Narratives as Programs

Ray Reiter
Department of Computer Science
University of Toronto

Toronto, Canada

M5S 3G4

reiter@cs.toronto.edu

Abstract

Representing narratives, and reasoning about
them, has been a prominent theme in logical for-
malisms for dynamical systems (e.g. [9, 5, 2]).
However, the existing literature provides a rather
limited concept of what a narrative is; the exam-
ples all concern linear action sequences, some-
times including incomplete information about ac-
tion occurrence times. The point of departure of
this paper is the observation that narratives of-
ten include more complex constructions, includ-
ing nondeterminism, loops, and recursive pro-
cedures. Therefore, we propose that, in their
full generality, narratives are best viewed as pro-
grams. In many cases, the situation calculus-
based programming language GOLOG is suit-
able for this purpose. In this setting, we define
what it means to query a narrative, and discover
that this task is formally identical to proving the
correctness of programs as studied in computer
science. Since this general task is hopelessly in-
tractable, we focus on procedure-free narrative
programs and for a wide class of such programs
and queries we prove that a regression-based ap-
proach to query evaluation is correct. Finally, we
describe a Prolog implementation of these ideas.

1 Introduction

Current logical theories of actions can be divided into
two broad categories: narrative-based approaches (e.g.
features and fluents [17], the event calculus and its rel-
atives [18, 6, 1]) that rely on linear temporal logics, and
situation-based approaches (e.g. the families of action
languages [3], various dialects of the situation calcu-
lus [8, 13, 9]) that provide for branching futures. As
Reiter [15] observed, these two classes of action the-
ories require quite different reasoning mechanisms in
their treatment of planning problems: abduction for
the former, deduction for the latter. Similarly, they
differ in how they represent and reason about nar-
ratives — stories about action occurrences, including

possibly their temporal properties. Narrative-based
approaches treat narratives in a clean and straight-
forward way; reasoning consists of logical deduction
using a knowledge base of assertions about a narra-
tive’s action occurrences and their temporal relations.
The situation-based approaches suffer in comparison,
at least judging by the existing literature; they require
more elaborate mechanisms, usually extending their
basic ontology to include the concept of an action oc-
currence, perhaps also together with an “actual path”
in the tree of histories (e.g. [10, 11]; but see [9, 12] for
different viewpoints). For a rich account of both nar-

ratives and hypothetical reasoning, which also requires
an enriched ontology, see [5].

Regardless of the approach, the existing literature pro-
vides a rather limited concept of what a narrative is;
the examples all concern linear action sequences, some-
times including incomplete information about action
occurrence times. In this paper, we propose a much
richer notion; specifically, we suggest that, in their
full generality, narratives are best viewed as nondeter-
ministic programs, and we investigate the suitability
of the situation calculus-based programming language
GOLOG for this purpose. In this setting, we define
what it means to query a narrative, and discover that
this task is formally identical to proving the correct-
ness of programs as studied in computer science. Since
this general task is hopelessly intractable, we focus
on procedure-free narrative programs and for a wide
class of such programs and queries we prove that a
regression-based approach to query evaluation is cor-
rect. Finally, we describe a Prolog implementation of
these ideas.

One consequence of the above narratives-as-GOLOG-
programs perspective will be a cleaner account of nar-
ratives for situation-based theories of action than those
of [10, 11]. Another will be a more general notion of
narrative that can perhaps be profitably incorporated
into narrative-based theories of actions as well.

2 Narratives as GOLOG Programs

The central intuition we wish to convey about narra-
tives is that, in their most general forms, they are pro-
grams. Consider the following example stories about
a blocks world, and their representations as programs:

1. Pat moved block A onto B, after which he moved
C onto the table.

move(A, B); moveToTable(C).!

Here, ; stands for the standard sequence operator
of conventional programming languages.

2. First, Pat moved a block onto the table, then she
moved A onto it.

(mz).moveToTable(z) ; move(A, x).

Here, (m) is a nondeterministic operator that
chooses an arbitrary argument of an action ex-
pression. So the above program means: nonde-
terministically choose an z, and for that z, move
it to the table, then move A onto it.

3. First, Pat moved block A onto block B or block
C -1 don’t know which — then he moved D onto
some block on the table.

[move(A, B) | move(A,C)];
(mz)[onTable(z)? ; move(D, z)].
Here we have introduced two new operators:
Ay | Ay means nondeterministically choose one

of the actions A1, A to perform, and ¢?7 means
test the truth value of the logical expression ¢.

4. Pat cleared all the blocks from the table by
putting them on the floor.

while (3z)onTable(z) do
(mx).onTable(x)?; moveToFloor(z).

