LOGICAL FOUNDATIONS OF ACTIVE DATABASES

lluju Kiringa

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

Copyright (©) 2003 by Iluju Kiringa

Abstract
Logica Foundations of Active Databases

Iuju Kiringa
Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto
2003

Classical database management systems (DBM Ss) have been enhanced over the past fifteen years with
the addition of rule-based programming to obtain active DBMSs. Active behavior is mainly character-
ized by arulelanguage and an execution model. Execution modelsgo hand in hand with advanced trans-
action models (ATMs) which relax the so-called ACID (Atomicity-Consistency-1solation-Durability)
properties. Both rule languages and execution model s have been proposed in an ad hoc way to deal with
applicationswhich are not easily implementabl e using the classical DBM Ss. Therefore an open problem
in thisareaisto formally account for active behavior using a uniform formalism.

Thisthesis giveslogical foundationsto active databases using the situation calculus, alogic for rea-
soning about actions. Our approach appeal sto theoriesin which one may refer to all past database states.
We givealogical semanticsto an ATM by specifying thisas atheory of the situation calculuscalled basic
relational theory, which is a set of sentences suitable for referring to past database states in the context
of database transactions. We express the properties of the ATM as formulas of the same calculus. Such
properties are logically entailed by the basic relational theory that captures the ATM. We illustrate our
framework by formalizing various transaction models. Next, we introduce active relational theories,
which extend basic relational theories by capturing typical aspects of active behavior found in existing
active DBMSs. We giveaforma semantics to various features of active behavior by using active rela-
tional theories. We capture the most popular active rules, the Event-Condition-Action (ECA) rules, as
programswritten in asituation cal culus based | ogi ¢ programming language that accountsfor parallelism
and we also write transaction programs in the same language. We provide an abstract ECA rule inter-
preter for executing transaction programs that have active relational theories as background axioms. We
also classify various execution semantics for ECA rules. Finally, we give a method for implementing

active relational theoriesin Prolog.

Dedication

To Odyssée, Phillip and Claude,
to the memory of my mother, Marie-Josée Modiri, and

to the memory of Professor Raymond Reiter

Acknowledgements

At the end of thislong and eventful journey throughout the Ph.D. process, it iswith great pleasure
and deep sense of recognition that | would like to acknowledge the help and support of many people.
First of al, | would like to posthumously express my most grateful thanksto Raymond Reiter. Professor
Reiter has been my supervisor five yearslong until hisuntimely death on September 16, 2002. Hewas a
very exceptional scientist, and agreat Al and databaseresearcher. He made scientific contributionsof the
highest quality that will last for ever and permanently influence Computer Science. My thesis, that builds
on his early work on database theory, isjust a small piece of his tremendous influence. | have learned
many aspects of CSfrom him, both from the point of view of content and form. | have also learned from
him how an excellent professor has to be, both scientifically and as a human being.

My grateful thanksal so goto Hector Levesque, my supervisor. Professor L evesgue coached me upon
my arrival in Toronto, when Ray was away for six months on sabbatical. He also took over the job of
supervisor after Ray’s passing. His quick, brief and incisive comments always came to the point, and
they helped alot. Tony Bonner and John Mylopouloswere my database background. Thosewho could
see the flaws with respect to the database content in my work. They did it meticulously. Thank you for
that. | remember Ray saying, “ Tony will pushyouto thelimits! Johnisoneof the best mentorsaround!”;
and he wasright. Yves Lespérance deserves a great thank for pointing out many subtletiesrelated to the
situation calculus. Finally, a special thanksto Alex Borgida, my external examiner, who took histime
to make useful suggestionsfor improving thisthesis.

Thegenerosity and love of my wife Odyssée, and my sons Phillipand Claude made my arduouswork
easier to finish. They endured as much (or even morethan) as| did myself. The painand joysof carrying
out my Ph.D. tasks have also been theirs. They deserve a very specia thanksfor that.

| would aso like to thank my numerous friends at Uof T for their support, advice, and help in many
aspects of lifein this great university: Mikhail E. Soutchanski, Alfredo Gabaldon, Denilson Barbosa,
Sebastian Sardinas, Marcelo Arenas, Dattraya Kulkarni, Lucia Moura, and Daniel Panario. My thanks
alsogoto Yilan Gu, EugeniaTernovskaia, Marsha Chechik, Ric Hehner, Yongmei Liu, etc (thelistisnot
exhaustive) for their feedback on many issues. My friendsin life were a constant source of encourage-
ment: Paul Balebela, Jean-ClaudeBeia, Benjamin Bgjikijaie, Dr Jean-Pierre Diamani and family, Jan and
Maria Ebben, Dr Kadari Mwene Kabyana, Sylvain Kaaa, Dr Célestin Kalambayi, Nola Kianza, Father
Etienne Lefevere, Cléophas Leke, Jean-Rémi Makana, Father Joseph Mbo Omaw, Dr Grégoire Mbuyi,
Father Joseph Mbuyi, Marcellin Mbwa-mboma, Dr Blaise Mpeti, Dr Basile Mpotompendo, Dr Crispin
Ngwey and family, Bishop Phillipe Nkiere, Mastaki N’sebuyange, Modeste Nshole, Father Donat Ns-
hole, Dr Mwamba Tshibangu, Damas Umba, Dr Fréderic Wandey, etc (again thelist is not exhaustive).

Finaly, | warmly thank my parents Dominique Kiringa et the late Marie-José Modiri for their con-
stant encouragement. This thesisis partly dedicated to the memory of my mother. | am sure that her
eternal rest will be even more sweetened by my Ph.D.

Contents

1

I ntroduction 1
1.1 Backgroundand Mativation L 1
1.2 TheProblem: A Formal Account of ActiveDatabases. 2
13 Challenges. 4
14 Methodology 4
15 Contributions 5
151 Modding Database Transactionsas Relational Theories 5
152 ModdingActive Databasesas Active Relational Theories 6
153 Method for Implementing Basic and Active Relational Theories 6
154 Summary of theContributions 7
16 OveviewoftheThesis 8
Background 9
2.1 Fundamentals of Active Database Management Systems
211 BasicDefinitions
212 Dimensionsof ActiveBehavior oL 12
213 KnowledgeModel: ECA-rules 14
214 ExecutionModel 17
215 Architecturesand Implementations 21
22 WorkonDatabase Transactions. 22
221 ACTA . e 22
222 TransactionLogiCo 22
223 St@E0og . . . 23
224 LynchAutomata e 23
2.3 Work on Knowledge and Execution Models of ActiveDatabases 24
231 Classification 24
2.3.2 Denotational Semantics-based Formalization 24

2.3.3 Logic-based Formalization
234 Other Approaches
24 Summary

Logical Preliminaries: the Situation Calculus

3.1 Situation Calculus: the Core Language . .
3.11 AnlInforma Presentation.

312

ThelLanguage.

3.2 TheFrameProblem and Basic ActionTheories

3.21 Modeing Dynamic Domains: theFrameProblem

322

Basic Action Theories

3.23 Theprojection Probleminthe SituationCalculus
3.3 A Modd Theoretic Semantics for the SituationCalculus
3.4 Basic Resultsof the Situation Calculus . .

35 Summary

Specifying Database Transactions

41 TheSpecificationLanguage
411 Non-Markovian Control inthe SituationCalculus

412 TheSpecification Framework

4.2 Specifying Flat TransactionsModelso L.
421 BasicReational Theories

4.2.2 Strict Schedulesthat Avoid Cascaded Rollback

423 Lega Fla Transactions.
424 Propertieso

425 FHat Transactionswith Savepoints
Properties

426 ChanedFlat Transactions it

4.3 Specifying Advanced TransactionModels L.
431 ClosedNested Transactions i i it

4.3.2 Cooperative Transaction Hierarchy

433 OpenNested Transactions

44 Example.
A5 SUMMAY . . . o e e e e e e e

Specifying Knowledge M odels
51 ECA-Rules

Vi

51
52
52

57
57
62
63
64
66
68
69
71
71
75
78
82
84

86

5.2 Transition Fluentsand Net EffectPolicy
53 BventLogics e
531 Primitiveand Complex EventFluents
5.3.2 Event Huentsand ConsumptionModes
54 ActiveRelational Theories
55 Summary e

Specifying Execution Models

6.1 Non-MarkovianConGolog e
6.1.1 Well-formed ConGologPrograms
6.1.2 Semanticsof Well Formed ConGologPrograms
6.1.3 Simulation of Well Formed ConGologPrograms
6.2 Specifying the Execution Modelswith Flat Transactions
6.2.1 Classification e
6.2.2 Immediate ExecutionModel
6.2.3 Ddayed ExecutionModel Lo
6.24 Mixed ExecutionModel
6.3 Specifying the Execution ModelswithONTs
6.3.1 Classification
6.3.2 Immediate ExecutionModels
6.3.3 Deferred ExecutionModd
6.3.4 Detached ExecutionModels
6.4 Semanticsof RulePrograms
6.4.1 Abstract Executionof RulePrograms
6.4.2 Classification Theoremsfor Execution Models: the Flat Transactions Case
6.4.3 Classification Theoremsfor Execution Models: theONTsCase
6.5 Priorities.
6.6 Propertiesof RulePrograms
6.6.1 Generd Properties
6.6.2 Terminationand COITeCtness oo it
6.6.3 Confluence
6.7 SUMMaY e e e
Method for I mplementing Active Relational Theories
7.1 Implementing Basic Relational Theories
7.1.1 Some Preliminarieson the Syntax of LogicPrograms
7.1.2 Revised Lloyd-Topor Transformationsfor non-Markovian Sentences

Vii

7.1.3 Correct Answers, and Non-Floundering SLDNF-Resolution 131

714 GenerdlizedClark’'sTheorem 132
7.15 Implementing BRTsfor Flat Transactions 133
Definition for Action Precondition Axioms 134
Definitionfor Fluents. 135
Definition for Dependency Predicates 136
7.1.6 Theoretica Basisof thelmplementation 136
7.1.7 Implementing BRTsfor Closed Nested Transactions 139
Definition for Action Precondition Axioms 139
Definitionfor Fluents. 139
Definition for Dependency Predicates 140
7.2 Implementing Active Relational Theories 141
7.2.1 Ddfinitionsfor Transitionand EventFluents. 141
722 Example 142

7.3 A non-Markovian ConGolog Interpreter for Well Formed Programs with BRTs as Back-
ground AXIOMS e e e 142
7.4 lllustrating the Methodology: A Further Example 151
75 SOL3 . oo 164
751 Knowledgeand ExecutionModel L 164
KnowledgeModel 164
ExecutionModel 166
752 Formalization 167
KnowledgeModel 167
ExecutionModel 168
AlLessonLearned 170
76 SUMMAY o e e e 171
8 Conclusion 172
81 Summary e e 172
82 FutureWork 174
Bibliography 176
A The Regression Operator 187
Al Reter'sRegression Operator 187
A.2 Regression Operator For Active Relational Theories. 188

viii

The Revised Lloyd-Topor Rules
Semantics of ConGolog Programs

Sample Programs

D.1 TheBRT fortheDebit/CreditExample.

D.2 TheART for the Portfolio Example
Examples
SQL 3 Syntax for Triggers

Proofs

190

191

192
192
196

204

205

206

List of Figures

21
22
23

31
3.2

51
52

6.1

7.1
7.2
7.3

8.1

Aninstanceof thestock tradingexample 12
Overview of mandatory dimensions of the knowledge model of ADBMSs 13
Overview of mandatory dimensions of the execution model of ADBMSs 18

The tree of possible situationsrooted in the initial situation for adomain with » actions. 38

Aninterpretation for the stock tradingexample 46
Rulesfor updating stocksand buyingshares 88
Informal semantics of basiccomplexevents 94
Prioritized rules for updating stocksand buyingshares 124
Overview of dimensionsof theknowledgemodel of SQL3 166
Overview of dimensionsof theexecutionmodel of SQL3 167
Semanticsof theSQL3 executionmodel L. 170
Relational theories as conceptual models of active database management systems . . . 174

| mportant Definitions and Abbreviations

Closed FOrm Databases ovvee et e e e Definition 3.4
Definitional ThEOrES o e e e Definition 3.5
Terminal ACHIONSt e e e e e Abbreviation 4.3
Update ConfliCtSo e Abbreviation 4.4
Transaction CONFlICESo e Abbreviation 4.1
Running Transactions—the Flat TransactionCase Abbreviation 4.7
Restoring Begin of Transactions—the Flat TransactionCase Abbreviation 4.8
Lega TransaCtionsot e e Abbreviation4.10
External Actionsof Flat transactionso.oiiiiiiit i, Abbreviation 4.11
Restoring Save POINESo e Abbreviation 4.30
Restoring Begin of Transactions—the Chained TransactionCase Abbreviation 4.13
Running Transactions—the Nested TransactionCasecooiii. ... Abbreviation 4.14
Transaction Conflicts— Nested Transactionsooviiii ... Abbreviation 4.39
Restoring Begin of Transactions—the Nested TransactionCase Abbreviation 4.15
Transaction Conflicts — Cooperative Transaction Hierarchy Abbreviation 4.18
Restoring Begin of Transactions— Cooperative Transaction Hierarchy Abbreviation4.19
Primitive EVENt OCCUITENCEttt et e et et Definition 5.1
Complex EVent OCCUITENCEttt ittt et e e e e e et e e aeeeane Definition 5.4
First Order Past Temporal LOQIC o.o it e e Definition 5.5
BVENt LOgIC . ettt e Definition5.7
Implication and Equivalence Problemfor Events Definition 5.8
Basic Relational Theoryo e e Definition 4.4
ActiveReational Theory e Definition 5.10
Active Relational Databaset e Definition 5.11
Situation-Suppressed Termsand Formulas Definition 6.1
Well Formed ConGolog Programot Definitions 6.2—6.4
Semantics of T'rans for Processing Flat Transactions Definition 6.5
Situation-Restored Termsand Formulas it Definition 6.7
SeMantiCS Of Holds e Definition 6.8
Universal Possibility Assumptionfor Test ACtions ..o .. Definition 6.9
DatanasE QUENY ..ottt e e e Definition 6.12
Implication and Equivalence of ExecutionModels Definitions6.13-6.14

Xi

Normal and General Programsoee e e e Definition 7.2

Normal and General GOalSttt e Definition 7.3
Bounded FOormulao e Definition 7.4
Abbreviationsfor HandlingBounded Formulas Abbreviation 7.1
Extension of the SemanticsSof Holds e Definition 7.6
Closed Initial Databasesfor Basic Relational Theories Definition 7.10
Completion of @aProgramo Definition 7.7
L0 o A 1S Definition 7.8
DEfiNItiON fOr oSS ..o e Definition 7.11
Non-Markovian Regressable Formulas i Definition A.2
Closed Initial Databasesfor Active Relational Theories Definition 7.23

Xii

Chapter 1

| ntroduction

1.1 Background and Motivation

Active databases unify traditional database technology with rule-based programming to expressreactive
capabilities. Traditional database management systems(DBMSs) are passivein the sensethat only users
or application programs can activate definition and manipul ation operations on stored data. An impor-
tant and useful enhancement would be the addition of active behavior to them to obtain active DBMSs
(ADBMSs). Here, thesystemitself performs some definition and manipul ation operationsautomatically,
based on a suitablerepresentation of the (re)active behavior of the application domain and the operations
performed during a database transaction.

