
Automated Design of Multistage Mechanisms∗

Tuomas Sandholm
Carnegie Mellon University

Computer Science Department
Pittsburgh, PA 15213, USA

sandholm@cs.cmu.edu

Vincent Conitzer
Carnegie Mellon University

Computer Science Department
Pittsburgh, PA 15213, USA

conitzer@cs.cmu.edu

Craig Boutilier
University of Toronto

Department of Computer Science
10 King’s College Road

Toronto, Ontario, Canada M5S 3G4
cebly@cs.toronto.edu

Abstract

Mechanism design is the study of preference aggrega-
tion protocols that work well in the face of self-interested
agents. We present the first general-purpose techniques for
automatically designingmultistagemechanisms. These can
reduce elicitation burden by only querying agents for in-
formation that is relevant given their answers to previous
queries. We first show how to turn a given (e.g., automat-
ically designed using constrained optimization techniques)
single-stage mechanism into the most efficient correspond-
ing multistage mechanism given a specified elicitation tree.
We then present greedy and dynamic programming (DP) al-
gorithms that will determine the elicitation tree (optimal in
the DP case). Next, we show how the query savings inher-
ent in the multistage model can be used to design the under-
lying single-stage mechanism to maximally take advantage
of this approach. We illustrate all of these techniques on an
optimal auction example. Finally, we present negative re-
sults on the design of multistage mechanisms that do not
correspond todominant-strategysingle-stage mechanisms:
an optimal multistage mechanism in general has to random-
ize over queries to hide information from the agents.

∗This material is based upon work supported by the National Science
Foundation under ITR grants IIS-0121678 and IIS-0427858, and a Sloan
Fellowship.

1. Introduction

In multiagent settings, often anoutcome(e.g., presidents,
joint plans, allocations of resources) must be chosen based
on the preferences of a set of agents. Since the preference
aggregator generally does not know these preferencesa pri-
ori, the agents must report their preferences to the aggrega-
tor. Unfortunately, an agent may have an incentive to misre-
port its preferences in order to mislead the aggregator into
selecting an outcome that is more desirable to the agent than
the outcome that would be selected if the agent revealed its
preferences truthfully.

Mechanism designis concered with the creation of pref-
erence aggregation rules that lead to good outcomes in
spite of such strategic behavior by agents. Classical mech-
anism design provides some general mechanisms, which,
under certain assumptions, satisfy some notion of nonma-
nipulability and maximize some objective. Such mecha-
nisms do not rely on (even probabilistic) information about
the agents’ preferences (e.g., the Vickrey-Clarke-Groves
(VCG) mechanism [24, 7, 14]), or can be easily applied
to any distribution over preferences [13, 1, 18, 17]. How-
ever, these general algorithms only work in restricted set-
tings (e.g., requiring the possibility of side payments), and
may not reflect the designer’s objectives.

Recently, automated mechanism design (AMD)has
been proposed as a means to design mechanisms au-
tomatically for the setting at hand [8, 10, 12, 4]. This
constrained-optimization based approach produces opti-
mal special-purpose mechanisms even in settings for which
no good general mechanisms are known, or for which an
impossibility result precludes the existence of good gen-

eral mechanisms for the class of instances (but not
the existence of a good mechanism for the specific in-
stance at hand). However, all prior work on general-purpose
AMD has focused on single-stage mechanisms, in which
all agents reveal their preferences completely and si-
multaneously. This is problematic for several reasons.
First and foremost, agents may need to invest compu-
tational (or other) resources to determine their prefer-
ences over outcomes (e.g., when bidding on trucking tasks,
an agent needs to solve, for each subset of tasks, a com-
plex vehicle-routing problem). Second, the agents lose
all privacy about their preferences. Third, it can re-
quire a large amount of communication. While the third
reason applies only when the space of possible prefer-
ences is large, the first two reasons are significant even in
very small examples.

Much of this computation, communication, and privacy
loss is unnecessary when certain aspects of an agent’s pref-
erences have no influence on the final outcome. For in-
stance, if a second agent can perform a task at much lower
cost than a first, we need not determine precisely how sub-
optimal assigning the task to the first agent is. Unfortu-
nately, single-stage mechanisms cannot take advantage of
this: we cannota priori rule out the need to know the first
agent’s precise preferences for the task—this only becomes
apparent after receiving information from the second.

Our solution is to usemultistagemechanisms, where the
aggregator queries the agents about certain aspects of their
preferences, and chooses the next query to ask (and who
to ask it of) based on answers to earlier queries. In a non-
game-theoretic setting, a move to multistage protocols can
yield an exponential savings in bits communicated [15]. In
mechanism design settings, such a move can yield an ex-
ponential savings in communication and the aggregator’s
computation [11]. In combinatorial auctions, the savings in
communication can even besuper-exponential [3].

Multistage mechanisms have beenmanually de-
signed for several applications, such as voting [9], 1-object
auctions (e.g. [6]), and combinatorial auctions (see re-
views by [21, 19]). In this paper, we introduce the first
general-purpose techniques forautomateddesign of mul-
tistage mechanisms.1 We adopt a specific approach: we
first design a single-stage mechanism using existing tech-
niques, and then convert it into a multistage mechanism
in various ways. We also show how to design the under-
lying single-stage mechanism to maximally take advan-
tage of this approach, so that the approach does not come
at a loss.

1Previous work has studied the design of multistage mechanisms in a
strategic multi-party computation setting [23, 2], but the issues in that set-
ting are very different from those that we study in this paper. For exam-
ple, the key strategic issue in that work is that an agent may be tempted not
to invest the effort necessary to determine its private information.

