy. Moreover, by definition of the regression operator,
R[W] =W and the theorem is immediate.

Suppose index(W) > ((0,0,...),(0,0,0)), and assume the theorem for all regressable for-
mulas of index < v.

1. Suppose that W is a regressable equality atom between two situation terms, so it has
the form:

do([a1, ..., am], So) = do([ad, ..., al], So).

(a) f m =n =0, then W is Sy = Sy, R[W] is true, and the theorem is immediate.
(b) If m # n, then R[W] is false; moreover, ¥ = (V).W = false. Therefore, the

theorem is immediate.

(¢) If m=mn>1, then
SEMW=a=a|A Ao, =a,. (10)

Moreover, a1 = o} A+ - Ay, = ol is regressable, and has index < v. Therefore,

by induction hypothesis, R[a; = o) A -+ A @, = @] is uniform in Sy, and
DEM.y=ai A Aay =al, =R[ag =a] A Aay, = al].

The theorem follows from this and (10).
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2. Suppose that W is a regressable atom of the form:
do([on, ..., ], S0) C do([ad, ..., al], So).
(a) f m = 0 and n > 1, then R[W] = true. Moreover, 3 = (V).W = true. The
theorem is now immediate.

(b) If m > n, then R[W] = false. Moreover, ¥ = (V).W = false. The theorem is

now immediate.
(c) If 1 < m < n, the theorem follows by exactly the same argument as in 1c above.
3. Suppose W is a regressable atom of the form Poss(A(#), o) for terms A(f) and o of

sort action and situation respectively. Here, A is an action function symbol of £;cqie.
Then there must be an action precondition axiom in D for A of the form

Poss(A(Z),s) = 4(Z, s).

Here, all quantifiers (if any) of I14(%, s) have had their quantified variables renamed to
be distinct from all of the free variables (if any) of Poss(A(Z), o). Then by definition,

RIW] = R[4, 0)], (11)
and by the variable renaming assumption,
DE (V).W =T4(t,0). (12)

Now I14(%, s) is uniform in s, so in particular, it does not mention the predicate sym-
bols Poss or C, nor does it mention any equality atoms between situations. Therefore,
index (T 4(t,0)) < index(W). Moreover, because Poss(A(t),a) is regressable, and
because T14(%,s) is uniform in s, [14(Z, o) is regressable, so by induction hypothesis,
R 4(f,0)] is a formula uniform in Sy, and

D = (V).4(f, 0) = R[I4(t, 0)]. (13)
The theorem now follows from (11), (12) and (13).
4. For the remaining possibilities when W is a regressable atom:

(a) The possibility that Sy is the only situation term (if any) mentioned by W is
precluded by the assumption that indez (W) > ((0,0,...),(0,0,0)).

(b) Suppose that W mentions a functional fluent term of the form ¢(7,do(o/, 0')).
Therefore, by the fact that W is regressable and Remark 1, ¢(7,do(c/,0'))
mentions a prime functional fluent term. Let this prime term have the form
f(t,do(e,0)), and suppose f’s successor state axiom in Dy, is

f(fa do(a,, g)) =y= ¢f(f7 Y, a, S)'
Here, all quantifiers (if any) of ¢4(Z,y, a,s) have had their quantified variables
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renamed to be distinct from the free variables (if any) of f(#, do(a, @)). Then by
definition

RIW] = R[(By)-65(F,y, @, 0) A W |/ el (14)

Here, y is a variable not occurring free in W,t¢,a or . By the above variable
renaming assumption,

DE (V)W = (3y)-65(Fy, a,0) A W]/ o) (15)

Now ¢¢(%,y, a, s) is uniform in s, so in particular, it does not mention the pred-
icate symbols Poss or C, nor does it mention any equality atoms between situ-
ations, nor does it mention the function symbol do. Moreover, f(t, do(a, o)) is a
prime functional fluent term. Therefore,

index((3y).64(F,y, @,0) A WG < indea ().
Also,
(3y).65(F, y, @, 0) A W Ao()

is regressable because W is, and because ¢(Z,y, a,s) is uniform in s, so by in-
duction hypothesis,

R[(Hy)qﬁf(f, Yy, o, G') A I/V|f(t’d;(a’a)):|

is a formula uniform in Sy, and

D (V).Gy){os(fy, o, o) AW R0y =

. 16
RIE) {65 (T, y, 0, 0) A W[ oy, 16)

The theorem now follows from (14), (15) and (16).

The remaining possibility is that W is a relational fluent atom of the form
F(t,do(a, o)), and moreover, W does not mention a functional fluent term of
the form ¢(7,do(a/,0")). Let F’s successor state axiom in Dy, be

F(Z,do(a,s)) = ®r(7,a,s).

Here, all quantifiers (if any) of ®x (7, a,s) have had their quantified variables
renamed to be distinct from any of the free variables (if any) of F(f,a). Then
by definition,

RIW] = R[@r(f, o, 0)], (17)

and by the variable renaming assumption,
D (V).W = Or(f, a,0). (18)

Now ®r(Z, a, s) is uniform in s, so in particular, it does not mention the predi-
cate symbols Poss or C, nor does it mention any equality atoms between situ-
ations, nor does it mention the function symbol do. Moreover, by assumption,
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F(t,do(a, 7)) does not mention a functional fluent term of the form ¢(7, do(&/, 0”)).
Therefore,

index(®p(t, o, 0)) < index(W).

