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Abstract

We describe a forward reasoning planner for open
worlds that uses domain specific information for prun-
ing its search space, as suggested by (Bacchus & Ka-
banza 1996; 2000). The planner is written in the situ-
ation calculus-based programming language GOLOG,
and it uses a situation calculus axiomatization of the
application domain. Given a sentence o to prove, the
planner regresses it to an equivalent sentence o9 about
the initial situation, then invokes a theorem prover to
determine whether the initial database entails oy and
hence 0. We describe two approaches to this theo-
rem proving task, one based on compiling the initial
database to prime implicate form, the other based on
Relsat, a Davis/Putnam-based procedure. Finally, we
report on our experiments with open world planning
based on both these approaches to the theorem prov-
ing task.

Introduction

Currently, virtually all implemented deterministic plan-
ning systems make a closed world assumption that com-
plete information is available about the initial state of
the application domain. Conformant Graphplan (Smith
& Weld 1998), CMBP (Cimatti & Roveri 1999) and the
planner of (Rintanen 1999) are exceptions to this. So
also are a few conditional planners incorporating “in-
formation gathering” actions, used to fill gaps in the
planners’ incomplete knowledge base (e.g. (Golden, Et-
zioni, & Weld 1994; de Giacomo et al. 1997)). Open
worlds preclude direct appeal to most planning algo-
rithms in the literature, including the successful SAT
(Kautz & Selman 1996) and Graphplan (Blum & Furst
1997) approaches.

In this paper, we describe the theoretical founda-
tions and implementation for an open world planner
without sensing actions; its job is to find straight line
plans using only what is known about the (incom-
plete) initial state, together with general domain spe-
cific facts like state constraints and action preconditions
and effects. Ours is a forward reasoning planner, us-
ing domain dependent information to prune its search
space, as suggested by (Bacchus & Kabanza 1996;
2000); it is axiomatized entirely in the situation cal-
culus.
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The Situation Calculus and GOLOG

The situation calculus (McCarthy 1963) is a first order
language for axiomatizing dynamic worlds. In recent
years, it has been considerably extended beyond the
“classical” language to include concurrency, continuous
time, etc, but in all cases, 1ts basic ingredients consist
of actions, situations and fluents.

Actions Actions are first order terms consisting of an
action function symbol and its arguments. In the blocks
world, the action of moving block # onto block y might
be denoted by the action term move(z,y).

Situations A situation is a first order term denoting
a sequence of actions. These sequences are represented
using a binary function symbol do: do(a,s) denotes
the sequence resulting from adding the action « to the
sequence s. So do(a, s) is like LISP’s cons(c, s), or Pro-
log’s [ | s]. The special constant Sy denotes the initial
situation, namely the empty action sequence, so Sy is
like LISP’s () or Prolog’s [ ]. Therefore, in a blocks

world, the situation term

do(move(A, B), do(moveT oTable(B),
do(move(C, D), Sp)))

denotes the sequence of actions
[move(C, D), moveToTable(B), move(A, B)].

Notice that the action sequence is obtained from a sit-
uation term by reading the term from right to left.
Foundational axioms for situations are given in (Pirri

& Reiter 1999).

Fluents Relations whose truth values vary from state
to state are called fluents, and are denoted by predicate
symbols with last argument a situation term. For exam-
ple, in the blocks world, on(z, y, s) might be a relational
fluent, meaning that in that state of the world reached
by performing the action sequence s, block x will be on

block y.

Axiomatizing a Domain Theory

A domain theory is axiomatized in the situation calcu-
lus with four classes of axioms (More details in (Pirri

& Reiter 1999)):

1. Action precondition axioms. There is one for
each action function A(Z), with syntactic form

Poss(A(Z),s) =Ta(Z, s).



Here, IT4(Z, s) is a formula with free variables among
Z, s. These characterize the preconditions of the ac-
tion A.

2. Successor state axioms. There is one for each flu-
ent F(Z,s), with syntactic form

F(Z,do(a,s)) = ®p(Z,a,s),

where ®p(Z,a,s) is a formula with free variables
among a, s, Z. These characterize the truth values of
the fluent F' in the next situation do(a,s) in terms
of the current situation s, and they embody a solu-
tion to the frame problem for deterministic actions
(Reiter 1991).

