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Abstract

We extend the ontology of the situation calculus to provide for the representation
of time and event occurrences. We do this by defining a time line corresponding to
a sequence of situations (called actual situations) beginning with the initial situation.
Actual situations are totally ordered and the actions that lead to different actual sit-
uations are said to have occurred. This exension to the situation calculus permits one
to express truths about the state of the world at different times. For example, we can
state that at some point in the future certain fluent will be true. We can also express
constraints on the occurrences of events, for example, that after releasing a cup, it will
eventually hit the floor.

Our version of the situation calculus subsumes other temporal logics. In particular,
we show that the modal Temporal Logic of Concurrency [4] can be embedded in the
extended situation calculus. Our extension can also realize the essential features of
other first order proposals for reasoning about time commonly used for Al purposes

(e.g., Allen [1], Kowalski and Sergot [6]).

1 Introduction and Motivation.

Although the situation calculus [11] is by now a standard formalism in Al for representing and
reasoning about actions and their effects, it does not yet provide a very rich temporal ontology.
There have been a few earlier proposals to add some temporal features to the situation calculus
(e.g., [3, 20]), but these have not gone as far as one would like. In particular, as we describe
below, it is impossible, in current versions of the situation calculus, to represent event or action
occurrences.' This in turn prevents one from representing causality between events, for example,
that an ignition-key turning event is always followed by an engine-starting event. Similarly, when
reasoning about actions and time we often want to represent truths about fluents at a given time,
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'In this paper, we do not distinguish between actions and events.



for example, that tomorrow morning it will be sunny, or that the car we parked outside last night is
no longer there the following noon. There is no obvious way to represent such temporal information
in the “classical” situation calculus.

On the other hand, knowledge of this kind can be expressed very easily in some linear temporal
logics (e.g., [1, 21]). For example, in such logics, one can write sentences of the form holdsAt(F,T)
to express that fluent F' is true at time T, and occurs(A,T), meaning that the action A has
occurred (or will occur) at time 7. In this paper, we argue that this asymmetry between the
situation calculus and linear time line logics is more apparent than real and we show how to enrich
the situation calculus with these features.

To realize these extensions, we endow the branching structure of time, implicit in the situation
calculus formalism, with a time line. For this purpose, we identify the temporal line of a linear
temporal logic with a single path in the tree of situations. This single path will completely describe
the world in a way that parallels the time line in a linear temporal logic. We present a formalization
of the situation calculus enriched with a predicate actual that identifies a path of situations starting
in Sy (the initial situation). The path so identified describes the world’s true evolution.

Modal temporal logics (e.g., [4]) are often encountered as alternatives to first order linear time
logics like those in [1, 6]. In [11], McCarthy and Hayes conjecture that the expressive power of modal
logics can be gained without the use of modalities using an ordinary truth-functional logic. Their
proposal was to identify each “possible world” with a situation in a situation calculus language. In
this paper, we pursue this suggestion, and show how the modal temporal logic of concurrency [4]
can be embedded in the situation calculus. We do this by identifying the possible worlds with a
fixed infinite branch of states in the situation calculus tree of states. This embedding shows that
this modal logic is strictly less expressive than the extended situation calculus we propose. Of
particular interest is the fact that none of the modal logics of which we are aware give first class
status to events and their occurrences, which is a major asset of our situation calculus.

Independently, Miller and Shanahan ([12]) discuss some of the issues that are addressed in this
paper. In particular, they discuss how to deal with narratives in the situation calculus. Miller and
Shanahan define a narrative as an actual course of actions (or events) about which we may have
incomplete information. They also deal with the problem of incorporating concurrent actions in
the narratives, an issue we have not addressed in this paper.