5. Pat unstacked all the towers onto the table.
unstackTowers.
Here, unstackTowers is a recursive procedure:

proc unstackTowers

(Vz)onTable(z)? |

(m z)ymoveT oTable(x) ; unstackTowers
endproc

6. Pat moved B to the table at time 10, and at some
time before that, she moved a block onto A.
(mt)[t < 107; (mz)move(z, A,)] ;
moveT 0T able(B, 10).

Here we have added a time parameter to action
terms, as suggested for the situation calculus in

'To simplify the notation, we suppress the actors (here,
Pat) in our action terms.

[15]. We have cheated a bit in representing this
narrative by recognizing that the second action
mentioned in the natural language version actu-
ally preceded the first action mentioned. We take
it as a separate (and nontrivial) problem to me-
chanically translate a natural language narrative
into a program, especially getting the temporal
precedences right, and we do not address that is-
sue here.

7. Pat moved B onto A; then she observed that A is
on some block on the table; then she moved C to

B.

move(B, A); [(3z)onTable(z) A on(A, z)]7;
move(C, B).

Here we treat observational actions as test ac-
tions. Similarly, we represent narrative descrip-
tions — It was a dark and stormy night when Pat
first moved a block to the table — as test actions:

[dark A stormy]?; (mz)moveT oT able(z).

The reason for this initially odd looking decision
will become clear after we formalize a suitable pro-
gramming language for representing narratives,
and after we define the notion of querying a nar-
rative.

The purpose of these examples is to argue that nar-
ratives are more complicated things that simple se-
quences of actions; they can have all the complexity of
programs, including nondeterminism, loops and recur-
sive procedures. But what kinds of programs can serve
to represent narratives, and what can it mean to query
a narrative viewed as a program? Qur proposal will
be to take the situation calculus-based programming
language GOLOG as a suitable representation for nar-
ratives, and to appeal to GOLOG’s semantics for the
purposes of querying such narratives. We begin with

a brief description of GOLOG.

2.1 GOLOG

GOLOG [7] is a language for defining complex actions
in terms of a repertoire of primitive actions axioma-
tized in the situation calculus. Tt provides the stan-
dard — and some not so standard — control structures
found in most Algol-like languages. We have just seen
a number of examples of GOLOG programs and con-
trol structures, together with their intuitive semantics.

GOLOG’s formal semantics is specified by introducing
an abbreviation Do(d, s, s'), where 4 is a program and
s and s’ are situation terms. Do(d, s, s') is best viewed
as a macro that expands into a second order situation
calculus formula; moreover, that formula says that sit-

uation s’ can be reached from situation s by erecuting
some sequence of actions specified by . Note that our
programs may be nondeterministic, that is, may have
multiple executions terminating in different situations.

Do 1s defined inductively on the structure of its first
argument as follows:

1. Primitwe actions: If a is a primitive action term,
Do(a, s, s") e Poss(a,s) As' = do(a,s).

2. Test actions: When ¢ is a situation-suppressed
logical expression,

Do(¢7,s,s") el ols]As =5

Here, ¢[s] denotes the result of restoring the situa-
tion argument s to all of the situation-suppressed
fluents mentioned by ¢.

3. Sequence:
Do(d1;02,s,s') ef
(3s*).Do(d1, s, s*) A Do(d2,s*,s").

4. Nondeterministic choice of two actions:

Do(81 | d2,,5") e Do(81,s,8") V Do(ds,s,s).

5. Nondetermunistic choice of action arguments:

Do((mz)d,s,s") e (3z) Do(d, s, s").

6. Procedure calls: For a predicate variable P whose
last two arguments are the only ones of sort situ-
ation:

1 def ’
Do(P(t1,...,tn),s,s") = P(t1,...,tn,s,s).
7. Blocks with local procedure declarations:
Do({proc P; (#1) 61 endProc ; --- ;
proc P, (¥,) 6, endProc ; dp},s,s)
def

n

,Pa)-[\ (51, 5,). Do(6;, 51, 55) D

i=1

(VPy,...
Pi(v;, 51, 59)]
D Do(dg, s, s").

Other control structures, e.g. conditionals and while
loops, can be defined in terms of the above constructs:

if test then prog; else prog def

test? ; progy | —test? ; progs

To define while loops, first introduce a nondetermin-
istic iteration operator *, where program®* means do
program 0 or more times:

program”™ e

proc P() true? | [program; P()] endProc; P()

Then while loops can be defined in terms of the *
operator:

while test do program endWhile e

[test? ; program]* ; —test?

GOLOG programs are evaluated relative to a back-
ground theory of actions specifying a particular appli-
cation domain. Specifically, if D is such a background
action theory, and § is a GOLOG program, then the
evaluation of § relative to D is defined to be the task
of establishing the following entailment:

D = (3s)Do(d, So, s).

Any binding for the existentially quantified variable s
obtained as a side effect of such a proof constitutes an
execution trace of 4.