3. Unique names axioms for actions. These state
that the actions of the domain are pairwise unequal.

4. Initial database. This is a set of first order sen-

tences whose only situation term is Sy and it specifies
the initial state of the domain.

Example 1 The following are successor state and
action precondition axioms for a blocks world used in
the implementation described below.

Action Precondition Axioms

Poss(move(z,y), s) = clear(z, s) A
clear(y,s) Nz # y,

Poss(moveToTable(z),s) = clear(z, s) A
—onTable(z, s).
Successor State Axioms
clear(z,do(a,s)) =
(Fy){[(3z)a = move(y, z) V
a= moveToTable( )] Aon(y, z,s)} V
clear(x, s) A —=(Jy)a = move(y, ),

on(z,y,do(a, s)) = a = move(z,y) V
on(z,y,s) A a # moveToTable(z) A
—(Jz)a = move(z, z),

onTable(z,do(a,s)) = a = moveToTable(z) V
onTable(z, s) A ~(Jy)a = move(z, y).

Planning in the Situation Calculus
The classical definition of planning is (Green 1969).

Definition 1 Plans

Let D be a background situation calculus axiomatiza-
tion for some domain, and G(s) a situation calculus for-
mula — the goal — with one free situation variable s. A
situation term do(a,, do(an 1, -, do(ay,Sp) - ) that
mentions no free variables is a plan for G iff

D [ executable(do(ay, do(an—1,- -+, do(a1,S0) - ++)))
A G(do(an, do(an—1,- -, do(a1,Sp) -+ ).

Here, the ezecutable expression is an abbrevia-
tion for Poes(al,So) A Poss(ozg,do(ozl,so)) A A
Poss(an,do(an 1, ,do(aq, Sp) - . So on this def-
inition, planning is a theorem- proving task:

Determine a sequence ar, ..., ay, of variable free action
terms such that G(do(ay, do(ozn 1, -, do(a, So) )
is provable from the background axioms D, and more-
over, this action sequence is executable, meaning that
each of its action’s preconditions are provable in that
situation in which it is to be performed. This is the
formal foundation for our open world planner.

GOLOG

Our planner is implemented in the situation calculus-
based programming language GOLOG (Levesque et al.
1997), a language for defining complex actions in terms
of a set of primitive actions axiomatized, as described
above, in the situation calculus. Tt has the standard —
and some not so standard — control structures found in
most Algol-like languages.

1. Sequence: a; 3. Do action «, followed by action 3.

2. Test actions: p? Test the truth value of expression p
in the current situation.

3. Nondeterministic action choice: « | 8. Do a or .

4. Nondeterministic choice of action arguments:
(m ). Nondeterministically pick a value for z, and
for that value of z, do the action a.

5. Procedures, including recursion.

The semantics of GOLOG programs is defined (see
(Levesque et al. 1997)) by macro-expansion, using a
ternary relation Do. Do(program,s,s’) is an abbrevi-
ation for a situation calculus formula whose intuitive
meaning is that s’ is one of the situations reached by
evaluating the GOLOG program, beginning in situa-
tion s. Therefore, to execute program, one proves, us-
ing the situation calculus axiomatization of some back-
ground domain (e.g. the axioms of Example 1), the sit-
uation calculus formula (3s) Do(program, So,s). Any
binding for s obtained by a constructive proof of this
sentence 1s an execution trace, in terms of the primitive
actions, of the program. A GOLOG interpreter, writ-
ten in Prolog, is described in (Levesque et al. 1997);
this is the implementation used for our planner.

A Depth-First Forward Planner
We can now present our planner, written in GOLOG.

proc wspdf(n)
goal? | [n > 07; (ma)(primitive_action(a)? ; a) ;
—badSituation? ;wspdf (n — 1))
endProc '

wspdf(n)' expects the user to provide n, a depth
bound, goal, a planning goal, primitive_action, a predi-
cate characterizing what are the primitive actions of the
domain, and finally, an axiomatization of a domain de-
pendent predicate badSituation, used to filter out par-
tial plans that are known to be fruitless.