2 The Language and the Axiomatization.

2.1 The Discrete Situation Calculus

We have sorts A, S, F, D for action types, situations, fluents?, and other domain objects respectively.
Variables are denoted by lower case letters (with or without subscripts), and constants are denoted
by upper case letters (with or without subscripts). Unless otherwise stated, letters a, s, f (A, S,
F) are used for variables (constants) of sorts A, S, F respectively. We will have a single 1-place
predicate variable ¢ over situations. Other variables and constants will be assumed to be of sort
D. Also, when free variables appear in formulas, they are assumed to be universally quantified.

Strictly speaking, our language is second order. However, the only second order sentence we
use is the induction axiom (1). Therefore, we restrict ourselves to a standard sorted first order
sublanguage (with equality) to express all other axioms of our theories.

2Fluents are those properties of the world that may change as a result of doing actions.



We include the special constant Sg of sort S, the function do : AxS — S, the relation < C S xS,
along with other functions and relations introduced later.?

Basic Axioms:

(Vo).[o(So) A (Vs,a) (¢(s) D p(do(a,s)))] D (Vs) o(s), (1)
(Vs1,82,a).51 < do(a,s3) = s1 < sg, (2)
(Vay,az, s1,s3).do(ay, s1) = do(as, s3) D a; = az, (3)
(Vs1,82).81 < $2 D 7183 < s7. (4)

Axiom (1) is an induction axiom, necessary to prove properties true in all situations. See Reiter
[19] for examples of the need for, and use of, induction in the situation calculus.

Proposition 2.1 Some consequences of these axioms are®:
(Vs) So < s, (5)
(Vs) =s < So, (6)
(Va,s) =s<s, (7)
(Vs).s# So D (Fa,s) s=do(a,s), (8)
(Vs1,82,83).51 < S2 A sy < 83D 81 < 83, (9)
(Va,s) s <do(a,s), (10)
(Vay,ay, s1,s2).do(ay,s1) < do(az,sz) D s1 < s, (11)
(Va,s,s).do(a,s) <s' Ds< ¥, (12)
(Va,si1,s2).do(a,s1) = do(a, s2) D s1 = sa. (13)

Now, we need to incorporate basic axioms introducing elements necessary to reason about the
effects of actions, persistence, etc. To introduce change, effect axioms have to be specified; these
have the following form:

Poss(A,s) A par(s) D holds(F,do(A,s)). (14)

Here, ¢4, (s) is a first order formula providing qualifications for the effect of the action A on fluent
F. Poss(a, s) is a predicate that is true when action a can be performed in situation s.

In order to achieve the desired effects, we need to introduce some mechanism to enforce the
notion of minimal change. Since the frame and ramification problems are not the primary focus of
this paper, we will assume that either we have a complete monotonic specification of the theory of
action (e.g., using Reiter’s successor state axioms [18] to complete the set of effect axioms (14)); or
some non-monotonic mechanism to complete the theory (e.g., Lin and Shoham [8]).

2.2 An Actual Path of Situations.

So far, we have introduced axioms that allow for the specification of what is true and what truths
change along different paths that start in the initial situation Sp. FEach one of these paths is

3We use the abbreviation s; < s to mean s; < s5 V s1 = s9. Also, we use the notation a < b < ¢ to
mean a < b A b < ¢, and similarly when the expression combines < and <.
4All proofs are in the appendix.



interpreted as a different way in which the world could evolve. A limitation of the situation
calculus view, which we address here, is that we have no way of describing how the world actually
evolves. To this end, we incorporate a predicate actual for situations. The intended meaning is
that a situation is actual if it lies on the path that describes the world’s real evolution. The axioms
for actual are:

actual(Sy), (15)
(Va,s).actual(do(a, s)) D actual(s) A Poss(a, s), (16)
(V a1, aq, s).actual(do(ay, s)) A actual(do(az, s)) D a1 = as. (17)

Axioms (15-16) express that the initial situation is always actual, and if a situation is actual, then
its immediate predecessor must also be. Axiom (17) says that an actual situation has at most one
actual successor situation. An important characteristic of actual situations is that they all lie on
the same path (i.e., they constitute a time line), as the following shows:

Proposition 2.2

(Vs1,82).52 < 51 D [actual(s1) D actual(sz)],

(Vs1, s2).actual(sy) A actual(sz) D sy < s3V s3 < $1V 81 = Sa.

