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Abstract

Subgoal ordering is a type of control information that has received much attention
in Al planning community. In this paper we formulate precisely a subgoal ordering
in the situation calculus. We show how information about this subgoal ordering can
be deduced from the background action theory. We also show for both linear and
nonlinear planners how knowledge about this ordering can be used in a provably
correct way to avoid unnecessary backtracking.

1 Introduction

In a typical Al planning problem (cf. Chapman [3]), a goal is represented as a conjunction
of simpler subgoals. The problem of subgoal ordering is about in which order a planner
should attempt to achieve these subgoals. For example, given the goal of having block A
on top of B and block B on top of (', any plan that achieves this goal will have to achieve
the subgoal of having B on C first, assuming of course the usual constraints on the blocks
world.

The problem of subgoal ordering is important for Al planning. Korf [9] first shows that
the complexity of a planning problem is closely related to the question of whether there is
an effective ordering on subgoals (see also Barrett and Weld [2] and Joslin and Roach [8]).

In this paper we formulate a subgoal ordering in the situation calculus. We show how
information about this subgoal ordering can be deduced from the background action theory.
We also show for both linear and nonlinear planners how knowledge about this ordering
can be used in a provably correct way to avoid unnecessary backtracking.

The rest of this paper is organized as follows. We first provide necessary background
about the situation calculus in section 2. Then in section 3 we define the basic concepts in
planning that will be used in this paper. In section 4 we precisely define in the situation
calculus our subgoal ordering. In section 5 we show how to compute this ordering given



a background action theory. In section 6 we show how knowledge about this ordering can
be used in a provably correct way in planning. In section 7 we make some general remarks
about our subgoal ordering and speculate on possible ways this ordering can be generalized.
In section 9 we discuss some related work. Finally in section 9 we conclude this paper and
point out some other control information that can be effectively formalized in the situation
calculus.

2 The Situation Calculus

The situation calculus (McCarthy and Hayes [15]) is a formalism for representing and
reasoning about actions in dynamic domains. It is a many-sorted predicate calculus with
some reserved predicate and function symbols. For example, to say that block A is initially
clear, we write:

H(clear(A), So),

where H is a reserved binary predicate and stands for “holds”, and Sy is a reserved constant
symbol denoting the initial situation. As an another example, to say that the action
stack(x,y) causes on(z,y) to be true, we write:'

Poss(stack(z,y),s) D H(on(z,y),do(stack(z,y),s)),

where the reserved function do(a,s) denotes the resulting situation of doing the action a
in the situation s, and the reserved predicate Poss(a,s) is the precondition for a to be
executable in s. This 1s an example of how the effects of an action can be represented in
the situation calculus. Generally, in the situation calculus:

e situations are first-order objects that can be quantified over;

e a situation carries information about its history, i.e the sequence of actions that have
been performed so far. For example, the history of the situation

do(stack(A, B),do(stack(B,C'), Sy))

is [stack(B, (), stack(A, B)], i.e. the sequence of actions that have been performed
in the initial situation to reach this situation. As we shall see later, our foundational
axioms shall enforce a one-to-one correspondence between situations and sequences
of actions.

We believe that these two features of the situation calculus make it a natural formalism for
representing and reasoning about control knowledge. For example, in Al planning, a plan
is a sequence of actions, thus isomorphic to situations. So control knowledge in planning,
which often are constraints on desirable plans, becomes constraints on situations.

'In this paper, free variables in a displayed formula are assumed to be universally quantified.



Formally, the language of the situation calculus is a many-sorted first-order one with
equality. We assume the following sorts: situation for situations, action for actions, fluent
for propositional fluents such as clear whose truth values depend on situations, and object
for everything else. As we mentioned above, we assume that Sy is a reserved constant
denoting the initial situation, H a reserved predicate for expressing properties about fluents
in a situation, do a reserved binary function denoting the result of performing an action,
and Poss a reserved binary predicate for action preconditions. In addition, we assume a
partial order < on situations. Following convention, we write < in infix form. By s < s’ we
mean that s’ can be obtained from s by a sequence of executable actions. As usual, s < s/
will be a shorthand for s < s’ Vs =s'.

In this paper, we assume the following foundational axioms ¥ (Lin and Reiter [11]):*

So # do(a, s),
do(ay, s1) = do(az, s3) D (a1 = az A s1 = s3),
(VP)[P(50) A (Va,)(P(s) D P(do(a,s))) D (Vs)P(s)],
s < So,
s < do(a,s') = (Poss(a,s') Ns < ).

The first two axioms are unique names assumptions. They eliminate cycles, and avoid
merging. The third axiom is second order induction. It amounts to the domain closure
axiom that every situation has to be obtained from the initial one by repeatly applying the
function do. As we shall see, induction will play an important role in this paper.®> The last
two axioms define < inductively.

Notice the similarity between these axioms and Peano foundational axioms for number
theory. However, unlike Peano arithmetic which has a unique successor function, we have a

class of successor functions here represented by the function do. The following proposition
summarizes some simple consequences of ¥. Proofs can be found in (Lin and Reiter [11]).

Proposition 2.1

Transitivity:  (s1 < 83 A sy < 83) D 81 < 3.
Anti-reflevivity: —s < s.
Unique names: s < S3 D 81 # $a.