Also, ®r(f, a, 0) is regressable because F(f,do(a, o)) is, and because ¢r(Z,a, s)
is uniform in s, so by induction hypothesis, R[®r(f, @, 0)] is a formula uniform
in Sg, and

—

Dk (9)- 05 (7, 0, 0) = RO, 0,0)]. (19
The theorem now follows from (17), (18) and (19).

5. The rest of the proof is straightforward when W is not an atomic formula.

Lemma 4.1 Suppose that D is a basic theory of actions of Lgitcale- If ¢ is a sentence of
Lsiteate that is uniform in Sy, then D = ¢ iff Ds, U Dypa = ¢-

Proof: The <« direction is trivial. For the other direction, suppose that D = ¢. Then
D U {—¢} is unsatisfiable. Now, Dg, U {—¢} has the syntactic form required of an initial
database. Therefore, if D = X U D5, UDyp U Dypg U Ds,, then
Y UDss UDgp UDyna U(Ds, U{—¢}) is a basic action theory.
By Theorem 1, Dg, U{=¢}UD,,, is unsatisfiable, from which the conclusion is immediate. m

As an immediate consequence of this lemma and the preceding theorem, we have:

Theorem 3 (Soundness and Completeness of Regression)
Suppose W is a regressable sentence of Lgitcqle and D is a basic theory of actions. Then,

1. R[W] is a sentence uniform in Sp.
2. DEW iff Ds, UDyn, E R[W].

This is the main result of this section. It shows how, using regression, one can reduce the
problem of proving a regressable sentence in a basic action theory to an entailment problem
relative to the initial database and the unique names axioms for actions. The foundational
axioms X of the situation calculus are not required for establishing this entailment. The
action precondition and successor state axioms are also not required; their effects have been
compiled into the regressed formula.

From a computational perspective, regression can be problematic. It is easy to construct
examples of successor state axioms that lead to regressed formulas whose lengths are ex-
ponential in the number of actions. Fortunately, for a wide class of successor state axioms,
one can prove good complexity results — linear in the number of actions — for regression
[30], but pursuing such questions here would take us too far afield.
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5 Y-Reduction

For the purposes of automating deduction in the situation calculus, the foundational axioms
>} are problematic, especially the induction axiom. Accordingly, it would be desirable to
characterize broad classes of sentences whose proofs need never appeal to induction, or even
better, can additionally ignore some of the other axioms of ., or best of all, need never ap-
peal to any of the foundational axioms .. That is the objective of this section. Specifically,
we show that in proving sentences whose prenex forms involve only existentially quantified
situation variables, induction is never needed. Moreover, under suitable additional condi-
tions on such sentences, certain other axioms of 3 are also not needed. In proving results
of this kind, the following definition will play a central role.

Definition 5.1 Principal Substructure.

Suppose S is a structure for Lgtca10. Its principal substructure, Sy, is that substructure of
S with the same object domain as S, the same action domain A as S, and with situation
domain:

{S5Y U {do®(ar,do®(ag, ..., do% (s, S5) -+ ) | n > 1, a1,...,a, € A}O

Lemma 5.1 Suppose that ¢ is a first order formula of Lgteare- of the form:
@1(351)@2(3s2) -+~ (350) Q)

where sq, ..., s, are variables of sort situation, 1 is quantifier free, and each (); is a sequence
of zero or more quantifiers over variables of sort action U object. Suppose further that S is
a structure for Lgiteal.- Then, whenever v is an assignment to the variables of Lgitcare 0f
values from the domain of S,,,

S = Sk

Proof: By induction on the number of quantifiers mentioned by ¢. When there are no
quantifiers, the result follows by a simple induction on the syntactic structure of ¢. Assume
the result when ¢ mentions n quantifiers, and consider the formula ()¢, where @ is one of
(Vz), (3z), (Va), (Ja), (Vs). Here, z,a, and s are individual variables of sort object, action
and situation, respectively. When @ is (3s), we reason as follows. Suppose that v is an
assignment to the variables of Lgq1. of values from the domain of S,, such that S,,,v |=
(3s)¢. Then for some assignment p differing (if at all) from v only in that it assigns
an element from the situation domain of S,, to s, S,,, 4 E ¢. By induction hypothesis,
S,u = ¢. Since the situation domain of S, is a subset of that for S, it follows that
S,vE (3s)¢.

In the remaining four cases, namely when @ is one of (Vz), (3z), (Va), (3a), the proof is
similar, but here we exploit the fact that S and §,, share the same domains for sorts object
and action in order to prove the cases (3z) and (3a). m

?Recall that we use ES for the denotation of the symbol ¢ in a structure S.
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Definition 5.2 Js Sentence.

A sentence of Lgeq1. s said to be an ds sentence iff it has a prenex normal form of the form

1 (HSI)QQ(HSQ) T (Hsn)Qn¢a n >0,
where sy, ..., s, are variables of sort situation, 1 is quantifier free, and each Cjz is a sequence
of zero or more quantifiers over variables of sort action U object.

It will be for ds sentences that we prove various ¥-reduction theorems, i.e. theorems
that justify ignoring certain axioms of X in establishing that ds sentences are entailed by a
basic action theory.

Corollary 5.1 If ¢ is a first order ds sentence of Lgieqie and S is a structure for Lgiicqle,
then whenever S, satisfies ¢, so also does S.