We also introduce a notion of time, which will allow us to establish a direct relationship between
the situation calculus and linear temporal logics (e.g., the calculus of events [6]). Intuitively, each
situation has a starting time and an ending time. During the time span of a situation no fluents
change truth values®. We incorporate the sort 7, interpreted as a continuous time line, into our
language and introduce the functions start from S to 7, and end, from S x A to 7. Events/actions
occur at the ending time of situations. This is captured by the following axioms®:

(Vs,a) end(s,a) = start(do(a,s)), (18)
(Va,s) start(s) < end(s,a), (19)
start(Sg) = 0. (20)

These have the immediate consequence:

Proposition 2.3
(Vs,s').s < s D start(s) < start(s').
Occurrences are introduced as a relation between event types and situations. For example:
occurs(pickup(z), s)

says that a pickup event occurred in situation s. Occurrences are defined in terms of the actual
path as follows:
occurs(a, s) = actual(do(a, s)).

5This restricts the properties of the world that can be represented as fluents, for instance, the position of
a moving ball cannot be represented by a fluent.

In what follows, we use < and < as relations between situations (as defined earlier), as well as for the
standard ordering relation between the elements of 7 .
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In some cases, it might be convenient to establish a relationship between events/actions that occur
and the time at which they occur (rather than the situation). For this purpose, we introduce a
predicate occurst C A x T, defined as:

occurst(a,t) = (3 s).occurs(a, s) A start(do(a, s)) = t.

Also, define a relation holds7 between fluents and time points and a relation during between time
points and situations:

holdst(f,t) = (3 s).actual(s) A during(t, s) A holds(f,s),
during(t,s) = actual(s) A start(s) <t A (Ya).loccurs(a,s) D end(s,a) > t].

Intra-state persistence is derivable:

Proposition 2.4
(V f,s,t,t').during(t, s) A during(t’, s) D holdsy(f,t) = holdsr(f,t').
We can also introduce the notion of an event occurring between situations as follows:

occursBet(e, s1,52) = (I5).51 < s < s Aoccurs(e, s).

Proposition 2.5
actual(sy) A sy < sy A —(Je) occursBet(e, s1,52) D (Fa) sy = do(a, s1).

Notice that our treatment of during(t, s) requires that s be actual; we have no way of expressing
time point occurrences durtng non-actual situations. This would be necessary if we were to have
“hypothetical actual” lines of situations. Unfortunately, we do not have an adequate account
of hypothetical reasoning in the situation calculus, so we are postponing defining a fully general
during(t, s) until we do.

The expanded ontology for the situation calculus provides the essential features of the event
calculus of Kowalski and Sergot [6], which in turn appears to be a variant of Allen’s temporal logic
[1]. See [16] for details.

2.3 On Actions with Durations.

In the previous section we formalized a notion of a time line within the situation calculus by
identifying it with a connected path in the tree of situations. The structure of time is considered
to be isomorphic to that of the positive real numbers. Each occurring action is associated with
a time point at which the action is said to occur. Thus, elementary actions are seen as having
instantaneous durations.

This point-like view of actions can be easily used to model actions that have durations. This
is done in exactly the same manner as temporal intervals are modelled in point-based temporal
ontologies. Thus, if an action has duration, we model it with two instantaneous actions Start-
action and End-action. For example, consider the action of holding open a spring loaded lock of
a door. This can be considered as an action with a temporal extent and would be modelled by
introducing two action constants: Stari-holding and End-holding. Furthermore, we introduce the



fluent Held-open to indicate that the holding action is in progress. The relationship between this
fluent and the instantaneous start-end actions is expressed using the effect axioms:

Poss(Start-holding, s) O holds(H eld-open, do(Start-holding, s)),
Poss(End-holding, s) O —holds(H eld-open, do( End-holding, s)).