2. The model

2.1. Automated design of single-stage mechanisms

In this subsection, we review the relevant definitions and
results from the single-stage AMD literature. In a single-
stage AMD setting, we are given: 1) a finite set of out-
comesO;2 2) a finite set ofN agents; 3) for each agent
i, (a) a finite set of typesΘi, (b) a probability distribution
γi over Θi (in the case of correlated types, there is a sin-
gle joint distributionγ overΘ1 × . . .×ΘN), and (c) a util-
ity function ui : Θi × O → R;3 4) an objective function
g : Θ1 × . . . × ΘN × O → R whose expectation the de-
signer wishes to maximize. Possible designer objectives are
many (e.g.,social welfare, or maximizing the sum of agent
utilities for the chosen outcome).

By the revelation principle [16], we can restrict at-
tention to truthful, direct revelation mechanisms, where
agents report their types directly and never have an incen-
tive to misreport them. In general, mechanisms may choose
the outcome randomly. Thus, a mechanism consists of a dis-
tribution selection functionp : Θ1 × . . . × ΘN → ∆(O),
where ∆(O) is the set of probability distributions
over O. A mechanism is adominant strategy mecha-
nism if truthtelling is optimal regardless of what other
agents report. In other words, for any agenti, type vec-
tor (θ1, . . . , θi, . . . , θN), and alternative report̂θi ∈ Θi,
we haveEo|θ1,..,θi,..,θn

ui(θi, o) ≥ Eo|θ1,..,θ̂i,..,θn
ui(θi, o).

If telling the truth is optimal onlygiven that the other
agents are truthful, we have aBayes-Nash equilib-
rium (BNE) mechanism. That is, in a BNE mechanism,
for any i, θi ∈ Θi, and alternative report̂θi ∈ Θi, we
have E(θ1,..,θi−1,θi+1,..,θN)|θi

Eo|θ1,..,θi,..,θn
ui(θi, o) ≥

E(θ1,..,θi−1,θi+1,..,θN)|θi
Eo|θ1,..,θ̂i,..,θn

ui(θi, o).4

Given that the mechanism is allowed to choose the out-
come at random, the problem of designing an optimal
single-stage mechanism can be solved in polynomial time
(given that the number of agents is constant) using lin-
ear programming [8]. The decision variables of that linear
program are the following: for every type vectorθ and ev-
ery outcomeo, there is a decision variablep(θ, o) that de-

2Payments to/from agents can be part of the outcome.
3The utility function is parameterized by type; while theui are com-

mon knowledge, the types encode (private) preferences [16]. The restric-
tion to a finite type space is somewhat limiting. However, continuous
spaces can be handled via suitable discretization of the type space. The
discretization can be fixed in advance with an analysis of its impact on in-
centives and efficiency (as in recent research on limited revelation auctions
[5]). Or, it may be optimized within the AMD model itself; this latter point
is the subject of current research.

4In settings where participation is voluntary, the AMD formulation
also includes participation (orindividual rationality) constraints: no agent
is worse off participating in the mechanism than not. Techniques for han-
dling them in single-stage AMD can be applied to our multistage case with-
out modification.

termines the probability of that outcome given that type
vector. It is straightforward to check that the incen-
tive compatibility constraints above, as well as the expecta-
tion of the objective, are linear functions of these variables,
which gives us the linear program. Generating and solv-
ing this linear program is all that is required to have a basic
approach to automatically designing single-stage mech-
anisms, and it is in fact the approach that we use in this
paper to generate single-stage mechanisms.

2.2. Automated design of multistage mechanisms

In multistage AMD, the input includes—in addition to
the input for single-stage AMD—a set of queriesQ and a
set of answersA.5 Each queryq is associated with a partic-
ular agenti (of whomq would be asked),6 and the answer
that the agent would give toq (when answering truthfully) is
given by the functiona : Q×Θi → A, wherea(q, θi) is i’s
truthful answer to queryq wheni’s type isθi. This implies
that there is only one truthful response to anyq ∈ Q; thus,
each query partitions the agent’s type space. Upon receiving
answera to q from agenti, the mechanism can infer (assum-
ing truthfulness)i’s type is in{θi ∈ Θi : a(q, θi) = a}.

A multistage mechanismM correspondsto a given
single-stage mechanismS if, for each type vectorθ reported
by the agents, bothM andS choose each outcomeo with
the same probability. SupposeM corresponds to someS
where truth-telling is dominant. It is not hard to see that
M has truthtelling as anex-postequilibrium, regardless of
the the results of previous queries revealed. That is, truth-
telling is optimal (regardless of an agent’s beliefs) when-
ever all other agents answer queries truthfully.7 This implies
that we never need to randomize over query choice (though
this no longer holds ifS is not a dominant-strategy mecha-
nism; see Section 7).

For these reasons, apart from Section 7, we fo-
cus exclusively on multistage mechanisms that corre-
spond to dominant-strategy single-stage mechanisms.
Thus, we can restrict ourselves to mechanisms that se-
lect the next query deterministically based on answers to
prior queries; moreover, we need not worry about incen-
tives.

5Assuming a single answer set (rather than distinctAq for each query
q) comes w.l.o.g. One set of interest isA = {yes, no}.

6In this paper we will restrict our attention to the case where we query
one agent at a time; however, our approach is easily extended to settings
where we query multiple agents at the same time. We note, however, that
querying agents one at a time leads to the largest possible savings in the
number of queries.

7Ex post is weaker than dominant strategies, but stronger than BNE.
Note that even ifS is a dominant-strategy mechanism,M need not be: if
an agent makes her answer dependent on the history of queries asked, an-
other agent may have an incentive to lie about her type in order to influ-
ence which queries the former is asked.