Example 2.1 Let v be the narrative of example 3:

v = [move(A, B) | move(A4, C)];
(mz)[onTable(z)?; (move(D, z)]

Then,

Do(v, So, s) =
(3s').[Poss(move(A, B), So) A

s’ = do(move(A, B), Sg) V

Poss(move(A, C), Sp) A

s’ = do(move(A,C), So)] A

(Fz, s").onTable(z,s') ANs' =s" A
Poss(move(D, z),s") A
s = do(move(D, z),s").

This is logically equivalent to the following formula,
which is an example of a normal form to which
Do(v, Sy, s) can often be cast. Such normal forms will
play an important role below, when we consider how
to implement a system for querying narratives.

Do(v, Sy, s) =

(3z).Poss(move(A, B), Sp) A
onTable(z, do(move(A, B), Sp)) A
Poss(move(D, z), do(move(A, B), Sp)) A
s = do(move(D, z), do(move(A, B), Sy))

V

(Fz).Poss(move(A, C), Sa) A
onTable(x, do(move(A, C), Sp)) A
Poss(move(D,), do(move(A, C), Sp)) A
s = do(move(D, z),do(move(A, C), Sp)).

2.2 Reasoning about Narratives

A narrative is a description of action occurrences in
some world. We take it that the central reasoning task
for a narrative is to determine what the resulting world
would be like. This task has three major components.

1. We need to infer the effects on the world of the ac-
tion occurrences. This includes the actions’ non-
effects, so the frame problem must be taken into
account. We therefore need a background, do-
main specific theory that characterizes action ef-
fects, and that solves the frame problem.

2. Observational actions and descriptions, as in Ex-
ample 7 above, provide additional information
about the world, and this must be taken into ac-
count in answering queries about a narrative.

3. Narratives convey implicit information about how
the world must have been, by virtue of an ac-
tion occurrence. For example, if a narrative
claims that move(A, B) was performed, then at
the point that this action was performed, the ac-
tion move(A, B) must have been possible. So
we can infer that, however else the world might
have been, at the point of this action occurrence,
both A and B must have been clear. Such infor-
mation needs to be extracted from the narrative
and made explicit for the purposes of answering
queries about the narrative. Therefore, as part of
the background theory, we require axioms speci-
fying the action preconditions.

Finally, it is important to note that a convention about
narratives is that one cannot assume more about the
way the world is than is conveyed by the narrative and
its immediate context. So, for example, when faced
with example 1 above, one cannot, without further
contextual justification, assume that A, B and C are
all and only the available blocks. Neither can one as-
sume particular initial locations for these blocks, for
example, that A is initially on the table. In other
words, narratives describe open worlds; one cannot as-
sume complete information about the initial situation.
Among other things, this observation precludes simple
STRIPS-like action representations for describing and
reasoning about narratives.

Definition 2.1 Query. A query is any situation cal-
culus formula Q(s) whose only free variable is the sit-
uation variable s.

Definition 2.2 Querying a Narrative

Let Q(s) be a query, D a set of situation calculus ax-
ioms specifying an underlying domain of application,
and v a narrative viewed as a GOLOG program. Then
the answer to @ for the narrative v relative to D is
((yes” iﬁ‘

D [(Vs).Do(v, So, s) D Q(s).

The answer to @ is “no” iff the answer to =) is “yes”.

Notice especially that in this form, querying a nar-
rative 1s formally identical to the problem of prov-
ing properties of programs, as normally understood in
computer science. We are simply asking whether all
terminating situations s of the program v have prop-
erty (). This is not good news for automating query
evaluation for narratives; proving properties of pro-
grams is notoriously difficult, requiring mathematical
induction for programs with loops and recursion, and
it is unlikely that a general computational account can
be given for this problem. For this reason, we shall
limit ourselves in what follows to procedure-free pro-
grams, for the purposes of providing an implementa-
tion for this class of narratives.

3 Implementation Foundations

Here we provide the theoretical foundations for imple-
menting and querying narratives when the underlying
axioms form a basic action theory, and the GOLOG
narrative program is procedure-free.

3.1 Basic Action Theories

Our concern in this paper will be with axioms for ac-
tions and their effects with a particular syntactic form

([13]).

Definition 3.1 Basic Action Theories
A basic action theory has the form

D =XUD,;s UDgp UDynq UDs,, where:

e ¥ are the foundational arioms for situations [13].
These play no role in this paper and we omit them.

e D, is a set of action precondition axioms, one for
each action function A(Z), of the form

Poss(A(Z,s) = Ta(Z, s). (1)

Here, TT4(Z, s) is a formula whose free variables
are among %, s, it does not quantify over situa-
tions, nor does it mention the predicate symbol
Poss, and the only term of sort situation that it
mentions is s.

e D, is a set of successor state arioms, one for each
fluent F(Z,s). These have the syntactic form

F(Z,do(a,s)) = ®r(Z,a,s), (2)

where ®p(Z, a,s) is a formula, all of whose free
variables are among a, s, ¥, it does not quantify
over situations, nor does it mention the predicate
symbol Poss, and the only term of sort situation

that it mentions is s. Such axioms embody a so-
lution to the frame problem for deterministic ac-
tions [14].2

® Dyna 1s the set of unique names arioms for all
action function symbols.

e Ds,, the wnitial database, is a set of first order
sentences such that no sentence of Dg, quantifies
over situations, or mentions Poss, and Sy is the
only term of sort situation mentioned by these
sentences. Dg, will function as the initial theory
of the world.