The concept of rule and its execution are essential to ADBMSs. An ADBMS has two major com-
ponents, a representational component called a rule language, and an executional component called an
execution model. The rule language is used to specify the active behavior of an application. Typical
rules used here are the so-called EVENT-CONDITION-ACTION (ECA) rules which are a syntactical
construct representing the notion that an action must be performed upon detection of a specified event,
provided that some specified condition holds. The execution model isbest explainedin conjunctionwith
the notion of database transaction. A database transaction is a (sometimes nested or detached) sequence
of database update operations such as insert, delete, and update, used to insert tuplesinto, delete them
from, or update them in a database. The execution model comes in three flavors: immediate execution,
deferred execution, and detached execution, meaning that the execution of rulesis interleaved with the
execution of database update operations, is done at the end of transactions, and is done in a separate
transaction, respectively.

Although the term “active databases’ was coined by M. Morgenstern as early as 1983 ([Mor83)),
ADBM Sshaveattracted the attention of researchersin databasesonly over thelast decade ([JF96], [Pat99]).
Theperceived need for active behaviorin DBM Ss stemsfrom some advantagesADBM Sshave over their
passive counterpart ((WC96], [FT95], [PDW*93]): they (i) perform functionsthat passive DBMSs can

CHAPTER 1. INTRODUCTION 2

only encode in applications, (ii) are needed to implement a wide range of applications that cannot be
implemented using passive DBM Ss, and (iii) perform tasks requiring special -purpose subsystemsin tra-
ditional DBMSs.

General integrity constraints (1Cs) and triggers are examples of the new functionalities provided by
ADBMSs. Integrity constraintsstate conditionsthat must bevalid over datastoredinthedatabase. Though
some limited kind of 1Cs such askey constraintsand referential 1Cs are supported in traditional DBMSs,
ADBMSs support more general and flexible ICs that are executable at any time to initiate compensat-
ing actions whenever violationsof 1Cs are detected. Triggers state that some actions are to be invoked
upon the detection of certain conditions. In the case of violationsof I1Cs, these actions are, as mentioned
above, compensating ones.

Datarintensive expert systems, view materialization, or workflow management systems are some of
the applicationsthat are beyond the scope of passive DBMSs ([WC96]). Data-intensive expert systems
are expert systems whose data exceeds main memory; they store their excess datain adatabase or afile
system. Since they generally use a rule language and a database, they can be built using an ADBMS as
platform.

View materialization deal s with the propagation of changes made to relationsin a databaseto views
defined on these relations. The reason for doing so is that materialized views must be kept consistent
with the relations over which they have been defined. Since changesto base relations of a database can
be viewed as triggering events and their use to update views can be defined as actions, they also can be
managed using an ADBMS as platform.

A workflow management system (WMS) controlsinterconnected computational tasks. Such a sys-
tem monitors the state of managed tasks, invoking other tasks whenever appropriate and passing data
between them as needed. Since monitoring and action or task invocation are typical of ADBMSs, the
later are suitable platforms for developing WMS applications.

In ADBMSs, many of the new functionalitiesare encoded in the system kernel. Therefore, no need
for special-purpose subsystems arises in them. Tasks such as authorization, statistics gathering, view
management, or simple ICs are simply “hardwired” into the system kernel.

Attracted by these obvious advantages of ADBMSs, various vendors of relational DBMSs have in-
corporated active behavior facilitiesin their products, and the object-relational SQL standard (SQL3) is
supporting active rules as well ([Pat99],[WC96]).

1.2 TheProblem: A Formal Account of Active Databases

Thereis alarge body of literature on active databases. In particular, most researchers in the area have
worked on prototypes; several active database systemshave been devel oped (see[FT95], [WC96], [PCFW95],
and [Pat99] for a catalogue of the most influentia systems). Unfortunately, lacking a common theory

CHAPTER 1. INTRODUCTION 3

for the semantics of ECA-rules and being devel oped independently from each other, they exhibit differ-
ent behaviors for syntactically similar rules ([FT95]), so that the question of giving a unifying formal
foundation to active databases is an important open problem; that is, an investigation of the formal rep-
resentation and reasoning aspects of rulesis an open topic of research. Thislack of foundationa work
on active databases leads, for instance, Ceri and Widom to express the following complaint:

... there is no unifying theory underlying active database systems comparable to the the-
ory underlying deductive database systems (...). A formal foundation for active database
rulelanguages would provide a very important step in understanding and characterizing the
commonalities and differences across systems ([WC96]).

Without stating it explicitly, the unifying theory that Ceri and Widom havein mind isarestricted form of
first order logic, namely DATAL OG with negation. The lack of a uniform formal semantics for charac-
terizing active databases and the existence of severa ad-hoc, different, and hard to compare operationa
semantics have also been pointed out in [Zan93], [Wid93], [PCFW95], [FT95], [CC95], [BL96], and
[Pat99]. Thisis the source of some of thetechnical problems that active databases face such as a clear
justification of the correctness of the implementation.

Thisthesisaimsto provide a logic-based formal account of active databases. Active rules are ady-
namic domain, thus such a formal account should be provided in a framework suitable for modeling
changing worlds. For this, we choose the situation cal culus (proposed in [MH69], and enhanced by the
Cognitive Robotics Group at the University of Toronto as shown in [Rei01]), which is a language for
modeling dynamical domains, asthe particular logical framework within which to carry out our formal-
ization of active databases. We use this cal culus both to represent the active behavior and its execution
semantics, and to reason about the properties of this behavior. Situation cal culus theories used to repre-
sent active databases and their execution semantics play arole similar to that of the restricted forms of
first order logic that are used in deductive databases.

Work has been done on formalizing some aspects of active databases. However, work done with
aview towards a unifying theory accounting for most of the aspects of active databases is scarce (see,
for instance, [Wid93], [Zan93], [FT95], and [RPS99]). Existing proposals use a variety of modeling
formalisms. However, we strongly believe for reasons that will be clear in Chapter 4 that the situation
calculus permits much simpler solutionsto most of the formalization problemsin active databases than
thosefurnished by existing formalisms. One of these reasonsisthat accounting for database transactions
involves representing and reasoning about actions and change from database state to database state, all
of which are suitably done in the situation calculus.

Informally, the situation calculus forms a suitablelogical framework within which a general theory
of actionsin a dynamically changing world can be formulated. The basic ontological categories of the
calculusare situations(histories) and actions. Situationscan beinterpreted asworld historiesconstituted

CHAPTER 1. INTRODUCTION 4

by alist of actions ([Rei96]), whose execution brings the world from one situation to another. Theworld
situations are described by a set of properties called fluents, which become true or false when actions
are performed. For modeling purposes, one should provide a suitable set of axioms (a theory) which
specifies how the world hasto change asaresult of action executions. In providing such a set of axioms,
one hasto cope with the so called frame problem, which isthe problem of providing avery large number
of axioms specifying what remainsinvariant during changes. In[Rei01], Reiter proposesa sort of action
theory, called basic action theory, which is suitablefor reasoning about actionsand, moreover, embodies
a solutionto the frame problem.

By providing aformal account of active databases in this thesis, we contribute to a solution to the
af orementioned open problem of foundationa work, which has been largely neglected until recently (see
[FT95], [Wid93], and [Zan93] for a discussion of this problem).

1.3 Challenges

Asweargued inthe previoussection, we usethesituation cal culus both to account for the representational
and the executional componentsof active databases, and to reason about rules. In achieving our aims, we
shall encounter many challenges. Firstly, we shall haveto focuson thetechnicalitiesof buildingalogical
framework suitable for giving a uniform formal account of (ideally al) the relevant aspects of active
databases. Secondly, we should usethisframework to model thedifferent concepts of advanced database
transactions such as nested and hierarchical transactions; furthermore, we should use this framework to
model active rules as programs written in a situation cal culus-based language and to model the different
flavors of execution semantics as suitable closed formulas of the situation calculus. Thirdly, we shall
haveto (correctly) implement the obtained specificationsin order to execute them. Finally, we shall use
the framework to capture some aspects the ECA rule standard SQL 3.

1.4 Methodology

In [Rei84], Reiter proposes a logical (proof theoretic) formalization of relational databases by formu-
lating the following assumptionsthat underly relational databases: the closed world assumption (CWA),
the uniquename assumption (UNA), and thedomain closure assumption(DCA). Heformalizesrel ational
databases as a set of ground assertions R (a4, . . . , a,,) over afunction-freefirst order language £, where
R isan-ary relational symbol in £, and a4, ... , a, are constant symbolsin £, together with a set of
axioms stating the above assumptions, Clark’s completion (Clark[1978]), and equality. All of these as-
sertionsand axiomsform arelational theory. A query isastatementin £. Finally, an answer to a query
isalogica consegquence of the database.

Without an explicit reference to [Rei84], [Rei95] formalizes database relational schemas as fluents

CHAPTER 1. INTRODUCTION 5

whosetruth value evolves over time as aresult of updatesformalized as actionsin the situation calculus.

Buildingon[Rei84] and [Rei95], our thesisaimsto account formallyfor active databasesasa further
extension of the relational model to accommodate new world knowledge, in this case representational
issues associated with rules, their execution semantics, and database updates. We achieve thisgoal by
using the situation calculus. We think that the situation calculus may be used for such aformal account
because of the following advantages: the calculus provides a formalization of primitive transactions; it
isalogic for describing dynamical systems; it provides a foundation for a theory of complex actions
in which an operational semantics of active systems can be formulated; it expresses knowledge about
the world in a declarative way, thus allowing an implementation independent characterization of active
systems; and itsnotion of action can be used to formalize both the action part and the event part of active
rules, whereas the condition part of active rules may be formalized using first order logic.

It is clear that severa other similar logics could have been used for our formalization. Prominent
examples are dynamic logic, event calculus, and transaction logic. We prefer the situation cal culus, due
to aset of benefits it offers, the most desirable of which are the following: actions are considered first-
class citizens of the logic, thus allowing us to remain within the language to reason about them; and the
explicit addressing of the frame problem that inevitably occursin the context of the database updates.

1.5 Contributions

151 Modeling Database Transactionsas Relational Theories

Variousadvanced transaction model s (ATMs) have been proposed to extend the classical flat transactions
(JGA95]) by relaxing some of the ACID (Atomicity-Consistency-Isolation-Durability) properties (see
[EIM92],[JK97] for acollection of the best examples of these models). The ATMsaim at improving the
functionality and the performance of new applicationsthat do not accommodate the ACID properties.
We extend the specification of database updates given in [Rei95] to a general theory of database
transactions with ACID properties. We start by extending situation cal culus theories of [Rei01] to non-
Markovian theories ([Gab0Q]), which explain change in terms of all past situationsand not solely based
on the previous situation. Non-Markovian theories are needed, for example, to concisely (i.e., with few
axioms) capture the semantics of transaction actions which very often refer to the history of a database.
Next, weintroducethebuildingblocksof our specificationframework for representing rel ational database
transactionsin the situation calculus. After that, we modd relational flat databases transactions as sec-
ond order theories called basic relational theories, and define alegal log as one in which all database
actionsthat are possible have indeed been executed. Here, we focus on using basic relational theoriesto
model flat transactionswith ACID properties, which turn out to be properties of logsthat are legal. We
then generalize these rel ational theoriesto deal with variations of classical flat transactions, and various
ATMs, among which closed and open nested transactions are good examples. We show how to build

CHAPTER 1. INTRODUCTION 6

relational theories corresponding to these various ATMs, to formulate properties of these ATMs in the
situation cal culus and to prove these properties aslogical consequences of the relational theories.

152 Modeling Active Databases as Active Relational Theories

We extend the framework for modeling ATMs to one for modeling the reactive and execution models
of active behaviors. The new theories we introduce here are called active relational theories. As ac-
tive databases are intimately related to transactions, a substantial building block of these new theoriesis
made of relational theories. An active relationa theory precisely encompasses a basic relational theory
capturing a specific ATM and axioms for typical active database fluents that are induced by the origi-
nal database fluents of the domain. We use ConGolog, a situation cal culus based language for modeling
and simulating dynamic domains ([DGLLOQ]). A set of ECA-rulesisexpressed as a ConGolog program
whose execution models are embedded both into its structure and into the semantics of aspecial ternary
predicate Do which serves as an abstract interpreter for rules.

More specifically, we show how ConGolog programs are used to capture transactional behavior and
how to use the semantics of these programs in simulating the transactional behavior with the basic rela-
tional theories corresponding to various ATMs as background axioms. Next, weintroduce further build-
ing blocksthat are specific to active databases into the specification framework laid down so far. These
building blocks include an event logic, a fragment of the situation cal culus used to capture and specify
event algebras in logic. Then, we formally define the active relational theories and show some of the
properties of event logics. After that, we model various execution models as ConGolog programs. The
main result hereisa set of classification theorems for the various semantics identified. These theorems
say roughly which semantics are equivalent and which are not. Finally, we tackle the important i ssue of
standard (e.g. confluence, termination, etc.) and non-standard properties of a set of rules.