Under these restrictions, amultistage mechanismis de-
fined by: 1) a tree with nodesV and edgesE; 2) for each
internal (non-leaf) nodev, an agenti and a queryq to that
agent; 3) a one-to-one correspondence between possible an-
swers to the query at nodev and children of nodev; 4) for
each nodev and outcomeo, a probability that, given that
we reachv, we stop asking queries and choose outcomeo.
(In the case wherev is a leaf, these probabilities must sum
to one.) Anelicitation treeis a multistage mechanism with-
out outcome probabilities. We denote byIv the information
set at nodev (i.e., the set of type vectors consistent with
the answers that lead tov). We generally assume an elicita-
tion tree iscomplete: Il is a single type vector for any leaf
l.8

We study several variants of multistage AMD. First, we
may either start from a given single-stage mechanism (e.g.,
computed by single-stage AMD software) and turn it into
a corresponding multistage mechanism, or we may impose
no constraints on the single-stage version of the multistage
mechanism. Second, we may either assume that the elicita-
tion tree (hence the query order) is given beforehand, or we
may impose no constraints on it.

3. A small example

In this section, we illustrate various notions for auto-
matically designing multistage mechanisms using a single,
simple example. Suppose a divorcing couple jointly owns a
painting, and an arbitrator has to decide the fate of the paint-
ing. There are 5 options: (1) the husband keeps the paint-
ing; (2) the wife keeps it; (3) the painting remains jointly
owned, but is hung in a museum; (4) it is cut into pieces
which are given to the husband; and (5) it is cut up with
pieces given to the wife. The husband and wife each have
two possible types: typeL is associated with relative in-
difference toward the painting, and typeH with deep at-
tachment. Each has typeL with probability0.8 and typeH
with probability0.2. To maximize social welfare, the arbi-
trator would like to give the painting to whomever cares for
it more; but since a party who cares little would prefer hav-
ing it over not, the arbitrator must design appropriate incen-
tives to ensure truthful reporting. The utility function for
each party is the “same.” Keeping the painting gives util-
ity 2 (typeL) or 100 (H). The other party getting the paint-
ing gives utility 0 (for either type). The museum outcome
gives utility 1.5 (L) or 40 (H). Receiving pieces gives util-
ity −9 while not even getting the pieces gives utility−10

8This does not imply that the mechanism will ask all queries and
uniquely determine a type vector: the concrete outcome probabilities,
specifically, the possibility of terminating at an interior node will typically
preclude this.

(for either type).9

Our goal is to find a dominant-strategy (possibly ran-
domized) mechanism (without payments) that maximizes
expected social welfare. First we find the optimal single-
stage mechanism. Solving this example using the method-
ology described in Subsection 2.1 yields the following ran-
domized mechanism (the probabilities are rounded):

wife L wife H

husbandL Museum 0.96 Wife keeps;
0.04 Husband gets pieces

husbandH 0.96 Husband keeps; 0.47 Husband keeps;
0.04 Wife gets pieces 0.40 Wife keeps;

0.13 Wife gets pieces

In spite of the symmetry between the husband and the wife,
the mechanism is asymmetric. Of course, other optimal so-
lutions exist (e.g., where the roles of husband and wife are
interchanged).

Now we consider how to turn this single-stage mecha-
nism into a corresponding multistage mechanism (i.e., with
the same outcome probabilities). First, suppose the elicita-
tion tree is given, with the wife’s type elicited first. Fig. 1
shows the optimal multistage mechanism. (Why this is so
will become apparent.) This mechanism saves one query
with probability0.2 · 0.4 = 0.08.

Museum w.p. 1

Husband keeps w.p. .96

Wife gets pieces w.p. .04

Wife keeps w.p. .93
Husband gets pieces w.p. .07

Husband keeps w.p. .78
Wife gets pieces w.p. .22

HUSBAND HIGH

WIFE HIGH

WIFE LOW

HUSBAND LOW

HUSBAND LOW

HUSBAND HIGH

Wife keeps w.p. .40

Figure 1. The optimal elicitation tree given
the single-stage mechanism and given that
the wife is queried first. When an internal
node has a probability-outcome pair associ-
ated with it, we terminate early at that node
with that probability, with that outcome; with
the remaining probability, we move on to the
next query.

If the elicitation tree (query order) is not fixed, the op-
timal mechanism is that given in Fig. 2. It turns out that

9This problem has some similarity to King Solomon’s dilemma; how-
ever, when that dilemma is discussed in the economics literature [20], it
is assumed that there is only one rightful mother, and both women know
who it is—unlike our problem, where the agents do not know each oth-
ers’ types.

greater savings can be obtained by eliciting the husband’s
type first: this mechanism saves a query with probability
0.2 · (0.04 + 0.47) = 0.10. (This is due to the asymme-
try of the single-stage mechanism from which we are start-
ing.)

Museum w.p. 1

HUSBAND HIGH

WIFE HIGH

WIFE LOW

WIFE LOW

WIFE HIGH

Wife keeps w.p. .96

Husband gets pieces w.p. .04

HUSBAND LOW

Husband keeps w.p. .47
Wife gets pieces w.p. .04

Wife keeps w.p. .82
Wife gets pieces w.p. .18

Husband keeps w.p. .1

Figure 2. The optimal mechanism when ask-
ing the husband first.