Induction on <: (VP)[P(So) A (Va, s)(P(s) A Poss(a,s) D P(do(a,s))) D
(Vs)(So < s D P(s))]-

2These axioms have their origin in (Reiter [20]). Similar axioms are used in (Pinto and Reiter [18]).
3For a detailed discussion of the use of induction in the situation calculus, see (Reiter [20]).



3 Simple Goals, Goals, and Plans

We now define some basic concepts of classical planning. We define a simple goal (subgoal)

g to be a fluent term F(y,...,1,), where F' is a fluent of arity n, and t;,...,t, are terms
of sort object. We define a goal G to be an expression of the form ¢, & -+ & g,, where
G1s- -, 0n are simple goals.

Let G = g1 & -+ &g, be a goal, and S a situation term. We define H(G, S), the truth
value of GG in S, to be the situation calculus formula: H(gi,S) A+ A H(gn,S).
Given a situation calculus theory D and a goal (7, a finite sequence of actions I' is called
a plan for G iff
D = (VZ).5 < do(T', So) AN H(G, do(T', Sp)),

where 7 is the tuple of the free variables in GG and I, and do(T', Sy) is defined, recursively,
as: do([],s) = s, and do([a|'],s) = do(T', do(e, s)).

Notice that in the definition we need the condition Sy < do(T', Sy) because we want T’
to be executable in Sy. We shall call a situation s such that Sy < s a legal situation. So,
because of our second-order induction axiom on situations, plans and legal situations are
isomorphic in a precise sense: A situation s is legal iff there is a unique plan I' such that
s = do(T', So).

An important consequence of the isomorphism between legal situations and plans is that
our partial order < on situations becomes prefix relation on plans: For any legal situations
s and s, s < s iff the plan that corresponds to s is a prefix of the plan that corresponds
to s’. So the assertion that the plan I' always protects the goal ¢ can be represented as the
following formula in the situation calculus:

(Vs).51 < s <do(I',So) D H(g,s).

Similarly, the assertion that the legal situation s first achieves g;, then achieves g, while
protecting g; can be represented as the following formula:

H(g1 & ga,s) A (3s').S0 < 8" < s AN H(gr,s') N —H(ga,s') AN (Vs")(s' <" <sD H(gy,s")).

4 A Context-Independent Ordering on Goals

We are now ready to define our ordering on simple goals. Let g1 and g be two simple
goals, and S a situation term. We say that g; has precedence over g, in situation S, written
Precedence(gy, g2, 5), if the following condition holds: Whenever the situation S is a plan
for g1 & go, 1t is the case that either g, & gy is always true, or the plan first achieves g;, then
achieves g, while protecting ¢:

Precedence(gi, g2, 5) 2

So < SAH(g1&92,5) DA{(Vs)[So <s< 5D H(g1&9g2,5)]V
(3s").50 < 8" < SAH(g1,8)N—H(ga,s) N (Vs")(s' <" <S5 D H(gi,s"))}
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Technically, the above expression means that Precedence(gi, go,S) is a shorthand for the

formula in the right hand side of 2,

The precedence relation we have just defined is with respect to a particular plan. For
planning purpose, however, we do not really care how a particular plan achieves a goal.
What we are looking for are patterns and regularities of a class of plans, in the hope that
such patterns and regularities, once known, will make the search for a plan more focus.
Considering the class of all plans for ¢; & g2, we thus define the macro ¢g; < g2 as follows:

G < G2 2 (Vs).S0 < s A H(g1 & g2,8) D Precedence(gi, 9z, 9).
We can prove:

Theorem 1 Lel g, and gy be two simple goals. g, < gq iff for any action a and any legal
situation s, if do(a,s) is a plan for g, & g2, then s is a plan for g;:

YE g <9 = (Va,s).50 < do(a,s) N H(g1 & g2, do(a,s)) D H(g,s).
Proof: By our definition, g; < g5 is
(Vs).So < s A H(gy & g2,8) D Precedence(gy, gz, $).
By expanding Precedence, this is equivalent to

(\V/S) S() < s A H(gl & ga, S ) o {(\V/S,)[SO < S’ < D) H(gl &9278,)]\/
(3s").S0 <" < sANH(gi,s") N—H(gz,8") N (Vs").s' <" <sDH(q,s")}.
By induction on situations, we can show that for any formula P(s), whenever there is a

situation s such that P(s) holds, then there must be a least such s. From this fact we can
show that

(3s").50 < 8" < s A H(gr,s)N—H(gz,s) AN (Vs").s' <s" <sD H(g1,s")
is equivalent to

(Fa, s").5y < do(a

, 8 H(g1,s') N —H(g2,8") N H(g1 & g2, do(a,s")) A
(Vs").do(a, s') <

D H(91&927 )

s <s
SS

Thus g1 < g9 is equivalent to

(Vs).So < s A H(gr & g2, 5) D {(Vs")[So < 8" <5 D H(g1 & g2, 8]V
(Fa, s").50 < do(a,s") < s A H(gi,s') N=H(ga,s') N H(g1 & g2, do(a, s")) A
(Vs").do(a,s") < s" < s D H(g &g2,5")} (1)