Thus, if we assume that these sentences express all the reasons why Held-open may change, Held-
open would be true exactly in the situations in which the lock is being held. Clearly, it is possible
for other actions to occur after Start-action and before Fnd-action. For example, the door can
be pulled open in a situation in which the fluent Held-open is true. Therefore, we can model a
restricted form of concurrency in which actions with durations occur concurrently as long as their
starting and ending points don’t coincide. This latter restriction can be eliminated by allowing
for concurrent actions in the language of the situation calculus (see Gelfond et al. [3], Miller and
Shanahan [12], Lin and Shoham [9] or Pinto [15] for examples on how to deal with concurrency in
the situation calculus).

3 Some Applications.

Explaining Observations.

Assume that our car is parked in the morning:
holds(Parked, S,,) A actual(S,,).
However, we observe some time later that the car is no longer parked:
actual(Se) A —holds(Parked,S.) A Sy, < Se.
Furthermore, assume that our theory includes the following successor state axiom (Reiter [18]):

Poss(a,s) D holds(Parked,do(a, s)) =
[holds(Parked, s) A a # Steal \ a # TowAway|V a = Park.

Then, the following is a consequence of our axioms:
(Fs).(Sm <5< 8¢) Aloccurs(Steal, s) V occurs(TowAway, s)].

The issue of explaining observations in a similar framework is also addressed by Shanahan in [22].

Behavioural Constraints.

It is possible to express behavioural constraints for agents. For example: “Never cross the street
against a red light:”
holds(Red, s) D —occurs(Cross, s).

“If you drink, don’t drive:”

—occurs(Drive, do(Drink, s)).

We also have a natural notion of prevention. To prevent F from ever becoming false:

actual(s) D holds(F, s).



External Events.

We can formalize event occurrences not under an agent’s control, but which can be used in planning.
For example, assume that we need to describe the scheduling of a bus, which we know arrives every
15 minutes between 0800 and 2400. We also assume that the bus does not come at other times.
Thus, we write:

occurst(BusArrives,t) = (In).0 <n <64 At =800+ 100 X n/4.
We can also say that the bus always waits for a minute before leaving;:
occurst(BusArrives,t) D occurst(BusLeaves,t + 1).

Independently of the description of external events, we can also describe the behaviour of an
agent, possibly as the result of planning, using occurrences. For example:

occurs(Agent Arrives, s) A holds(BusPresent, s) D occurs(BoardsBus, do(AgentArrives, s)).

where AgentArrives and BoardsBus are actions performed by the agent. From a specification
of the conditions under which the fluent BusPresent changes, we can derive its successor state
axiom. Thus, we can we can easily derive that the agent boards the bus if he arrives at the bus
stop before the last bus leaves.

Hypothetical Reasoning.

By preserving the branching state property of the situation calculus, we can express and answer
a variety of hypothetical queries, although counterfactuals cannot be expressed. For example “At
time T, in the past, when you put A on B, could A have been put on C' instead?” can be simply
expressed as:

during(T,, s) A actual(s) D Poss(put(A,C), s).

“If in state S, I had performed put(A,C'), would F have been true?”
holds(F, do(put(A,C),S,)) A Poss(put(A,C), S,).

None of these features is possible in linear temporal logics. We need the branching structure of
the situation calculus, coupled with a linear time line in that branching structure.

A shortcoming of the view of the actual line of situations discussed here is that we do not
consider the existence of “hypothetical actual” branches. The present formalism allows us to ex-
press knowledge about what happens in the world, or what Miller and Shanahan call “narratives.”
Unfortunately, we do not have hypothetical actual lines that would allow us to express knowledge
about what would occur if certain non-actual actions were to be performed, for example, counter-
factuals in which alternative action occurrences can be postulated. These are issues which we are
currently investigating, but about which we do not yet have a definitive proposal.

Chains of events.