Suppose queries to the husband are slightly more expen-
sive than those to the wife, so that we would rather save on
husband queries (unlike the previous mechanism). If we al-
low a different optimal single-stage mechanism, namely the
analog of the one above with the husband and wife roles
switched (which remains optimal due to the problem sym-
metry), then the optimal multistage mechanism that corre-
sponds to this saves a query to the husband (rather than the
wife) with probability0.10, giving greater cost savings.

Finally, if we are willing to sacrifice optimality of the
single-stage mechanism to obtain greater query savings, this
may again change the mechanism. For example, if we make
the cost of querying sufficiently large, it will be optimal to
not ask any queries, and always choose the same outcome.

One interesting additional motivation for automatically
designing multistage mechanisms is that the tree-based rep-
resentation of a multistage mechanism may beeasier to un-
derstandfor a human than the tabular form of a single-stage
mechanism—especially if the tree is relatively small.

4. Converting a single-stage mechanism into a
multistage mechanism

In this section we develop methods for converting a
given (e.g., automatically designed) single-stage mecha-
nism into an equivalent multistage mechanism which saves
on elicitation costs. In Subsection 4.1 we develop methods
for the case where the elicitation tree (query order) is given.
In Subsection 4.2 we generalize the approach to the case
where the elicitation tree is not given, but can be chosen en-
dogenously.

4.1. Given elicitation tree

We first solve the simplest of our problems: converting
a single-stage mechanism into the most efficient multistage
mechanism for a given elicitation tree. This problem can be
motivated by considering exogenous constraints on query
order (e.g., agents available at different times, or when the
optimal ordering is readily available). More importantly,
this setting serves as a stepping stone to more general tech-
niques below. Our key technique is to “propagate up” prob-
ability from the leaves to internal nodes where this is possi-
ble.

Lemma 1 Let multistage mechanismM correspond to
single-stage mechanismS. Suppose that for some inter-
nal nodev in the elicitation tree (with exit prob.ev) and out-
comeo, all the leaves of the subtreeTv rooted atv assign
a probability of at leastp > 0 to outcomeo. Then the fol-
lowing modificationM ′ of M corresponds toS: (1) At
nodev, exit with o with probability (1 − ev)p; (2) Sub-
tract p from the probability assigned too at each leaf of
Tv; (3) Divide all the outcome probabilities at leavesTv by
1− p.

Proof: Consider the probabilityp(θ, o′) that outcomeo′

will be selected given type vectorθ in M ′. If θ does not
lead tov, clearly p(θ, o′) is the same inM and M ′; so
assume that it does. Ifo′ = o (the outcome that we exit
early with), then the probability of selectingo′ at v is now
the early-exit probabilityp, plus the probability that we
do not exit early but choose outcomeo′ later, which is
(1 − p)(p(θ, o′)old − p)/(1 − p) = p(θ, o′)old − p. Hence
the total probability isp(θ, o′)old; i.e., it did not change. If
o′ 6= o, then the probability of selectingo′ at v is the prob-
ability that we do not exit early witho and choose outcome
o′ later, which is(1− p)(p(θ, o′)old)/(1− p) = p(θ, o′)old.
Hence for anyθ, M andM ′ selecto′ with the same proba-
bility.

We note that the ability to propagate probability up in
this manner even when the distributions at the leaves are
not identical makes this different from the standard frame-
work in communication complexity theory. (In addition, we
may have a restricted query language, and we have a prior
distribution over the inputs.)

If we propagate up as much probability as possible, we
obtain the optimal mechanism (for a givenS and tree):

Theorem 1 Suppose we apply Lemma 1 until we can ap-
ply it no further (that is, until for any internal nodev and
outcomeo, there is at least one leaf of the subtree rooted at
v that assigns probability0 to o). Then the resulting multi-
stage mechanism saves the most queries (or, in the case of
different query costs, the greatest query cost) among multi-

stage mechanisms corresponding to the given single-stage
mechanism and the given elicitation tree.

Proof: Any mechanism with the same elicitation tree that
saves more queries (or greater query cost) must, for some
nodev, have a greater probability of exiting early at or be-
forev than the mechanism generated by applying Lemma 1.
It follows that for at least one outcomeo, the former mech-
anism has a probability of exiting early at or beforev with
this o that is greater than

∑
o∈O

minθ∈Iv
p(θ, o). But then,

there is someθ ∈ Iv such thatp(θ, o) is smaller than the
probability of exiting early at or beforev with outcomeo.
So the mechanism does not correspond to the given single-
stage mechanism.

As an example, we derive the mechanism of Fig. 2. We
start from a mechanism that saves no queries (Fig. 3).

Museum w.p. 1

HUSBAND HIGH

WIFE HIGH

WIFE LOW

WIFE LOW

WIFE HIGH

Wife keeps w.p. .96

Husband gets pieces w.p. .04

HUSBAND LOW

Husband keeps w.p. .96
Wife gets pieces w.p. .04

Husband keeps w.p. .47
Wife keeps w.p. .40
Wife gets pieces w.p. .13

Figure 3. Multistage mechanism that saves
no queries at all.

At the node after the husband reports “high”, the husband
keeps the painting withp ≥ .47 in all subsequent leaves. So
we can propagate this probability up (Fig. 4). At the same

Museum w.p. 1

HUSBAND HIGH

WIFE HIGH

WIFE LOW

WIFE LOW

WIFE HIGH

Wife keeps w.p. .96

Husband gets pieces w.p. .04

HUSBAND LOW

Husband keeps w.p. .47

Wife keeps w.p. .75
Wife gets pieces w.p. .25

Wife gets pieces w.p. .08
Husband keeps w.p. .92

Figure 4. Some probability propagated up.

node, the wife gets the pieces of the painting withp ≥ .08

in all subsequent leaves. Propagating this up results in the
mechanism of Fig. 2.