Example 3.1 The following are the successor state
and action precondition axioms for a blocks world ba-
sic action theory used in the implementation described
below.
Action Precondition Axioms

Poss(move(z,y),s) = clear(z, s) A clear(y, s) A

T Fy,
Poss(moveToTable(x),s) = clear(z, s) A
—onTable(z, s).

Successor State Axioms

clear(z,do(a, s)) =

(Fy){[(Fz)a = move(y, z) V
a = moveToTable(y)] Aon(y,z,s)} V
clear(x, s) A =(Jy)a = move(y,),

on(z,y,do(a,s)) = a = move(z,y) V
on(z,y,s) A a # moveToTable(z) A
—(3z)a = move(z, z),
onTable(z,do(a, s)) = a = moveToTable(z) V
onTable(x,s) A —~(Jy)a = move(x, y).
Unique Names Axioms for Actions
move(z,y) # moveToTable(z),
move(z,y) = move(z',y') De=2" ANy =y,

moveToTable(z) = moveToTable(z') Dz = 2'.

3.2 Regression for Basic Action Theories

Regression [13] is perhaps the single most important
theorem-proving mechanism for the situation calculus;
it provides a systematic way to establish that a basic
action theory entails a so-called regressable sentence.

Definition 3.2 Concrete Situation Terms. These
are inductively defined by: Sp is a concrete situation
term; when o is a concrete situation term and « is an
action term, then do(a, o) is a concrete situation term.

2 . . .

One can also give successor state axioms for functional
fluents; because of space limitations, we do not discuss
these here.

Definition 3.3 The Regressable Formulas. A re-
gressable formula of the situation calculus is a first
order formula W with the property that every situa-
tion term mentioned by W is concrete, and moreover,
for every atom of the form Poss(a, o) mentioned by
W, a has the form A(ty,...,t,) for some n-ary action
function symbol A and terms ¢1,...,#,.

The essence of a regressable formula is that each of its
situation terms is rooted at Sy, and therefore, one can
tell, by inspection of such a term, exactly how many
actions 1t involves. It is not necessary to be able to
tell what those actions are, just how many they are.
In addition, when a regressable formula mentions a
Poss atom, we can tell, by inspection of that atom,
exactly what is the action function symbol occurring
in its first argument position, for example, that 1t is a
move action.

The intuition underlying regression is this: Suppose
we want to prove that a regressable sentence W is en-
tailed by a basic action theory. Suppose further that
W mentions a relational fluent atom F(f: do(a, o)),
where F’s successor state axiom is (2). By substi-
tuting ®p (t_: a, o) for F({, do(a,0)) in W we obtain a
logically equivalent sentence W’'. After we do so, the
fluent atom F({, do(a, o)), involving the complex sit-
uation term do(a, o), has been eliminated from W in
favour of ®p (#, o, o), and this involves the simpler sit-
uation term o. In this sense, W' is “closer” to the ini-
tial situation Sy than was W. Similarly, if W mentions
an atom of the form Poss(A(ty,...,t,),o),® there will
be an action precondition axiom for A of the form
(1) so we can eliminate this atom by replacing it with
Ia(t1,---,tn,0). This process of replacing Poss and
fluent atoms by the right hand sides of their action pre-
condition and successor state axioms can be repeated
until the resulting goal formula mentions only the situ-
ation term Sp. Regression is a mechanism that repeat-
edly performs the above reduction to a goal W, ulti-
mately obtaining a logically equivalent goal W, whose
only situation term is Sg. See [13] for precise defini-
tions, and for a proof of the soundness and complete-
ness of regression for basic action theories.

3.3 Procedure-Free Narratives

Definition 3.4 Choice Prenex Form
A GOLOG program is in choice prenex form iff it has
the form
(mE)Py |-+ | (7 &) P,
where each P; is of the form a;, 5 -+ ; a4, k > 1, each

“Because W is assumed to be regressable, all Poss
atoms mentioned by W must be of this form.

a is a primitive action or a test action, and association
of the sequence operators in P; is to the right.

Definition 3.5 Equivalence of Programs
Two GOLOG programs P; and P, are equivalent iff
the following sentence 1is valid:

(Vs,s").Do(P1,s,s') = Do(Ps,s,s').