Like any GOLOG program, the planner is exe-
cuted by proving (3s) Do(wspdf(n), So,s). Therefore,
we start with Sy as the current situation. In gen-
eral, if o is the current situation, wspdf(n) succeeds
if goal((r) can be proved, or if n > 0 and a primitive
action a can be chosen (nondeterministically) such that
Poss(a, o) is provable and such that after “perform-
ing” a, meaning that do(a, o) becomes the new current
situation, —badSituation(do(a, o)) can be proved, and
wspdf(n—1) succeeds with do(a, o) as the current situ-
ation. On success, the current situation is a plan for the
goal. Therefore, the planner works depth-first, gener-
ating subplans by increasing length, filtering these with
the badSituation predicate, and testing the survivors

Ywspdf stands for the World’s Simplest Depth First
Planner



against the goal. The badSituation filter is our ver-
sion of Bacchus and Kabanza’s use of domain specific
information for pruning the search tree of bottom-up
planners (Bacchus & Kabanza 2000).

A Regression-Based Theorem Prover

The planner wspdf generates potential plans of the
form do(ay, ..., do(a1,S) - - ), where the a; are action
terms; then it tests these potential plans against goal
and badSztuatwn So the test expressions that must be
proved are of the form W(do(ay,...,do(a1,So) ),
for formulas W (s) with a single free situation variable
s. These are the kinds of sentences for which regression
was designed (Pirri & Reiter 1999). Essentially, regres-
sion uses successor state axioms to replace a sentence
of the form W(do(ap, . ..,do(a1,Sp) ---)) by a logically
equivalent sentence about the initial situation only, and
the original sentence is provable iff the regressed sen-
tence is provable using only the initial database together
with the unique names arioms for actions. So our strat-

egy will be this:

1. Eliminate the quantifiers in the sentence
W (do(ap, ..., do(aq, So) - - )) Here, we make
the domain closure assumption that the only func-
tion symbols for domain objects are constants
and there are just finitely many individuals in
the domain of discourse. Moreover, we allow only
typed quantification. Formally, a type 7(x) is an
abbreviation for a description of a finite domain of
constants:

T(m)d£f$:T1V~-~\/m:Tk,

where T7,..., Ty are all constants. Now, introduce
typed quantifiers (Vz : ) and (3z : 7) according to:

(Vo :7)¢(z) = (Vz).7(z) D é(),
(3o :1)o() Y (3).r(2) A ().

Then typed quantification of formulas can be re-
duced to conjunctions and disjunctions according to
the following equivalences

(Vo :7).6(z) = 6(T1) A--- A d(Tk),
(Fe:1)g(z)=6(Th) V-V o(Tk).
Therefore, quantifier elimination for the sentence
W(do(an,.. ,do(ar, Sp) - --)) amounts to replacing

W's quantlﬁed subformulas by conjunctions and
disjunctions according to these equivalences.

2. Regress the resulting sentence to a sentence about
the initial situation only.

3. Convert the regressed sentence to clausal form.

4. Determine whether all clauses of this clausal form are
entailed by the initial database. If so, report QED;
else report failure.

def

This is what our implementation does, with one impor-
tant difference: Rather than regress the entire sentence
to the initial situation, it does a depth first regression
of the components of the sentence, hoping that the re-
gressed component will simplify in such a way that the
remaining components need not be regressed. For ex-
ample, suppose, in regressing P A () we first regress P
to get R. If R simplifies to false, there is no point

in next regressing @, since in any event, the regressed
form of P A @ will be false. There is a dual principle
for regressing formulas of the form PV Q.

Regression requires successor state axioms, and we
allow for these by user-provided Prolog assertions of
the form Atom <=> Expression. Now we can describe
the final details of the regression theorem prover. In
regressing an atom A, there are two possibilities:

1. A has a definition of the form A <=> W. This means
that A has a successor state axiom or is a defined
atom, and to regress A, we need to regress W.

2. A has no definition of the form A <=> W. Therefore,
either A is not a fluent, or it is, but its situation ar-
gument is s0, so the regression is finished.