Definition 5.3 Adjunct Structure.
Let S be a structure for Lgtcate. The adjunct structure of S, S,q4;, is that structure for
Lsiteale defined as follows:

1. Su4; has the same domains of sort action and object as does S (and therefore, as does

Spr)-

2. S,q; has as its situation domain the set of all finite sequences of elements from its
action domain, as in the proof of Theorem 1. Over this domain, the function symbols
So and do, and the predicate symbol C are interpreted as follows:

So = 1]
doSedr (o, [ayy ...y n]) = [an,y ..., @y @
o CSdi g iff the sequence o is a proper initial subsequence of o.
With this domain of situations and interpretation for Sy, do and C, S,4; is a model

of 2.

3. Define a function 7 from the domain of S,4; onto that of S,, as follows:

For elements [aq, ..., 5], n > 0, from the situation domain of S,4j,
7([]) = S,
and for n > 1,
T([ar, .. o)) = do®(an, T([evry - - -, @n_q]))-
For elements d from the action and object domains of S,4; (and therefore of S and
Spr)a
T(d) = d.

4. Next, we specify how S,4; interprets predicate symbols of L.qi. other than C, and
function symbols of Lg;tcq1. other than do and Sp.
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(a) Predicate symbols: Suppose P is an n-ary predicate symbol of Lgiscqi other than

C. Then
(diy...,d,) € PSaw iff (r(d,),...,7(d,)) € P5.
Here, dy,...,d, are elements from the domain of S,4; of the right sorts appro-

priate for P.

(b) Function symbols: Suppose f is an n-ary predicate symbol of Lgseq1. other than
So and do. Then

fRaar(dy, ... dy) = fE(r(dy),y ..., 7(dn)).
As before, dy,...,d, are elements from the domain of S,4; of the right sorts
appropriate for f. Because all functions of Lgjscqi Other than Sy and do takes
values of sort action U object, and because S,4; and S have the same action and
object domains, this specification is well defined.

Remark 2 7 is a homomorphism (Enderton [5]) from S.q; onto S, for the reduced lan-
guage Lgireare without the predicate symbol T. In other words, T preserves all relations
between S,4; and S,,, except for C, and it preserves all functions.

Corollary 5.2 Suppose that S is a structure for Lgtcqrc. Suppose further that ¢ is a first
order formula of Lgiicqic that does not mention the predicate symbol C, and that does not
mention an equality atom over terms of sort situation.'® Then,

Sadj7l/ |: ¢ Z.ﬁ SPT7T(V) |: ¢
Here, T(v) is that variable assignment assigning 7(d) to a variable whenever v assigns d to
that variable, where d is an element of the domain of S,4;.

Proof: By the homomorphism theorem for first order logic (Enderton [5]). The result
holds even when ¢ is permitted to mention equality atoms over terms of sort action or
object because S,4; and S, share the same domains of sorts action and object. m

Definition 5.4 By X_ we mean the foundational axiom (1) together with the following
sentence:

So # do(a, s).
It is easy to verify that this sentence is a logical consequence of ¥ — {Induction}, by which
we mean X without the induction axiom (2), so there is nothing new here insofar as the

foundational axioms are concerned. However, for the purposes of isolating the equality
foundations for situations, it is necessary to make it explicit.

Lemma 5.2 IfM is a model of X_, then for all finite sequences o, o' of elements from the
action domain of M,

104 is permitted to mention equality atoms over terms of sort action or object.
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(o) =71(o) iff o =o' 1

Proof: The < direction is immediate. For the other direction, suppose o = [y, ..., ]
and o' = [B1,...,Bn]. We proceed by induction on m.
Suppose m = 0. If » > 0, then

([ =S5 =7([Br,- -, Bn]) = do™ (B, 7([B1; - ., Brrl),

and this is impossible because M is a model of >_. Therefore, n = 0 and this establishes
the base case for the inductive proof.
For the inductive step, assume the result for all m > 0, and suppose that

T([ea, - oy omtt]) = 7([B1, - - -, Bal)-

The case n = 0 is impossible by the same argument as before. Therefore, n > 0, and we have

(s ema]) = do" (amar, 7([ansam]) = 7([B1, - Ba]) = oM (B, T([B1, - - Bai]),

Since M is a model of ¥_, we have

g1 = B and 7([ag, ..., an]) =71, .-, Pro1]).
By the induction hypothesis, [aq, ..., an] = [B1, ..., Bn1], and therefore, [aq, ..., @pmy1] =
[ﬁh e aﬁn] u

Corollary 5.3 If M is a model of ¥—, then T is an isomorphism between M,4; and M,
for the reduced language Lgieq1. without the predicate symbol C.

Lemma 5.3 If M is a model of 3 — {Induction}, then for all finite sequences o, o' of
elements from the action domain of M,

o CMeas o' iff 7(0) M (o).

Proof: We must prove that for all finite sequences o, ¢’ of elements from the action domain

of M,
(o) CM r(¢') iff o is a proper subsequence of o”.

(=) Suppose, for m,n > 0, that 0 = [ay,...,a,] and o' = [B1,...,8,]. The proof is
by induction on n. If n = 0, then 7(¢) C™ S}, which is impossible since M satisfies
foundational axiom (3). Therefore, the base case for the induction is n = 1. In this case,
suppose that m > 1. Then do™(a,,, 7([a1, ..., am_1])) CY do™ (B, SYY). Since M satisfies
axiom (4), we conclude that do™(ay,, 7([a1,...,am—1])) C" SM, and this is impossible
because M satisfies axiom (3) and the sentence So # do(a, s). Therefore, m = 0 and the
base case for the induction is established.
For the inductive step, assume the result for n > 1, and suppose that 7(o) M 7([81, . . ., Bny1])-

Therefore, 7(a) ™ do™ (8,41, 7([B1, - - -, Bn]). Since M satisfies axiom (4), we conclude that

(o) CM 7 ([B1, - - -, Bul)-

Recall that 7 is the mapping from the domain of Madj onto that of Mpr, as described in Definition 5.3.