Definition 3.6 Procedure-Free Programs

These are GOLOG programs defined without the pro-
cedure mechanism, i.e. using only primitive actions,
tests (7), sequence (;) and nondeterministic choice (7

and |).

Lemma 3.1 There is an effective procedure for trans-
forming a procedure-free GOLOG program into an
equivalent program in choice prenex form.

Proof: By repeatedly applying the following equiva-
lence preserving transformations, until no further re-
ductions are possible:*

Pl; (P2|P3)—)P1, P2|P1,]33J

(Pllpg), P3—>P1; P3|P2;P3,

(Pl, PQ), P3—)P1, (PQ, Pg),

(m2)[P1 | Po] = (ma)Py | (ma)Ps,

[(re)Pi]; Py — (x &) [P, 5 P).

P [(ma)Po] = (ma!)[Pr 5 Palg].
Here, z’ is a new variable, distinct from any variable
mentioned in Py or Py. P|%, denotes the result of sub-
stituting 2’ for all free occurrences of z in P.
|]

For programs d that are specifically in choice prenex
form, define a ternary relation DoCpf(d,s,s’) as fol-
lows:

1. Primitive actions: If a is a primitive action term,
d
DoCpf(a,s,s') e Poss(a, s) As' = do(a, s).

DoCpf(a; d,s,s") def Poss(a,s) A
DoCpf(8,do(e, s),s').

2. Test actions: When ¢ 1s a situation-suppressed
logical expression,

DoCpf(6?,s,s") e o[s]As = s.

DoCpf(67; 8,5,5') E 8[s] A DoCpf(4,s,5).

3. Nondetermunistic choice of two actions:

DoCpf(d1 | b2, 5,5") <

Docpf(al S, SI) \ DOCpf(52, S, SI).
4Strictly speaking, we should prove that these are equiv-

alence preserving transformations. The proofs are straight-
forward, and we omit the details.

4. Nondeterministic choice of action arguments:

DoCpf((mz)d,s,s") et (3z) DoCpf(d,s,s').

Lemma 3.2 Let v be a procedure-free GOLOG pro-
gram that does not mention a choice operator (mwa)
where a is a variable of sort action.® Let k be a choice
prenex form for v. Then

1. (Vs).Do(v, Sy, s) = DoCpf(k,So, s) is valid.
2. DoCpf(k,So,s) has the syntactic form:
(FZ)[CiAs=01]V---V(IZ,)[Ch As = oy, (3)

where each o; is a concrete situation term and
each C; is a regressable formula.

Proof: By Lemma 3.1, v is equivalent to &, and there-

fore, (¥s).Do(v, So, s) = Do(k, Sp, s) is valid.
Suppose
k= (mZ)Py |- | (7Zy,) P

Then by the expansion rules for GOLOG programs of
Section 2.1,

Do(x, Sq, s) =
(3 fl)DO(Pl,So, S) V.V (E' ;‘Em)DO(Pm,So, S).

Similarly, by the rules for expanding DoC'pf,

DoCpf(k,So,s) = (3&1)DoCpf(Pr,S0,8) V-V
(FZm)DoCpf(Pm, So, s).

Accordingly, it is sufficient to prove the following:

Suppose that a program P has the form aq ; -+ ; ag,
where each « 1s a primitive action term or a test ac-
tion, where the sequence operator associates to the
right, and where P mentions free variables ¥, none
of which is of sort action. Suppose further that S is
a concrete situation term, possibly with free variables
among . Then (VZ,s).Do(P,S,s) = DoCpf(P,S,s)
is valid. Moreover, DoCpf(P, S, s) is a formula of the
form C'A's = o, where o is a concrete situation term,
and C'is a regressable formula.

We prove this by induction on k.

Base case: P is just a, where « is a test action ¢7 or
a is a primitive action term. In the first case,

Do(a, S,s) = ¢[S]As=S
= DoCpf(a,S,s).
Now S is a concrete situation term. Moreover, be-

cause no free variable of P is an action variable, if

SOf course, the program may mention a choice opera-
tor (mz) where z ranges over domain objects other than
actions and situations, as in the examples of Section 2.

#[S] mentions an atom of the form Poss(3, S), then g
cannot be an action variable, and therefore must be of
the form A(ty,...,t,) for some n-ary action function
symbol A and terms #1,...,%,. Therefore, ¢[S] is re-
gressable, and we have established the base case when
a is a test action.

Next, we establish the base case when « is a primitive
action. As before, because no free variable of P is an
action variable, @ must be of the form A(tq,...,1,)
for some n-ary action function symbol A and terms
t1,...,1n. Moreover,

Do(a, S,s) = Poss(a,S) A s = do(a, S)
= DoCpf(a, S, s).

Since « is of the form A(t1,...,%,), and since S is
concrete, Poss(a, S) is regressable and do(a, S) is con-
crete. This establishes the remaining base case.

