
The Wumpus World in INDIGOLOG:
A Preliminary Report

Sebastian Sardina and Stavros Vassos
University of Toronto, Toronto, ON, M5S 3G4, Canada.

{ssardina,stavros}@cs.toronto.edu

Abstract

This paper describes an implementation of the the
Wumpus World [Russell and Norving, 2003] in
INDIGOLOG with the objective of showing the ap-
plicability of this interleaved agent programming
language for modeling agent behavior in realistic
domains. We briefly go over the INDIGOLOG ar-
chitecture, explain how we can reason about the
Wumpus World domain, and show how to express
agent behavior using high-level agent programs.
Finally, we discuss initial empirical results ob-
tained as well as challenging issues to be resolved.

1 Introduction
There has been extensive work on logical formalisms for dy-
namic domains. Action theories in the literature address a
variety of issues ranging from the specification of actions’ ef-
fects and non-effects (i.e., the so-called frame problem [Mc-
Carthy and Hayes, 1969]) and the qualification problem, to
more sophisticated topics such us the ramification problem,
knowledge and sensing, incomplete information, concurrent
action, continuous time and nondeterministic effects, to name
a few. Recently, much research into reasoning about actions
has been devoted to the design and implementation of agent
languages and systems for Cognitive Robotics which are of-
ten built on top of existing rich formalisms of action and
change. An agent is assumed to be equipped with a formal
theory of the world and a high-level program describing its
behavior up to some degree. This is indeed the view taken
in INDIGOLOG, the last version of the University of Toronto
GOLOG-like family of agent programming languages. IN-
DIGOLOG provides a formal account of perception, deliber-
ation, and execution within the language of the situation cal-
culus. INDIGOLOG is implemented in PROLOG and has been
used in real robotics platforms such as the LEGO MIND-
STORM and the ER1 EVOLUTION robots.

In this paper, we show how to use INDIGOLOG to model
the behavior of an agent living in the Wumpus World (see
[Russell and Norving, 2003, Chapter 7]), a convincing and
challenging abstraction of an incompletely known dynamic
environment for logically reasoning agents. To that end, we
explain how to practically reason in the Wumpus World by

using a special kind of situation calculus-based action the-
ories which soundly approximate incomplete knowledge by
representing the dynamics of the possible values for the flu-
ents. In addition, we explain how the behavior of an intel-
ligent agent can be modeled with a high-level agent program
that is intended to be executed incrementally. We provide em-
pirical results which show the feasibility of our approach for
this interesting scenario.

2 INDIGOLOG: An Interleaved Agent
Architecture

The agent programming language to be used for modeling
an agent that acts and reasons in the Wumpus World is IN-
DIGOLOG, the most recent situation calculus based agent
language in the GOLOG family. The situation calculus is a
second-order language specifically designed for representing
dynamically changing worlds [McCarthy and Hayes, 1969;
Reiter, 2001]. All changes to the world are the result of
named actions such as moveForward and pickup(x). A
possible world history, which is simply a sequence of actions,
is represented by a first-order term called a situation. The
constant S0 is used to denote the initial situation and a dis-
tinguished binary function symbol do(a, s) is used to denote
the successor situation to s resulting from performing action
a. The features of the world are represented with (functional)
fluents, functions denoted with a situation term as their last
argument and whose values vary from situation to situation.
There is also a special predicate Poss(a, s) used to state that
action a is executable in situation s. In the presence of sens-
ing actions, a special function SR(a, s) is used to state the
sensing result obtained from executing action a in situation
s. Non-sensing actions are assumed to always return 1 as
their sensing outcomes. Also, to talk about both the actions
and their sensing results we use the notion of a history, a se-
quence of pairs (a, µ) where a is a primitive action and µ is
the corresponding sensing outcome.

Within this language, one can specify action theories that
describe how the world changes as the result of the available
actions in a principled and modular way (e.g., basic action
theories [Reiter, 2001]). Using the theory, the agent can query
the state of the world at each possible world history by solv-
ing the so-called projection task: given a sequence of actions
together with their corresponding sensing outcomes, and a

formula φ(s) about the world, determine whether φ(s) is true
in the situation resulting from performing these actions.