25



Case 1: T(o) = 7([f1,...,Pn)). Since M is a model of D — {Induction}, it is a model of
Y_. Therefore, by Lemma 5.2, ¢ = [f1, ..., B,]), and therefore, o is a proper subsequence

of [ﬂh . 'aﬂn-}-]]'

Case 2: (o) C™ 7([81,...,8,]). By the induction hypothesis, o is a proper subsequence
of [B1,..., 0], and therefore is a proper subsequence of [§y, ..., Bnt1]-

(<) Suppose for m > 0 and n > 1 that ¢ = [y, ..., ] and ¢’ = (a1, ..., am, b1, ..., Bn].
We prove that 7(o) CM 7(¢’). The proof is by induction on n. When n = 1, 7(¢') =
do™(B1,7(c)), and because M is a model of ¥ — {Induction}, it satisfies the sentence
(Va, s)s C do(a, s). Therefore, 7(a) CM 7(a”).

For the inductive step, assume the result for n > 1, and suppose that ¢’ = [ay, ..., am, b1, ..
Then 7(0') = do™ (Bpy1, T([1y - - ) Qmy Biy -« -y Bn]). By induction, 7(a) M r([an, . .., am, B1, - -

Since M satisfies axiom (4), 7(o) CM 7(¢'). ®

Lemma 5.4 Let D =X UDgUDypUDyn, UDs, be a basic action theory. Whenever M is
a model of Dss UDyp UDypg UDs,, Mg is a model of D.

Proof: By its construction, M4 is a model of 3. All sentences of D5 U Dyp U Dypg U Ds,
are universally quantified over situations, and therefore, are logically equivalent to the nega-
tions of first order ds sentences. Since M satisfies each of these sentences, then by Corollary
5.1, so does M. By the definitions of Section 2.3 specifying the syntactic forms that these
sentences must possess, none of these sentences mentions C or an equality atom over terms
of sort situation. The result now follows from Corollary 5.2. m

Theorem 4 (X-Reduction Theorem)
Suppose that D = 3 U Ds, U Dyp U Dypg U Ds, is a basic action theory and that ¢ is a first
order ds sentence.

1. DE¢ iff D—{Induction} = ¢.
2. If ¢ does not mention the predicate symbol C,
DE¢ iff X=UDssUDyyUDypg UDs, | ¢

3. If ¢ does not mention the predicate symbol C and it does not mention an equality
atom over terms of sort situation,

DE=¢ iff DssUDypUDyng UDg, = ¢.
Proof:

1. Suppose D | ¢, but D — {Induction} = ¢. Then there is a model M of D —
{Induction} that satisfies =¢. By Corollary 5.1 M, satisfies =¢. By Corollary 5.3
and Lemma 5.3, M,y is isomorphic to M., and therefore M, 4; satisfies —¢. By
Lemma 5.4, M,4; is a model of D, contradiction.
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2. Suppose D = ¢, but X= U Dy U Dyp U Dyyy U Ds, [~ ¢. Then there is a model M of
Y- UDssUDgypUDyy, UDg, that satisfies =¢. By Corollary 5.1 M, satisfies —¢. By
Corollary 5.3, M, 4; satisfies =¢. By Lemma 5.4, M4 is a model of D, contradiction.

3. Suppose D [ ¢, but Dgs U Dyp U Dypg U Ds, [~ ¢. Then there is a model M of
Dys UDyp U Dypg U Dg, that satisfies —¢. By Corollary 5.1 M, satisfies —¢. By
Corollary 5.2, M, 4; satisfies =¢. By Lemma 5.4, M4 is a model of D, contradiction.

6 Y-Elimination for GOLOG

GOLOG [18] is a situation calculus-based logic programming language for implementing
simulators and controllers for dynamical systems using a repertoire of user specified primi-
tive actions. It has been used for agent programming [16], robotics [3, 35, 14], and computer
animation [6]. GOLOG provides the usual kinds of imperative programming language con-
trol structures as well as two flavors of nondeterministic choice:

. Sequence: a5 . Do program «, followed by program f.

. Test actions: ¢? Test the truth value of expression ¢ in the current situation.

1
2
3. Nondeterministic choice: o | 3. Do program « or program [3.
4

. Nondeterministic choice of arguments: (m z)a. Nondeterministically pick a value for
z, and for that value of z, do the program «.

5. Procedures, including recursion.

As will be described below, a GOLOG program is evaluated by a theorem-prover relative
to a basic theory of actions describing the dynamics of the application domain. These axioms
include the foundational axioms for the situation calculus. The purpose of this section is to
prove that these foundational axioms are not required for evaluating GOLOG programs.

6.1 The Syntax of GOLOG Programs

For the purposes of specifying the syntax of the programming language GOLOG, we require
a language that is just like £gcqic, except it suppresses all references to situations.

Definition 6.1 Situation-Suppressed Terms and Formulas
The situation-suppressed terms obtained from Lg;.q;. are inductively defined by:

1. Any variable of Lg;scq1c Of sort action or object is a situation-suppressed term.

2. If fis an (n41)-ary functional fluent of Lyjscqre, and ¢y, ..., ¢, are situation-suppressed
terms of sorts appropriate for the first n arguments of f, then f(ty,...,t,) is a
situation-suppressed term.
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3.