The following are the top-level Prolog clauses in
our implementation for the regression theorem-prover
prove, as just described:

A Regression Theorem Prover

prove(W):- eliminateQuantifiers(W,I),
simplify(I,Simp), regress(Simp,R),
clausalForm(R,Clauses) ,
databaseEntails(Clauses).

regress(P & Q, R) :- regress(P,R1),
(R1 = false, R = false, ! ;
regress(Q,R2), simplify(R1 & R2,R)).
regress(P v Q, R) :- regress(P,R1),
(R1 = true, R = true, ! ;
regress(Q,R2), simplify(R1 v R2,R)).
regress(-P,R) :- regress(P,R1),
simplify(-R1,R).
regress(A,R) :- isAtom(A), A <=> W,
/% A is a defined atom.

Retrieve and regress its definition. */
eliminateQuantifiers(W,I),
simplify(I,S), regress(S,R).

regress(A,R) :- isAtom(A), not A <=> W,
/* A is an atom, but it has no definition,
so the regression is finished. %/
(A = false, R = false, ! ; R = 4).

Here, databaseEntails(Clauses) is a call to a theo-
rem prover for determining whether Clauses are a log-
ical consequence of the clauses for the initial database.
The precise details of this theorem prover are still open;
to complete the implementation, this must be specified,
and that is the topic of the next section.

Theorem Proving in the Initial Database

For open world planning, our task is to imple-
ment a theorem prover for determining whether
databaseEntails(Clauses), as required by the
regression-based theorem prover. Here, Clauses are
the clauses obtained by regressing the expression to
be proved.  Our overriding concern must be to
make this theorem proving task as efficient as pos-
sible because the prover will be called each time a
test expression must be evaluated, and in the pro-
cess of searching for a plan, such test expressions
(e.g. on(a,b,do(move(c,d), do(moveToTable(d), Sy))))
are generated and tested a huge number of times. We
have experimented with two approaches, one based on
compiling the initial database to prime implicate form,
the other using an on-line theorem prover.



Prime Implicates and Compiling an Initial
Database

We begin with the initial database, which, being open
world, can be any sentences about Sy. Our approach is
to transform these sentences into their logically equiv-
alent prime implicates.

Definition 2 Prime Implicate
Let K be a set of clauses. A clause C' is a prime impli-
cate of K iff C'is not a tautology, K |= C, and there is no

clause C' # C' such that C’ subsumes C' and K | C”.2

Theorem 1 (Quine 1959) Suppose K is a set of
clauses, and pi(K) is the set of all of K’s prime im-
plicates. Then K and pi(K) are logically equivalent.
Moreover, for any non-tautologous clause C, K | C
iff there is a clause TI € pi(K) such that TT subsumes C'.

This tells us, first, that we can safely replace K by its
prime implicates, and secondly, with these equivalent
clauses in hand, we can quickly determine whether a
given clause is entailed by K. So it seems that we need
only to compute K’s prime implicates, and thereafter we
have efficient theorem proving that can be performed in
time linear in the number of prime implicates. These
prime implicates act like a compiled form of K: All the
“hard” reasoning is done at compile time, in comput-
ing the prime implicates; after that, reasoning becomes
easy. Of course, there is no free lunch, so we have to
expect that the compilation phase will have high com-
plexity, and indeed, this is so. In the worst case, the
number of prime implicates of a set of clauses is expo-
nential in the number of distinct atoms in those clauses.

The first stage of our implementation converts the
initial database to clausal form. In doing so, it first
eliminates quantifiers in the sentences of the initial
database, making use of various logical simplifications,
for example, replacing X = X by true, -true by false,
P & true by P, etc. Finally, the implementation com-
putes the prime implicates of these clauses, using a
straightforward algorithm based on (Quine 1959).

On-Line Theorem Proving

The alternative to compiling the initial database is on-
line theorem proving. This involves a once-only con-
version of the initial database to clausal form by quan-
tifier elimination as described in the previous section,
but without further processing these clauses into prime
implicates. Subsequently, whenever it is required to es-
tablish databaseEntails(Clauses) for a regressed set
of Clauses, a clausal form theorem prover 1s invoked.
The advantage of this on-line approach is that it avoids
the expensive prime implicate computation. The disad-
vantage is that the theorem proving task becomes much
more expensive.