In many cases several events occur in sequences. The events in these sequences may be related to
one another by causal relationships. For example, shooting a loaded gun causes a noise to occur:

holds(Loaded, s) A occurs(Shoot, s) D occurs(N oise, do(Shoot, s)), (21)



or, everything that goes up must come down:
occurs(GoesUp, s) D occurs(ComesDown, do(GoesUp, s)). (22)

According to sentences (21) and (22), no events may occur between the first and the second
actions mentioned. If this is not desired, simply leave the intervening action occurrences open:

occurs(GoesUp, s) D (3s').s < s’ A occurs(ComesDown, s').

4 The Situation Calculus and Modal Temporal Log-
ics.

In [11], McCarthy and Hayes argue, without proof, that the expressive power of modal logics can
be gained without the use of modalities using an ordinary truth-functional logic. The proposal is
to identify each “possible world” with a situation in a situation calculus language. In this section
we lend support to this intuition by showing how one particular such logic — the Temporal Logic of
Concurrency — can be embedded in the extended situation calculus. The advantage of performing
this embedding is that the expressiveness of the temporal logic is preserved, while avoiding the use
of “mixed logics”, in much the same way as does Moore [13] in providing an embedding of logics of
knowledge into the situation calculus. Moreover, we retain the property that actions are first class
citizens in the situation calculus, something that modal temporal logics lack.

4.1 The Temporal Logic.

The Temporal Logic of Concurrency (TL for short) [4] is a propositional modal logic, in which
the “possible worlds” are temporally ordered states. TL formulas are defined in terms of atomic
propositions by the following BNF expression:

Au=f|-A|A>A|OA| OA|AU A

Informally, the meanings of the sub-expressions are as follows: f represents an elementary proposi-
tion that is true now; OA means A is true from now on. ()A means, true at the next state. AU B
means A is true until B is true; from then on, A is unrestricted. The formula -0O-A4 is abbreviated
as OA”. A model M of a TL theory is a structure (S,0,V), in which S is an enumerable set of
states, o is a surjective function from the non-negative integers to S (o; denotes the state resulting
from applying o to the non-negative integer 7). The sequence og...0;... represents a temporally
ordered sequence of states. V is a function from the atomic formulas or propositions to a subset of
states in which the atomic formulas are {rue. M |=; A means that A is true in the state o;; M E A
means that A is true in every state. For a complete definition of the |=; relation see [4, p.72].

Axiom Schemata of 7'L:
0(A— B) —» (DA — OB),
O(A = B) = (OA = OB),

“The other usual logical connectives (V, A, ++) are defined in terms of negation (=) and implication (—)
in the standard way.




O-A & -0A4,

0OA = AANQOA,

0(A— QA) —» (A— OA), (23)
AU B — OB,

AU B+ BV (ANO(AU B)).

TL also includes all tautologies.
Notice that (23) is an induction axiom.

Rules of Inference of TL:
e Detachment: from A and A — B infer B.

e Necessitation: from A infer OA and OA.

4.2 The Embedding.

It is important to observe that even though the logic just presented is called a temporal logic of
concurrency, it does not provide a mechanism for dealing with true concurrency. In fact, in this
setting, concurrency means that there might be multiple agents co-existing but it is not possible
for them to execute actions in a concurrent manner (i.e., simultaneously). Therefore, we do not
need true concurrent actions to embed T in the situation calculus.

In order to perform the embedding, we give a translation of TL formulas to the situation
calculus, and also provide a correspondence between the notions of |=; and = in TL and entailment
in our version of the situation calculus. Since TL takes time to be linear, we draw a correspondence
between the states o; and the states of the actual line. Furthermore, in what follows, all our axioms
refer to actual states.