The following corollary characterizes the probability of
exiting early at or before a given node. This will be helpful
in our use of the “propagating probabilities up” technique
within all of the algorithms discussed later in the paper.

Corollary 1 In a multistage mechanism that saves a max-
imum number of queries, for any type vectorθ such that
nodev will be reached if the mechanism does not exit early,
the probability that we will reachv and not exit early atv is
1− ∑

o∈O

minθ∈Iv
p(θ, o). Hence, given that we have not ex-

ited early at or before nodev, and we transition from node
v to nodew, the probability of exiting early at nodew is
1− (1− ∑

o∈O

minθ∈Iw
p(θ, o))/(1− ∑

o∈O

minθ∈Iv
p(θ, o)).

4.2. Endogenously determined elicitation tree

In this section we develop methods for converting a
single-stage mechanism into a multistage one,without con-
straints on the elicitation tree (query order). We first pro-
vide a greedy algorithm, and show two ways in which it can
“fail” (i.e., yield an arbitrarily small fraction of the query
savings available). We then give an optimal dynamic pro-
gram.

4.2.1. Greedy algorithm Our greedy algorithm chooses
the query at each stage so as to maximize the probability
of being able to exit immediately after this query given the
preceding queries and responses. LettingU(I, q, aq) denote
the information state that results from being in information
stateI and then receiving answera to queryq, we define
the algorithm as follows.

Definition 1 Thegreedy algorithmchooses the query to ask
at nodev from the set
arg maxq∈Q

∑
a∈A

P (a|Iv, q)
∑

o∈O

minθ∈U(Iv,q,a) p(θ, o).

The greedy algorithm does what we intend:

Theorem 2 The greedy algorithm chooses a query that
maximizes the probability of exiting immediately after it.

Proof: By Corollary 1, we know that if we are currently
at nodev and do not exit early, and we transition to node
w, then the probability of exiting early at nodew is 1 −
1− ∑

o∈O

minθ∈Iw p(θ,o)

1− ∑
o∈O

minθ∈Iv p(θ,o) . Thus, if we ask queryq ∈ Q at

nodev, the probability of exiting immediately afterq is
∑

a∈A

P (a|Iv, q)(1−
1− ∑

o∈O

minθ∈U(Iv,q,a) p(θ,o)

1− ∑
o∈O

minθ∈Iv p(θ,o)) =

1− 1
1− ∑

o∈O

minθ∈Iv p(θ,o) (1−
∑

a∈A

P (a|Iv, q)
∑

o∈O

minθ∈U(Iv,q,a) p(θ, o)). Choosingq ∈

Q to maximize this expression is equivalent to choosing
q ∈ Q to maximize∑
a∈A

P (a|Iv, q)
∑

o∈O

minθ∈U(Sv,q,a) p(θ, o), which is exactly

what the greedy algorithm does.

Theorem 3 The greedy algorithm chooses the query for
nodev in timeO(|Q| · |A| · |O| · |Θ|).

Unfortunately, the greedy algorithm can be arbitrarily far
from optimal (even when all queries have equal cost):

Proposition 1 There exist single-stage mechanismsS for
which the greedy algorithm achieves only an arbitrarily
small fraction of the possible query savings (even whenS
is deterministic, there are only three players, two types per
player, and three outcomes; alternatively, even when pri-
ors over types are uniform, there are only three players, two
types per player, and five outcomes).

4.2.2. Dynamic programming algorithm Unlike the
greedy algorithm, the dynamic program must build the en-
tire tree. The program works by computing, forevery
possible information stateI, the minimum possible ex-
pected number of queriesn(I) from that point on,giventhat
we have not exited early. As before, letU(I, q, a) be the in-
formation state that results from receiving answera to
q at I. Let e(I, q, a) be the probability of exiting im-
mediately after receiving answera to q at I, given that
we did not exit early atI. By Corollary 1, we can com-

putee(I, q, a) as1 −
1− ∑

o∈O

minθ∈U(I,q,a) p(θ,o)

1− ∑
o∈O

minθ∈I p(θ,o) . We obtain

the recurrence

n(I) = minq∈Qc(q)+
∑

a∈A

P (a|I, q)(1−e(I, q, a))n(U(I, q, a))

Using the fact thatn({θ}) = 0 for every type vectorθ,
we use this recurrence to compute the value ofn(I) for ev-
ery I, starting with the smallI and working up to larger
ones.

Theorem 4 The dynamic programming algorithm
computes the value ofn(I) for all I in time
O(|Q| · |A| · |O| · |Θ| · 2|Θ|).

We can retrieve the optimal multistage mechanism from
this as follows: when we arrive at information stateI and
do not exit early, choose a query from
arg minq∈Q

∑
a∈A

P (a|I, q)(1− e(I, q, a))n(U(I, q, a)).

5. Designing optimal multistage mechanisms

So far we have discussed how a given single-stage mech-
anism can be converted into an equivalent multistage mech-
anism. Here we will no longer take the single-stage de-
sign as a constraint. We develop a method for designing the

single-stage mechanism in such a way that we get large sav-
ings in queries when we transform it into a multistage mech-
anism using the techniques described earlier. We focus on
the case where the elicitation tree (query order) is given. It
turns out that, using Corollary 1, we can directly integrate
the eventual query savings into the linear programming for-
mulation for AMD described in Subsection 2.1.