153 Method for Implementing Basic and Active Relational Theories

Thusfar, we have been involved in atheoretical development that ultimately yields activerelational the-
ories, which aretheoriesof thesituation cal culusthat capturethe dynamic of (rel ational) active databases
in the context of database transactions.

Building on this theoretical development, we extend a method for implementing basic action the-
ories in Prolog presented by Reiter in [Rei01] for active relational theories. The justification for Re-
iter’smethod liesin aconsequence of afundamental theorem of logic programming dueto K. Clark (See
[L1088] for Clark’s result). Suppose that we have afirst order theory in definitional form, in the sense
that all itsaxioms are formulas of theform (VZ) P(%) = ¢. Clark’stheorem says that, whenever alogic
program P obtained from adefinitional theory 7 by taking the if-halves of the sentences (V7)) P(Z) = ¢
yields the answer “yes’ on a sentence ¢, then ¢ islogicaly entailed by 7"; aso, whenever P yieldsthe

CHAPTER 1. INTRODUCTION 7

answer “no” on «, then - islogically entailed by 7. Themain long-termgoal in providing thismethod
isthe use of the theories that we study in thisthesis as a conceptual model for ADBMSs.

Finally, we model someimportant aspects of the SQL 3 standard for active rulesfollowing the guide-
lines set in the theoretical part of the thesis.

154 Summary of the Contributions

The main contributions of thisthesis are;

Specifying database transactions:
e semantics of various versions of the classical flat transactions using relational theories;
e semantics of closed and open nested transactions using rel ational theories;

e proof of properties of ATMs by establishing logical consequences of sentences of the situation
calculus capturing these ATMS;

e method for simulating the captured ATMs using (Con)GOL OG;
Specifying the representation and execution of ECA rules:
e specification of event algebras in the situation calculus;

e semantics of the following dimensions of active behavior: event consumption modes, rule priori-
ties, and net effects;

e specification of various execution models in the situation calculus, together with their coupling
modes; immediate, deferred, and detached execution models;

o classification theorems for some of the execution models.
Method for implementing the specifications:
e implementation theorem for active relational theories;

e abstractinterpreter for transactional programswhaose background theoriesare activerelational the-
oriesfor closed nested transactions;

e semantics of SQL3 in the framework of thisthesis.

CHAPTER 1. INTRODUCTION 8

1.6 Overview of theThesis

Theremainder of thisdocument isorganized asfollows. The next chapter lays down the necessary back-
groundinformation on ADBM S needed to follow theideas presented throughout the following chapters.
We will give abasic introduction to the main components of an active database, particularly to rulelan-
guages and execution models, also called operational semantics. Then, wewill focus on reviewing some
previous work concerned with a formal account of active databases.

In Chapter 3, we will provide the reader with a short and self-contained introduction to the situation
calculus; there, we will insist particularly on the notion of basic action theories and give a second order
semanticsfor it.

Chapter 4 will show how to model relational database transactionsas theoriesof apeculiar sort called
basicrelational theories. There, wewill extend the approach of [Rei 95] by modeling traditional database
transactions— and not only primitive updates — with ACID properties and more advanced transaction
mechanisms used in active database systems.

Chapter 5 isdevoted to extending the basic relationa theoriesto model the representational compo-
nent of active behaviors. The new theories we will introduce in this chapter are called active relational
theories. Since active databasesare closely related to transactions, basic rel ational theorieswill be asub-
stantial building block of activerelational theories. The new ingredientswill be axiomsfor capturingthe
aspects of active behavior related to events.

With activerelational theoriesin hand, we represent the execution model sof activebehavior in Chap-
ter 6 by compiling aset of given ECA rulesinto a ConGolog program, arule program, whosestructureis
constrained according to that of the given execution model. Then, we givethe semanticsof the execution
of arule program in connection with the execution of a transaction program modeled in ConGolog.

The reader would most probably be curious about how useful the whole theoretical development in
Chapters 2 through 6 is. We will satisfy this curiosity in Chapter 7 by giving a simple implementation
method for ADBM Ss modeled following the guidelines set in Chapters 4-6. We consider Chapter 7 to
be an important step towards a methodol ogy for devel oping active rule systems.

Finally, Chapter 8 summarizes thethesis, states our main results, and pointsout some open problems
and research challengesfor future work.

Chapter 2

Background

In this chapter, we present a brief overview of the background our work is based on. First, we give a
basic introduction to active databases, mainly following the presentation in [Pat99]; doing so, we focus
particularly on the two main components of an ADBMS which are rule languages and execution mod-
els, by depicting their various aspects, called dimensions. We then review previouswork dealing with a
formal account of active databases and show how it issimilar to or diverges from work presented in this
thesis.

2.1 Fundamentalsof Active Database Management Systems

2.1.1 Basc Definitions

Before we proceed dealing with active databases, we first introduce some definitions of basic relationa
database concepts, following [AHV95] and [Rei84].

To specify particul ar structures of the datato be storedin adatabase, datamodel s have been provided.
A datamodel consistsof amathematical notationto describe data, and atechniquefor manipul ating them.
The former isknown as data definition language (DDL), whereas the later isknown as the data manipu-
lation language (DML). In DMLs, two capabilitiesare provided: answering queries posed to stored data
and updating them. The most important datamodel s to date are the network (based on graphs), relational
(based on relations), and object-oriented (also based on graphs) models. When first-order logic is used
asamathematical notation for describing data, we have adeductive data model ; the corresponding DML
isthefirst-order evaluation of logical formulas.

Without loss of generality, inthisdocument we consider therel ational datamodel introduced by Codd
([Cod70Q]) or its deductive counterpart (without database views) whenever nothing elseis stated explic-
itly. We present the relational model in this section and defer the treatment of the deductive counterpart
to the next section. We assume the existence of two disjoint countably infinite setsatt of attributesand

CHAPTER 2. BACKGROUND 10

relname of relation names. We a so assume a countably infinite set dom called the domain. Thereis
amapping Dom from dom to att such that, for each A € att, Dom(A) isthe underlying domain of
A.

Definition 2.1 A relation schema (or, simply, relation) is a relation name R € relname; it issaid to
have a finite set of attributes. The arity of a relation schema isthe cardinality of the set of its attributes.

Definition 2.2 Let Rbearelation. Aset M C att of attributesof Ris a key iff (1) no two tuples of R
have all the attributesin M the same, and (2) no set M’ suchthat M’ C M fulfills property (1).

Definition 2.3 A database schema is any nonempty, finite set DB of relation schemas; that is DB =
{R1[U1], ..., R,[U,]}, where U; C att, and R; € relname; R;[U;] denotesa relation R; over a set
U; of attributes. Note that U/; may appear morethan onceinthelist R1[U], ..., R,[U,].

Definition 2.4 A relation schemainstance (or, simply, relation instance) of a relation schema R[U] isa
(possibly empty) finite set of tuples < 74, ..., 7, >, wherer; € Dom(A;) andn isthearity of R.

Definition 2.5 A database schema instance (or, simply, databaseinstance) of a database schema DB is
amapping | with domain D B, such that | (R) isa relation instance of R for each R € DB.

Usually, tuples stored in arelation instance are subject to integrity constraintswhich are restrictions
imposed on the databaseinstancesto satisfy certain properties. For example, we can requirein adatabase
instance about humans that no one is aged more than 120 years, and that no one has two id numbers.
There are at least three sorts of |Cs described in the literature ([CF97]). The first sort is constituted of
built-in ICs, which have afixed structure and meaning for all application domains. The most important
of built-inICs are: non null 1Cs, which specify attributesthat cannot be assigned a null value; primary
key I1Cs, which specify sets of attributes that are keys, and unique attribute ICs, which specify sets of
attributes that uniquely identify each tuple of arelation without being a key.

The second sort of ICs are cardinality constraints, of which referential 1C isacommon special case.
Cardinality I Cs restrict the number of tuplesthat can participate in a rel ationship between relations, and
referential |C limitsthe relationship to a one-to-many relationship, the one relation being called the ref-
erencing relation and the many relation the referenced one.

Finally, the third sort of 1Csis constituted of the generic ICs, which are ICs with a generic structure
and meaning, thuspermitting the expression of arbitrary restrictionsthat are dependent of applicationdo-
mains. Generic ICsare usually classified into static I Csinvolving one singl e database state and dynamic
ICswhich involve two database states.

Traditionally, DBMSs support built-in and cardinality ICs. Generic ICs are supported in more ad-
vanced DBMSs. A consistent database instance is one that satisfies al the ICs. An integrity constraint

CHAPTER 2. BACKGROUND 11

1C issad to be verified on adatabase instance D B iff DB satisfiesit; and /C' is enforced on DB iff
DB isdesignedin such away that /C' isverified on DB.

Example2.1 Let us consider a stock trading database (adapted from [WC96]). The database schema
containsthe following relations:

price(stockld, price, time),
stock(stockld, price, closingprice), and

customer(custld, balance, stockld)

The price relation storesinformationon stock pricesand timesthat are received froman exter nal source.
The stock relation reflects both the actual stock prices and closing prices of the previous day. Finally,
for stocksthat are monitored for some customers, the customer relationindicatesfor each customer the
stock monitored and that customer’s actual balance. The explanation of the attributesis as follows:

stockId : string; identification number of a stock
price : real; current price of a stock

time : integer; pricing time

closingprice : real; closing price of the previous day
custld : string; identification number of a customer

balance : real; balance of a customer

Figure 2.1 gives an instance of the database schema above. Database instances are usually presented
in the form of tables. We indicate primary keys in boldfacein the database schema. We assume for con-
venience that all values are not null, and, doing so, we avoid dealing with the difficult problem of rep-
resenting null values ([Rei86]). A generic IC for this database schema is to require that the customer
balances cannot drop below zero; another would be to require that all components of a tuple be of the
right type.

Information stored in aDBMS can be retrieved by using queries expressed in an appropriate DML.
Queries are expressed in two different kinds of DMLswhich are: relational algebra, where queries are
expressed as an application of special purpose operators such as union, set difference, Cartesian prod-
uct, projection, and selection to relations; and relational calculus, where queries are expressed as first
order logical formulas that tuplesin the intended answer must satisfy. Relationa algebrais closely re-
lated to Codd' s original relational model, whereas the relational calculusis more related to itsdeductive
counterpart.

Inadditionto querying, DML sareal so used for updating the content of databases. Traditional database
update operations are the well-known constructsinsert, delete, and update.

CHAPTER 2. BACKGROUND 12

price stock

ST1 $100 100100:4PM ST1 $100 $100
ST2 $110 10010:9AM ST2 $110 $100
ST3 $50 100100:1PM ST3 S50 $60
customer

Sue $10000 ST1
Zang $5000 ST2

Figure 2.1: Aninstance of the stock trading example

A database management systemis a software system for efficiently creating and manipulating data
consistently stored in database instances according to some specific data model. It implements both the
DDL and the DML corresponding to the specific data model.

2.1.2 Dimensons of Active Behavior

Many DBM Ss have been proclaimed to be active. ADBM Ss have often been defined as systems express-
ing reactive behavior ([DGG95]). However, the authors of these systems do not agree on the precise
explanation of theterm " active” since they have proposed system architectures before proposing formal
foundationsfor ADBMSs. Thisiswhy [DGG95] proposes some mandatory characteristicsthat a system
should exhibit to be called active. There, it is observed that many existing ADBMSs contain common
features that cannot simply be generalized since thiswould result in meaningless statements. They aso
point out that a definition of ADBM Ss can not simply be abstracted from their intended application do-
mains. Instead, they propose general aswell as specific featuresthat characterize ADBMSs, and that we
call dimensionsof ADBMSs after [PDW*93].

An ADBMS captures the (re)active behavior of application domains. A system embodies reactive
behavior if it offersthe possibility of automatic actionsin responseto relevant happeningscalled events.
A reactivebehavior involvesan associ ation of eventswith actionsthat should be performed automatically
by the system once these events occur; it also involves away of detecting the occurrences of events; it
finally involves a specification of how the system should perform the actions associated with the events
that may have occurred.

To bean ADBMS, a DBMS should (i) necessarily be aDBMS; (ii) support mechanisms for defin-
ing and managing ECA-rules by providing syntactic means for defining events, conditions, and actions,
(iii) support rulebase evolution; (iv) have awell-defined execution model capable of detecting event oc-
currences, eval uating conditions, and executing actions, having awell-defined execution semantics, and
incorporating some user defined or predefined conflict resol ution mechanism.

CHAPTER 2. BACKGROUND 13

An ADBMS may optionally contain a representation of information on ECA-rules using their data
model. Moreover, it may support a clear programming environment providing a devel opment process
and tools like a rule browser, a rule designer, a rulebase anayzer, a debugger, a maintenance facility, a
trace mechanism, and some tuning capabilities.

An active database management systemis a database management system extended with at least the
mandatory dimensions of active behavior.

In the remainder of this section, we focus on spelling out details of the mandatory dimensions of
ADBMSs. Of the four conditionsfor being an ADBMS stated above, condition (i) is obvious and con-
dition (iii) is rather of manageria nature, such that we are | eft with the following main components of
an ADBMS:

e areactivemodel, also considered aknowledgemodel ([Pat99]), for defining eventsand associating
them with actions; and

e an execution model for monitoring events and reacting to detected events.

For short, we will refer to these components as those of active databases and we will call them the active
behavior of the corresponding active database. Wewill also say later that an active databaseis character-
ized by these two componentsand by some other ones. Below, we review each of the two componentsin
turn. Some managerial aspectsof rules setswill still be considered in Chapter 6, wherewewill introduce
them when needed.