An Open Blocks World

We illustrate an open world axiomatization for the
blocks world. Recall that wspdf(n) searches for plans
bottom-up, filtering out useless subplans with a user
supplied, domain specific badSituation predicate. We

2A clause is a tautologyiff it contains A and = A for some
atom A. Clause C subsumes clause C’ iff each literal of C
occurs in C’.

next describe the predicate we used for our blocks world
implementation.

Let goodTower(z,s) be true whenever, in situation
s, x is a good tower, meaning that z is the top block
of a tower of blocks that is a sub-tower of one of the
goal towers. We suppose the planner has available to
it a description of all the good towers corresponding
to its planning goal. The following are some natural
badSituations:

1. The situation resulting from moving a block off a
good tower.

2. The situation resulting from moving a block onto a
good tower, if the resulting tower is a bad tower.

3. Opportunistic rule: The situation resulting from cre-
ating a bad tower by moving a block to the table, and
some other action could have been performed instead
that creates a good tower.

badSituation also imposes certain canonical ordering
rules on plans, which we do not describe here. The
following Prolog clauses implement rules 1 and 3:

Some Bad Situations for a Blocks World

badSituation(do(move (X,Y),S)) :-
prove (-goodTower (X, do (move(X,Y),S))).
badSituation(do(moveToTable(X),S)) :-
prove (-goodTower (X, do (moveToTable(X),S))),
existsActionThatCreatesGoodTower(S).
existsActionThatCreatesGoodTower(S) :-
(A = move(Y,X) ; A = moveToTable(Y)),
poss(A,S), prove(goodTower (Y,do(4,S))).

Next, we present an example open world blocks prob-
lem with 12 blocks, arranged as indicated in the figure.

A Blocks World Problem with Incomplete
Initial Situation

/* Initial situation: Only the blocks so
indicated have been specified to be clear.

d m <-- clear;
clear --> p a not on table
not on--> n /\
table ?/ \7 f <-- not

/ \ on table
g b \
h c e k
Goal situation d k
h 8
b m
e f
a c
___________ */

goal(8) :- prove(on(d,h,S) & on(h,b,S) & on(b,e,S) &
on(e,a,S) & ontable(a,S) & on(k,g,S) & on(g,m,S) &
on(m,f,S) & on(f,c,S) & ontable(c,S) ).

goodTower (X,8) <=> X = a & ontable(a,S) v
X e & on(e,a,S) & ontable(a,S) v

X=b & on(b,e,S) & on(e,a,S) & ontable(a,S) v

X=h & ont,b,3) & on(b,e,S) & on(e,a,S) &
ontable(a,S) v

X=4d & on(d,h,S) & on(h,b,S) & on(b,e,S) &
on(e,a,S) & ontable(a,S) v

X = ¢ & ontable(c,S) v

X =f & on(f,c,S) & ontable(c,S) v



X=m& on(m,f,S) & on(f,c,8) & ontable(c,S) v

X =g & on(g,n,S) & on(m,f,S) & on(f,c,S) &
ontable(c,S) v

X =k & on(k,g,S) & on(g,m,S) & on(m,f,S) &

on(f,c,S) & ontable(c,S).

/* Initial database. All references to clear and
ontable have been eliminated, via their

definitions, in favour of on.

axiom(all([y,block],-on(y,m,s0))
axiom(all([y,block],-on(y,p,s0))
axiom(all([y,block],-on(k,y,s0))
axiom(all([y,block],-on(c,y,s0))
axiom(all([y,block],-on(e,y,s0))

)
).
).
)
)

axiom(all([y,block],-on(h,y,s0))).
axiom(on(b,c,s0)). axiom(on(d,a,s0)).
axiom(on(g,h,s0)). axiom(on(p,n,s0)).
axiom(on(a,b,s0) v on(a,e,s0)). % a is on b or on e;

axiom(all([x,block],on(x,b,s0) =>
axiom(all([x,block],on(x,e,s0) =>

axiom(some([x,block],on(f,x,s0))).
axiom(some([x,block],on(m,x,s0))).
axiom(some([x,block],on(n,x,s0))).