We say that nodev is on the elicitation pathfor type vec-
tor θ if θ would lead us to ask the query atv (given that
we do not exit early). For every internal nodev in the tree,
we add a term to the AMD objective (which maximizes the
designer’s objective) that indicates the probability of sav-
ing the query corresponding to this node.10 (We say that we
savethe query corresponding tov whenv is on the elic-
itation path, but we exit early at or beforev.) Thus, the
term in the objective forv is c(v)P (v)e(v) wherec(v) is
the cost of the query at nodev, P (v) is the probability of
v being on the elicitation path, ande(v) is the probabil-
ity that we will exit early at or beforev, given thatv is on
the elicitation path.P (v) is a constant, bute(v) is a vari-
able that depends on how we set the outcome probabilities
for the leaves. Specifically, by Corollary 1, we know that
e(v) =

∑
o∈O

minθ∈Sv
p(θ, o). Themin operator is not lin-

ear, so we cannot add this expression to the LP objective di-
rectly. We work around this by lettinge(v) =

∑
o∈O

e(v, o),

wheree(v, o) is the probability of exiting early at or before
v with outcomeo, given thatv is on the elicitation path.
Then, for everyo ∈ O andθ ∈ Sv, we add the constraint
e(v, o) ≤ p(θ, o).

Because linear programs can be solved to optimality in
polynomial time, and the formulation above is polynomial
in the number of outcomes and the number of types per
agent (but not in the number of agents), the following theo-
rem follows immediately:

Theorem 5 The extension of the single-stage AMD for-
mulation described above computes the optimal multistage
mechanism for the given elicitation tree, taking query costs
into account, in time polynomial in the number of outcomes
and the number of types per agent (but not in the number of
agents).

This also begets an (inefficient) algorithm for generating
the optimal multistage mechanism when neither the single-
stage mechanism nor the elicitation tree is given: apply the
above algorithm to every possible elicitation tree.

10Suitable scaling to ensure commensurability with the designer’s ob-
jective is straightfoward; however, this does assume query costs can be ac-
counted for additively.

6. Example application: optimal auctions

In this section, we demonstrate how our techniques can
be applied to a simple auction example. In this auction, a
single item is for sale. There are two bidders,A andB; the
prior over each bidder’s valuation for the item is uniform
over{0, 1, 2, 3}. Our objective is to maximize expected rev-
enue.

We first used the standard (single-stage) automated
mechanism design software to generate an optimal
single-stage dominant strategies mechanism for this set-
ting. This produced the following mechanism (which is
effectively the Myerson auction [18]):

B bids 0 B bids 1 B bids 2 B bids 3

A bids 0 item not sold item not sold B wins, pays2 B wins, pays2
A bids 1 item not sold item not sold B wins, pays2 B wins, pays2
A bids 2 A wins, pays2 A wins, pays2 A wins, pays2 B wins, pays3
A bids 3 A wins, pays2 A wins, pays2 A wins, pays2 A wins, pays3

We then focused our attention on turning this single-
stage mechanism into a multistage mechanism. We allowed
only queries of the form “Is your valuation for the item at
leastk?” We observe that no matter which query is asked
first, there is no chance of exiting after the first query.
Hence, the greedy algorithm from Subsection 4.2 is under-
determined (and presumably will not perform very well).
Instead, we used the dynamic programming algorithm from
Subsection 4.2 to obtain the optimal elicitation tree for
this single-stage mechanism. This produced the multistage
mechanism in Figure 5.

item not sold

B wins, pays 2

A wins, pays 2

B wins, pays 3

A wins, pays 3

A BIDS < 2

A BIDS >= 2

B BIDS < 2

B BIDS >= 2

B BIDS < 3

B BIDS 3

A BIDS 2

A BIDS 3

Figure 5. Single-stage auction converted to
multistage.

We next studied whether any query gains could be made
by changing the underlying single-stage mechanism while
keeping the elicitation tree fixed, as described in Section 5.

We first placed a cost of0.001 on each query. This produced
the multistage mechanism in Figure 6.

item not sold

B wins, pays 2

A wins, pays 2

A BIDS < 2

A BIDS >= 2

B BIDS < 2

B BIDS >= 2

B BIDS < 3

B BIDS 3
B wins, pays 3

Figure 6. Underlying single-stage auction
changed to save queries.

The only difference between this mechanism and the pre-
vious is how the tie is broken when both bidders bid3.
Therefore, this mechanism attains the same expected rev-
enue as the previous mechanism. That is, the additional
query savings obtained by this multistage mechanism come
at no cost to the original objective.

Finally, we placed a cost of0.5 on each query. This pro-
duced the multistage mechanism in Figure 7.

item not sold

B wins, pays 2

A BIDS < 2

A BIDS >= 2

B BIDS < 2

B BIDS >= 2

A wins, pays 2

Figure 7. Underlying single-stage auction
changed to save even more queries.

Effectively, this mechanism gives bidderA a take-it-or-
leave-it offer of2 for the item; if bidderA does not take
this offer, the mechanism makes the same offer to bidderB.
(Mechanisms that consist of sequences of take-it-or-leave-it
offers have been studied systematically [22].) This mecha-
nism in fact has lower expected revenue, but this loss in ex-
pected revenue is outweighed by the query savings that are
obtained.

7. Mechanisms without dominant strategies

So far, we have restricted our study to multistage mecha-
nisms whose single-stage correspondents have truth-telling
as a dominant strategy. As discussed, this is helpful because
in such multistage mechanisms, telling the truth is an ex-
post equilibrium, so we need not worry that information re-
vealed to agents by the mechanism will introduce strategic
behavior. Nevertheless, we may also be interested in con-
verting single-stage mechanisms that do not have dominant
strategies, such as BNE mechanisms, to multistage mecha-
nisms (e.g., because such mechanisms can achieve a higher
objective value than dominant-strategy mechanisms).