From this it is easy to see that

YEg <9 D {(Va,s).5 < do(a,s) N H(gi & g2,do(a,s)) D H(g1,s)}.
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To prove the other half of the equivalence, suppose that
(Va,s).S0 < do(a, s) A H(g & g2, do(a, s)) D> H(g, s) (2)
holds. To prove (1), assume that there is a situation s’ such that
So < sAH(gi&g2,8) NSo < 8" <sA-H(g1&g2,5).
By induction, there is a situation s” and an action a such that
s < s <do(a,s") < sAN=H(gi & g2,8") AN (Vs").do(a,s") < s* <sD H(gi & g2,5").
By (2), this implies that
' <s" <do(a,s") <sAH(gi,s")N—H(gs,s") A (Vs").do(a,s") < s <sD H(g &gz, s").
Thus (2) implies that

So < sNH(gr&gays) AN (T[S0 <" <sA—-H(g1&¢g2,8)] D
(Fa, s").So < do(a,s") < s A H(g,s") N—H(gs,s") A
(Vs*).do(a,s") < s* < s D H(g & ga,5¥).

So (2) implies (1). m

This is our basic theorem about the relation <. In the following, we show how to use
it to compute < for a special class of action theories.

5 Computing the Subgoal Ordering in Action Theo-
ries with Successor State Axioms

A basic action theory D is one that has the following form (cf. Reiter [21] and Lin and
Reiter [11]):
D =YUD; UD,p UDyp, UDs,,

where
e Y is the set of the foundational axioms for situations as given in Section 2.
o D, is a set of successor state axioms, one for each fluent I, of the form:
Poss(a,s) D H(F(Z),do(a,s)) = ®p(Z,a,s),

where @ (7, a, s) is a formula that does not mention <, Poss, and any situation term
except possibly a situation variable s, and whose free variables are among 7,a, s.
Intuitively, a successor state axiom for F' defines the truth value of F' in a successor
situation in terms of the truth values of the fluents in the current situation.



e D,, is a set of action precondition axioms of the form:
Poss(A(Z),s) = U4(d,s),

where A is an action, and W4 (Z, s) is a formula that does not mention <, Poss, and
any situation term except possibly a situation variable s, and whose free variables
are among T, s.

e D,,, is the set of unique names axioms for actions: For any two different actions
A(Z) and A'(Y), we have
A(T) # A'(Y),

and for any action A(xy,...,z,), we have

Az, zn) = AWty Un) D1 = A cd ATy = Yy

o Dg,, the initial database, is a finite set of first-order sentences that do not mention
<, Poss, and any situation term except the constant Sg.

Example 5.1 Consider the following blocks world (Lin and Reiter [12]):

Actions?

e move(x,y,z): Move block z from block y onto block z, provided both = and z are
clear and block x is on top of block y.

e movefromtable(x,y): Move block = from the table onto block y, provided z is clear
and on the table, and block y is clear.

e movetotable(x,y): Move block z from block y onto the table, provided z is clear and
x 1s on top of y.

Fluents

e clear(x): Block x is clear, i.e. has no other blocks on top of it.
e on(z,y): Block z is on block y.
e ontable(z): Block z is on the table.

This setting can be axiomatized as follows:

Action precondition axioms, one for each action:®

Poss(move(z,y, z),s) = H(clear(z),s) N H(clear(z),s) N H(on(z,y),s) Nz # y # =z,

4These actions are designed to make them context free. A more compact formalization will be to
introduce table as a constant, and replace movetotable(x,y) and move fromtable(x, y) by move(z, y, table)
and move(z,table, y), respectively.

5In the following, the expression z # y # z stands for x ZyAx # 2z Ay # 2.



Poss(move fromtable(z,y),s) = H(clear(z),s) A\ H(clear(y),s) A H(ontable(x),s) Nz # y,
Poss(movetotable(z,y),s) = H(clear(z),s) A H(on(z,y),s).
Successor state axioms, one for each fluent:
Poss(a,s) D

H(ontable(x),do(a, s)) = (Jy)a = movetotable(x,y) V
H(ontable(x),s) A =(Jy)a = move fromtable(z,y).

Poss(a,s) D
H(on(z,y),do(a,s)) = (Iz)a = move(z, z,y) V a = move fromtable(z,y) V
H(on(z,y),s) A a # movetotable(z,y) A =(3z)a = move(z,y, z),

Poss(a,s) D
H(clear(z),do(a,s)) = (Jy, z)a = move(y, z,z) V (Jy)a = movetotable(y, z) V
H(clear(z),s) A =(Jy, z)a = move(y, z,z) A =(Jy)a = move fromtable(y, ),

The initial database Dg, can be any finite set of sentences about So. In the following, we
shall take it to be the set of following axioms:

A4 B#C,
H(ontable(z), So) = 2 = A,
H(on(x,y),S0) = (x = BAy =C)V (z =C Ay = A),
(V). H(clear(z), So) = ~(3y) H(on(y, z), o).

This initial database captures the initial situation in Sussman’s anomaly. m

To formulate our theorem for computing g; < ga in basic action theories, we need to
introduce the notion of regression (cf. Waldinger [23], Pednault [17], and Reiter [19]) and
state constraints.

Definition 5.1 Let D be a basic action theory, and U(s) a formula thal does not mention
any other situation term except s. Let W(do(ca, s)) be W(s) with s replaced by do(c, s). We
define the regression of W(do(c,s)) under the sel of successor state axioms in D, writlen
R[V(do(a, s))], to be the result of substituting ®r(t1,...,t., a, S) for every subformula of
the form H(F(t1,...,1,),do(a, S)) mentioned in ¥(do(a,s)), for every fluent F. Here, ®p

is as in the successor state axiom for I in D.