% Initial state constraints.

axiom(all([x,block],all([y,block],
on(x,y,s0) => -on(y,x,s0)))).
axiom(all([x,block],all([y,block], all([z,block],
on(y,x,s0) & on(z,x,s0) =>y = z)))).
axiom(all([x,block],all([y,block], all([z,block],
on(x,y,s0) & on(x,z,s0) =>y = z)))).

*/

is clear.
is clear.
on the table.
on the table.
on the table.
on the table.

=
5o o0 ®TDE

= a)). % nothing
=a)). % else

% is on b or e.
% f not on table.
% m not on table.
% n not on table.

% clear & ontable defined in the initial situation.

clear(X,s0) <=> all([y,block],-on(y,X,s0)).
ontable(X,s0) <=> all([y,block],-on(X,y,s0)).

% Domain of blocks.

domain(block, [a,b,c,d,e,f,g,h,k,m,n,p]) .

% Action preconditions.

poss (move(X,Y),S) :-

findall(Z, (domain(D), member(Z,D),
prove(clear(Z,S8))),L),
member (X,L), member(Y,L), not X = Y.
poss (moveToTable(X),S) :- domain(D), member(X,D),
prove(clear(X,S) & -ontable(X,S)).

/* Successor state axioms */

clear (X,do(move(U,V),S)) <=>

on(U,X,S) v - (X =

clear (X,do(moveToTable (U),S)) <=>

V) & clear(X,S).

on(U,X,S) v clear(X,S).

on(X,Y,do(move(U,V),S)) <=>

X=U&Y=Vv-(X=

on(X,Y,do(moveToTable (U),S)) <=>

(X =

ontable (X,do(move(U,V),S)) <=>
-(X =

ontable (X,do(moveToTable(U),S)) <
X =

primitive_action(move(X,Y)).
primitive_action(moveToTable(X)).

)
U

U) & on(X,Y,8).
U) & on(X,Y,S).
ontable(X,S).

v ontable(X,S).

There are four things to note about these axioms:

. The 1nitial database is defined only using the flu-

ent on, and not clear and ontable. In the blocks
world, the fluent on is primitive, and fluents clear
and ontable can be defined in terms of it:

clear(z, s) = (Vy)-on(y, z, s),

ontable(z, s) = (Vy)-on(z,y,s).

Thus, instead of representing the initial fact that A
is on the table by ontable(h, Sy), we elected instead
to use (Vy)—on(h,y,Sp); similarly for clear. With
this choice, the initial database does not include facts
about clear and ontable. This considerably reduces
the number of clauses for the initial database because
these will not include redundant clauses involving
clear and ontable. This, in turn, considerably im-
proves the theorem proving efficiency.

2. The initial database axioms include three state con-

straints, relativized to the initial situation. The gen-
eral state constraints, e.g. (Vz,y,s).on(z,y,s) D
—on(y, x, s), are not among our axioms because, ex-
cept for the case s = So, they are entailed by the
successor state and action precondition axioms. See
(Lin & Reiter 1994) for a discussion of this issue. In
general, for open world planning, the initial database
must include all state constraints for the application
domain, relativized to the initial situation.

. The clauses for poss and goal assume responsibility

for calling prove on appropriate formulas.

. The successor state axioms differ from Example 1,

which universally quantify over all actions a. In
contrast, the open world blocks world axiomatization
uses two clauses for clear, one for action move (U,V),
the other for action moveToTable(U). There is no
deep reason for this choice. It was made only to
simplify the implementation of the simplification
routine simplify used by the regression theorem
prover. To see why, consider the successor state
axiom for clear in example 1, and consider an
instance mowve(u, v) of a in this sentence:

clear(z, do(move(u,v), s)) =
(Fy){[(3z)move(u, v) = move(y, z) V
move(u,v) = moveToTable(y)] A on(y, z 5)} \Y
clear(z, s) A =(Jy)move(u,v) = move(y, »

Using the unique names axioms for actions, and
some elementary logic, this can be simplified to yield
the logical form of the first successor state axiom
for clear in the above blocks world axiomatization.
Obtaining this logical form from the general succes-
sor state axiom was straightforward, but required
a lot of simplification based on reasoning about
quantifiers, equality and unique names axioms for
actions. To avoid having to implement such simpli-
fication routines we have opted instead for the user
of the system to do this herself, in advance, and to
represent the results of these simplifications directly
by successor state axioms, particularized to each
action, as was done in the above axiomatization.