Here we present initial results on converting BNE mech-
anisms into multistage mechanisms. These results are nega-
tive: they show that restricting ourselves to particular natu-
ral classes of multistage mechanisms may come at a loss of
optimality. Thus, to design optimal multistage mechanisms,
we need to search a broader space of mechanisms.

Proposition 2 Even when the primary objective is social
welfare and we use BNE as our solution concept, there ex-
ist settings in which immediately revealing the result of ev-
ery query incurs a loss in objective value.

The next result that we establish is that restricting our-
selves to mechanisms that always chooses the next query
deterministically can come at a loss.

Proposition 3 There exist settings in which: 1) The pri-
mary objective is social welfare; 2) The optimal single-
stage BNE incentive compatible mechanism is unique; 3)
The unique optimal (in terms of query savings) elicitation
tree to ask the queries for this mechanism is not (even BNE)
incentive compatible; 4) There exists an elicitation tree for
this mechanism that randomizes over the next query se-
lected, is (BNE) incentive compatible, and has almost the
same query savings as the optimal elicitation tree (and thus
strictly greater query savings than any deterministic (BNE)
incentive-compatible elicitation tree for this mechanism).

Proof: Let there be two agents,1 and2; let agent1 have type
setΘ1 = {θ1

1, θ
2
1, θ

3
1} and let agent2 have type setΘ2 =

{θ1
2, θ

2
2}. Let the outcome set beO = {o1, o2, o3, o4}. Let

the utility functions be as follows:
u1(θ1

1, o1) = 0, u1(θ2
1, o1) = 0, u1(θ3

1, o1) = 0,
u2(θ1

2, o1) = 0, u2(θ2
2, o1) = 0;

u1(θ1
1, o2) = 3, u1(θ2

1, o2) = 1 + ε, u1(θ3
1, o2) = −1,

u2(θ1
2, o2) = 1, u2(θ2

2, o2) = −4;
u1(θ1

1, o3) = −4, u1(θ2
1, o3) = 1, u1(θ3

1, o3) = 3,
u2(θ1

2, o3) = 2, u2(θ2
2, o3) = 3;

u1(θ1
1, o4) = −5, u1(θ2

1, o4) = −5, u1(θ3
1, o4) = 4,

u2(θ1
2, o4) = −5, u2(θ2

2, o4) = 4.
The unique social-welfare maximizing outcome in each

case is:o(θ1
1, θ

1
2) = o2, o(θ1

1, θ
2
2) = o1, o(θ2

1, θ
1
2) = o3,

o(θ2
1, θ

2
2) = o3, o(θ3

1, θ
1
2) = o3, o(θ3

1, θ
2
2) = o4.

Let the probability distributions over types be as fol-
lows: γ1(θ1

1) = 0.4, γ1(θ2
1) = 0.1, and γ1(θ3

1) = 0.5.
γ2(θ1

2) = γ2(θ2
2) = 0.5. Choosing the social welfare maxi-

mizing outcome in every case is BNE incentive compatible,
so this is the unique optimal single-stage BNE mechanism.
(We omit the proof of this fact due to space constraint.)

Let the cost of a query be a secondary objective to the
social welfare objective (or let the cost of a query be very
small), so that we still want to implement a mechanism that
always chooses the social welfare maximizing outcome. Let
there be three queries: the single query to agent2, and two
queries to agent1: Is your typeθ1

1? andIs your typeθ3
1? No

single query is enough to determine the outcome for the op-
timal single-stage mechanism above. Disregarding strategic
considerations, the unique optimal multistage mechanism
corresponding to the optimal single-stage mechanism is:
Ask agent2 for its type first;

If it is θ1
2 , ask agent1 Is your typeθ1

1?
If so, chooseo2, otherwise chooseo3;

If it is θ2
2 , ask agent1 Is your typeθ3

1?
If so, chooseo4, otherwise ask agent1 Is your typeθ1

1?
If so, chooseo1, otherwise chooseo3.

This multistage mechanism needs all3 queries only
0.5 · 0.5 = 0.25 of the time. Unfortunately, under this mul-
tistage mechanism, agent1 has a (slight) incentive to lie
when its true type isθ2

1, and the first query to it isIs your
typeθ1

1? In this case, agent1 knows that agent2 reportedθ1
2,

so falsely answeringyeswould give it1 + ε rather than1.
Any other multistage mechanism that corresponds to the op-
timal single-stage mechanism and does not randomize over
queries will cost us significantly in queries. But, instead, we
can also slightly modify the given multistage mechanism
and with very small probability ask agent1 Is your typeθ1

1?
after agent2 answersθ2

2. Now, when agent1 is confronted
with Is your typeθ1

1? as the first query while its true type
is θ2

1, there is a slight chance that agent2 answeredθ2
2, in

which case agent1 does not want to answeryesand geto1

rather thano3. Because the benefit of lying in the other case
is so small, it is outweighed, and agent1 will answer truth-
fully. All other queries are still answered truthfully—thus
this mechanism is (BNE) truthful.

A potential alternative to randomization by the mecha-
nism is to obtain the randomization from mixed (i.e., ran-
domized) strategies of the agents in mechanisms that are
not truthful direct-revelation mechanisms.