If o is executable in s, then R[U(do(a, s))] is the weakest precondition for ¥ to be true
after a:

Lemma 5.1 D = (Va,s).Poss(a,s) D ¥(do(a,s)) = R[¥(do(a, s))].



Example 5.2 Given the blocks world in Example 5.1, the regression of
H(on(z,y),do(move(z, z,y),s)) AN H(clear(z'), do(move(x, z,y), s))
is
{(3=")move(z,z,y) = move(z,2",y) V
move(z, z,y) = move fromtable(z,y) V
H(on(z,y),s) A move(z, z,y) # movetotable(x, y)A
(32" )rmove(z, z,y) = move(z,y, 2")} A
{3y, 2")rmove(z, z,y) = move(y', 2',2") V
(Fy")rmove(z, z,y) = movetotable(y', z") V
H(clear(z'),s) A =(Fy', 2" )move(z, z,y) = move(y', 2, ')A
=(Jy")move(z, z,y) = move fromtable(y', z')}.
Under Dy, this is equivalent to

' =z VI[H(cear(z"),s) Nz’ #y].

Therefore, if rove(z, z,y) is executable, then on(z,y) & clear(z’) holds afterward iff either
z = ' or clear(z’) holds initially and y # z’. =

Definition 5.2 Given an action theory D, a senlence of the form (Vs).s > Sy D C(s) is a
state constraint if it is entailed by D.

To prove that (Vs).s > Sy D C(s) is a state constraint, we normally need to appeal to
the principle of induction on < in Proposition 2.1 (Reiter [20]).

Example 5.3 Continuing our discussion of the blocks world Example 5.1. Consider the
sentence (Vs).s > Sy D C(s), where C(s) is

(Vx).H(clear(z),s) = =(3y)H(on(y,x), s).

We claim that (Vs).s > Sy D C(s) is a state constraint. To prove this, we need to use
induction. However, to our surprise, applying directly the principle of induction on < in
Proposition 2.1 does not work. It is well known that to prove an assertion by induction,
sometimes it is necessary to apply induction on a more general assertion. In this case, we
need to apply the principle of induction on < in Proposition 2.1 to

(Vs).s > So D C(s) A C'(s),
where C'(s) is
(Vx,y,2).H(on(y,z),s) A H(on(z,2),s) Dy = z.
We were surprised because this means that the successor state axiom for clear as given in
Example 5.1 cannot be derived from the successor state axiom for on and the definition

(Vs)(Vz).clear(z,s) = —(y)on(y,z,s). To do that, we also need to assume the state
constraint (Vs).s > Sy D C'(s). m



The following theorem will be our basis for establishing conditional precedences. In this
theorem, the role of state constraint is to pre-compute induction by putting constraints
on legal situations. The unique names axioms D,,, are needed to simplify the result of
regression, as we have seen above.

Theorem 2 Let D be an action theory, (Vs).s > So D C(s) a stale constraint, and P a
formula. If

Duna U D,y = (VZ).P D {(Va,s).C(s) A Poss(a,s) N R[H (g1 & g2,do(a, s))] D H(gr,5)},
then D |= (YZ).P D g1 < g2, where @ is the tuple of the free variables in P, gy, and g,.
Proof: Let

Duna U D,y = (VE).P D {(Va,s).C(s) A Poss(a,s) N R[H(g1 & g2,do(a, s))] D H(g1,s)}
Then

Duna U Dy U {(Vs).5 > 5o O C(s)}
(VZ).P D (VYa,s).s > So A Poss(a,s) N R[H (g & g2,do(a,s))] D H(g1,s).

Thus
D= (V2).P D (Va,s).s > So A Poss(a,s) A R[H(gr & ga, do(a, s))] D H(qn, s).
So by Lemma 5.1, and the axioms for < in I,
D= (V2).P D (Va,s).s < do(a, s) A H(gi & g2, do(a, ) D Hlgs, s).

Therefore by Theorem 1, D |= (VZ).P D g1 < g2. m

Notice that the theorem generalizes to cases with more than one state constraints be-
cause for any two state constraints (Vs).s > So D Ci(s) and (Vs).s > Sy D Cs(s), the
sentence (Vs).s > Sy D C1(s) A Cay(s) is also a state constraint.

Example 5.4 Continuing with our blocks world, we show that

D (Ve,y,z).x#y # 2z D on(y,z) < on(z,y). (3)

We shall use the state constraint that we proved in Example 5.3: (Vs).s > Sy D C(s),
where C(s) is
s> S0 D (Va).H(clear(z),s) = —(Jy)H(on(y, ), s),

Let P in Theorem 2 be = # y # z. By the theorem, we need to show that

Duna UDgp U{z #y # 2} =
C(s) N Poss(a,s) N R[H(on(y, z),do(a,s)) N H(on(z,y),do(a,s))] D H(on(y,z),s) (4)
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Now R[H (on(y, z),do(a,s)) N H(on(z,y),do(a, s))] is

(3z")a = move(y, 2, z) V a = move fromtable(y,z) V

H(on(y, z),s) A a # movetotable(y, z) A =(3z")a = move(y, z,2") A
(3z")a = move(x,2',y) V a = move fromtable(z,y) V

H(on(z,y),s) A a # movetotable(z,y) A =(3z")a = move(z,y, ).