The

1.

If g is an m-ary non-functional fluent symbol of L;cq1. other than Sy or do, and
t1, ..., t, are situation-suppressed terms of sorts appropriate for the arguments of g,
then g(t1,...,tm) is a situation-suppressed term.

situation-suppressed formulas obtained from Lg;.q1- are inductively defined by:

Whenever ¢ and t' are situation-suppressed terms of the same sort, then ¢t = t' is a
situation-suppressed formula. Because situation-suppressed terms are never of sort
situation, the situation-suppressed formulas never mention an equality atom between
terms of sort situation.

. When ¢ is a situation-suppressed term of sort action, then Poss(t) is a situation-

suppressed formula.

. When F'is an (n+1)-ary relational fluent symbol of Lyscq1- and 4, .. ., t,, are situation-

suppressed terms of sorts appropriate for the first n arguments of F', then F(¢1,...,t,)
is a situation-suppressed formula.

. When P is an m-ary non-fluent predicate symbol of L ;4.4 other than T, and ¢4, ...,

are situation-suppressed terms of sorts appropriate for the arguments of P, then
P(t1,...,tm) is a situation-suppressed formula.

. When ¢ and % are situation-suppressed formulas, so are —¢ and ¢ A b. When v

is a variable of Lgisq1. of sort action or object, then (Jv)¢ is a situation-suppressed
formula.

Therefore, situation-suppressed formulas are first order, never quantify over situations, never

mention C, nor do they ever mention terms of sort situation.

We can now describe the syntax of GOLOG programs:

(program) = (primitive action) |
(test condition)? |
((program) ; (program) |
(program) | (program))|
(v2) (program) |
(procedure call) |
(proc P (v7) (program) endProc ;

proc P, (¥,) (program) endProc ;
(program))

Here,

1.

2.

(primitive action) is a situation-suppressed term of sort action.

(test condition) is a situation-suppressed formula.
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3. In (7z2)(program), x must be a variable of Lgjtcqic of sort action or object.

4. (procedure call) must have the syntactic form P(ty,...,%,), where P is an (n + 2)-
ary predicate variable of Lgcq1. Whose first n arguments are not of sort situation,
and whose last two arguments are of sort situation. Moreover, tq,...,t, must be
situation-suppressed terms whose sorts are appropriate for the first n arguments of P.

5. In a procedure declaration proc P (7) (program) endProc, P must be an (n + 2)-
ary predicate variable of Lg;seq;. Whose first n arguments are not of sort situation,
and whose last two arguments are of sort situation. Moreover, ¢ must be variables of
Lsitcale Whose sorts are appropriate for the first n arguments of P.

Notice that GOLOG provides for arbitrary nesting of blocks with procedure declarations
local to their block. Other control structures, e.g. conditionals and while loops, can be

defined in terms of the above constructs:

if (test condition) then (programl) else (program2) L

(test condition)? ; (programl) | —(test condition)? ; (program?2)

To define while loops, first introduce a nondeterministic iteration operator *, where

(program)* means do (program) 0 or more times:

<program>*d§f proc P() true? | [(program); P()] endProc; P()

Then while loops can be defined in terms of the * operator:

while (test condition) do (program) endWhile TS

[(test condition)? ; (program)|*; —(test condition)?

Just as conventional Algol-like programming languages never explicitly refer to the state
of their computation, GOLOG programs never explicitly mention situations, hence the
emphasis above on situation-suppressed terms and formulas. In defining the semantics of
such programs, these situations are taken into account, as we now describe.

6.2 The Semantics of GOLOG

Definition 6.2 Restoring Suppressed Situation Arguments

Whenever ¢ is a situation-suppressed term and o is a term of Lgscq1. Of sort situation, t[o]
denotes that term of Lgjrcq1. Obtained by restoring the term o as the situation argument to
all of the functional fluents terms mentioned by t. In addition, whenever ¢ is a situation-
suppressed formula, ¢[c] denotes that formula of Lgjsqi. Obtained by restoring the term o
as the situation argument to all of the functional fluent terms and all of the relational fluent
atoms mentioned by ¢.

Next, we define an abbreviation Do(§, o, 0'), where § is a program expression and o and
o' are terms of sort situation. Do(8,0,0') should be viewed as a macro that expands into a
second order situation calculus formula; moreover, that formula says that situation o' can
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be reached from situation ¢ by executing some sequence of actions specified by §. Note that
our programs may be nondeterministic, that is, may have multiple executions terminating
in different situations.

Do is defined inductively on the structure of its first argument as follows:

1. Primitive actions: When « is a situation-suppressed term of sort action,
Do(a,0,0) e Poss(alo],0) Ao’ = do(alo],0).

2. Test actions: When ¢ is a situation-suppressed formula,

Do(¢?,0,0") = dlo] Ao =d'.

3. Sequence:
Do(81;82,0,0) oS (3s).Do(61,0,5) A Do(d,,s,0).

4. Nondeterministic choice of two actions:
Do(8y | 8, 0,0") et Do(8y,0,0") V Do(dy,0,0").
5. Nondeterministic choice of action arguments:
5 n def ’
Do((rz) 8,0,0") = (3z) Do(8,0,07).