On top of these action theories, logic-based programming
languages can be defined, which, in addition to the primitive
actions of the situation calculus, allow the definition of com-
plex actions. GOLOG [Levesque et al., 1997], the first situa-
tion calculus agent language, offers all the control structures
known from conventional programming languages (e.g., se-
quence, iteration, conditional, etc.) plus some nondetermin-
istic constructs. It is due to these last control structures that
programs do not stand for complete solutions, but only for
sketches of them whose gaps have to be filled later, usually
at execution time. CONGOLOG [De Giacomo et al., 2000]
extends GOLOG to accommodate concurrency and interrupts
in order to accommodate the specification of reactive agent
behavior. A summary of the constructs available follows:

α, primitive action
φ?, wait or test for a condition
δ1; δ2, sequence
δ1 | δ2, nondeterministic branch
π x. δ(x), nondeterministic choice of argument
δ∗, nondeterministic iteration
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
δ1 ‖ δ2, concurrency with equal priority
δ1 〉〉 δ2, concurrency with δ1 at a higher priority
δ||, concurrent iteration
〈 �x : φ(�x) −→ δ(�x) 〉, interrupt
p(�θ). procedure call

Note the presence of nondeterministic constructs, such as
(δ1 | δ2), which nondeterministically chooses between pro-
grams δ1 and δ2, π x. δ(x), which nondeterministically picks
a binding for the variable x and performs the program δ(x)
for this binding of x, and δ∗, which performs δ zero or more
times. To deal with concurrency two constructs are provided:
(δ1 ‖ δ2) expresses the concurrent execution (interpreted as
interleaving) of programs δ1 and δ2; (δ1 〉〉 δ2) expresses the
concurrent execution of δ1 and δ2 with δ1 having higher pri-
ority. Finally, for an interrupt 〈 �x : φ(�x) → δ(�x) 〉, program
δ(�t) is executed whenever condition φ(�t) holds (see [De Gia-
como et al., 2000] for further details.)

Finding a legal execution of high-level programs is at the
core of the whole approach. Originally, GOLOG and CON-
GOLOG programs were intended to be executed offline, that
is, a complete solution was obtained before committing even
to the first action. In contrast, INDIGOLOG, the next ex-
tension in the GOLOG-like family of languages, provides
a formal logic-based account of interleaved planning, sens-
ing, and action [Kowalski, 1995] by executing programs on-
line. Roughly speaking, an incremental or online execution
of a program finds a next possible action, executes it in the
real world, obtains sensing information afterwards, and re-
peats the cycle until the program is finished. The semantics
of INDIGOLOG is specified in terms of single-steps, using
two predicates Trans and Final [De Giacomo et al., 2000]:
Final(δ, s) holds if program δ may legally terminate in situ-
ation s; Trans(δ, s, δ′, s′) holds if one step of program δ in
situation s leads to situation s′ with δ′ remaining to be exe-
cuted. It is important to point out also that the execution of a
program strongly relies on the projection task. For example,

to execute a test for condition φ? one needs the project φ at
the current history w.r.t. the underlying theory of action.

The fact that actions are quickly executed without much
deliberation and sensing information is gathered after each
step makes the approach realistic for dynamic and changing
environments. However, an online execution is determinis-
tic in the sense that there is no provision for backtracking
once an action has been selected. Yet there may be two ac-
tions A1 and A2 for which Trans holds and yet only A2

may lead ultimately to a legal successful termination. To deal
with this form of non-determinism, INDIGOLOG contains a
search operator Σ to allow the programmer to specify when
lookahead should be performed: executing Σ(δ) means exe-
cuting δ in such a way that at each step there is a sequence of
further steps leading to a legal termination. Unlike a purely
offline execution, however, operator Σ allows us to control
the amount of lookahead to use at each step.