Experimental Results

We tested our planner on two classes of problems: One
class consists of variants of the blocks world problem



of the previous section in which we vary the extent to
which individual blocks have known information asso-
ciated with them. The other problem class was drawn
from the logistics domain, and again, we varied the
amount of known information about the domain’s in-
dividuals. Moreover, we experimented with two ver-
sions of the planner’s theorem prover: the prime im-
plicate approach described above, and an on-line theo-
rem prover Relsat 1.0, an implementation of the Davis-
Putnam algorithm based on (Bayardo & Schrag 1997).
In designing our experiments, we introduced the con-
cept of an unknown for the purposes of measuring a
problem’s degree of incompleteness. For a given do-
main individual, an unknown is any property of that
individual that is not entailed by the initial database,
and whose negation also is not entailed. For the blocks
world problem of the previous section, clear(d) is an un-
known property of d, because the axioms for the initial
database entail neither it, nor —mleargf (Az)on(m T)
is an unknown property of m, and (z=bVe=
e) A on(a,z) is an unknown property of a. In total,
there are 8 unknown properties for this example.

The Blocks World

Here, we used the axiomatization of the blocks world
given in the previous section, but varied the initial sit-
uation (so only the first problem in the set of experi-
ments corresponds to the picture associated with those
axioms). The remaining four blocks world problem in-
stances used in our experiments were obtained from the
problem given in the previous section by adding more
blocks to it, and by varying the amount of known in-
formation about these additional blocks. The tables
given below summarize the comparative performances
of Relsat vs the prime implicate implementations of the
theorem proving component of our open world planner.3

Relsat
Blocks 12 20 20 22 22
Unknowns 8 8 10 14 10
Plan (sec) 19.7 | 19.0 | 31.2 | 38.7 | 38.2
Clauses 175 449 502 624 586
Compile (sec) 5.1 | 44.8 | 50.1 | 79.6 | 82.1
Plan length 14 14 17 17 17
Prime Tmplicates
Blocks 12 20 20 22 22
Unknowns 8 8 10 14 10
Plan (sec) 3.9 19.8 - - -
Clauses 175 449 502 | 624 | 586
Implicates 248 569 - - -
Compile (sec) 15.7 | 119.6 - - -
Plan length 14 14 - - -

The Logistics Domain

Space limitations prevent us from presenting our sit-
uation calculus axiomatization for this domain. They
are available, on request, from the authors. To gener-
ate open world problems for this domain, we selected a
number of the standard closed world benchmarks, and
“opened them up” by removing information from their
initial state descriptions. As for the blocks world, our

3All CPU times here are for a SUN Sparc 10 Ultra, with
333 MHZ processor and 256 MB of RAM.

measure of the degree of incompleteness of these prob-
lems was defined by the number of unknown properties
of all domain individuals. In the tables below, the prob-
lem numbers are those of the closed world instances of
logistics problems used in the First International Plan-
ning Competition, described at www.informatik.uni-
freiburg.de/~koehler /ipp.html. Our problems were ob-

tained by “opening up” these problem instances.

Relsat: Logistics
Problem 03 03 04 05
Unknowns 0 1 2 11
Plan (sec) 24.3 | 31.0 | 342.8 | 1405.0
Clauses 776 | 811 6772 9359
Compile (sec) 9.8 | 10.5 | 1146.6 | 1528.9
Plan Tength 9 10 11 19

Prime Implicate: Logistics

Problem 03 03 04 05
Unknowns 0 1 2 11
Plan (sec) 19.0 | 24.8 | 262.5 | stack o’flow
Clauses 776 811 6772 9359
Implicates 776 | 811 6772 9359
Compile (sec) || 15.0 | 16.3 | 1178.3 2339.2
Plan Tength 9 10 11 -
Discussion

Our experiments suggest that open world planning is
feasible for moderate sized problems (up to 17 step
blocks world plans, and 19 step logistics plans). To
our surprise, theorem proving with Relsat 1.0 was the
clear winner over the prime implicate compilation ap-
proach. With larger problems, the latter was over-
whelmed by the prime implicate computation, whereas
Relsat found plans for all our problem instances. Per-
haps a more sophisticated prime implicate algorithm
would have helped here, e.g. (de Kleer 1992). We leave
such considerations for the future.