6. Procedure calls: For any predicate variable P of arity n + 2 whose first n arguments
are not of sort situation, and whose last two arguments are of sort situation:

de
Do(P(ty, ... tn),0,0") & P(ti[0], ... ta]o), 0, 0").

7. Blocks with local procedure declarations:

Do({proc P, (¢;) 6, endProc ; --- ; proc P, (7,) &, endProc ; &}, 0,0

dgf (\V/Ph ceey Pn)[/\(VS, 8,7 ?Ti)'DO((sia S, 8,) o ]37(17“ $ 8,)]

=1
D Do(bg,0,0").

Notice that in the definition for procedure calls, the actual parameters (;) are first evaluated
with respect to the current situation o (#;[0]) before passing them to the procedure P, so
GOLOG’s procedure invocation is call by value.

Except for procedures, the above macro approach to defining the semantics of GOLOG
draws considerably from dynamic logic [10]. In effect, it reifies as situations in the object
language of the situation calculus, the possible worlds with which the semantics of dynamic
logic is defined. The macro definition for GOLOG procedures corresponds to the more usual
Scott-Strachey least fized-point definition in standard programming language semantics [39].

With the above definition of Do(4, o, 0’) in hand, we are in a position to define what we
mean by the evaluation of a GOLOG program.
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6.3 The Evaluation of GOLOG Programs

Definition 6.3 Proper GOLOG Program

A GOLOG program 4 is proper iff s and s’ are the only free variables (individual or predi-
cate) mentioned in Do(4, s, s’). In other words, for each individual variable 2 mentioned in
§, x lies in the scope of (Vz) or (3z) in a test condition of §, or z is mentioned in the scope
of a nondeterministic choice operator (7 z). Moreover, for every procedure call P(ty,...,t,)
mentioned in §, the second order variable P is bound in § by a procedure declaration for P
in some block surrounding the procedure call.

A proper GOLOG program is evaluated relative to a background basic theory of actions
specifying a particular application domain. Specifically, if D is such a basic action theory,
and § is a proper GOLOG program, then the evaluation of § relative to D is defined to be
the task of establishing the following entailment:

D = (3s)Do(4, So, ).

Any binding for the existentially quantified variable s obtained as a side effect of such a proof
constitutes an execution trace of §. In this respect, the evaluation of a GOLOG program
is much like that of a Prolog goal statement, in the sense that both are evaluated by a
theorem-prover for the purposes of obtaining bindings to existentially quantified variables
of the theorem. Of course, in the case of GOLOG, this theorem-proving task is much
more daunting, because in general, (3s)Do(d, Sy, s) stands for a very complicated second
order sentence of Lgteale, and moreover, D includes a second order induction axiom. The
purpose of the next section is to somewhat simplify this theorem-proving task for GOLOG,
by showing that the foundational axioms of D are unnecessary.!'?

6.4 Y-Elimination

Lemma 6.1 Suppose that S is a structure for Lgicar.. Then for every GOLOG program
8, possibly with free individual and predicate variables, and for every assignment v to the
individual and predicate variables of Lsitcarc of values from the domain of S,,,

Sprsv = Do(d,s,5") = S,v= Do(d,s,5).
Proof: By induction on the syntactic form of 4.
1. Suppose 4 is a primitive action term a. Then
Do(é,s,s") f Poss(a[s], s) A s’ = do(als], s).

This case is covered by Lemma 5.1.

"In [18, 30], an implementation for a GOLOG interpreter is given, written in Prolog, but because it
relies on Prolog’s negation-as-failure mechanism, this implementation is suitable only when the background
basic action theory provides complete information about its initial database. When this is not the case, in
robotics for example, more general theorem-proving techniques than Prolog’s are required, and it is towards
simplifying the theorem-proving task for such general GOLOG interpreters that the results of this section
are directed.
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. Suppose 4 is a test action ¢7. Then

Do(4, s, ) et Pls]N s =s.

Since the formula ¢[s] does not quantify over situations, this case is also covered by
LLemma 5.1.

. Suppose § is d1; 8. Then

Do(4,s, ') e/ (3s").Do(d1,s,5") A Do(dy, ", 5).

Suppose Sy, v = (35").Do(b1,s,8") A Do(dz,5",s"), where v assigns elements from
the domain of S,, to the variables of Lgcq1.. Then for some p differing (if at all)
from v only in that it assigns an element from the situation domain of S,, to s”,
Spr it = Do(81,5,5") A Do(82,5",s"). By induction hypothesis, S, u = Do(d,s,s") A
Do(d,5",8"). Since the situation domain of S, is a subset of that for S, it follows
that S,v | (3s).Do(d1, s, 5") A Do(8y, 8", s).

. Suppose § is &; | §. Then

Do(é,s,s") e/ Do(6y,s,5") V Do(dy,s,5).

The proof is immediate by induction.

. Suppose § is (7 z)y. Then z must be a variable of sort action or object and
Do(4, s, ) e/ (3z)Do(y, s, s).
The proof is immediate by induction, and the fact that the action and object domains

of S and §,, are the same.

. Suppose § is the procedure call P(ty,...,t,), where P is a predicate variable of arity
n+ 2 whose first n arguments are not of sort situation, and whose last two arguments
are of sort situation. Then,

de
Do(d,s,s") lef P(ty[s], ... tn[s], s, 9).

The result follows because v assigns elements from the domain of S, to the individual
and predicate variables of Lgcq10, and S, has the same action and object domains as
S, and the situation domain of the former is a subset of that of the latter.