By Duna and z # y # z, this formula can be simplified to:

(3z")a = move(y,2', z) A H(on(z,y),s) V

a = move fromtable(y,z) A H(on(z,y),s)V

(3z")a = move(z,y,2") A H(on(y, 2),s) V

a = movefromtable(z,y) N H(on(y, z),s) V

H(on(z,y),s) A H(on(y,z),s) A a # movetotable(y,z) A ~(3z")a = move(y, z,2") A

a # movetotable(z,y) A =(32")a = move(z, y, 2').

The first two disjuncts correspond to the cases where the action a makes on(y, z) true but
has no effect on on(z,y); the third and fourth disjuncts correspond to the cases where the
action a makes on(z,y) true; the last disjunct corresponds to the case where the action a

has no effect on either on(y,z) or on(z,y). Therefore, to prove (4), the only non-trivial
cases to consider are the third and fourth disjuncts:

Duna UD,, U{z #y # z,C(s), Poss(a,s)}
and
Duna UD,p U{x £y # 2z,C(s), Poss(a,s)} =
a = move fromtable(y,z) A H(on(z,y),s) D H(on(y, z),s).

To prove the first entailment, suppose that a = move(y, z*,z) and H(on(z,y),s) holds.
By the action precondition axiom for move, we have H(clear(y),s). Thus by C(s), we
have =(3y')H(on(y’,y), s). This contradicts with the assumption that H(on(z,y),s). This

proves

Duna UDap Uiz # y 7 2,0(s), Poss(a,5)} =
(3z")a = move(y, ', z) A H(on(z,y), s),

thus the first entailment. The proof of the second entailment is similar. Therefore we have
proved (4). So we have that

DE (Va,y,z)x#y#2zDon(y,z) < on(z,y).
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In particular, we have that
D Eon(B,C) < on(A,B).

We remark that the general assertion (3) does not depend on the particular configuration
of the initial situation. In fact, it holds as long as the initial database Dg, contains the
following two facts:

(Va,y,z).H(on(y,x),S0) A H(on(z,z),5) Dy=z,
(Vx).H(clear(z), So) = =(Jy)H(on(y, x), So).

This example also illustrates a difference between our ordering relation and Korf’s
taxonomy of subgoal interactions. As Korf [9] noted, in Sussman’s anomaly, the set
{on(A, B),on(B, ()} of subgoals is not serializable according to his definition. But on(B, (')

has precedence over on(A, B) according to our definition.

6 Using the Subgoal Ordering in Planning

We now show how knowledge about < can be used effectively in planning. We consider two
planners. One is a linear regression planner adapted from (Genesereth and Nilsson [6]).
The other is the nonlinear planner SNLP of McAllester and Rosenblitt [13].

For ease of presentation, we shall consider only context-free actions. In the situation
calculus, these actions are specified by a context-free action theory D (cf. Lin and Reiter
[12]) of the following form:

D=3 UDSS UDap UDuna UDSO’
where

e Y is the set of the foundational axioms in Section 2.

o D, is a set of contexl free successor state axioms, one for each fluent I, of the form:

Poss(a,s) D H(F(Z),do(a,s)) =
(Fth)a = A(Z, 1) V-V (Fip)a = A2, 1) V (5)
H(F(Z),s) AN —(3w)a = By (Z, @) A --- A=(F,)a = B,(Z,10,).

Intuitively, the A’s are those actions that make F' true, and the B’s are those that
make F' false.

e D,, is a set of action precondition arioms, one for each action A, of the form:
Poss(A(Z),s) = H(Fy(11),s) A -+ AN H(F,(t,),s) A E, (6)

where Fy,..., I, are fluents, and F, called an equality constraint, is a propositional
formula constructed from equality literals. We require here that all free variables in
t1,... 1, and F be in 7.
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® D, 1s the set of unique names axioms for actions as given in section 5.

e Dg,, the initial database, is a finite set of first-order sentences that do not mention
<, Poss, and any situation term except the constant Sp.

In the following, given an action «, we say that it has a positive effect on F(f_j if for
some 1 <1 < m, Dypy E (i) = AZ(IZ; w;), where A; is as in the successor state axiom
(5) for F. Similarly, we say that « has a negative effect on the fluent atom F(f) if for some
1 <1< n, Dypa E (Fb)a = Bz(f_‘, w;), where B; is as in the successor state axiom (5) for
F. We say an action has no effect on F(f) if it has neither a positive nor a negative effect
on it.

6.1 A Linear Regression Planner

Let D be a context free action theory as described above. Let Gy be a goal. A naive version
of our linear regression planner adapted from (Nilsson [16] and Genesereth and Nilsson [6])
can be described as follows:

1. Initialize T' (for partial plans) to (), G (for outstanding goals) to Gy, and € (for equality
constraints) to true.

2. If there is a variable substitution o such that Ds, U Dyna = (H(G, So) A €)-0.,° then
output I'-o as the final plan.

3. Choose an action A(f) Suppose the axiom for Poss(A t_> is as

—

H(Fy(in),8) Ao A H(F (L), )/\E

and suppose that under the unique names axioms D,,,, R[H (G, do( A -) | is equiv-
alent to:”

(El A H(Gl,S)) VeV (Em A H(Gm,S)),
for some goals G,...,Gy, and equality constraints iy, ..., E,,.