Induction step: Assume the result for ay ; -+ ; oy,
k > 1, and suppose that a is a primitive action term.

Then

Do(a; a1 -+ 5 ag, S, s) =
(3s*)[Poss(a, S) A s* = do(a, S) A
Do(ay ; -+ ag,s*,s)] =

Poss(a,S) A Do(ay ; -+ 5 ag,do(a, S), s).

Now do(a, S) is concrete. Moreover, by the same ar-
gument as in the base case, Poss(a, S) is regressable.
Finally, by induction hypothesis,

Do(ay ; -+ ; ag,do(a, S),s) =
DoCpf(ar ; -+ ; ak,do(a,S),s),

and DoCpf(ay ; -+ ; ap,d(e,S),s) is a formula of
the form C' A s = o, where C' is regressible and o is
concrete. The result now follows.

The case where o 1s a test action is similar.

| |

Example 3.2 With reference to Example 2.1, the last
formula displayed is the one promised by the lemma.

Theorem 3.1 Suppose that D is a basic action the-
ory and that the program v satisfies the conditions of
Lemma 3.2. Suppose further that Q(s) is a query with
the property that Q(o) is regressable whenever o is a
concrete situation term. Without loss of generality,
assume that the bound variables (if any) of Q(s) are
distinct from all of the variables Z; of (3). Then, with
reference to Lemma 3.2,

D E (Vs).Do(v,S0,s) DQ(s) iff fori=1,...,n
Ds, UDyng ': (VfZ)R[CZ] D R[Q(U'Z)]

Moreover, Q(o;) is a regressable formula. Here, R is
the regression operator.

Proof: Let k be a choice prenex form for v. Then
D [(Vs).Do(v, So, s) D Q(s)

iff, by Lemma 3.2,
D [(Vs).DoCpf(k, So,s) D Q(s)

iff, again by Lemma 3.2,

D
(Vs).(3Z1)[C1 As = o1]V -+ -V (TER)[Cr As = o]
D Q(s)

iff, fore=1,... n,
D | (Vs).(3E:)[Ci A s = 03] D Q(s)
iff, because the bound variables of) are different then

those of #;, and by properties of equality in first order
logic,

D = (VZ;).Ci D Q(o).
By hypothesis, Q(o;) is regressable because o; is con-

crete, and Cj is regressable by Lemma 3.2. Therefore,
by the Regression Theorem of Pirri and Reiter [13],

D = (V&).C; D Q(oy)
iff

Ds, UDyna ': (VfZ)R[CZ] D R[Q((TZ)]
| |

This is our central computational result. Under suit-
able conditions on the program and query, narrative
query evaluation can be done using regression; more-
over, after performing the regression steps, all theo-
rem proving is relative only to the initial database and
unique names arioms for actions. The foundational
axioms for the situation calculus, and the action pre-
condition and successor state axioms are not required
(although, of course, these last two are used in the
regression steps).

4 An Implementation

We have implemented (in Eclipse Prolog) a narrative
compiler and query evaluator based on Theorem 3.1
for procedure-free GOLOG programs, and we briefly
describe it here."

Given basic action theory D, query @ and narra-
tive v, our task is to establish the entailment D |=
(Vs).Do(v, So,s) O @Q(s). By Theorem 3.1, this
is equivalent to establishing, for i = 1,...,n, that
Dsy UDuna E (V#;).R[C;] D R[Q(0:)]. Skolemize
the leading universal quantifiers to obtain the follow-
ing equivalent theorem proving task:

8The full program, together with supporting code for
narratives about the blocks world based on the axioms of
Example 3.1, i1s available on request from the author.

Ds, UDuna = R[C:* D R[Q(oF)] for i =1,...,n.

Here, C#* and o are the results of substituting dis-
tinct, fresh Skolem constants for the free occurrences
of #; in C; and ¢;, respectively.” Finally, this theorem
proving task is equivalent to establishing that

Ds, UDuna U{R[C:F} = RIQ(oiF)] for i =1,...,n.
(4)

The implementation has three components: a narra-
tive compiler, a query processor, and a theorem prover.

4.1 The Narrative Compiler

This accepts a narrative program v as described in
Lemma 3.2, and performs the following steps:

1. Convert v to its choice prenex form « by apply-
ing the transformations specified in the proof of
Lemma 3.1. Then determine DoCpf(k, So, s) to
obtain the sentence (3).