. Suppose § is
proc P, (¥1) 6 endProc ; --- ; proc P, (7,,) §, endProc ; &

Assume, where v assigns elements from the domain of S, to the individual variables

of ['.sitcalcy that Spm v ): DO((;, S, 8,). Then,

Spmy ): (VPl, v '7Pn)-[/\(vslySQaﬁi)-DO(éiyslaSQ) 0 B(ﬁi751732)]
=1
D Do(d, s, ).

(20)
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Fori=1,...,n, let the predicate variable P; have arity k; 4+ 2, and let P; C (action U
object)ki x Sit x Sit be any fixed relation over the domain of S, where Sit is the
situation domain of S. We must prove that

=

SviEl

(Vs1, 82, 7;).D0(8;, 51, 82) D P;(¥;, s1,89)] D Doy, s,5).
1

7

So, for i = 1,...,n, assume that
S,v = (Vs1, 82, 0;).Do(6;, 51, 82) D Pi(0;, s1, s52). (21)

We must prove that
S,v | Do(d, s, s). (22)

Let R; = P; N (action U object)ki X Sity, X Sit,,, where Sit,, is the situation domain
of Sp. Since §,, and S share the same domains of sort action and object, and since
the situation domain of S,, is a subset of that of S, R; is a relation over the domain
of Spr. We prove that, fori=1,...,n

Spr, 14 IZ (VSl, S9, ’l_];)DO((SZ, S1, 82) D R; (’(_)‘27 S1, 82). (23)

From this, and (20), it will follow that S,,,v |= Do(dy, s, s'), from which, by induction
hypothesis, (22) will follow.

Proof of (23): Let p be a variable assignment that is just like v except that it assigns

elements from the domain of §,, to the individual variables ;, 51, s5. Then we must
prove that for any such p,

Spruu ): D0(5i731,82) ) Ri(ﬁi731782)'

Assume that S, p = Do(d;, s1,52). We prove that S, p E R;(;, s1,52). By in-
duction hypothesis, S, i |= Do(d;, 51,52). Therefore, because the domain of S, is a
subset of the domain of S, and by (21), S, u = P;(;, s1, s2). By the definition of R;,
S, E R;(#;,51,52). But p assigns elements from the domain of S, to @, s1, s2, so
Spr, M IZ Rz(ﬁz, S1, 82).

Corollary 6.1 Suppose that S is a structure for Lgicare. Then for every proper GOLOG
program &,

Spr = (3s)Do(8, So,5) = S = (3s)Do(4, So, s).

Lemma 6.2 Suppose that S is a structure for Lgicar.. Then for every GOLOG program
&, possibly with free individual and predicate variables, and for every assignment v to the
individual and predicate variables of Lg;tcqaic of values from the domain of S,4,
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Sadjs v | Do(8,5,8") = Sy, 7(v) | Do(d,s,5). 1?

Proof: By induction on the syntactic form of §.

1. Suppose 4 is a primitive action term a. Then
Do(4, s, s) et Poss(a[s],s) A s’ = do(a]s], s).
Suppose S,.q4,v | Poss(als],s) A s’ = do(a[s],s). By Corollary 5.2, S,,, 7(v)

Poss(a[s], s), and trivially, S,., 7(v) = s’ = do(a[s], s), so we are done.

. Suppose § is a test action ¢?. Then
Do(é, s, s) = P[s] A s = s.
Suppose Suq, v = ¢[s] A5’ = s. The formula ¢[s] does not mention the predicate
symbol C; neither does it mention an equality atom on situations. Therefore, by
Corollary 5.2, S, 7(v) = ¢[s], and trivially, S,., 7(v) F s’ = s, and we are done.

. Suppose § is d1; 8. Then
Do(4,s,s') e/ (3s").Do(81,5,5") A Do(dy,5",5).

Suppose S,q45,v = (357).Do(d1,s,8") A Do(d,5",s'), where v assigns elements from
the domain of S,4 to the variables of Lgcq1.. Then for some p differing (if at
all) from v only in that it assigns an element from the situation domain of S,4;
to s”, Sagj, 1t = Do(b1,s,5") A Do(ds,5"”,s'). By induction hypothesis, S, 7(¢) E
Do(d1,5,5") A Do(d,5",s). Therefore, S,,, 7(v) = (35”).Do(dy, s,5") A Do(8,, ", §).

. Suppose § is d; | d. Then

Do(8, s, s') e/ Do(6y,s,8")V Do(dy,s,5).

The proof is immediate by induction.

. Suppose § is (7 z)y. Then z must be a variable of sort action or object and
Do(é, s, 8 e/ (3z)Do(vy, s, s).

The proof is immediate by induction, and the fact that the action and object domains
of S and S,, are the same.

. Suppose § is the procedure call P(ty,...,t,), where P is a predicate variable of arity
n+ 2 whose first n arguments are not of sort situation, and whose last two arguments

are of sort situation. Then

Do(8,s,s') E P(t1[s], . .., ta[s], 5, 5).

1®Recall that 7 is the mapping from the domain of Sadj onto that of Spr, as described in Definition 5.3.
Here, 7(v) is that variable assignment assigning 7(d) to an individual variable whenever v assigns d to that
variable, where d is an element of the domain of S,4;. Moreover, whenever v assigns (di,...,d,) to an n-ary

predicate variable, 7(v) assigns (7(d1),...,7(dn)) to that predicate variable.
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The result follows from the fact that, by virtue of its definition, 7 preserves all func-
tions between S,4; and S, (Remark 2).