4. Choose an 1 <1 < m, and do the following. Let G be

—

F]( ])& &Fn<t_‘n>&G7

Let € be EANE A FE;. Append A(f) to T.
5. Go back to step 2.
Clearly, this planner is sound and complete: There is a plan for the goal Gq iff there

is an execution of this procedure that gives the plan as I'. By Theorem 1, the following
variant of this planner is also sound and complete:

SFor any expression e and variable substitution o, we use e-o to denote the result of simultaneously
repacing the free variables in e according to o. Bound variables in e must be renamed in order to avoid
the capture of free variables during the substitution process.

"Notice that this is always possible for context free action theories.
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1. Initialize T' (for partial plans) to (), G (for outstanding goals) to G, and € (for equality
constraints) to true.

2. If there is a variable substitution ¢ such that Dg, U Dy, | (H(G, So) A €)-0, then
output I'-o as the final plan.

3. Choose a simple goal ¢ in G with the property that there is no other simple goal ¢’
in G such that D = (VZ)€ D g < ¢ holds, where Z is the tuple of free variables in g,
g, and €.

4. Choose an action A f) that has a positive effect on ¢g. Suppose the axiom for
Poss(A t_> is as

H(Fy(1h),8) A= N H(Fo(T), )/\E
and suppose that under the unique names axioms D,,,, R[H (G, do( A f) | is equiv-
alent to:
(Ey ANH(Gy,s8)) V-V (En NH(Gpys)),

for some goals G1,..., Gy, and equality constraints Fq,..., E,,.

5. Choose an 1 < < m, and do the following. Let G be
Fi(fy) & - & Fy(ty) & Gy

Let € be €A E A E;. Append A(1) to T,

6. Go back to step 2.

The intuition here is that since the regression planner works backward from the goal, if
g1 < g2, then the planner should work on g, first. For instance, consider again the blocks
world, and the goal on(A, B)&on(B,C). Since on(B, () < on(A, B), the planner should
try on(A, B) first. Suppose it chooses the action stack(A, B) to achieve this simple goal,
then the original goal will be regressed to

on(B,C) & clear(A) & clear(B) & ontable( A).

Since clear(B) < on(B,C) is the only precedence relation that holds among the new
subgoals, the planner can now choose to work on either clear(B), clear(A), or ontable( A),

but not on(B,C).

6.2 A Nonlinear Planner

We shall now describe a nonlinear planner that can make use of knowledge about the
precedence relation < to minimize potential threats during planning.

Our starting point is the observation that if the subgoal ¢; has precedence over the
subgoal g, then a smart planner should not treat the two subgoals as independent, and
work on them separately. Instead, the planner should group them into a single goal, and
consider only those actions that have a positive effect on g, by assuming that ¢; has already
been achieved. Formally, we have the following result:
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Theorem 3 Let D be a conlext free action theory as described above. Let g, and g, be
two ground simple goals such that D = g1 < g2. Lel Aq,..., Ay be the actions that have
a positive effect on g but no effect on g1, and By, ..., B, the actions that have a negative
effect on either g1 or g, then

D E (Va,s).5 < s A Poss(a,s) D {H (g1 & g2,do(a,s)) =
H(gi,s) AN [(Fd)a = Ay(d) V-V (Fd)a = A (V)] V
H(g1 & g2,8) N ~(Fd)a = By (W) A+ A ﬁ(ﬂﬂa = Bn(ﬂ}

Proof: The theorem follows directly from Theorem 1. m

This theorem can be extended to cases where there are more than two subgoals.

We now describe a nonlinear planner based on this theorem. It is designed after
McAllester and Rosenblitt’s SNLP ([13]).

We define a nonlinear plan with respect to a context free action theory D to be a tuple

(Go, S, 7,0, L), where

1. Gy is a ground goal.

2. S U {START,FINISH} is a finite set whose elements are called step names, and S N
{START,FINISH} = {).

3. 7 is a function that interprets S by assigning each of its elements a ground action
term.

4. O is a set of safety conditions of the form w < w’, where w and w’ are step names.

5. L is a set of causal links of the form (w, g, G, w'), where

(a) w and w' are distinct step names; ( is a goal, and g is a simple goal in G.

(b) If w = START, then Dg, = H(G, Sp). Recall that Dg, is the initial database in
D.

(¢) If w € S, then 7(w) has a positive effect on g, and has no effect on other simple

goals in G.

Intuitively, a causal link (w, g, G, w') means that: (a) G is a set of prerequisites for the step
!

w'; (b) the planner has decided to work on G as a whole; (¢) the planner picks the subgoal
g in GG to work on; and (d) the planner decides to support g using the step w.

The main difference between our definition of a causal link and McAllester and Rosen-
blitt’s is the extra (G in our definition. We need the more general notion because our planner
may decide to work on a set of simple goals in a coordinated way.

Given a nonlinear plan 8 = (Go, S, 7,0, L) and a step w, a simple goal g is called a
prerequisite of a step w if one of the following conditions holds:

1. w = FINISH, and g is in (.
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2. we S, and H(g,s) is a conjunct of Poss(T(w), s).
3. w # START, and there is a causal link (w,¢’,G,w’) in £ such that g is in G, but

distinct from ¢'.