2.1 An Incremental Interpreter
A logic-programming implementation of INDIGOLOG has
been developed to allow the incremental execution of high-
level GOLOG-like programs [Sardina, 2004]. This system
is fully programmed in PROLOG and has been used to con-
trol the LEGO MINDSTORM robot, the ER1 EVOLUTION
robot and other soft-bot agents. The implementation pro-
vides an incremental interpreter of programs as well as all the
framework to deal with the real execution of these programs
in real platforms (e.g., real execution of actions, sensing out-
come readings, exogenous actions, etc.)

The architecture, when applied to the Wumpus World sce-
nario, can be divided into the following four parts: (i) the
device manager software interfacing with the real world; (ii)
the evaluation of test conditions; (iii) the implementation of
Trans and Final; (iv) and the main loop. The device man-
ager for the Wumpus World is the code responsible for simu-
lating a real-world Wumpus World environment. It provides
an interface for the execution of actions (e.g., moveFwd,
smell, etc.), the retrieval of sensing outcomes, and the oc-
currence of exogenous events (e.g., scream). In our case,
the world configuration will be also displayed using a Java
applet. We shall now briefly go over the other three parts.

The evaluation of formulas
In order to reason about the world, we need to be able to
specify the domain and be able to project formulas w.r.t. evo-
lutions of the system, that is, to evaluate the truth of formu-
las at arbitrary histories. We use an extension of the classi-
cal formula evaluator used for GOLOG that is able to handle
some kind of incomplete knowledge. To that end, the evalu-
ator deals with the so-called possible values that (functional)
fluents can take at a certain history; we say that the fluent
is known at h only when it has only one possible value at
h. For a detailed description and semantics of these type of
knowledge-based theories we refer to [Vassos et al., 2005;
Levesque, 2005].

We assume then that users provide definitions for each of
the following predicates for fluent f , action a, sensing result
r, formula w, and arbitrary value v:

• fluent(f), f is a ground fluent;

• action(a), a is a ground action;
• init(f, v), initially, v is a possible value for f ;
• poss(a, w), it is possible to execute action a provided

formula w is known to be true;
• causes(a, f, v, w), action a affects the value of f :

when w is possibly true, v is a possible value for f ;
• settles(a, r, f, v, w), action a with result r provides

sensing information about f : when w is known to be
true, v is the only possible value for f ;

• rejects(a, r, f, v, w), action a with result r provides
sensing information about f : when w is known to be
true, v is not a possible value for f .

Formulas are represented in PROLOG using the obvious
names for the logical operators and with all situations sup-
pressed; histories are represented by lists of the form o(a, r)
where a represents an action and r a sensing result. We will
not go over how formulas are recursively evaluated, but just
note that the procedure is implemented using the following
four predicates: (i) kTrue(w, h) is the main and top-level
predicate and it tests if the formula w is known to be true in
history h; (ii) mTrue(w, h) is used to test if w is possibly true
at h; (iii) subf(w1, w2, h) holds when w2 is the result of re-
placing each fluent in w1 by one its possible values in history
h; and (iv) mval(f, v, h) calculates the possible values v for
fluent f in history h and is implemented as follows:
mval(F,V,[]) :- init(F,V).
mval(F,V,[o(A,R)|H]) :- causes(A,F,_,_),!,
causes(A,F,V,W), mTrue(W,H).

mval(F,V,[o(A,R)|H]) :-
settles(A,R,F,V1,W), kTrue(W,H),!, V=V1.

mval(F,V,[o(A,R)|H]) :- mval(F,V,H),
not(rejects(A,R,F,V,W),kTrue(W,H)).

So for the empty history, we use the initial possible val-
ues. Otherwise, for histories whose last action is a with result
r, if f is changed by a with result r, we return any value v
for which the condition w is possibly true; if a with result
r senses the value of f , we return the value v for which the
condition is known; otherwise, we return any value v that was
a possible value in the previous history h and that is not re-
jected by action a with result r. This provides a solution to
the frame problem: if a is an action that does not affect or
sense for fluent f , then the possible values for f after doing a
are the same as before.