2. Replace the variables #; mentioned by C; and o;
in (3) by Skolem constants, yielding C3* and o3*
as in (4).

3. Regress Cf*| then convert this to clausal form.

4. Transform the sentences of Dgs, to clausal form.
(The unique names axioms are not converted to
clausal form; instead, these are represented by
suitable simplification rules used by the regression
routine and the theorem-prover described below.)
Typically, Dg, will include all of the domain’s
state constraints, relativized to Sy. For the blocks
world, these consist of:

(Va, y).on(z,y, So)
(Va,y, z).on(z,y, So) Aon(z,z,50) Dy =z,

) _'OH(ya L, SO);

(Va,y, z).on(x, z,S0) ANon(y, z,S50) Dx=y.

The end result of these four steps is n distinct
databases of clauses.

4.2 The Query Processor

For : = 1,...,n the query processor takes the query
Q(s), substitutes o* for s as in (4), regresses =Q ("),
converts this to clausal form, and adds the resulting
clauses to the i-th database created by the narrative
compiler. To establish the entailment (4), each of the

"Since s is the only free variable mentioned by a query
Q(s), and since the bound variables of Q(s) are assumed
distinct from the #; (see statement of Theorem 3.1), the
only way that Q(o;) can mention one or more of the vari-
ables #; is if o; mentions these variables.

n resulting sets of clauses must be shown to be un-
satisfiable, and this computation is performed by the
theorem-prover.

4.3 The Theorem-Prover

This is a relatively unsophisticated, incomplete unit
resolution-based system, using subsumption for clause
elimination. It also incorporates a limited form of
equality reasoning.® The theorem-prover works in two
passes:

1. Tt first tries a pure unit resolution refutation. In
doing so, it takes equality into account as fol-
lows: Whenever it derives a ground unit clause
of the form #; = t5, it uniformly substitutes ¢,
for t1 throughout the current set of clauses, and
also performs routine simplifications like replac-
ing atoms of the form ¢ = ¢ by true and -t = ¢
by false. Should it find a refutation this way, it
exits with success.

2. Otherwise, the theorem-prover tries a little bit
harder by performing a case analysis. It does this
by repeatedly selecting and splitting a non-unit
clause with at most one non-ground literal, and
attempting a unit resolution refutation as in 1 for
each of the cases. If this case analysis succeeds for
some splittable clause, it exits with success; else
it gives up.

4.4 An Example Program Execution

The following is the output obtained for compiling
the ongoing narrative of Example 2.1, and issuing the

query
Q(s) = (3z).onTable(z, s) A (Jy).on(A,y,s) Nz #y.

Example: Compiling and Querying a Narrative.’

[eclipse 2]: compile((move(a,b) # move(a,c)) :
pi(x,?(onTable(x)) : move(d,x))).

Time (sec): 0.06

yes.
[eclipse 3]: prove(some(x,onTable(x) &
some (y,on(a,y) & -(x = y)))).

8We did not incorporate time into the implementation,
as would be needed for examples like 6 of Section 2. This
would require special purpose temporal reasoning mech-
anisms in the theorem-prover, and our primary objective
here was only to demonstrate the basic feasibility of our
approach.

?CPU times here are for a SUN Enterprise (Ultra) 450,
with four 400MHY processors and 4GB of RAM.

Case: do(move(d, sk(13)), do(move(a, c), s0))

Unit resolution fails. Trying harder...

Splitting on [sk(13) = d, sk(13) = c]
Succeeds.

Case: do(move(d, sk(12)), do(move(a, b), s0))

Unit resolution fails. Trying harder...

Splitting on [sk(12) = d, sk(12) = b]
Succeeds.

x Proof succeeds **x*

Time (sec): 0.17

yes.

5 Discussion

We have so far avoided discussing concurrency, as
would be required, for example, by even a simple nar-
rative like: Pat moved blocks A and B to the table.
One way to represent this as a program is with inter-
leaving:

moveToTable(A); moveToTable(B) |
moveToTable(B) ; moveToTable(A).

But this treatment of the moveToTable action is too
course grained; it precludes the possibility of the two
actions overlapping. A finer grained representation
can be obtained by introducing process fluents (mov-
ing a block to the table) and two instantaneous ac-
tions, one to initiate the process, one to terminate
it (See the discussion in [16]). With this representa-
tional device in hand, we can write a GOLOG program
that describes all the possible interleavings of the two
move actions (no overlap with A preceding/following
B; partial overlap with A starting first, then B starting,
then A ending, then B ending; total inclusion, with B
starting, then A starting, then A ending, then B end-
ing; etc).
for this simple example; they quickly get out of hand
for more interesting examples like McCarthy’s Junior-
goes-to-Moscow [9]. They become impossible when
the temporal ordering between programs is underspec-
ified by a narrative; then we need an account for the
concurrent execution of arbitrary GOLOG programs.
This is exactly what the programming language CON-
GOTLOG provides [4], so to accommodate concurrency,
we can generalize our narratives-as-programs view-

The combinatorics are bad enough, even

point by representing narratives as CONGOLOG pro-
grams. To define the result of querying a narrative, we
appeal to CONGOLOG’s Trans* predicate in Defini-
tion 2.2 instead of GOLOG’s Do relation. Querying
a narrative now becomes formally identical to proving
properties of concurrent programs. These are all issues
that have yet to be explored.