The last case is needed because the step w in (w, ¢, G, w') only establishes ¢, so the other
subgoals in G have to be regressed to w.
Our nonlinear planner will output complete nonlinear plans, which are nonlinear plans
B =(Go,S,7,0, L) such that:
1. For any step name w, if ¢ is a prerequisite of w, then £ contains a causal link of the
form (w’,¢’, G, w) such that ¢ is in G. Notice that ¢’ may be different from g.
2. If v € S is a threat to (w, g, G,w') € L, then either v < w € Closure(O) or w < v €
Closure(O).

3. For any step name w € S, the equality constraint of the action T(A) is satisfied, i.e.
if Poss(t(w),s)is H(g1,s)A--- AN H(g,,s) AN E, then Dg, |= E.

Here, Closure(Q) is basically the transitive closure of O, and threats are defined as usual:
a step v in S is called a threat to the causal links (w, g, G,w’) if v is distinct from w and
w', and 7(v) has an effect on g.

It can be shown that if a nonlinear plan is both complete and order consistent in the
sense that there are no w such that w < w is in Closure(Q), then any linearization of this
nonlinear plan is a plan for Gy.

We can now describe our planner. Let 3 be (Go, S, 7,0, L), and initialize S, 7, O, and
L to 0

1. If 3 is order inconsistent, then fail.
2. If 3 1s complete, then return .

3. If there is a link (w, g, G, w'), and a threat v to this link in 8 such that neither v < w
nor w' < v is in Closure(Q), then nondeterministically add either v < w or v’ < v

to O. Go back to (1).

4. There must now exist some step name w in S such that at least one of its prerequisites
are still not supported, i.e. the set

Open(w) = {g | g is a prerequisite of w and there is no link
(w',¢',G,w) in L such that g is in G'}
is not empty. In this case, let
Gik << G122 <g11 <G, Gmn = = Gm2 < Gm1 <G,
k,m,n > 0, be the subgoals in Open(w), and G be
g&gun& - &gig& & Gm1 & 0 & Gmn-

Nondeterministically do one of the following steps and then go back to (1). Fail if
none of the following steps succeed.
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(a) Let w' be an existing step name such that 7(w’) has a positive effect on g, but
no effect on others in G. Add the link (v, g, G, w) to L.

(b) If Ds, = H(G, So), then add the link (START, g, G, w) to L.

(¢) Select an action o which has a positive effect on g, but no effect on others in G,
and whose equality constraint is satisfied. Create a new step name w’. Add w’

to S. Let 7(w') be a. Add the link (v, g, G, w) to L.

It can be shown that this planner inherits many properties of SNLP. For instance, it is
also sound and complete for ground goals.

Example 6.1 Let us now illustrate this planner using a machine shop scheduling domain

adapted from (Smith and Peot [22]).
Fluents:

e shaped(z): x is shaped.
o drilled(x): z is drilled.
o fastened(z,y): x is fastened to y.

e free(z): x is not fastened to any other object.
Actions:

e shape(z): shape z and undo the effect of drill(z), provided z is free.
o drill(z): drill z, provided z is free.
e bolt(z,y): fasten z to y, provided both z and y are drilled.

This domain can be axiomatized as follows:
Action precondition axioms:
Poss(shape(z),s) = H(free(x), s),
Poss(drill(z),s) = H(free(x),s),
Poss(bolt(z,y), s) = H(drilled(x), s) A H(drilled(y), s) Az # y.
Successor state axioms:
Poss(a,s) > H(shaped(z),do(a, s)) =
a = shape(z) vV H(shaped(z), s),
)

Poss(a,s) D H(drilled(x),do(a,s)) =
a =drill(z)V [H(drilled(z),s) N a # shape(z)],

Poss(a,s) D H(fastened(z,y),do(a,s)) =
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a =bolt(xz,y)V a=bolt(y,z)V H(fastened(z,y),s),
Poss(a,s) D H(free(z),do(a,s)) =
H(free(x),s) A =(3y)a = bolt(z,y) A ~(3y)a = bolt(y, x).
Now suppose that the initial database Dg, is the set of following sentences:
A#B,
H(shaped(z),So) = false,
H(drilled(z), So) = false,
H(fastened(x,y),So) = false,
(Vz).H(free(x), So) = ~(y)H(fastened(z,y), So).

It can be verified that the following are state constraints:

s> S0 D (Va).H(free(x),s) = ~(3y)H(fastened(z,y), s),
s> S0 D (Ya,y).H(fastened(x,y),s) = H(fastened(y, x),s).

Using these two state constraints and Theorem 2, we can show that

(Va,y)x#y D
shaped(z) < fastened(x,y) A shaped(y) < fastened(z,y) A
drilled(z) < fastened(z,y) A drilled(y) < fastened(z,y) A
shaped(z) < drilled(x)

Now given the goal Gy = shaped(A) & shaped(B) &« fastened(A, B), our nonlinear plan-

ner works as follows. Since
shaped(A) < fastened(A, B) A shaped(B) < fastened(A, B)

holds, so the planner chooses an action that has a positive effect on fastened(A, B) but no
effect on shaped(A) or shaped(B). The only action with this property is bolt(A, B). So it
creates a step w,; for this action. This yields the causal link:

(wy, fastened(A, B), shaped(A) & shaped(B) & fastened(A, B), FINISH).
Now the planner has to achieve the prerequisites of w;, which are
shaped(A), shaped(B), drilled(A), drilled(B).