The implementation of Trans and Final and the main
loop
Clauses for Trans and Final are needed for each of the pro-
gram constructs. The important point to make here is that
whenever a formula needs to be evaluated, kTrue/2 is used.
So, for example, these are the corresponding clauses for se-
quence, tests, nondeterministic choice of programs, and prim-
itive actions:
final(ndet(E1,E2),H) :-

final(E1,H) ; final(E2,H).
trans(ndet(E1,E2),H,E,H1) :-

trans(E1,H,E,H1).
trans(ndet(E1,E2),H,E,H1) :-

trans(E2,H,E,H1).

final([E|L],H) :- final(E,H), final(L,H).
trans([E|L],H,E1,H1) :-

final(E,H), trans(L,H,E1,H1).
trans([E|L],H,[E1|L],H1) :-

trans(E,H,E1,H1).
final(E,H) :- (action(E);E=?(P)), !, fail.
trans(?(P),H,[],H) :- kTrue(P,H).
trans(E,H,[],[E|H]) :-

action(E), poss(E,P), kTrue(P,H).

The top part of the interpreter deals with the execution
of actions in the world. It makes use of trans/4 and
final/2 to determine the next action to perform and to end
the execution.
indigo(E,H):-

handle_rolling(H), !, indigo(E,[]).
indigo(E,H):-

exog_occur(A), !, indigo(E,[A|H]).
indigo(E,H):- final(E,H), !.
indigo(E,H):-

trans(E,H,E1,H), !, indigo(E1,H).
indigo(E,H):-

trans(E,H,E1,[A|H]), execute(A,H,S),!,
indigo(E1,[o(A,S)|H]).

In the first clause, predicate handle rolling/1 checks
whether the current history H must be rolled forward (for
example, if its length has exceeded some threshold). If it
does, handle rolling/1 performs the progression of the
database and the execution continues with the empty history.
In the second clause, the interpreter checks whether some ex-
ogenous action has occurred. In that case, the action in ques-
tion is added to the current history and execution continues.
Next, the third clause ends the execution whenever the current
configuration is provably terminating. The fourth clause han-
dles the case of transition steps that involve no action. Finally,
the last clause performs an action transition step; predicate
execute(A,H,S) is the interface to the real world and is
responsible of the actual execution of action A in history H.
Variable S is bound to the corresponding sensing outcome
obtained from the environment after performing the action,
and the execution program continues correspondingly. In our
case, predicate execute/3 will interface with the Wumpus
World device manager simulator through TCP/IP sockets.

3 Reasoning in The Wumpus World
The Wumpus World is a well-known example for reason-
ing and acting with incomplete knowledge (see [Russell and
Norving, 2003, Chapter 7].) According to the scenario, the
agent enters a dungeon in which each location may contain
the Wumpus (a deadly monster), a bottomless pit, or a piece
of gold. The agent moves around looking for gold and avoid-
ing death caused by moving into the location of a pit or the
Wumpus. The agent has an arrow which she can throw as an
attempt to kill the Wumpus. Also, the agent can sense the
world to get clues about the extent of the dungeon, as well as
the location of pits, gold pieces, and the Wumpus.

Using the functionality described in Section 2.1, we con-
struct the domain description ΠW which captures the agent’s
knowledge about the world. ΠW follows closely the defini-
tions in [Russell and Norving, 2003] except for the fact that
the agent assumes a fixed predefined size for the dungeon.

The world is organized as a 8 × 8 rectangular grid, where
g(1,1) is the lower-left corner and g(1,8) is the upper-
left one. Predicate loc(L) holds if L is a valid grid lo-
cation and dir(D) holds if D is one of the four directions
up, down, left and right. The geometry of the grid is
captured by predicate adj/2, which holds if the arguments
represent two adjacent locations, and one binary predicate for
each direction such as up(L1,L2), which holds if L2 is a
the location lying one step up of L1.

ΠW includes the following fluents, each of which captures
the possible values for a dynamic element of the domain.
locA, dirA and hasArrow represent the location of the
agent, the direction that she is facing and whether she has the
arrow. noGold is used to keep track of the number of gold
pieces gathered by the agent. isGold(L) and isPit(L)
capture whether there is a gold piece or a pit at location L and
isVisited(L) captures whether the location has already
been explored. locW and aliveW capture the location of
the Wumpus and whether it is alive. Finally, inDungeon is
used to capture whether the agent is in the dungeon. A few
representative fluent/1 clauses follow.
fluent(locA).
fluent(dirA).

fluent(isPit(L)):- loc(L).
fluent(isGold(L)):- loc(L).