Conformant Graphplan (Smith & Weld 1998),
CMBP (Cimatti & Roveri 1999) and the planner of
(Rintanen 1999) are the only other open world plan-
ners that we know. Cimatti and Roveri have exten-
sively tested their planner against those of Smith/Weld
and Rintanen, and their data suggests the superiority of
their approach over these other planners. The examples
on which we tested our planner did not intersect those
of Cimatti and Roveri — we did not learn of their work
until after we had conducted our experiments. How-
ever, we have since done some unsystematic runs with
our planner on the bomb and the toilets problem that
figured prominently in their experiments. This problem
has some straightforward and natural badSituations:

1. Flushing a toilet twice without an intervening pack-
age dunking creates a badSituation.

2. The problem has a high degree of symmetry, which
can be substantially reduced by canonically ordering
the packages and toilets:

(a) Dunking a package creates a badSituation if there
is an undunked package lower in the package or-
dering.

(b) Dunking into a toilet creates a badSituation if
there i1s an unclogged toilet lower in the toilet or-

dering.



We tested our prime implicate-based planner, using
these badSituations, on several of the Cimatti and
Roveri test problems. None caused it any difficulties.
The smallest problem their planner could not solve was
BMTC(10,3) - 10 packages, 3 toilets — with high un-
certainty, meaning that initially it is unknown whether
any of the toilets are clogged; our planner found a 20
step plan in 0.32 seconds. The biggest problem we ran
was BMTC(40,6) — 40 packages, 6 toilets — with high
uncertainty, producing an 80 step plan in 114 seconds.

In all fairness to CMBP, we must emphasize that it
is a domain independent planner, whereas ours relies
heavily on its problem specific badSituations. More-
over, CMBP returns all minimal length plans, while
ours returns plans one at a time, and these need not
be minimal length. Finally, CMBP provides for actions
with nondeterministic effects; for us, all actions must be
deterministic. On the other hand, we can’t think of any
reasons for not exploiting domain specific information
in planning when it is so obviously useful.

Our planner differs considerably from those of Bac-
chus/Kabanza in its theoretical foundations and in its
implementation. Theoretically, it is based entirely on
the situation calculus and Green’s Definition 1 for plan-
ning, and is arguably more “logically pure” and trans-
parent than the latter, which rely on a combination of
STRIPS-like operators and a linear temporal logic. In
its implementation, our planner differs in one funda-
mental respect. The Bacchus/Kabanza planners main-
tain a current database by progressing the previous
database in response to the last planned action, whereas
our planner does no database progression; instead, it
maintains only the initial database, and computes en-
tailments using goal regression together with theorem-
proving relative to the initial database. There is a good
reason for this: Except for one special case described
in (Lin & Reiter 1997), there are no known provably
correct and efficient algorithms for progressing an in-
complete initial database. Despite these technical dif-
ferences, our planner is very much in the spirit of the
Bacchus/Kabanza approach, and our experiences rein-
force their arguments in favor of exploiting domain spe-
cific control information in planning systems.

In addition to the open world planner described here,
a variety of closed world, forward reasoning, situation
calculus planners based on the ideas of Bacchus and
Kabanza have also been implemented (Reiter 1999).
These include planners for “classical” (totally ordered)
problems, as well as for concurrency, and temporally
ordered processes, as exemplified by a multi-handed
blocks world agent.

(Levesque 1996) has elegantly generalized Green’s ac-
count of planning in the situation calculus (Definition
1) to conditional plans, and we believe that the methods
of this paper can be adapted to implement conditional
planners based on his foundations.
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