Syntactic Characterization. FEach atomic formula in TL is characterized by a constant of
sort fluent (F). Let A be an arbitrary formula in T'L. Its translation into the situation calculus is:

(Vs).actual(s) D holds(A,s).
where holds(A, s) abbreviates a situation calculus formula defined as follows®:

holds(—A, s) = —holds(A, s)

holds(Ay — Ag, s) = holds(A1,s) D holds(Ay, s)

holds(OA, s) = (Vs').s' > s A actual(s') D holds(A, s

holds(OA, s) = (Y a).actual(do(a, s)) D holds(A, do(a, s))

holds(Ay U Az, s) = (3&').s" > s A actual(s') A holds(Aq, ') A
(Vs") [s < s" < s D holds(Ay, "))

It is trivial to show that the abbreviation for holds(—O-A,s) is equivalent to the intuitively

correct expression:
(3s).s" > s A actual(s') A holds(A, s').

8The translation of formulas involving the defined logical connectives (V, A, <) is straightforward.



Semantic Concerns. Models in TL are structures in which the function o defines an infinite
sequence of states. The intuition behind this sequence is that the world passes through each state
in this sequence in the order prescribed by it. In order to ensure that our models contain an infinite
sequence of actual situations, we need to add the following axiom:

(Vs).actual(s) D (a).actual(do(a, s)). (24)

This axiom says that every actual situation must have a next actual situation, which, given axiom
(17), is unique.

We must show that the translation of each instance of an axiom schema of TL is entailed by
our enriched situation calculus.

Proposition 4.1 If A is an instance of an axiom schema of TL, then
Y E (Vs).actual(s) D holds(A, s),
where X is the set of situation calculus axioms (1),(2),(4), (15), (17) and (24).

For most TL schemata, the proof is straightforward, but somewhat tedious. Perhaps, the most
interesting proof is that of the T'L induction schema (23) which, not surprisingly, requires the use
of our situation calculus induction axiom (1).

Also:

Proposition 4.2 The necessitation rules for O and () are sound, since it is trivial to show that

if 3 includes the situation caleulus azioms (1),(2),(4), (15), (17) and (24):
S k= (¥ s).actual(s) O holds(A,s) = 3= (¥s).actual(s) O holds(DA, s),
as well as:
S k= (¥ s).actual(s) O holds(A,s) = 3= (¥s).actual(s) O holds(OA, ).

Furthermore, let @77, be an arbitrary set of T'L sentences, and let ¢ be a sentence of TL. If &4,
corresponds to the translation of @7y, to the situation calculus, then it is not difficult to see that
Orp, = @7 iff LU B, = (Vs).actual(s) D holds(d, s).

Finally, it is also the case that &7 |, ¢ iff:

YU E (Yay,...,a;).actual(do([ay, . .., a;],So)) D holds(¢, do([aq, ..., a;],So)),  (25)

where do([aq, ..., a;],S0), denotes the situation term:
do(a;,do(a;—1,...do(ay, Sp) ...)).

Since, by axiom (17), for any 7 there exists a unique sequence [ay,...,q;] of actions such that
do([ay, ..., a;], Sp) is actual, we can write (25) as:

YU E (Jay,. .., a).actual(do([a, . . ., a;], So)) A holds(¢, do([a, . . ., ail, So)),

We conclude that every entailment of a TL theory is an entailment of its situation calculus
translation.
In summary:

Theorem 4.1 The extended situation calculus subsumes the temporal logic of concurrency.

$Loyas E ¢ means that ¢ is true in all the states in all models of &7y,
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4.3 Further Comments.

We have embedded the modal logic TL in the situation calculus. The question arises: Is it possible
to realize this embedding without appealing to the extended situation calculus? The answer is yes.
However, the resulting language is greatly impoverished. To see why, consider the axiom schema:

O-4 < -0A4,

which ensures that () acts as a functional operator, i.e., every state has exactly one successor. We
achieved this by mapping TL states to the extended situation calculus’ actual situations, which
also have a unique successor situation in the actual line. This can also be realized in the standard
situation calculus by allowing only one action. In this way, every situation would have exactly one
successor. The problem with this solution is that it gives up the ability to talk about arbitrary
actions. If only one action exists (whose only purpose is to produce a state change), then we lose
the ability to represent different actions and their effects.