COMPONENT | DIMENSIONS/ VALUES

EVENT TY PE: primitive, complex

SOURCE: update operation, exception, external, clock, transaction
GRANULARITY: tuple- or set-oriented

ROLE: mandatory, optional, none

CONDITION ROLE: mandatory, optional, none
CONTEXT: DBt, BINDg, DBg, DB¢

ACTION TY PE: update operation, rollback, information, external, do instead
CONTEXT: DBy, BINDg, BINDs, DB, DB, DB4

Figure 2.2: Overview of mandatory dimensions of the knowledge model of ADBMSs

CHAPTER 2. BACKGROUND 14

2.1.3 Knowledge Model: ECA-rules

The knowledgemodel isexpressed in ECA-rules. Figure 2.2, inwhichwerestrict acorresponding figure
in [Pat99] to relational models, summarizes the mandatory dimensions of the knowledge model. Rules
have three parts. event, condition, and action. It must be noted that other dimensions such as rule ex-
ecution priorities and coupling modes between event detection and condition evaluation may also be
incorporated in the syntactic specification of the knowledge model, although they belong in fact to the
execution model. Users, applications, or DB administrators define rules, using an extension of the DDL
called rule language. Other terms used synonymously for rulesin ADBMSs are: ECA-rules, triggers,
monitors, alerters, or production rules.
Note that we can tentatively write an ECA-rulein the form

EVENT & CONDITION — ACTION,

which informally means: if the event specified by £V F'N'T' occurs and the evaluation of the condition

part CON DITIO N yieldstrue, then the system executes the action part specified by ACTION.
Other forms of rules exist. In deductive DBMSs, logic programming rules are used to provide a

recursive definition of views. A deductive database rule is a Condition-Condition rule of the form

CONDITIONy - CONDITION,,

whereCON DITIO Ny isaconjunctionof literalsand CON DIT 10O N, isan atom. Usually, deductive
database rules are written in the form

A%Lh...,Ln, m > 0.

However, much of the strategies developed for efficient rule processing in response to queries on re-
cursive views are inadequate for processing active rules. Thisiswhy work has been donein extending
deductive DBM Ss with active behavior, in implementing deductive capabilitiesusing ADBMSs, and in
integrating both approaches (See the section on related work).

Another widespread form of rules are expert systemrules. They are Condition-Action (CA) rules of
theform

CONDITION — ACTION.

Thus they are just a special case of and are therefore subsumed by ECA-rules. However, the lack of
“operation-specific behavior” in CA rules have favored ECA-rules in the DB community, although the
former are more declarative than the later ([WC96]).

Using an active database rule language, users syntactically specify the desired knowledge model of
a database.

CHAPTER 2. BACKGROUND 15

Definition 2.6 (Generic syntax of ECA-rules) An ECAruleisa syntactical construct of the form
ON Fvent WHEN Condition THEN Action

Each of thepartsof aruleis specified using a specific language: an event languagefor events, acondition
language for conditions, and an action language for actions.

Event Languages. What triggersaruleisan event. An event isa*“happening of interest” that occurs
instantaneously at specific time points; it is to be distinguished from an event occurrence. An event oc-
currenceis atupleof theform < pe, eid >, where pe isaprimitive event and eid is an event identifier,
respectively. A ruleistriggeredif its event part matches an event occurrence.

Examples of primitive events are data modification operations, data retrieval operations, temporal
specifications, and application-defined events. These are primitive events. Composite events, that is,
combination of primitive events or other composite events, are aso considered using operators such as
logical junctors, sequences, or temporal qualifications.

The problem of specifying composite events in active databases has been recognized as non-trivial
(J[CM91], [GJS92], [GD94], [Zzan95]). Proposals for solving it can be classified in three groups. The
first group usesregular expressionsand context-free grammarsto specify complex composite events(see,
e.g.,[GJS92]). Thesecond group uses graph-based methodsto specify them ([CM91], [GD94]). Finally,
the third group use alogic-based approach (for good examples of thisapproach, see [GJS92], [Zan95]).
We briefly examine work in [GJS92] as a representative of the first and the last approaches and do not
consider the second approach which uses techniques similar to those used in thefirst one.

To specify primitive and complex events, Gehani et a. ([GJS92]) use event expressions. An event
expression £ isdefined as amapping from an event history / to an other event history 2’ containing only
those event occurrences of £ at which the events specified in £/ happen. An empty history is denoted by
null. Formaly, an event expression F is a function 2" — 2", where E[h] C h. E[h] denotesthe
applicationof F toh. Anevent occurrencee € hissaidtosatisfy F iff e € F[h];F issaidtotake place
a e. Any two event occurrences e; and e, are simultaneousif their eids are identical.

Event expressions contain constructslike NU L I, which denotesthe null event, 'y A F5, which de-
notes the conjunction of two events F; and F5, ! F/, which denotes the negation of an event F/, etc. Ex-
pressionsare given a precise semantics; for instance, we have: forany F, E[null] = null; NULL[h] =
null; for agiven primitive event pe, pe[h] isthe maximal subset of 4 containing event occurrences of
theform < pe, eid >; Ey A Es[h] = E1[h] N Eqlh]; (1E)[h] = (h — E[h)]); etc.

Gehani et al. introduce some more operators as abbreviationsto make the specification of composite
events easier. They show that event expressions are equivalent to regular expressions

Eventsin an ADBMS are also classified into tuple-oriented and set-oriented, depending on whether
the granularity of theevent isasingleentity or an entire set thereof. Thisdistinctionisinherited by rules.

CHAPTER 2. BACKGROUND 16

Eventsare sometimes classified in physical eventson the oneside, and inlogical events on the other
side ([FT95]). A physical event isthe physical occurrence of some activity. A logical event isthe effect
of that activity. A system may support one of these classes of events or both. An advantage of physical
events over logical onesis more fine-grained control of the behavior of rules with respect to triggering
operations. However, logical events have the advantage of being more declarative.

The source dimension specifies the origin of an event. Possible aternativesfor relational databases
are: update operationsinsert, delete, and update; exceptionsraised by application programs; pointsin
time; happenings external to the database world (e.g. sensor readings); and transaction commands such
asbegin, commit, and rollback.

Finally, there isarole dimension specifying whether the event part of ECA rules should always ap-
pear (mandatory), whether it may be omitted (optional), or whether it should not at al appear (none).
The none role means that all rulesare CA rules. Usually, most systems adopt the mandatory role.

Condition Languages. Generally, databasepredicatessuch asconditionswritteninaSQL where clause,
restricted predicates, database queries, and application-defined conditions like procedures are used in
condition languages.

Rolesfor conditionsare defined in away similar to thosefor events, except that the most widespread
roleisoptional. The nonerole meansthat all rules are EA rules.

The context dimension specifies the database state in which the condition is evaluated: D Br isthe
database state at the beginning of the current transaction; D By is the database state at the moment of
event occurrence; and D B is the database state at the moment of condition evaluation.

If the language has parameterized events, a mechanism for referencing bindings of events must be
includedinthe conditionlanguage; this mechanism determinesthe context value BI N D g of conditions.

Action Languages. Actionsinvolveatask to be performed. They include: update operations; trans-
actions commands like rollback and commit; actions to inform users of specific database situations of
interest; application procedures that may involve external calls, and aternative actionsto do instead of
the actual action associated with the event part of therule.

Thedo instead task is an instance of the event/action link which isthe connection between the action
execution and the triggering action. From this point of view, three variations of rules are possible. In
the first case, called after rules, the action execution of the rule is normally performed after the action
associated with the triggering events have been performed; in the second case, called before rules, the
action execution of theruleis performed before thetriggering action; and in thethird case, called instead
of rules, the action execution is performed instead of the triggering action.

The context dimensi on specifiesthe database statein which theaction isperformed. In additiontothe
values of the context dimension of conditions, actions have two morevalues: DB 4 and BIND 4. The

CHAPTER 2. BACKGROUND 17

vaue D B 4 isthedatabase state at the moment of action executionevaluation; BI N D 4 isthemechanism
needed to pass bindingsfrom events and conditionsto the action. Examples of valuesfor BIN D 4 are:
parameter mechanism passing data returned by a query or a procedure, or passing data satisfying the
predicate representing the condition part of therule.

Animportant distinctionis made between actionsthat are atomic and thosethat are interruptible. An
action isatomic if the rule that responded to the triggering event cannot be suspended until the action it
is executing isfinished; it isinterruptibleif it can be.

Active systems keep track of transition values during run time. A transition is a DB state change
during the evaluation of the conditions and the execution of actions. A rule language may include a
mechanism for referencing transitions. There are explicit and implicit mechanisms. Explicit ones are
the use of parameterization, and specia keywordslike inserted, deleted, updated, which are commonly
called deltarelations. Further reserved words are new, for denoting the new value of the modified item,
and old, for theold value. Implicit mechanismsfollow ageneral principle: in atriggered rule, references
to someitem D in the rule's condition or action is made implicitly to atransition value of D.

2.1.4 Execution Moded

The execution model specifies the run-time behavior of a set of active rules. Although the details vary
from system to system, the general pattern of the execution model is the following: The defined set of
rulesis monitored by the system for relevant events; then, for any given rule that is triggered by some
event and before its action can be executed, its condition is checked, and if true, itsaction isfinally exe-
cuted. When the action part of aruleisexecuted, theruleissaidtofire. A triggered rulewhose condition
part is evaluated to true is said to be activated.

Thefollowing is a generic execution model agorithm:

while there are triggered rulesdo
1. select atriggered rule R
2. evaluate R’s condition
3.if R'sconditionistruethen execute R's action
To obtain afull rule execution semantics, this simple model is completed and extended with additional
execution features.
Figure 2.3, which againisarestriction of acorresponding figurein [Pat99] to relational models, sum-

marizes the mandatory dimensions of the execution model. However, before presenting these dimen-
sions, we give some details on how events are monitored.

Event Monitoring. Occurrences of events must be detected by the systemin order to trigger rulesthat
havethese events specified intheir event part. An event detector has as task to check which simple event

CHAPTER 2. BACKGROUND 18

DIMENSIONS VALUES

EVENT/CONDITION COUPLING | immediate, deferred, detached
CONDITION/ACTION COUPLING | immediate, deferred, detached
CONSUMPTION MODE none, local, global, ...

GRANULARITY tuple-, set-oriented

NET EFFECT POLICY yes, no

PRIORITY none, absolute, relative, dynamic, numerical
SCHEDULING sequential, concurrent

ERROR HANDLING backtrack, ignore

Figure 2.3: Overview of mandatory dimensions of the execution model of ADBMSs

occursor which composite event occurs as a consequence of the occurrence of aprimitiveevent. A naive
method of detecting composite events can be described as follows:

while there are occurring events do
1. pick one event e that has occurred
2. determine which composite events e is part of
3. For each composite event determined in Step 2,
check whether al other eventsthat are part of it have already occurred
endwhile

The method is hopel essly inefficient, since information about all past events must be maintained and in-
spected on each new occurrence of aprimitive event. More efficient methods exist ((CM91], [GJS92],
[GD94]). For example, an incrementa event detection technique based on finite automata is described
in[GJS92]. Theinput to the automaton are the primitive events occurrences from the event history. The
automaton is fed such occurrences as they happen, in the order of their event identifier. Each event oc-
currence causes the automaton to change its state. When the automaton enters an accepting state, the
composite event implemented by the automaton is recognized as taking place at the primitive event last
read, and the corresponding ruleistriggered. Given an event expression F/, a corresponding automaton
isinductively built on the structure of F.

A problem that may occur isthat of exponential blow-up of stateswhen constructing cross-products
of automata. Such cross-products are needed for example in the construction of automata for conjunc-
tions of event expressions. Another problem, pointed out in [GD94], is agap that occurs by using two

CHAPTER 2. BACKGROUND 19

mechanisms, one to define events (regular expressions), an other to detect their occurrences. With this
remark, Gatziu recognizesthe need of using a unigue“ mechanism” to bridge the gap between event def-
initionand event detection. Inthisthesis, wewill be bridging even larger gapsthan thisone, for example
the one between knowledge model representation and execution model specification.

Execution Models and Transactions. 1n [MD89], the notion of coupling modes is introduced to de-
scribethe synchronization of ruletriggering, condition eval uation, and action execution; it al so describes
the rel ationship between rules and transactions. Generaly, the concept of “coupling mode” is now used
in the former sense.

There are two kinds of coupling modes. the Event-Condition and the Condition-Action coupling
modes. They describethetemporal rel ationship between triggering events and condition eval uation, and
between condition evaluation and action execution, respectively. Two possible values are possible for
both dimensions. immediate coupling and delayed coupling. In the former setting, the conditionisim-
mediately evaluated upon termination of the triggering events; in the later one, it is delayed until some
defined time point. Therearetwo sub-casesof thelater setting: deferred and detached. In deferred mode,
conditions are eval uated within the same transaction, whereas in detached mode they are evaluated in a
separate transaction. Details of these modes are explained later in details.

Thetreatment that the event triggering arule may undergo is called event consumption mode. Here,
twoissuesthat arerel evant are the scope and thetime of event consumption. Thefirstissueamountstothe
guestion of how far the processed eventsretain their triggering capabilities, and the second one amounts
to when eventsare consumed. Three scopes of event consumption are possible: no consumption (mean-
ing that processed events remain capable of triggering further rules), local consumption (meaning that
they no longer can trigger the processed rule), and global consumption (meaning that they no longer can
trigger any other rule). Two kinds of time consumption are possible: either before condition evaluation
(rule consideration time), or after condition evaluation (rule execution time).

The transition granularity determines the rel ationship between event occurrences and rule instanti-
aions; it can be tuple-oriented or set-oriented. In atuple-oriented granularity, the action execution is
coupled with each singletuple of the DB triggering the rule. In a set-oriented granularity, however, the
action execution is performed once for all triggering instances.

Thenet effect policy indicateswhether and how the net effects of events should be taken into account
rather than their individual occurrence. Such net effects are accumulating only changesthat really affect
the database; sample policiesare: (i) if arecord isfirst updated and then deleted, only the deletion is
retained; (ii) if arecord isfirst inserted and then updated, an insertion of the updated record is retained,;
(iii) if arecord isupdated many times, the composition of all updatesis retained as a single update; (iv)
finally, if arecord is deleted after being inserted, this amounts to nothing having happened.