Our theoretical and implementation results are for
It would not be difficult
to incorporate non-recursive procedures into our ac-

procedure-free programs.

count, by simply “unfolding” procedure calls. But of
course, this would make sense only when this unfold-
ing is guaranteed to terminate, namely, when there are
no recursive calls. Since the definition of while loops
of Section 2.1 requires recursion, our approach cannot
deal with loops either. Providing computational foun-
dations for loops and recursive procedures requires rea-
soning about program postconditions, and it appears
that regression is not a suitable mechanism for this.

The cardinal sin of omission of this paper is to have
glossed over how one translates a natural language nar-
rative into a program. This raises a variety of issues
in nonmonotonic reasoning concerned with minimizing
action occurrences (e.g. [18]), but exactly how these
techniques might be adapted to the automatic gener-
ation of programs is a completely open problem. Inci-
dentally, this is not a consequence of our commitment
to the situation calculus; any action logic adopting our
view that narratives are programs must confront this
problem.

References

[1] J.F. Allen. Towards a general theory of action and
time. Artificial Intelligence, 23(2):123-154, 1984.

[2] C. Baral, A. Gabaldon, and A. Provetti. Formaliz-
ing narratives using nested circumscription. Artificial
Intelligence, 104:107-164, 1998.

[3] M. Gelfond and V. Lifs-
chitz. Action languages. Linkoping Electronic Arti-
cles in Computer and Information Sciences, 3, 1998.
www.ep.liu.se/ea/cis/1998/016/.

[4] G. De Giacomo, Y. Lespérance, and H.J. Levesque.
Reasoning about concurrent execution, prioritized in-
terrupts, and exogenous actions in the situation calcu-
lus. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 1221-
1226, Nagoya, Japan, 1997.

[5] L. Karlsson. Anything can happen: On narratives and
hypothetical reasoning. In A.G. Cohn and L.K. Schu-
bert, editors, Principles of Knowledge Representation
and Reasoning: Proceedings of the Sizth International
Conference (KR’98), pages 36-47. Morgan Kaufmann
Publishers, San Francisco, CA, 1998.

[6]
[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R.A. Kowalski and M.J. Sergot. A logic-based calculus
of events. New Generation Computing, 4:267, 1986.

H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. Scherl. GOLOG: a logic programming language for
dynamic domains. J. of Logic Programming, Special
Issue on Actions, 31(1-3):59-83, 1997.

J. McCarthy. Situations, actions and causal
laws. Technical report, Stanford University, 1963.
Reprinted in Semantic Information Processing (M.
Minsky ed.), MIT Press, Cambridge, Mass., 1968, pp.
410-417.

J. McCarthy and T. Costello. Combining narratives.
In A.G. Cohn and L..K. Schubert, editors, Principles
of Knowledge Representation and Reasoning: Proceed-
ings of the Sizth International Conference (KR’98),
pages 48-59. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1998.

R. Miller and M. Shanahan. Narratives in the situa-
tion calculus. The Journal of Logic and Computation
(Special Issue on Actions and Processes), 4:513-530,
1994.

J.A. Pinto and R. Reiter. Reasoning about time in the
situation calculus. Annals of Mathematics and Artifi-
cial Intelligence, 14(2-4):251-268, September 1995.

Javier Pinto. Occurrences and narratives as con-
straints in the branching structure of the situation
calculus. Journal of Logic and Computation, 8(6):777—
808, 1998.

F. Pirri and R. Reiter. Some contributions to the
metatheory of the situation calculus. Journal of the

ACM, 46(3):261-325, 1999.

R. Reiter. The frame problem in the situation calcu-
lus: a simple solution (sometimes) and a completeness
result for goal regression. In Vladimir Lifschitz, edi-
tor, Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy,
pages 359-380. Academic Press, San Diego, CA, 1991.

R. Reiter. Natural actions, concurrency and contin-
uous time in the situation calculus. In L.C. Aiello,
J. Doyle, and S.C. Shapiro, editors, Principles of
Knowledge Representation and Reasoning: Proceed-
ings of the Fifth International Conference (KR’96),
pages 2-13. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1996.

R. Reiter. Sequential, temporal GOLOG. In A.G.
Cohn and L.K. Schubert, editors, Principles of Knowl-
edge Representation and Reasoning: Proceedings of
the Sizth International Conference (KR’98), pages
547-556. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1998.

E. Sandewall. Features and Fluents: The Representa-
tion of Knowledge about Dynamical Systems. Oxford
University Press, 1994.

M.P. Shanahan. Solving the Frame Problem: A Math-
ematical Investigation of the Common Sense Law of

Inertia. MIT Press, 1997.