8. Conclusions and future research

We extended the constrained-optimization based tech-
niques for automated mechanism design to the design of
multistage mechanisms, allowing reduction in elicitation
burden by querying agents sequentially, and only querying
them for information that is relevant given previous query

responses. We focused primarily on the design of multistage
mechanisms that correspond to dominant-strategy single-
stage mechanisms, since these ensure truth-telling is anex-
post equilibrium (no matter what is revealed about other
agents’ answers). We described several techniques for con-
verting single-stage mechanisms into multistage, both with
and without fixed elicitation trees, and also showed how to
augment single-stage AMD to produce single-stage mecha-
nisms that can be maximally exploited in the conversion to
multistage. We illustrated all of these techniques on an opti-
mal auction example. Finally, we presented negative results
on the design of multistage mechanisms that do not corre-
spond to dominant-strategy single-stage mechanisms.

Future research includes developing techniques for de-
signing multistage mechanisms that do not correspond to
dominant-strategy single-stage mechanisms. We also hope
to develop more efficient algorithms for optimal design
when neither the single-stage mechanism nor the elicita-
tion tree is given. Another direction is to extend techniques
from machine learning to the query selection problem in
our setting. Finally, we also plan to discover more effi-
cient problem-specific techniques for the automated design
of multistage mechanisms.

References

[1] Kenneth Arrow. The property rights doctrine and demand revelation
under incomplete information. In M Boskin, editor,Economics and
human welfare. New York Academic Press, 1979.

[2] Gal Bahar and Moshe Tennenholtz. Sequential-simultaneous infor-
mation elicitation in multi-agent systems. InProceedings of the Nine-
teenth International Joint Conference on Artificial Intelligence (IJ-
CAI), Edinburgh, UK, 2005.

[3] Avrim Blum, Jeffrey Jackson, Tuomas Sandholm, and Martin Zinke-
vich. Preference elicitation and query learning.Journal of Machine
Learning Research, 5:649–667, 2004.

[4] Andrew Blumberg and Abhi Shelat. Searching for stable mecha-
nisms: Automated design for imperfect players. InProceedings of
the National Conference on Artificial Intelligence (AAAI), pages 8–
13, San Jose, CA, USA, 2004.

[5] Liad Blumrosen and Noam Nisan. Auctions with severely bounded
communication. InFOCS, pages 406–415, 2002.

[6] Liad Blumrosen, Noam Nisan, and Ilya Segal. Multi-player and
multi-round auctions with severely bounded communication. InESA,
pages 102–113, 2003.

[7] Ed H. Clarke. Multipart pricing of public goods.Public Choice,
11:17–33, 1971.

[8] Vincent Conitzer and Tuomas Sandholm. Complexity of mecha-
nism design. InProceedings of the 18th Annual Conference on Un-
certainty in Artificial Intelligence (UAI), pages 103–110, Edmonton,
Canada, 2002.

[9] Vincent Conitzer and Tuomas Sandholm. Vote elicitation: Complex-
ity and strategy-proofness. InProceedings of the National Confer-
ence on Artificial Intelligence (AAAI), pages 392–397, Edmonton,
Canada, 2002.

[10] Vincent Conitzer and Tuomas Sandholm. An algorithm for automat-
ically designing deterministic mechanisms without payments. InIn-
ternational Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), pages 128–135, New York, NY, USA, 2004.

[11] Vincent Conitzer and Tuomas Sandholm. Computational criticisms
of the revelation principle. InThe Conference on Logic and the Foun-
dations of Game and Decision Theory (LOFT-04), Leipzig, Germany,
2004.

[12] Vincent Conitzer and Tuomas Sandholm. Self-interested automated
mechanism design and implications for optimal combinatorial auc-
tions. In Proceedings of the ACM Conference on Electronic Com-
merce (ACM-EC), pages 132–141, New York, NY, 2004.

[13] Claude d’Aspremont and Louis-Andre Gérard-Varet. Incentives and
incomplete information. Journal of Public Economics, 11:25–45,
1979.

[14] Theodore Groves. Incentives in teams.Econometrica, 41:617–631,
1973.

[15] E Kushilevitz and N Nisan.Communication Complexity. Cambridge
University Press, 1997.

[16] Andreu Mas-Colell, Michael Whinston, and Jerry R. Green.Microe-
conomic Theory. Oxford University Press, 1995.

[17] Eric Maskin and John Riley. Optimal multi-unit auctions. In Frank
Hahn, editor,The Economics of Missing Markets, Information, and
Games, chapter 14, pages 312–335. Clarendon Press, Oxford, 1989.

[18] Roger Myerson. Optimal auction design.Mathematics of Operation
Research, 6:58–73, 1981.

[19] David Parkes. Iterative combinatorial auctions. In Peter Cramton,
Yoav Shoham, and Richard Steinberg, editors,Combinatorial Auc-
tions, chapter 3. MIT Press, 2006.

[20] Motty Perry and Philip J. Reny. A general solution to King
Solomon’s dilemma.Games and Economic Behavior, 26:279–285,
1999.

[21] Tuomas Sandholm and Craig Boutilier. Preference elicitation in com-
binatorial auctions. In Peter Cramton, Yoav Shoham, and Richard
Steinberg, editors,Combinatorial Auctions, chapter 10. MIT Press,
2006.

[22] Tuomas Sandholm and Andrew Gilpin. Sequences of take-it-or-
leave-it offers: Near-optimal auctions without full valuation revela-
tion. In Agent-Mediated Electronic Commerce (AMEC) workshop,
Melbourne, Australia, 2003.

[23] Rann Smorodinsky and Moshe Tennenholtz. Sequential informa-
tion elicitation in multi-agent systems. InProceedings of the 20th
Annual Conference on Uncertainty in Artificial Intelligence (UAI),
Banff, Canada, 2004.

[24] W Vickrey. Counterspeculation, auctions, and competitive sealed
tenders.Journal of Finance, 16:8–37, 1961.