With our approach, on the other hand, not only can we gain the same expressiveness of the
TL modal logic, but we retain the basic features of the original situation calculus, plus the ability
to talk about event occurrences. The only limitation introduced is that axiom (24) prevents us
from expressing deadlock situations, i.e., situations in which no actions are possible. This is not a
serious limitation since we can achieve the effect of a deadlock by introducing a Wail action with
no effects.

5 Conclusions and Future Research.

5.1 What Has Been Achieved?

e The standard alternatives to the situation calculus in the Al literature (e.g., Allen [1], Kowal-
ski and Sergot [6]) are linear time theories which provide for the representation of event
occurrences and fluent truths at time {. We have shown how, with a minimal change to its
ontology, the situation calculus can realize the essential features of these alternatives, with-
out sacrificing its capacity for deductive planning and hypothetical reasoning provided by its
branching state structure.

e As we discuss in [16], there is a close correspondence between our enriched situation calculus
and the calculus of eventsof Kowalski and Sergot. One advantage of this is the clean semantics
provided by our axiomatization, in contrast to the event calculus’s reliance on the negation
as failure feature of logic programming, whose semantics is not well understood. Moreover,
as we show in [16], our axioms lead to a logic programming implementation with comparable
computational properties to those of the event calculus.

e We have confirmed the intuitions of McCarthy and Hayes [11] that the situation calculus is
at least as expressive as modal temporal logics. This we did by providing a translation of
the logic TL into the extended situation calculus. This avoids the problem of “mixed logics”,
in much the same way as does Moore [13] in providing an embedding of logics of knowledge
into the situation calculus. Moreover, by embedding the essential features of modal temporal
logic within the situation calculus, we preserve the action-based ontology of the situation
calculus; conventional temporal logics do not provide for actions and their effects in their
ontologies.
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5.2

All application domains for which temporal logics have been used can be studied within the
framework of the extended situation calculus (e.g., semantics of programming languages [7],
reasoning about digital circuits [14, 10], modelling of concurrency [17], etc.). This provides
the potential for integrating results in hardware specification (e.g., [10]), with research in
fault diagnosis [5]. Among other things, this could lead to a rich theory of diagnosis for
dynamic systems.

Future Research.

Enriched event ontologies. The axiomatization of this paper assumes non-concurrent,
discrete events. These limitations need to be removed, perhaps by appealing to ideas of Lin

and Shoham [9] and Gelfond, Lifschitz and Rabinov [3].

Foundations for reasoning about physical processes. Provided we can represent con-
tinuity within the extended situation calculus, we will be able to describe processes like: “If
I provide a continuous supply of heat to a pot of water, the water will eventually boil.” A
language of this sort is necessary for formally specifying systems that reason about physical
processes, as in (Davis [2]).

Planning with external events. Conventional planning techniques assume that all actions
are under the agent’s control. The possibility of an agent exploiting external events in its
plans needs to be addressed.

Time and complex events. The approach of this paper supposes that all events are
primitive. Levesque, Lin and Reiter!? have augmented the “classical” situation calculus with
the ability to define complex events from primitive ones using quantification, sequencing,
conditionals, nondeterministic choice and iteration. Augmenting this theory with a time line
would provide all the benefits we have described in this paper, but generalized to this much
richer language.

Relationship with other frameworks for temporal reasoning. It would be interesting
to investigate how other temporal logics can be embedded in the situation calculus, and how
their built-in assumptions about the structure of time translate to the situation calculus view
of time.

Sophisticated hypothetical reasoning. While the approach of this paper supports some
forms of hypothetical reasoning (Section 3), it is not completely general. One cannot, for
example, pose and answer counterfactual queries like: “If I had not paid the bookie, would I
have lived to bet again.” To handle such examples, it appears to be necessary to hypothesize
a different time line than the actual one, but with the same properties as the actual time line.
It is in reasoning of this kind where the branching state structure of the situation calculus
becomes particularly important.