It is possible that many rules are triggered at the same time. Thus some kind of conflict resolution

CHAPTER 2. BACKGROUND 20

mechanism isrequired to select onerulefor execution from the set of triggered rules. The selection may
be arbitrary or based on prioritiesassigned to rules. These priorities can berelativeif declared between
pairsof rules, absoluteif assigned to rules as atotal order, numerical if they are a mapping from integers
to rules, or dynamic if they are dynamically assigned to rules at execution time.

When multiple rules are triggered, a scheduling mechanism should be used for rule firing. Rules
could be executed sequentially or in parallel. However, while avoiding conflict resolution issues, con-
current execution must include some concurrency control mechanism.

Sincerules are processed in the context of DB transactions, the rel ationship between both should be
presented in a more detailed way than done up to thispoint. Recall that thisrelationshipis established,
as stated earlier, through coupling modes which prescribe when a rule condition test or action hasto be
performed or executed.

To define a (classical) transaction, we first distinguish between atomic updates and DB actions en-
forcing thetransaction semantics. Anatomicupdateisany oneof theexpressions R_insert(z), R _delete(Z),
and R_update(7, 8). Intuitively, R_insert(Z) (R_delete(Z)) means the insertion (deletion) of the tuple
Z into (from) therelation R, and R_update (7, 3) means that some update is performed on the tuple 7 of
R, yidlding the output tuple & .1

A DB action enforcing the transaction semantics isa user or application generated action belonging
to the set { Begin, Commit, Rollback}.

Now, we can define an atomic transaction AT as asequence [updy, . .. , upd,] of aomic updates,
where upd, isaways Begin and upd,, is either Commat or Rollback. For example, we may have the
sequence

[Begin, price_insert(I BM,100,500PM),
customer insert(SMITH, 10000, I BM),
price_update((I BM,100,5PM), (IBM,110,530PM)), Rollback],

with the obvious meaning. Finally, we define atransaction T as asequence AT, ..., AT, of atomic
transactions.

The classical transaction theory ([BHG87]) distinguishes between transactions and transaction pro-
grams. A transaction, asintroduced above, can be viewed as a particular execution (or execution trace)
of atransaction program, usually writtenin an Algol-likelanguage. In the sequel of this section, we deal
with transactions, not transaction programs.

1This specification of transactionsis like the approach described in [FT95]. However, unlike our atomic updates that are
primitive modification operations, an atomic updatein [FT95] is more generally defined as afirst-order macro of the form

Upd(a 5) = ¢upd(?,6)7

where ®.,,4(z,5) is afirst-order formulaor a SQL statement specifying the update to be undertaken.

CHAPTER 2. BACKGROUND 21

Now the relationship between rule execution and transaction semantics can be enlightened in differ-
ent scenarios, given the definitions above.

In thefirst scenario, called immediate execution, triggered rules arefired after each atomic update of
every atomic transaction. Thus rule execution isinterleaved with the execution of atomic updates.

In a second scenario, called deferred execution, the condition evaluation and the action execution
of triggered rules occur at the end of atomic transactions, within the same transaction; this means that
the rule execution modul e is executed each time an atomic transaction has been executed, taking control
over thetransaction and giving control back toit once it successfully terminates or aborting it otherwise.

An dternative to this scenario is the case where condition eval uation and action execution are pro-
cessed in two different transactions. Two situations are possible: the separate transaction is a nested
transaction of the original transaction (thisrefinement isfound, e.g., in HIPAC (JWC96])); or itisanin-
dependent transaction (as an example, see Ode (JWC96])). In both cases, a mechanism for concurrency
control that isnot part of the rule execution engine is needed.

Properties of Rule Sets. Once a set of rules has been written, termination/non-termination of therule
processing algorithm is one of the major issuesto deal with. Informally, a set of rulesis guaranteed to
terminate if for all user transactionsand initial database states, rule processing reaches a state where no
further rulesare triggered. Non-termination occursin particular whenthereisadirect or indirect cyclein
thetriggering chain. Several methodsfor handlingthisissueexist: theburden of thedetectionisuptothe
programmer; the system kernel fixes some upper limit for triggering cycles; the rule language includes
some restrictions ruling out the possibility of non-termination (([BCW93a], (|[BCP95], [AHW95]).

Another property of importance is confluence. A set of rulesis confluent if the outcome of its exe-
cution isindependent of the order of rule consideration.

Finally, determinismis often desirablefor rule sets. A set of rulesisdeterministic if the outcome of
its execution always result in a unique database set regardless of the order of execution of rules.

2.1.5 Architecturesand Implementations

Many research and some commercial ADBMSs exist, using avariety of architectures: layered, built-in,
and compiled ([Wid94], [WC96]) (For a summary of these systems and the semantic choice they have
adopted for the various dimensions of active behavior, see [FT95]; for an in depth coverage of some of
them, see [WC96] and the 1994 RIDE special issue on active databases).

A layered architectureis composed from two layers: atraditional DBMS, and an active module built
ontop of it. A built-inarchitectureisa construction tightly coupling both the passive and active compo-
nents of the ADBMS; here, thereis a single kernel exhibiting both a traditional and an active behavior.
Finally, a compiled architecture compiles active rulesincluded in an application into their effects; thus,
it requires no run-time event monitoring, nor doesit require a run-time rule processing.

CHAPTER 2. BACKGROUND 22

Historically, everything began with the project HiPAC ([MD89]), which has been very influentia in
the research community. The project Starburst, developed at IBM, is an example of amature relationa
active database. As representativefor an object-oriented projects, Chimera and Ode are well known. As
an example of a project related to the deductive database data model, A-RDL can be mentioned. Most
of the research projects are implementing alayered architecture (see [WC96] and [Pat99] for adetailed
description of these systems).

Inimplementing ADBMSs, specificissuesareinvolved. The most important onesare: rule manage-
ment through a command language, concurrency control, crash recovery, authorization, error handling,
ruletracing, efficient condition evaluation, rule compilation, and interaction with applications. Some of
these i ssues such as rule management and rule tracing amount to providing powerful rule programming
tools. Othersareto beincluded in the system kernel to increase its functionality. Conceptually, they are
not specific to ADBMSs; they are desirable of every programming system.

2.2 Work on Database Transactions

221 ACTA

Chrysanthis and Ramamritham ([Chr91],[CR94]) present a framework called ACTA which allows to
specify effects of transactions on objects and on other transactions. Our framework issimilar to ACTA.
In fact, we use the same building blocks for ATMs as those used in ACTA. However, the reasoning ca-
pability of the situation cal culus exceeds that of ACTA for thefollowing reasons: (1) thedatabaselogis
afirst class citizen of the situation calculus, and the semantics of all transaction operations — Commit,
Rollback, etc. — are defined with respect to constraints on thislog. Nowhere have we seen a quantifi-
cation over historiesin ACTA, so that thereis no straitforward way of expressing closed form formulas
involving historiesin ACTA. (2) Our approach goesfar beyond ACTA asit is an implementabl e specifi-
cation, thus allowing one to automatically check properties of the specification using an interpreter. To
achievethisgoal, we prove an implementation theorem that justify a Prol og implementation of the spec-
ifications. Finally, (3) athough ACTA dealswith the dynamics of database objects, itisnever explicitly
formulated as alogic for actions.

2.2.2 Transaction Logic

Bonner and Kiefer present atransactionlogic (7 R) that includesamodel theory, and asound and com-
plete SLD-like proof theory ([BK92]). The execution of atransaction ¢ is described by an executional
entailment which intuitively means that, given transaction axioms gathered in P, the execution of the
transaction ¢ leads the initial database Dy to the final database D,, through a sequence of intermediate
statesDy, - -+, Dy_1.

CHAPTER 2. BACKGROUND 23

Likeour situation cal culusbased transactionlanguage, 7 R alowstheformulation of complex trans-
actionsand bulk updates; and itsnotion of executional entail ment correspondstothelogical entailmentin
the situation calculus. However, 7R differsfrom our language. First, 7R isboth update- and sentence-
centered; it allows not only elementary updates, but aso additions and removals of rules. By contrast,
our approach is solely update-centered.? By restricting our concern to updates, we avoid invoking are-
vision theory. Second, unlike 7R, elementary updates in the situation calculus are not predicates, but
first order termsinstead. Third, unlike 7R, which dealswith updates at the physical level, the situation
calculus deals with updates at the virtual level. In fact, this limitation can be overcome in the situation
calculus by progressing the initial database after each elementary update execution ([Rei01]). Finally,
unlikethe situation calculus, 7°R does not consider the frame problem.

Todofull justiceto 7R , one should distinguish between thefull logic and its Horn fragment. Many
of the limitations mentioned above concern the Horn fragment, not the full logic. For example, [San00]
shows how thefull logicis used for reasoning about arbitrary elementary and complex actions (not just
tupleinsertions and deletions) and addresses the frame problem.

2.2.3 Statelog

INn[LML96], Ludéscher et al. specify nestedtransactionsin alogicof database state change called Statel og
that includes a model theory; like ours, this logic allows the formulation of complex transactions, is
update-centered, and considersinvariancein state changes. However, there are differences between their
approach and ours. First, while we allow only primitive updates that are first-order terms, Statelog ex-
presses actions corresponding to Begin, Fnd, Commat, Rollback, etc, as relations. In this respect,
Statelogissimilar to 7R. Second, unlikein Statelog, we appeal solely to the semantics of second order
predicate logic; we perceive no need of a special-purpose semantics to account for models of database
transactions. Third, unlike Statel og, we do not deal with updatesat the physical level. Findly, unlikethe
situation cal culus, Statel og accountsfor nested transactions.

224 Lynch Automata

An early work by Lynch et al. reported in [LMWF88] and [LMWF94] describes an automaton-based
theoretical framework for reasoning about atomic transactions. This approach isin spirit close to our
genera philosophy of providing aframework for reasoning about transactions. It shares with our situa-
tion cal culusbased model acommon ground. First, both approaches view the execution of atransactional
behavior as a sequence of actions. Second, both include theidea of building acomplex transactional be-
havior from existing, simpler ones by usingwell defined combination constructs. However, our approach

2Update-centered approaches specify explicit update operations in the update language; and sentence-centered approaches
allow for updates with arbitrary sentences ([Rei95]).

CHAPTER 2. BACKGROUND 24

models a transactional behavior in avery different way: while we model these behaviors as ConGolog
programs, the approach by Lynch et al. modelsthem as automata. We believe that automata used in this
approach do not offer the same flexibility that predicate logic does. The situation calculus doesin fact
have connectionswith automatain a different way than the one devel oped by Lynch et al.: the decision
problem for fragments of the language can be related to automata on infinite trees as done in [Ter99].
Here, automata are used to provide a semantics for (fragments of) the modeling language (i.e. the situ-
ation calculus) and not as the modeling language itself.

2.3 Work on Knowledge and Execution M odels of Active Databases

The present section aims to review work done in formalizing the knowledge and execution models of
active databases. We will befocusing on the general patterns as distinguished from their actual instances
or implementation, with aview towards mentioning only work that has not focussed exclusively on some
few and special features thereof.

2.3.1 Classification

The formalization proposals examined here are classified using the formalism they use. In general, the
formal specification of active behavior can be classified in two groups. Thefirst group uses the denota-
tional semantics ([Ten76]) as formalism to describe the execution model s of actual ADBM Ss ([Wid92],
[CCO5], [RPS99]). Inthe second group, logicisused, especialy inform of first-order logic, event calcu-
lus, or situation calculus ([Zan93], [Zan95], [LHL95], [BL96], [BLT97],[FWP97]). We also will cover
other approaches that exist, but do not fit into the present classification, dueto their limited scope.

2.3.2 Denotational Semantics-based Formalization

In [Wid92], Widom formally specifies the execution model of the Starburst ADBM S, using denotational
semantics. A denotational semantics is generally defined as a mapping of the syntactic constructs of a
formal language into an abstract meaning formalized in a suitable mathematical model ([Ten76]). This
mapping is represented as a meaning function taking programs of the language as an input value and pro-
ducing the function computed by those programs. Inthe context of an ADBMS, adenotational semantics
isameaning function. Thistakesaset of activerulesasan input and produces a function which mapsthe
set of database states and the set of allowed database modification operationsinto a new set of database
states.

The semantics described in [Wid92] assumes both deterministic and non-deterministic selection of
which rule to consider first when more than one rule is triggered. It is divided into three parts. The
first describes the different domains of various help or supporting functions used to define the meaning

CHAPTER 2. BACKGROUND 25

function M ; the second defines these supporting functionsthemsel ves; and the third defines the meaning
function M. Here, M hasaset of rules Rules € 2% and arule ordering o € O asinput, where R is
the set of activerules, 2% isthe powerset of R, and © isthe set of rule orderings. The meaning of o and
Rules, denoted by M[Rules, o], isdefined asafunctiong : A x § — SU{L}, where A isthe
domain of setsof databasechanges, S isthedomain of databasestates, and | denotesthenon-termination
of rule execution. Putting it all together, Widom formally defines M asafunction2® x 0 — A xS —
SuU{Ll}.

To our knowledge, this proposal isthe first one to have succeeded in giving aformal foundation to
activerules. For thisreason, itiswidely referred tointheliterature. Unfortunately, though Widom argues
that her work is providing a denotational semanticsfor the Starburst rule language, it isin fact providing
only aspecification of the execution model of the Starburst ADBMS, abstracting from itsrule language.

Coupaye and Collet present another attempt to use denotational semantics for formally specifying
ADBMSs (JCC95]). They give aformal specification of the execution model of the NAOS system de-
veloped at the university of Grenoble. In NAOS, arule condition can be aquery expressed in O,SQ L,
whichis an object-oriented version of SQL, and arule action can beaO,C' program. Both O, S@ L and
O,C arelanguagesin the style of Heraclitus (see Section 2.3.4): they may be used to expressthe formal
semantics of ADBMSs.