Note that all fluents are functional; those that capture
propositions will be defined so that only true and false
may be a possible value for them. Initially, the agent is in
the dungeon at location g(1,1) facing to the right. She pos-
sesses the arrow, but no gold pieces. There is only one pos-
sible value for the corresponding fluents and so there is com-
plete information about the state of the agent in the empty
history. On the contrary, a possible value for the location of
the Wumpus is any valid grid location apart from g(1,1)
and similarly, any location other than g(1,1) can possibly
contain a pit or a gold piece. Also, initially the agent knows
that the Wumpus is alive and that only g(1,1) has been ex-
plored. The init/2 clauses for the fluents follow. We only
omit the init/2 clauses for isGold(L) which are identi-
cal to the ones for isPit(L).
init(inDungeon,true).
init(locA,g(1,1)).
init(dirA,right).
init(hasArrow,true).
init(noGold,0).
init(aliveW,true).
init(locW,L):- loc(L),not L=g(1,1).
init(isPit(L),true):- loc(L),not L=g(1,1).
init(isPit(L),false):- loc(L).
init(isVisited(L),true):- L=g(1,1).
init(isVisited(L),false):- not L=g(1,1).

The agent can always execute the sensing actions smell,
senseBreeze, and senseGold which give clues about
the location of the Wumpus, the pits, and the gold, respec-
tively. In order to move around, the agent can perform action
turn which represents a change of direction by 90 degrees
clockwise and moveFwd which represents a move, one step
forward to the direction the agent is facing. This action can
only be executed if it leads to a valid grid location. The agent
can also perform actions pickGold and shootFwd with
the intuitive meaning and preconditions. Similarly, actions

enter, climb represent that the agent goes in or leaves the
dungeon. Some action/1 and poss/2 clauses follow.
action(smell).
action(pickGold).
action(shootFwd).

poss(smell,true).
poss(pickGold,isGold(locA)=true).
poss(shootFwd,hasArrow=true).

As described in Section 2.1, the actions change the possible
values of the fluents, updating in this way the agent’s knowl-
edge about the world. The fluents that represent the position
of the agent, dirA and locA, are affected only by action
turn and moveFwd respectively. For each of the four di-
rections, ΠW includes an appropriate causes/4 clause of
the following form.
causes(turn,dirA,Y,and(dirA=up,Y=right))).
causes(moveFwd,locA,Y,

and(dirA=up,up(locA,Y))).

Since there is complete information about locA and dirA
initially, these clauses make sure that each fluent has exactly
one possible value in all histories. Similarly, inDungeon
is affected only by actions enter and climb, hasArrow
by action shootFwd, noGold by action pickGold, and
isVisited(L) by moveFwd. For these fluents too, there
is complete information in all histories.

The rest of the fluents can capture incomplete information
which may shrink whenever a sensing action is performed.
Fluent locW is sensed by a smell action: if there is no
stench (i.e. the sensing result is 0) then each of the robot’s
adjacent locations is not a possible value for locW, other-
wise the opposite holds. Fluent isGold(L) is sensed by a
senseGold action which settles the value of the fluent de-
pending on the sensing result. ΠW includes the following
clauses.
rejects(smell,0,locW,Y,adj(locA,Y)).
rejects(smell,1,locW,Y,neg(adj(locA,Y))).
settles(senseGold,1,isGold(L),true,locA=L).
settles(senseGold,0,isGold(L),false,locA=L).
Fluent isPit(L) is sensed by a senseBreeze action:
if no breeze is sensed (i.e. the sensing result is 0), then
isPit(L) is settled to value false for the locations L
which are adjacent to the agent. Otherwise, if all the adja-
cent locations but one are known not to contain a pit, then the
unknown one is settled to contain a pit. Note that this last
rule is indeed limited for reasoning about pit locations in the
sense that it is incomplete whenever there is uncertainty in
more than one adjacent location. Finally, fluent aliveW is
affected by the shootFwd action: if the shot was in the right
direction, then the Wumpus dies.