10Forthcoming.
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A Proofs

Proof of Proposition 2.1.
1.

(

2. (Vs) =s < Sp. Use (4) and (5).
(
(

Vs).s # So D (Fa,s').s = do(a,s’). By induction, with ¢(s) = [s # So D (Fa,s').s =

5. (Vs1,82,83).81 < S3 A sy < 83D 81 < s3. By induction, with ¢(s) = (Vs1,82).51 < s A sy <
sD s < s.

6. (Va,s).s < do(a,s). Use (2).

7. do(ay,s1) < do(az, s3) D s1 < sy. Use (2), (9) and (10).

8. (Va,s,s').do(a,s) < s Ds< s Use (9),(10) and (11).

9. (Ya,sq,ss2).do(a,s;) = do(a,s3) D s; = s3. By contradiction, using (2), (4) and (10).

Proof of Proposition 2.2: Use the induction axiom (1). The first part of the proposition
follows by taking:
o(s) = (Vs').s' <s D [actual(s) D actual(s')],

and the second part by taking:

o(s) = (Vs').actual(s) N actual(s') D s< s Vs <sVs=¢.

Proof of Proposition 2.3: Use the induction axiom (1) with:
o(s) = (Vs').s' < s D start(s') < start(s).

Proof of Propositions 2.4 and 2.5: Both follow directly from the definitions of holdsr,
during and occursBet.

Proof of Proposition 4.1: We must prove that:
Y = (Vs).actual(s) D holds(A, s), (26)
for each instance A of an axiom schema of T'L.
1. A=0(A — B) —» (DA — OB). The translation of A is a valid first order sentence.
2. A=0O(A — B) - (OA — (OB). The translation of A is a valid first order sentence.
3. A=0~A < = A. Use axioms (17) and (24).
4. A=0A - ANQODA. Use (12).

13



5. A=0(A — QA) = (A — OA). After invoking some of the translation rules, A can be seen
to be logically equivalent to:

(Vs').(Vs).actual (s) A holds(O(A — OA), s) Aholds(A,s) As' > sAactual(s') D holds(A,s').
Now use the situation calculus induction axiom (1) with
o(s') = (Vs).actual(s) Aholds(O(A — OA), s)Aholds(A, s)As" > sAactual(s') D holds(A, s').

(a) The base case follows using axiom (15) and (6).

(b) The inductive case follows using axiom (2), (10) and the first sentence of Proposition
2.2.

6. A= AU B — OB. The translation of A is a valid first order sentence.

-~

.AN=AUB < BV(ANQO(A U B)). First, using (2), (7) and the second sentence of

Proposition 2.2, prove the following:
actual(s') A actual(do(a, s)) As < s’ D do(a,s) < §'. (27)

(a) The proof of the required result from left to right follows from (27).

(b) The proof from right to left follows from (27), (9), (12), the first sentence of Proposition
2.2 and axiom (24).
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Afterword (by Ray Reiter)

It is a great pleasure for me to contribute to this volume honouring Jack Minker’s distinguished
career, especially because my very first publications in Al and databases appeared in the 1978
pioneering book Logic and Databases which Jack co-edited with Hervé Gallaire. In fact, Jack was
in many ways responsible for my participation in this area; it was Jack who encouraged my initial
interests by inviting me to join the workshop that eventually lead to that book, and it was Jack
who generously promoted my later efforts along these lines. I believe it’s safe to say that no single
person has contributed more than he has to the definition, nourishment and technical agenda of
databases and their relations to logic, logic programming and artificial intelligence, and for this we
all owe Jack a great debt. So also do the many scientists around the world whose human rights
Jack has so vigorously defended through his efforts with the ACM and the American Association
for the Advancement of Science. Thus on this occasion I am delighted to be able to salute Jack for
his fundamental contributions to science and human decency. He is, to invoke an expression ['ve
often heard him use, a real mensch, who does honour to us all.
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