. Suppose § is

proc P, (¥1) 6 endProc ; --- ; proc P, (¥,) §, endProc ; &

The proof here parallels the corresponding proof in Lemma 6.1. Assume, where v
assigns elements from the domain of S,4; to the individual and predicate variables of
Lsitcales that Sqgi, v = Do(d, s,s"). Then,

Sagjv E VP, ..., /\ (Vs1, 82, ;). Do(d;, 51, 52) D P;(T;, s1, 52)] (24)
=1
D Do(dg, s, ).

Fori=1,...,n, let the predicate variable P; have arity k; + 2, and let P; C (action U
object)ki X Sitp. X Sity,. be any fixed relation over the domain of S,,, where Sit,, is
the situation domain of S,.. We must prove that

(Vs1, 89, 7). Do(8;, 81, 89) D Pi(¥;, 81, 82)] D Do(do, s, 8).

=.

Sprs 7(v) = [

=1

So, for : = 1,...,n, assume that
Spry T(V) = (Vs1, 82, T;).Do(8;, 51, 52) D Py(;, 51, 52). (25)
We must prove that
SPMT(V) }: DO((SOvSvSI)' (26)
Let R; = 7=1(P;) We prove that, fori=1,...,n
Sadgj v | (Vs1,82, T;). Do(8;, 51, 52) D Ri(;, 51, 52). (27)
From this, and (24), it will follow that S,4;, v = Do(dg, s, '), from which, by induction

hypothesis, (26) will follow.

Proof of (27): Let p be a variable assignment that is just like v except that it assigns
elements from the domain of S,4; to the individual variables v;, 51, s5. Then we must
prove that for any such p,

Sadﬁu |: D0(6i781732) ) Ri(ﬁi781732)-

Assume that S,q;, 1t |E Do(d;, 51, s2). We prove that Suq;, = Ri(T;, s1, $2). By induc-
tion hypothesis, S,,, 7(1) = Do(d;, 51, 52). By (25), Spr, 7(1t) = Pi(#, 51, 52). By the
definition of Ry, Squqj, 1t = Ri(T, 51, 52).

35



Corollary 6.2 Suppose that S is a structure for Lgitcale- Then for every proper GOLOG
program &,

Sag; E (3s)Do(8,50,5) = S, = (Is)Do(8, So, s).

Theorem 5 (X-Elimination Theorem for GOLOG)
Suppose that D = XU Dss UDyp UDyne UDs, is a basic action theory and that § is a proper
GOLOG program. Then,

D = (3s)Do(6,S0,5) iff Dss UDyp U Dyng UDg, = (3Is)Do(6, So, s).

Proof: Suppose D = (3s) Do(d, So, s), but Dy UDgp UDyp UDs, E (3s)Do(6, Sp, s). Then
there is a model M of D5 U D,y U Dypg U Ds, that satisfies —(3s)Do(8, So, s). By Corollary
6.1 M, satisfies =(3s)Do(d, So, s). By Corollary 6.2, M,q; satisfies =(3s)Do(8, So,s). By

Lemma 5.4, M, 4 is a model of D, contradiction. m

The above theorem is the principal result of this section. It guarantees that the founda-
tional axioms for the situation calculus may be safely ignored for the purposes of evaluating
GOLOG programs. Of course, these axioms may well be needed for other purposes:

1. Proving partial correctness properties: Provided the initial situation satisfies property
¢, then whenever program ¢ terminates, it does so in a situation satisfying 2.

(Vs, 8').0(s) A Do(d,s,8") D (s).

2. Proving termination: Provided the initial situation satisfies property ¢, then program
0 terminates.

(Vs).¢(s) D (3s')Do(4, s, s").

Such sentences do not have the syntactic form required by the »-Elimination Theorem.

7 Discussion

All the results of this paper are concerned with simplifying the entailment problem for basic
theories of action,'* with implications for the implementation of dynamical systems. For
example, Green’s [11] classical formulation of planning in Al is as a deduction problem: To
obtain a plan to achieve a goal G, establish that D |= (3s)G(s). Any binding for s obtained
as a side effect of a proof is a plan for GG. Since (3s)G(s) is an Is-sentence, the X-Reduction
Theorem informs us that for the purposes of planning, various foundational axioms for the
situation calculus are not required. Similarly, the projection problem arises frequently in Al,
and Theorem 3 assures us that under suitable conditions, regression can solve this problem,
and moreover, only the initial database and unique names axioms for actions are necessary
for the theorem-proving component of this calculation. Finally, the 3-Elimination Theorem

"“Even the relative satisfiability of basic action theories (Theorem 1) can be viewed this way: D |= false
iff D5, U Duna = false.
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for GOLOG informs us that the foundational axioms for the situation calculus need not be
considered in implementing interpreters for this programming language.

It would be natural to try to obtain similar results for other classes of problems. One
such example that is also of some theoretical and practical interest concerns CONGOLOG
[9], a very rich extension of GOLOG that supports concurrent execution with prioritized
interrupts and exogenous actions. Is there a Y-elimination theorem for this programming
language?

Regression plays a central computational role in the situation calculus; presumeably it
also does so for the many other approaches to modelling dynamics in the artificial intelli-
gence literature (e.g. the families of action languages [7], temporal logic [24], features and
fluents [36], the event calculus and its relatives [38, 15, 1]). For suitable analogues of our
regressable sentences, can one prove soundness and completeness results for regression in
these languages?
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