Coupaye and Collet are essentially applying the set of semantic functions developed by Widom on
the NAOS system, taking the object-oriented character of NAOS conditions and actions into account.
For example, they extend the definition of the valuation function for the net effect of rule actions by in-
corporating the effect of object-oriented rel ated operations such as object creation, or method invocation.
They a so add some new domainsfor supporting functionsthat valuate new featuresfoundin NAOSsuch
as the dynamic activation or deactivation of rules.

Like the denotational semantics approach, we give a declarative semantics that allows one to rea-
son about the behavior of active rules. Unlikeit, oursisaformalization that can be generalized without
difficulties, thus allowing a comparison between the various execution models that exist.

2.3.3 Logic-based Formalization

Theideaof using first-order logic as a mean to formalize ADBM Ss has been advocated first by Widom
and Zaniolo ([Wid93], [Zan93]). Some other researchers have tried to give a logical account of the se-
manticsof ADBMSs ([Wid93], [Zan93], [Zan95], [HD93], [FT95], [LHL95], [BL96], [BLT97], [FWPI7]).
Most of these researchers have been motivated by the existence of awell developed semantics for de-
ductiverules ([VEK76], [LI1088], [GL88], [VGRS88]).

Databases have been formalized in logic now for about 20 years (for a description of the main con-
tributionsto the use of logicin databases, the actual state of the art in commercia implementations, and
future trends, see [Min96]). We have already pointed out that Reiter (Reiter[1984]) providesthe first of

CHAPTER 2. BACKGROUND 26

these formalizations.
Deductive databases are an extension of relational databases formalized a la Reiter. Formally, we
have the following

Definition 2.7 A deductive database is a theory composed of a set of ground assertions (extensional
database) and a set of axiomsin the form of rules (intensional database) of the form

AFLl,...7Ln, TLZO,

where A isan atomand L; areliterals, for each .

The name "Datalog” is aso used to refer to databases of thisform. Datalog programs are function-free
logic programs. Concepts playing an important rolein relational databases like integrity constraints are
also formalized in logic (for an account, see [Min96]).

Deductive databases were generalized in many ways. One extensionwasto allow recursionin rules.
The main contribution hereisagood understanding of how resol ution and fixpoint techniques arerelated
to each other and how rewriting techniques make search space of the later identical to the earlier. An-
other extension permits negated atoms in the body of rules. Here, main results are the development of
the theory of stratification for databases without recursion through negated atoms and the definition of
semantics for databases having recursion through negated atoms. The best known examples of the later
are the well-founded semantics of Van Gelder, Ross, and Schlipf ([VGRS88]), and the stable semantics
of Gelfond and Lifschitz ([GL88]).

Considering semantics of deductive databases, some researchers attempt to provide similar seman-
ticsto ADBMSs ([Zan93], [Zan95], [HD93], [LHL95],[FWP97]). They feel aneed for combining active
and deductive DBMSs into a single and reconciled paradigm. This need is being addressed in different
ways. Widom arguesthat deductiverulescould be naturally extended to run on active DBM Ss ([Wid93]).
Zaniolo, Harrison and Dietrich, and Ludéascher et al. statethat some syntactically and semantically con-
strained active ruleswould run on deductive DBM Ss ([Zan93, Zan95], [HD93], [LHL95]). Finally, Fer-
nandes et al. advocate that active and deductive DBMSs have no intrinsic similarities with respect to
their operational semantics, but they can be integrated into one hybrid system ([FWP97]).

Some other researchers are proposing logic-based formalizations that do not directly addresstheis-
sue of combining the active and deductive DBMSs into a single and reconciled paradigm. Picouet and
Vianu address expressiveness and complexity questions such as: the relevance of active features, their
impact on the expressive power and the complexity of the systems, and the simplification of execution
models and their equivalence ([PV 95, PV97]). Baral and Lobo develop a situation cal culus-based |an-
guage caled L, .+, t0 describe actions and their effects, events, and evaluation modes of active rules
(IBL96, BLT97]). Findly, Fraternali and Tanca address the problem of giving aformal semantics based

CHAPTER 2. BACKGROUND 27

on formal conceptsthat captures most of the features of known ADBMSs in the similar way fixpoint se-
mantics captures the deductive nature of deductive DBMSs ([FT95]). The remainder of this section is
devoted to examining some of these proposals.

Unifying Semantics for Active and Deductive Databases. Widom ([Wid93]) claims that deductive
rulesand active ruleshave no obviousseparati on between them; rather they form two different paradigms
a the ends of a common spectrum of rule languages. She defends the view that both paradigms could
be unified by constraining DRs to run on an AR engine. However, it remains to be seen how such a
constraining process could be achieved in a general and forma way, and not only in some particular
case, as the author claims.

Widom'sclaim isan extreme viewpoint in the debate about whether deductive and ADBMSs could
be reconciled. Zaniolo on one side, and Ludascher et al. on the other side are challenging thisclaim.

Zaniolo ([Zan93, Zan95]) defends the thesis that both active and deductive DBM Ss have an under-
lying conceptual unity. However, he points out that a complete integration of deductive and ADBMSs
appears to be a difficult task. The difficulty liesin the lack of a common semantics. Though many se-
mantics have been proposed for both paradigms, there are still inadequaciesin their conceptual founda:
tions. On the one side, most of the proposed ADBMSs retain their own operational semantics. On the
other side, the semantics proposed for deductive DBMSs can not be easily extended to non-monotonic
constructslike negation and database updates. Zaniolo mentionsthe known advanceswith respect to the
semantics of negation likelocal stratification, and stable and well-founded models. To him, the proposed
logic-based semantics have serious drawbacks: some are not simple and intuitive enough to be grasped
by anormal programmer; others are inefficiently implementable.

Zaniolo’'sproposal is anew kind of stratification called XY-stratification that allows non-monotonic
constructsin recursive rules ([Zan93]). He uses the notion of XY-stratification to give aformal seman-
ticsfor updates and triggersin databases. He claims that his approach has the advantage of possessing a
formal logical semanticsthat is simple, intuitive and constructive. Other advantages claimed are the ef-
ficiency of itsimplementation and the simplicity of itsconcrete semantics, that is, onethat a programmer
can grasp without understanding the corresponding formal and abstract semantics.

In [Zan95], the behavior of active rulesis syntactically captured by rules called action request rules
written in Datalog; s in which predicates are allowed to have a stage (integer) argument ([BCW93b]).
Events are represented by the entries of delta relations. Conditions are represented by queries on the
current content of the database. Finally, actionsareintroduced as action requests. Eventsand conditions
form the body of the rule while actions are situated in the head. In addition to the events and conditions,
the body of an action request rule al'so contains a goal ensuring that the events triggering the rule have
durable changes.

Zaniolo first provides a way of defining rules with updates in their heads by re-writing them into

CHAPTER 2. BACKGROUND 28

equivalent XY-stratified programs that are update-free. Thereafter, he gives a semantics for these pro-
gramsthat is essentially based on the extension of classical fixpoint semanticsfor deductive DBMSs; it
is used to design a specification language for expressing triggers and event detectionin an ADBMS.

In general, Datalog; s programs run under the stable models ([GL88]); they either terminate or get
ultimately periodic. Fortunately, it can be shown that durabl e-change semantics guarantees by construc-
tion that the computation does not fall into a cyclic behavior.

To summarize, theauthor providesanew semanticsfor the problem of modeling updatesin deductive
DBMSs. The semantics turns out to support event-driven rules as a special case. His approach shows
how to keep the classical deductive database engine while simulating active rules by re-writing them as
deductive rules with updates. The obvious advantage of the approach is the possibility of reusing old
components of a deductive DBMS without mgjor changes. Zaniolo is one of the first researchers who
pointed out the need to unify deductive and ADBMSs paradigms. In addition, his approach provides a
semantic account for an active rule as an unfragmented unity. However, we stress one drawback in the
approach: it is not clear whether all aspects of the active behavior like coupling modes or operationa
semantics of active rules can be simulated within a pure semantics for deductive database updates.

Ludascher et al. propose a framework that bridges the gap between active and deductive rules by
including database states into Datalog. The resulting language, which is called Statel og, has two sorts
of rules. In this Framework, Query rules are used to model Datalog rules, whereas transitionrules are
used to extend the expressiveness of the language to deal with active data manipulation operations.

Normally, Datalog rules access one state of the database. To include active behavior into Datal og,
Ludascher et al. propose alogical framework in which Datal og-like rules have access to more than one
state. The main ideais to extend Datalog to be able to refer to different database states. Query rules,
which are non-state changing rules, are used to query the actual database state. Transition rules, which
are state changing rules, are activated and perform actions which are specified in their heads if they are
triggered by the occurrence of one or more external eventsand if the conditionsstatedin their body hold.
Action execution results in a sequence of virtual states. The computation of the sequence of states ter-
minatesif it reaches a fixpoint of those states.

Ludascher et al. provide a model-theoretic semantics for Statelog programs via the concept of -
stratification which is alocal stratification ([Prz88]) with respect to the set of state identifiers. The se-
mantics isindependent of evaluation strategies adopted.

Giventhissemantics, the authors prove many propertieswith respect to the expressiveness, complex-
ity, and termination of Statelog programs. Considering asubset of Datal og programs for which termina-
tionis proven to be guaranteed, they also give an architecture unifying active and deductive databases.

Themain result of thework of Ludascher et al. isademonstration of apossible unification of active
and deductive rules within a common logical framework of a suitably extended version of Datalog.

Statelog is similar to Datalog, s, and thus it has the same advantages and drawbacks. The kind of

CHAPTER 2. BACKGROUND 29

stratification proposed for Statelog is much similar to Zaniolo’s X Y-stratification. Zaniolo’s X-rules are
now called Queryrulesand hisY-rulesare now transitionrules. Infact, Ludascher et al. have proventhe
equivalence of both framework for many properties such as the termination or the ultimate periodicity.

Considering Expressivenessand Complexity Issues. Picouet and Vianu address expressivenessand
complexity questionssuch as: the relevance of activefeatures, their impact on the expressive power and
the complexity of the systems, and the simplification of execution models and their equivalence[PV 95,
PV 97]. They describe a generic framework formalizing active databases. In their eyes, this framework
highlightsthe distinctions between the various prototypes much better than the abstract model based on
relational machines they introduced in Picouet[1995]. They useit to articulate and factor out common
features of the prototypesthey are considering. Within their framework, they investigate the impact of
the various dimensionsof the active behavior on the expressiveness and complexity of active databases.

To develop the aforementioned framework, formalizing the notion of an externa program and the
execution model of atrigger program in conjunctionwith an external program isanecessity. The update
language whiley ([AHV95]) is used to formalize external programs embedding trigger programs.

The generic framework presented is acommon skeleton of the prototypesconsidered. This skeleton
will be used as a specification model of the various existing execution models. A trigger program ¢ is
syntactically a 7-tuple < D, R, rules, epl, ev, pri, A—type >, where D is a public database schema;
R, also denoted sch(t), isthe schemaof ¢; rules isaset of rules of the form condition — action
over sch(t); cpl isamapping from rules into the set of coupling modes; ev is the event mapping of ¢;
priisthepriority mapping of ¢, that is, amapping from rules intothe subset {1, . . . , |rules|} of natural
numbers; and A—type isamapping from rules into the set {global, local—fized, local—fluid} which
contains consumption modes. The trigger program ¢ uses delta relations; that is, relations containing
incremental information on deleted or inserted tuples between two database states.

Two rule queues are maintained to represent sequences of triggered rules: the first queue contains
ruleswith animmediate couplingmode, and the second one containsruleswith adeferred coupling mode.

Givenatrigger programt and an external program e writteninwhile n, an updatet|e] isoperationally
defined in two phases. In thefirst phase, the program e starts, taking control of the computation. Each
time an updateinstructionis encountered during the execution of e, ¢ takes control over the computation,
detecting eventsand triggering new rules. Theimmediate rules arefired until the corresponding queueis
empty. A new database state and a queue of deferred rules are generated. Then e retakes control over the
computation. Thisprocessisrepeated until e halts, uponwhichanew database state and adeferred queue
are returned. The second phase starts from the new database state returned in the first phase; deferred
rules returned here are executed, yielding afina database state.

Usingthisframework, Picouet and Vianu obtain expressivenessresultsrel ating the prototypesto each
other, the main outcome being that HiPAC subsumes all other prototypes considered. They also obtain

CHAPTER 2. BACKGROUND 30

complexity resultsrelativeto the impact of activefeatures. For instance, it turns out on the one hand that
immediate triggering with unbounded nesting of queuesisin EXPTIME. On the other hand, deferred
triggering with bounded nesting of queuesisin PSPACE. Generally, deferred triggering is computation-
ally more powerful than immediate triggering.

The main contribution of the work seems in our opinion to be theinsight provided into which active
features are essential and which are not. A featureisessentid if it hasanimpact on the expressive power
and the complexity of the ADBMS.

In our opinion, the impact of omitting the event part of ECA-rules on the expressiveness and the
complexity of an active system is an open question in this work. Moreover, the operational semantics
abstracted by Picouet and Vianu seems general enough to account for many existing ADBMSs. How-
ever, the style of their formalization remains operational. In this thesis, we shall show how to express
thiskind of execution model that in fact combinesimmediate and deferred execution modelsin apurely
declarative way.

UsingtheEvent Calculus. Fernandeset al. provideaformal semanticsfor active databases ([FWP97])
by formalizing certain aspects characteristic of active behavior within a first order logical framework,
whereasthe puredeductivefunctionality isleft unchanged. Theformalizationrelieson Kowalski-Sergot’s
event calculus([K S86] and triesto integrate active and deductive DBM Ss by respecting their differences
with respect to the operational semanticsthey traditionally used to have. The key ideabehind the actua
realization of their approach is to use Kowal ski-Sergot’s notion of history, which is a kind of transac-
tion log that stores successive database states. Fernandes et al. formalize the traditional ECA-rules by
specifying eventsand conditionsin a Datal og-likelanguage over the database of event occurrencesmain-
tained in the history, while actions are specified as an extension of the history maintained database with
new event OCccurrences.