We conclude this section with an example. In the empty
history, the agent is located at g(1,1) and senses the stench
of the Wumpus. The disjunctive knowledge about fluent
locW then shrinks, so that the only possible values are the
locations which are adjacent to the agent.
?- mTrue(locW=g(1,2),[o(smell,1)]),

mTrue(locW=g(2,1),[o(smell,1)]).
Yes
?- loc(L), not adj(g(1,1),L),

mTrue(locW=L,[o(smell,1)]).
No

Sensing can further limit the possible values to be exactly one.
For example,

?- kTrue(locW=g(3,1),[o(smell,0),
o(moveFwd,1), o(turn,1), o(moveFwd,1),
o(turn,1), o(turn,1), o(smell,1),
o(moveFwd,1), o(smell,0)]).

Yes

4 Experimental Results in the Wumpus World
In order to test the feasibility of our approach, we defined an
INDIGOLOG high-level controller, which is intended to run
w.r.t. the domain description given in the previous section,
and experimented on several random settings of the scenario.
The controller we used is quite simple; it is implemented us-
ing three concurrent interrupts at three different levels of pri-
ority, which can be described as follows:

1. If the Wumpus is known to be alive at a location l which
is aligned with the agent’s location, then execute proce-
dure shoot with the direction at which the Wumpus is
known to be. Procedure shoot(d) is in charge of aiming
and shooting the arrow at direction d; it is defined using
a search block as follows:

proc shoot(d)
Σ(turn∗; (dirA = d)?;shootFwd)
endProc

2. If there is a gold piece at the current location, then pick
it up.

3. If the agent is in the dungeon, then she senses the world
and proceeds to explore an unvisited location, provided
it is safe and necessary to do so. Otherwise, she returns
to location g(1,1) and climbs out of the dungeon. The
exploration is done using an iterative deepening pro-
cedure, explore. Procedure goto(l) goes to location l
traversing only visited locations.

So, here is the INDIGOLOG controller in question that is to
be executed online:

proc mainControl
〈d, l : locW = l ∧ aliveW = true ∧

aligned(locA, dir,locW) −→ shoot(d)〉 〉〉
〈isGold(locA) = true −→ pickGold〉 〉〉
〈inDungeon = true −→

{smell;senseBreeze;senseGold
{?(noGold = 0); explore} | {goto(g(1,1));climb}}〉

endProc

We performed a series of experiments where the world is
an 8 × 8 grid. A setting (n, p) represents a random config-
uration with n gold pieces and a probability p of a location
containing a pit. For each of these settings, we tested our
controller in 300 random scenarios. The experiments verify
that the agent always exits from the dungeon alive.

Figure 1 summarizes our evaluation metrics for some rep-
resentative settings. The column ”Gold” specifies the number
of the scenarios where the agent managed to get gold. The
column ”Imp.” specifies the number of scenarios in which
a pit or the Wumpus was located just next to the initial lo-
cation of the agent, and hence the problem was unsolvable

CONF GOLD IMP REWARD MOVES TIME

(1, .10) 168 68 584 (737) 111 (140) 21 (26)
(1, .15) 93 113 342 (514) 74 (112) 15 (23)
(1, .20) 59 138 235 (390) 44 (76) 9 (16)
(1, .30) 24 188 122 (218) 24 (54) 6 (14)
(1, .40) 14 229 93 (210) 15 (38) 3 (9)
(2, .10) 162 77 574 (746) 69 (89) 17 (23)
(2, .15) 131 90 472 (630) 57 (78) 14 (19)
(2, .20) 85 138 320 (527) 42 (73) 10 (18)
(2, .30) 55 180 226 (428) 22 (42) 5 (11)
(2, .40) 24 221 125 (278) 14 (38) 3 (10)
(4, .10) 185 86 654 (878) 42 (55) 11 (15)
(4, .15) 149 103 534 (770) 38 (55) 10 (15)
(4, .20) 114 139 422 (719) 29 (48) 7 (12)
(4, .30) 69 188 273 (571) 19 (38) 4 (10)
(4, .40) 49 227 208 (596) 13 (33) 3 (9)

Figure 1: Experimental results for controller mainControl.