Since both shaped(A) < drilled(A) and shaped(B) < drilled(B) hold, it can work on
either shaped(A) & drilled(A) or shaped(B) & drilled(B). Suppose it decides to work on
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the latter. Since drill(B) is the only action that has a positive effect on drilled(B) but no
effect on shaped(B), it creates a step wq for this action, and adds the following new causal
link:

(wg, drilled(B), shaped(B) & drilled(B), w;).

Now the planner has to achieve the prerequisites of w,, which are shaped(B) and free(B).
They can be achieved by adding the following two links:

(START, free(B), free(B),w;), (ws, shaped(A), shaped(A),w,),

where the new step ws is mapped to shape(A). Similarly, for the prerequisite free(B) of
ws, 1t adds the link:
(START, free(B), free(B), ws).

Similar causal links can be added to achieve the other pair of prerequisites, shaped(A)
and drilled(A), of wy. When this is done, it has a complete, order consistent nonlinear
plan.

Notice that for this example, as long as the planner makes use of knowledge about <,
no threat removal strategies are needed. For SNLP, as shown in (Smith and Peot [22]),
some non-trivial threat removal strategies are needed in order to avoid backtracking. m

7 Some General Considerations

In general, computing < requires induction, thus is intractable. However, since < is defined
context independently, the computation does not need to be done at run time. It is even
possible for users to provide such knowledge. For instance, the subgoal orderings in both
the blocks world and the machine shop examples are obvious (to the human designer).

It is also possible for users to include < in their goal statements. For instance, to force
the planner to generate a plan that achieves on(B, (') before on(A, B), we can use the goal

on(B,C) & on(A, B) & Precedence(on(B,(C),on(A, B)).
Formally, we can say that a plan I' achieves this goal under the background theory D iff
D E H(on(B,C)&on(A, B),do(T, Sy)) A Precedence(on(B,C'),on(A, B),do(T, Sp)).

This kind of goals is sometimes useful. For instance, it is sometimes easier, and often
sufficient, to tell someone to “first pick up the child, then go to the supermarket” than to
include enough axioms to make this deducible.

Our goal ordering can be extended along several dimensions. Recall that the macro
g1 < go is defined in terms of Precedence(gi, ¢z, s) by quantifying over all legal situations
that achieve ¢g; and ¢y. Instead of the space of all possible plans, we can consider some
smaller classes of plans. For instance, similar to (Cheng and Irani [4]), we can consider
only those plans that also achieve some additional goals:

Precedence(gi, g2, G) 2 (Vs).So < s A H(g1 & ¢g2,8) N H(G,s) D Precedence(gi, g2, S).
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& Related Work

The situation calculus has been used for planning ever since it’s introduced (McCarthy [14],
McCarthy and Hayes [15], Green [7]). However, to the best of our knowledge, this paper is
the first attempt in using the situation calculus to formalize control knowledge in planning.

Although developed independently, it turned out that our ordering relation is closely
related to but subtly different from that in (Etzioni [5]) and that in (Cheng and Irani [4]).
Although we consider only the space of legal situations, Cheng and Irani ([4]) consider
the space of all possible situations.® This difference is important. For instance, without
restricting to legal situations, we would not be able to show that on(B,C) < on(A, B)
holds for the blocks world. This is because given an (illegal) situation s such that

H(clear(B),s) A H(on(A, B),s) A H(ontable(C'),s) A H(clear(C), s),

the action stack(C, B) would make both on(A, B) and on(B,C) true, thus achieving
on(B,C) while “protecting” on(A, B).

Our subgoal ordering is also related to various threat removal and conflict resolution
strategies in nonlinear planning (Smith and Peot [22], Yang [24], and others). It is possible
that some provably correct threat removal strategies can be derived from our goal ordering,
and vice versa. However, our goal ordering has the advantage that it is planner independent.
As we have shown, it is applicable to both linear and nonlinear planners.

This work is also related to the work of Bacchus and Kabanza [1]. While we use
the situation calculus, Bacchus and Kabanza use a temporal logic for expressing control
information in planning. However, it seems that much of the control information discussed
in this paper can also be represented using their temporal logic, and vise versa.

9 Concluding Remarks

We have applied the situation calculus to formalizing control information in planning by
formulating a subgoal ordering. We have shown the usefulness of this ordering to both
linear and nonlinear planners.

Information on subgoal orderings is only one example of control knowledge that can be
formalized in the situation calculus. The following are some more examples. We can define
that the goal (G is necessary for achieving the goal Gy iff

(Vs).S0 < s A H(Gy,s) D (3s).5 < s <sA H(Gy,s).
Similarly, we can say that the action A is obligatory for achieving the goal G iff

(Vs).So < s A H(G,s) D(3s).50 < do(A,s") < s.

81t seems that Etzioni ([5]) has an implicit notion of legality built into his algorithms by using partial
evaluation and state constraints.
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How to make use of this and other control information in planning is a research project
that we are currently pursuing.

We have also applied the situation calculus to formalizing control information in logic
programming by giving a logical semantics to the cut operator, the chief search control
operator in Prolog. For details, see Lin [10]
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