Aspresented by Fernandes et al ., the most important achievement of the approach is the possibility
of keeping the usual ECA structure of active rules unchanged while using the old well-defined opera-
tional semantics of deductiverulesto define event detection, condition test and action execution. Given
an ECA structure of the form given in Definition 2.6, detecting that an event E has occurred amountsto
evaluating a deductive query over the set of eventsin the history which constitutesthe extensional part
of the intended deductive database. Similarly, testing that a condition holdsis equivalent to answering a
guery over logical consequences of the extensional part of the deductive database. Such logical conse-
guences are theintensional part of the deductive database. They are stored in the form of rules over the
history.

It should be noted that the approach still has the drawback of resorting almost exclusively to the op-
erational semanticsas away of describing ECA-rules. What about the declarative and model -theoretical
parts of active rules as awhole? By contrast, considering E-, C- and A-features separately hinder a se-

CHAPTER 2. BACKGROUND 31

mantical consideration of an active rule as awhole. Although the approach represents a major accom-
plishment per se by only reusing old semantical features of deductive databases, it till remains to see
how an active rule as an unfragmented entity could be given a semantical account.

Using the Situation Calculus. Baral and Lobo ([BL96, BLT97]) propose a language called £ ¢y
which is based on the £, language for action proposed by Baral, Gelfond and Provetti ((BGP97]). The
language £, makes adistinctionbetween actual and hypothetical actions. Thisdistinctionisanimportant
design concept that all ows reasoning about the effects of the execution of actions.

IN £ 4crive, the following axioms are included: causal laws of the form a(X) causes f(Y) if
p1(X1), ..., pu(X,), event definitions of theform e(X) after (W) if e (Y1),...,en(Ym),

@ (Z1),...,q.(Z,), and active rules of the form

r(X,) : e;(X;) consumed (C,)

initiates[a] at e,(X,)

if pi(X1),...,p.(X,) at e (X,).

wherea(X) isan action and « asequenceof actions; f(Y), p:(X;), 1 <i < n,¢;(X;),1 < j < m,ae
fluents; e(X), ex (Y1), 1 < k < n,e,(Xy), €a(X,), ande.(X.) are events, r(X,) istheidentity number
of theactiverule,; Cs € {no, local, global} expressesthe consumption mode.

The intended meaning of some of the symbols appearing in the above constructs is the following.
The fluents p; (E), 1 < 4 < nincausal laws are the preconditions of these, whereas they represent
the condition of arulein the rule definition. In an activerule, e;(X;) isthetriggering event of therule,
e.(X.) and e, (X,) represent the states in which the condition evaluation and the action execution are
performed.

Semantically, £, 1S characterized by a transition diagram whose states are labeled with sets of
fluents called fluent states and whose transitionsare label ed with actions. Similarly to fluent states, there
are also event states. An active database stateisatuple < o, ¢, T, kK > where o is an fluent state, ¢ isan
event state, 7 isaset of triggered rules, and x isaset of rulesto befired or considered rules.

Let S bethe set of DB states. To interpret effects of actionsin a given DB state, a (partial) causal
interpretation function & : A* x § — S isdefined, where A isthe set of actions, and S is the set of
database states. Let £ and 7 be the set of events and the set of activerules. Given a set of events e and
aset of activerules, the causal interpretation function uses atotal action selection function that selects
aruler; € r such that the action execution event of r; belongsto ¢ and returns the action part of r;.

Let < o, ¢, ¢, ¢ > theinitia DB statewith respect to aselection function Sinagiven set D of ground
instances of an application domain, let o be an initia sequence of actions, and let o be someinitial fluent
state. Then akind of successor DB state < o', ¢, 7,5 > = ¥(a, < 0,¢,¢,¢ >) iscomputed using a
set of transition functionsto compute the resulting fluent state, event set, triggered rule set, and sel ected

CHAPTER 2. BACKGROUND 32

rule set.
Queriesin L4, are of theform

f after a at o. (2.1

With (2.1), itis possibleto reason about agiven ground set D. That is, the very nature of the validity
of f after the sequence « of actions has been performed is an hypothetical one. The query (2.1) means
that f istruein the hypothetical DB state following the performance of the action sequence «.. In order
to be actual, changes made to theinitial DB states should the explicitly “hardwired” into it.

What Baral and Lobo proposein [BL96, BLT97] can be considered as preliminary work on how the
situation calculus may be used to formalize active rules: in these papers, too many aspects such as mod-
eling complex events, complex and concurrent actions, and transactions remain as future work. Beside
thislimitation, there is another one: having presented their language, Baral and Lobo give atranslation
method for transforming active database rules in a corresponding logic program expressed in the situa-
tion cal culus notation. In our opinion, this presents a conceptual problem: their language seemsto be a
set of metaconstructsthat have to be trand ated to the situation calculus. Why not directly express active
rulesin the situation calculus? The purpose of introducing a new language seems unclear to us.

In[Pin98], Pintointroducesvarious notionsof action occurrence. He viewsan occurrence statement
asaconstraint onthelegal path inthetree of possiblefutures. Histheory incorporates many ingredients
that are partly user-provided facts. Pinto argues that his framework can be used as an effective tool for
formalizing active databases, assuming Reiter’s formalization of DB transactions. Theideaisto let an
action occur in the state following the performance of atriggering action, according to the general (sim-
plified) pattern ¢ O occurs(ay(z3), do(aq(Z1), s)), where ¢ isthe condition of therule, do(a, s) — as
we shall seein the next chapter — means the situation following the execution of action « in situation
s, and o triggers «y. The sameideaisfound in [MC98]. Pinto and McCarthy’s proposals are yet too
fragmentary to allow a comparison with our approach.

Bertossi et al. ([BPV99]) propose a situation cal culus-based formalization that differs considerably
from our approach. They first extend Reiter’s specification of database updatesto database transactions,
incorporating aformalization of staticintegrity constraintsand the notion of action occurrenceintroduced
in [Pin98]. They then specify active rules as sentences of the situation calculus. This representation of
rules forces the action part of their rules to be a primitive database operation. Unlike Bertossi et a., we
base our approach on GOL OG, which allows the action component of our rulesto be arbitrary GOLOG
programs.

ExtractingaCommon Set of Semantic DimensionsFrom Existing Systems. Having reviewed many
of thebest known research prototypesand commercial productsincludingthe draft for the proposed stan-
dard SQL3, Fraternali and Tanca ([FT95]) extract many dimensions of the active behavior common to

CHAPTER 2. BACKGROUND 33

most of these systems. They then uniformly encode rules of existing systemsin acommon syntax called
Extended Event-Condition-Action (EECA) syntax. This constitutes a base for a comparison of the dif-
ferent existing systems.

Given their huge variety, the dimensions of active bahaviour are made explicit at the syntactic level
to avoid treating them at the execution model level. Thus, Fraternali and Tanca introduce a core model
of an active database as an internal representation used by the execution engine.

The core model uses two kinds of databases: a database, which stores the application data, and an
eventbase, where facts relevant to the database history are recorded. The eventbase stores primitive up-
dates (i.e. insert, delete, update), externa events (i.e. begin, commit, rollbacks), time events, etc.
Twotables, ACTIV FE and EV EN'T, are maintained as eventbase. The former registersall eventsthat
occurred during atransaction, whereasthelater only registerseventsstill contributingto thetriggering of
somerules. These relations are considered local to each transactions. An alternative would be to main-
tain a unique table by adding afurther transaction argument to both tables.

The event language must allow event queries (EBQ) and event updates (EBU) as well. An event
guery language can be any first order language containing the rel ations corresponding to the tables AC-
TIVE and EVENT. An event update language includes operations for inserting tuples into and deleting
themfromtablesACTIVE and EVENT. A tablelog may be added to the systemif the capability of query-
ing past datais needed.

The core active rules have the form

EBQ(ih),

DB/EBQ(f1, %2, §2),
EBU(Zy)

—

TU(Zs,),...,TU(%s,),
before/after{core rule list}

where F'BQ(7:) isaformulainterpreted over the eventbase and expresses the implemented triggering
semantics, DB/ EBQ (71, T2, 72) isaquery to thedatabase and/or theeventbase; £ BU (%) issequence
of event updates modeling the event consumption; the formulas T'U (7's,) are noninterruptable update
blocks.

The translation from EECA to core is done as follows. The event part of EECA rulesis converted
into acore event part expressing the granularity and the coupling modes; it must prevent the triggering of
rules when other noninterruptablerules are being executed. The condition part of the core expressesthe
primitivesfor transaction history inspection and the consumption time consideration. Finaly, the action
part of the core expresses the execution consumption time and enforce the atomicity of noninterruptable

rules.

CHAPTER 2. BACKGROUND 34

Semantically, auser transaction submittedto an ADBM Swith aset of rulesR isconsidered asatrans-
formation from an original stateto afinal state. At some pointscalled rule starting pointsthe control is
passed from thetransaction to the rule execution engine. Therule enginereturnsthe control back at some
points called quiescent states which are points where no more rule are triggered. Fraternali and Tanca
consider different aspects of embedding the semantics of rule processing into aframework of update and
transaction semantics.

Themain result of thiswork seemsto usto bethe readabl e catal ogue of dimensionsof active behavior
that it offers. To our knowledge, thiswork isthefirst attempt that formally accountsfor the similarities
and differences between existing ADBM Ss considering alarge number of systems. However, such im-
portant issues as composite events, and delayed coupling modes remain beyond its scope; moreover, the
author concentrate their formalization to the deferred execution model.

2.34 Other Approaches

In[HJ91], Hull and Jacobs present arich language using an operational semantics. Based on the database
language Heraclitus, the discussion in thiswork showshow to theoretically analyze alternativerule pro-
cessing semantics. Asan example of such an analysis, they examine approaches of accessing deltarela
tions. Heraclitusisan imperativelanguagethat is statically typed, supports(possibly persistent) relation
types and variables, supportsatype called deltawhich storesinsertionsto, or deletionsfrom, arelation,
and has an embedded relational cal culus subpart to manipulate rel ations and delta val ues.

Constructs of Heraclitus can be used to express rule processing semantics. Rules are expressed in
Heraclitus as a function from deltas to deltas. A particular semantics of an existing system can be ex-
pressed as a procedure called rule applicationtemplate, which usesrules defined as functions. A special
kind of indexing called indexed familiesis used to manipulate and refer to functions; it isamapping from
integersto the appropriate codefragments. Theauthorsexcludeconsideringexplicit arraysof rules, since
thiswould introduce rules as first-class citizens.

Using the framework of Heraclitus, Hull and Jacobs specify the semantics of Starburst.

In [BCW934], an approach based on relational algebrais described, aiming at the analysis and opti-
mization of CA rules. It shows how to propagate changes introduced by the execution of the action part
of arule, for exampler, to the condition of another rule, say 4, in order to know whether ry may trigger
ro. For example, if the condition of r, contains the relational algebra expression o, (R)="1BM”, and
the action of r; containsan insertion inserted R to R, then the expression og, (inserted R) ="1BM” is
the result of the insertion on the original expression. The propagation processisiterated to yield a fina
expression which, if satisfiable, indicates that »; may trigger r. Unfortunately, this approach does not
treat crucial issues like the execution model and events.

There are some other approaches that we do not cover in the present present document, due as stated
earlier to their limited scope. As an example, graph-based formalism is used, especially in the form of

CHAPTER 2. BACKGROUND 35

event graphs ([CM91]) or Petri nets ([GD94]) to model and/or detect composite events. In [AHW95], a
graph-based approach isal so used to model provabl epropertiesof setsof activerules, such asconfluence,
termination, and determinism.

24 Summary

The problem of formalizing active databases appears to be a major research challenge. The challenge
amountsto providing a unigue theory accounting for the various dimensionsof active behavior. Though
we have seen in the present chapter that someinteresting proposals exist, there still appearsto be aneed
for atheory providing a unique framework for the event language, the operational semantics, the trans-
actional activity, and the underlying data model s of active databases. With the notable exception of Zan-
iolo’'s proposal, many of the proposalstry merely to integrate or reconcile the concept of rule language
developed in active databases with transaction concepts and data model s that were devel oped indepen-
dently.

We think that providing a unique theory that highlightsall these aspects would significantly improve
our understanding of active databases. Moreover, we think that the situation calculus ([Rei01]) may be
used as such atheory sinceit allows us to bridge the gap between the various dimensions of active be-
havior through the uniqueness of the representational framework it offers.

We saw that Baral and Lobo claim to use the situation calculus ([BL96, BLT97]); but it turnsout in
our opinion that their language is a set of constructsthat are not expressed in the situation calculus. We
also saw that the situation calculusis used in [Pin98] [MC98]. However, we pointed out that Pinto and
McCarthy’s proposals are yet too fragmentary to alow a comparison with our approach. The approach
described in [BPV99] is promising. However, it differs considerably from oursin amajor point: active
rules are in our view programs expressed in a situation cal culus based language, not sentences of the
modeling language. In the next chapter, we will lay down the language of the situation calculus as a
logical preliminary for the rest of the thesis.

Chapter 3

Logical Preliminaries. the Situation
Calculus

In theintroductory chapter, we mentioned many proposal swhich have highlighted and extended the ex-
pressiveness of the situation calculus. In this chapter, we review the situation calculus as enhanced in
[Rei01], and weintroducetheformal languagewe shall usefor theremainder of thisthesis. First we pro-
vide an introduction to the language of the situation calculus, together with its syntax. We then present
an axiomatizationthat allowsformal reasoning about actions of an application domain and includesaso-
[ution to the frame problem and aresulting characterization of an important class of theories called basic
actiontheories. The presentation of the solutionto the frame problemisfollowed by that of amodel the-
oretic semantics for thislanguage. Finally, we review the available theoretical resultsthat we will base
our work on.

3.1 Situation Calculus: the Core Language

In the situation calculus, we appeal to a language that, for many database formalization tasks, will be
largely first order. However, this language will sometimes be — as we shall see — second order when
some complex actions are introduced and inductive reasoning about actions is performed. Moreover,
the language of the situation calculus will have many sorts of variables, each of which ranging over a
distinguished portion of the universeof discourse. Thus, to describethe situationcal culus, we will appeal
to amany-sorted second order logical language whose syntax we now give.