CONF GOLD IMP REWARD MOVES TIME

(1, .10) 167 68 574 (724) 163 (207) 10 (13)
(1, .15) 92 113 332 (500) 105 (160) 4 (6)
(1, .20) 57 138 220 (363) 70 (121) 1 (2)
(1, .30) 24 188 117 (209) 36 (80) 0 (1)
(1, .40) 12 229 82 (172) 21 (56) 0 (0)
(2, .10) 162 77 566 (736) 104 (137) 5 (7)
(2, .15) 131 90 465 (615) 86 (119) 3 (4)
(2, .20) 85 138 314 (519) 58 (100) 1 (1)
(2, .30) 54 180 220 (415) 29 (56) 0 (1)
(2, .40) 24 221 122 (272) 21 (57) 0 (0)
(4, .10) 185 86 649 (877) 62 (83) 2 (3)
(4, .15) 149 103 531 (765) 51 (73) 1 (1)
(4, .20) 113 139 416 (710) 39 (63) 0 (1)
(4, .30) 69 188 269 (563) 28 (58) 0 (0)
(4, .40) 48 227 203 (581) 17 (45) 0 (0)

Figure 2: Experimental results using FLUX.

for the agent.1 The rest of the columns show the average of
the reward, the number of moves, and the time it took the
agent to exit the dungeon. Time is the total running time of
the INDIGOLOG controller in seconds and rounded; this in-
cludes the deliberation time, as well as the time needed for
INDIGOLOG to execute the simulated actions. The reward is
calculated as follows: move actions cost −1, a shoot action
costs −10, getting the gold is +1000, and dying is −1000.
Each number in parenthesis is the corresponding average cal-
culated only over the scenarios which are not “impossible” in
the aforementioned sense.

As the probability p for the pits increases, the scenarios
which are not impossible become rare and exploring becomes
difficult because there are not many locations which the agent
can conclude that they are safe to go. For scenarios with 1
gold piece, which are not impossible, the effectiveness of the
agent in getting the gold ranges from 73.9% for p = 0.10
down to 23.1% for p = .40. As expected, as p increases, the
average reward and the average number of moves decrease.
Note that the average running time drops as p increases, but
this is merely because in many scenarios the agent has to give

1Our agent is risk-averse: when no safe exploration is possible,
the agent exits the dungeon.

up exploring very early. A safer metric for running time is
the average time calculated over the scenarios which are not
impossible; this also decreases because of the same reason,
but it is more reasonable as a metric for the time the agent
needs to fully explore the world.

Finally, as the number of gold pieces increase in the grid,
the effectiveness of the agent increases also, both in respect to
the average reward and in respect to the average time. This is
because when there are more than one gold pieces in the grid,
the chances that there exists a risk-averse path to one of them
increase. As one can observe, this also mitigates the effect of
having pits with high probability.

5 Discussion
In this article, we have shown how to model an intelligent
agent acting in the Wumpus World by using the INDIGOLOG
agent programming language.

The only available Cognitive Robotics implementation of
the Wumpus World that we are aware of is that of FLUX
[Thielscher, 2004]. FLUX is a constraint logic programming
method in which agents could be programmed relative to flu-
ent calculus action theories. The fluent calculus [Thielscher,
2000] extends the situation calculus by making explicit the
notion of states—a snapshot of the environment characterized
by the set of fluents that are true in it and some extra con-
straints representing incomplete knowledge. By appealing to
states, FLUX uses progression, rather than regression, as the
computational mechanism for answering queries about the
world and the agent’s knowledge. By using progression and
appealing to constraint programming, FLUX offers a compu-
tationally attractive framework for implementation of agents
with incomplete information.

The results of running the available FLUX Wumpus im-
plementation 2 on exactly the same scenarios used for IN-
DIGOLOG are shown in Figure 2. As one can observe,
the empirical results do not seem to differ much from the
INDIGOLOG ones and many differences may, in fact, only
reflect the different strategies used in the agent controllers
rather than the actual programming framework (e.g., FLUX
seems to perform more actions). Nonetheless, we think there
are two major issues worth mentioning. First, the FLUX
implementation strongly relies on constraint solvers. This
makes the agent reasoning substantially faster than when
plain Prolog technology is used, as with our current IN-
DIGOLOG implementation. We believe that this could be
even more explicit when larger grids are used and, hence,
it suggests the convenience of investigating how constraint
programming can be incorporated in INDIGOLOG too. No-
tice that, like ours, the FLUX implementation also assumes
a fixed grid size. Second, it is difficult, however, to compare
the formal accounts of execution in FLUX and INDIGOLOG.
This is mainly because the FLUX controller is no more than a
constraint logic program; FLUX does not come with a well-
defined notion of what an agent program execution is (e.g., in
terms of single-step semantics) and there is no formal inter-
leaved account of sensing, deliberation, and execution. The

2We used the implementation available at
http://www.fluxagent.org/system.htm.

recent work [Schiffel and Thielscher, 2005] is a first attempt
towards that. Finally and unlike FLUX, the INDIGOLOG
framework is able to accommodate exogenous actions such
as the scream of the Wumpus when it dies.

Many issues remain open for further investigation. The
most important one is to study how our implementation scales
up with larger grids and, more importantly, how to model an
agent who does not know the grid size initially but can ob-
tain information about its limits by bumping into the walls.
We would also like to develop other controllers and compare
them empirically. In particular, we think that in order to han-
dle the intrinsic incompleteness in the reasoning, the agent
may try to explore the grid more than once if necessary.

Acknowledgments
We thank Hector Levesque for his valuable help.

References
[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves

Lespérance, and Hector Levesque. ConGolog, a concur-
rent programming language based on the situation calculus.
Artificial Intelligence, 121(1–2):109–169, 2000.

[Kowalski, 1995] R. A. Kowalski. Using meta-logic to reconcile
reactive with rational agents. In K. R. Apt and F. Turini, edi-
tors, Meta-Logics and Logic Programming, pages 227–242. MIT
Press, 1995.

[Levesque et al., 1997] H. Levesque, R. Reiter, Y. Lespérance,
F. Lin, and R. Scherl. GOLOG: A logic programming language
for dynamic domains. Journal of Logic Programming, 31:59–84,
1997.

[Levesque, 2005] Hector Levesque. Planning with loops. In Proc.
of ICJAI’05, 2005. To appear.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J. Hayes.
Some philosophical problems from the standpoint of artificial in-
telligence. Machine Intelligence, 4:463–502, 1969.

[Reiter, 2001] Raymond Reiter. Knowledge in Action. Logical
Foundations for Specifying and Implementing Dynamical Sys-
tems. MIT Press, 2001.

[Russell and Norving, 2003] Stuart Russell and Peter Norving. Ar-
tificial Intelligence: A Modern Approach. Prentice Hall, second
edition, 2003.

[Sardina, 2004] Sebastian Sardina. IndiGolog: An Integrated Agent
Arquitecture: Programmer and User Manual. University of
Toronto, 2004.

[Schiffel and Thielscher, 2005] S. Schiffel and M. Thielscher. In-
terpreting golog programs in flux. In 7th International Sym-
posium On Logical Formalizations of Commonsense Reasoning,
The, 2005.

[Thielscher, 2000] Michael Thielscher. The fluent calculus. Tech-
nical Report CL-2000-01, Computational Logic Group, AI Insti-
tute, Dept. of Computer Science, Dresden University of Technol-
ogy, April 2000.

[Thielscher, 2004] Michael Thielscher. FLUX: A logic program-
ming method for reasoning agents. Theory and Practice of Logic
Programming, 2004.

[Vassos et al., 2005] Stavros Vassos, Sebastian Sardina, and Hector
Levesque. A feasible approach to disjunctive knowledge in the
situation calculus. In preparation, 2005.