In this section, we present details of the core language of the situation calculus following [Rei01].
Since much of the arguments presented in this thesiswill be of semantical nature, we then add a model
theoretic semantical account of thislanguage. Finally, we use this semantical account to justify an ex-
isting axiomatization of the calculus.

36

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 37

3.1.1 An Informal Presentation

Informally, the situation cal culus forms a suitable logical language within which ageneral theory of ac-
tionsin adynamically changing world can be formulated (see e.g. [LLLT94], [Lif87]). The basic onto-
logical categories of the calculus are actionsand situations. Actionsarefirst order terms consisting of an
action function symbol and its arguments. In modeling relational databases, thesewill correspond to the
elementary database operations of inserting, deleting and updating relational tuples. Situations are first
order terms denoting sequences of actions; they are world histories constituted by alist of actions that
have been performed ([Rei96]). In modeling relational databases, these will correspond to the database
log.! Relationswhose truth values vary from situation to situation are called fluents, and are denoted by
predicate symbols whose last argument is a situation term. The universe of discourse of thelanguageis
partitioned into action individual s, situation individual s, and object individualswhich are any individu-
alsthat are neither action, nor situation. Thusthe languagewill provide variables and constants suitable
for the appropriate partition of the universe of discourse.

Lessinformally, the situation calculus is a many-sorted second order predicate logic with sorts for
actions (A), situations (&), and objects (©) of an application domain. There is a distinguished constant
So denoting the initial situation. The term do(a(Z), s) represents the result of executing an action a(7)
inthesituation s. Finally, thetheory also includes specia predicates Poss and C; Poss(a(Z), s) means
that the action «(Z) ispossiblein thesituation s; and s C s’ statesthat the situation s’ is reachable from
s by performing some sequence of actions— s is said to be a subhistory of s’.

The particular language we use will be constrained in different ways with respect to the space of
situations. Constraintswill typically be added in the form of axioms. Some axioms, called foundationa
axioms, will impose a space of situations that has the form of a tree rooted in the initia situation .Sy.
Figure 3.1 showsatree of situationsrootedin Sy. Theworldisrepresented as evolving from Sg through
the execution of actions and can be viewed as described by fluents. In the relational database setting,
fluents will be used to represent relations, the truth value of which we are interested in. In this setting,
the database may be initially empty, that is, for all possible arguments, all fluents are falsein Sy. In
subsequent situations, the database may be filled with some content, in which case we can conclude that
a database operation must have occurred to change the truth value of some of the fluents from false to
true. All of the possible courses of actionsform atree rooted in .Sy.

Some other axioms, called precondition axioms, will restricts further the tree of situationsto those
situationsin which resulting situations are obtained if and only if theinvolved actions are possiblein the
previous situations.

In relational databases, we will be concerned with the truth value of fluentsin a particular situation
representing a database state. The intended model theoretic meaning of such fluents that are truein a

YIn fact, in the database setting, a situation is a sequenceinvolving many histories corresponding to as many transactions.

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 38

do (AL Sq)

do (AL, do (AL, Sg)% (/” do (AL Sq)

Figure 3.1: Thetree of possiblesituationsrooted in theinitial situation for adomain with n actions.

certain situation is a database schema instance.
Letuscall thislanguage Ls;scq1.- It istheframework withinwhichwe shall formalize active databases
in the form of action theories of a particular kind.

3.1.2 ThelLanguage

Formally, the language Ls;:.q;- 1S @ many-sorted second order language with equality represented as a
triple (2, 20, J), where we have:

1 asety ={A,S, 0O} of sorts;
2. an aphabet 2 with

e individual symbols:

(@ variables: a,ay,az,...,d',a”, ... (forsort.A); s, sy, s9,...,s,s",...(forsortS); and

Y, Z,...,%1,Ts,...(forsort O).
(b) constants: nil (null action), A, Ay, Ag, ... (forsort A);and X,Y, 7, ..., X1, Xo, ...
(for sort O).

e function symbols:2

(8) variables: We have countably many of these, called action functions, of sort <O™, A>.

2In general, the language of the situation calculus contains two kinds of fluents: relational and functional. Since the later
play amarginal role in this thesis, we will introduce them when needed.

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 39

(b) constants: We have two of these: Sy (start situation) of sort S; do, abinary function of
sort <A, S, §>, for generating the situation resulting from the execution of an action.

e predicate symbols:

(a) variables: We have countably many of these, called relational fluents, of sort <O™, S>.
(b) constants: We havetwo of these: , an ordering relation of sort <S, S> over the space
of situations; and Poss, of sort <A, §>, to express what actions are possiblein agiven
situation.
(c) Equality: =.
e punctuationsymbols: (,),[,].{. },---
e logical symbols. -, D, V;, TRUFE, and FALSF; withj € J,

3. aset 20 of wellformed formulas (wffs): Terms, atomic formulas, wffs, and sentencesare defined in
the standard way of second order languages ([End73]). Additional logical constantsareintroduced
as abbreviationsin the usua way.

Thelanguage Ls;:.q;. iSthe basic framework withinwhich one axiomatizes action theories. Asano-
tational convention, we shall often omit any leading universal quantifiersin closed formulas. Moreover,
aformula¢ issaidto beuniformin s ([Rei01]) iff s isafreesituationvariable, whichistheonly situation
term mentioned by ¢, and whenever it mentions a predicate, then that predicate is neither Poss, nor C,
nor else an equality on situations. Finally, we also introduce the following convenient abbreviation:

do([], s) =4 s
do([al, Qg, -+ 7an]7 S) =45 do(an7 do(.. 7d0(a17 S) ..))

Example 3.1 Consider again the stock trading database of Example 2.1 The database schema is for-
malized in the following fluents:

price(stock_id, price,time, s),
stock(stock_id, price, closingprice, s),and
customer(cust_id, balance, stock id, s),
which arerelational fluents.
Primitiveactionsareof theform I’ _insert(Z) and I’ _delete(Z), where I istherelational schema be-
ing manipulated. For exampleprice_insert(stock_id, price, time) (price_delete(stock_id, price, time))

isan action termthat denotes the operation of inserting (deleting) thetuple (stock _id, price, time) into
(from) the relation price. We have similar actionsfor the relations stock and customer. The formula

price(ST1,$100,100100 : 9AM, Sp) A price(ST2,$60,100100: 4PM, Sp)

isuniformin Sy.

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 40

Finally, we have constants ST'1, ST2, ST3, $50, $60, $100, $110, 100100 : 9AM, 100100 : 1PM,
100100 : 4PM, Sue, Zang, $10000, and $5000. [|

3.2 TheFrameProblem and Basic Action Theories

3.21 Modeing Dynamic Domains. the Frame Problem

To model adynamic application domain, it isassumed that axioms are given to describe how and under
what conditionsthe domain is changing or not changing as a result of performing actions. The first sort
of axioms, called action precondition axioms, describesthegeneral conditionsof action execution. They
have the form

(VZ,s).Poss(a(Z), s) = 11,(Z, s) (3.1)

for each action function a(Z) € A, wherell, (7, s) isafirst order formula with free variables among
z, s; I, (7, s) describesthe execution preconditionsof theaction «(7); (3.1) meansthat the action (%)
ispossibleif and only if the preconditionsdescribed by theformulall,, (Z, s) hold. Moreover, 11, (Z, s)
isuniformin s. In the stock trading example, the following axiom states that it is possible to insert a
tupleinto the price relation relative to the database log s iff, as aresult of performing the actionsin the
log, that tuple would not already be present in the price relation.
Poss(price_insert(stock_id,price, time), s) = (32)
—price(stock_id, price, time, s).
The second sort of axioms describesthe positiveand negative effects of action executionson fluents.
For each fluent F' € F, the axiomatization includes a positive effect axiom of the form

(VZ, a, s).'y;(f, a,s) D F(z,do(a, s)) (3.3
and a negative effect axiom of the form
(V7,a,5).7,(, a,5) D =F(z, do(a, 5)), (34)

where 7} (%, a,s) (v (%, a, s)) denotes afirst order formula with free variables among 7, a, s describ-
ing conditions for the fluent /” to become true (false) in the successor situation do(a, s). Moreover,
7}(:?, a,s) and v (7, a, s) ae uniformin s. In the stock trading example, the following axiom states
that the tuple (stock _id, price, time) will be inthe price relation relative to the log do(a, s) if the last
database operation « in thelog inserted it there:

a = price_insert(stock_id,price,time) D

(35)

price(stock_id, price, time, do(a, s)),

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 41

and the following states that the tuple (stock _id, price, time) will be deleted from the price relation
relativeto thelog do(a, s) if the last database operation « in thelog deleted it from there:
a = price_delete(stock_id,price,ttme) D
() (3.6)
—price(stock_id, price, time, do(a, s)).
Thethird sort of axioms describes under what conditionsfluents remain unchanged in the successor
situation. To achieve thiskind of “inertia’, the axiomatization includes a set of frame axioms ([MHG69])
whose general form is one of the following:

(47,5, 4,9) 11a(7,5) A ¢ 1. (7, ,5) A F(7,) > (7, do(a(d),5)) 37

or

(VZ, 7, a,s).11,(Z, s) A ¢ @

(7,7, 5) A=F (7, 5) D =F(F, do(a(7), 5)). (38)

Here, 11, (7, s) isasdescribed for (3.1), and p} (7,9, s) (pp(7, 7, s)) denotes afirst order formulawith
free variables among 7, 7/, s describing inertia conditions of the fluent F'. Asan example of (3.7) in our
stock trading setting, we have the following axiom which states that thetuple (stock id’, price’, time')
will beinthe price relation relativeto thelog do(«, s) if it was aready there and the last database oper-
ation ¢ inthelog did not touch it:

a = price_insert(stock_id, price, time) A

stock_id # stock_id' A price # price’ A time # time' A
(3.9

price(stock_id', price’,time’, s) D price(stock_id', price’,time’, do(a, s)).

With | A| actionsand | 7| fluents, atotal of 2|.4||F| of frame axiomsis to be provided in the worst
case. Theframe problemisjust the burden of providing all these axiomsto expresswhat is not changing
in the world. With growing |.A| and | 7|, the number of frame axioms become more tedious to be given
by hand. Thus some way out must be found.

3.2.2 Basc Action Theories

A simple solution to the frame problem, which relies on some proposals of [Sch90] and [Ped89], was
provided by Reiter ([Rei91]). He shows how to transform effect and frame axioms in a syntactically
equivalent formula of the form

(Y7, a,5).F(7,do(a,) = 7 (7, a,5) V F(,s) A V(7 a,9) (3.10)

= ")/F
Such formulas are named successor stateaxiomsand are givenfor each FF € F; these characterize the
truth values of the fluent /” in the next situation do(a, s) in terms of the current situation s. In the stock

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 42

trading example, the following successor state axiom states that the tuple (stock _id, price, time) will
be inthe price relation relative to thelog do(a, s) iff the last database operation « in the log inserted it
there, or it was already inthe price relation relativeto thelog s, and ¢ didn't deleteiit.

price(stock_id, price,time, do(a, s)) = a = price_insert(stock_id, price, time) V

price(stock_id, price, time, s) A a # price_delete(stock_id, price, time).

A domain theory is axiomatized in the situation cal culus with five classes of axioms summarized in
the following definition:

Definition 3.1 ([LR94]) Let Lyirq1. = (AU, 20,) be thelanguage of the situation calculus. Then a the-
oryD C 2 isabasicactiontheory iff it hasa set Act of actionsand a set F/ of fluents, and, moreover,
itisof theform

DIDfUDapupssUDunaUDSo7

where
1. Dy isthe set of foundational axioms (more detailsin [PR99] and in Section 3.3).
2. D,, isaset of action precondition axioms of the form(3.1), one for each actionin Act.
3. D, isa set of successor state axioms of the form (3.10), one for each fluent in Fi.

4. Dy, consistsof unique names axioms®

for objects, where 1, . . . , C,, areall theobject constantsof 2, together with unique name axioms
for actions:
Ai(Z) # A1), i # 7,
(VZ,9).Ai@)=A(H) >F=7, i=1,...,m
where A4, ..., A,, areall the action function constantsin Act.

5. Dg, isaset of first order sentences uniformin Sy; this specifies theinitial state of the domain, in
our case theinitial database state.

3Theseaxiomsassumeno null values. Infact, if null valuesare assumed, these axioms can be relaxed to have some constants
that are equal (See[Rei86]).

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 43

Thefollowingis an example of aninitial database for the stock trading domain.

price(sd, pr,t,So) = sid = ST1 A pr=$100 At = 100100 : 4PM Vv
sad=ST2Apr=9%110 At =100100: 9AM V
sad=ST3Apr=3%50At=100100:1PM,

stock(s_id, pr, clPr,Sp) = sid = ST1 A pr = $100 A ¢l Pr = 100 Vv
sad=ST2A pr=3%110AclPr =100V
sad = ST3 A pr =3$50 A ¢l Pr = 60,
customer(c_d, bal, s_id, So) = c_id = Sue A bal = $10000 A s_id = ST1V
c_id = Zang A bal = $5000 A s_id = ST2.

Notice that while these initial database axioms specify a complete initial database state (as is normal
for relational databases), thisis not a requirement of the theory we are presenting, except for the basic
action theories introduced in Definition 3.1. Therefore our account could, for example, accommodate
initial databases with null values.

3.23 Theprojection Problem in the Situation Calculus

Let D be abackground situation cal cul us axiomati zation for some dynamic domain, as described in Def-
inition 3.1, and let () (s) be a situation cal culus formula— the query — with one free situation variable s.
Moreover, let thesituation do(a,,, do(ay,—1, - - -, do(ay, Sp) - - -)) beaground situationterm, that isone
that mentionsno free variables. Wetreat thisas a sequence of executed actions, and define the projection
problem in the situation cal culus as the problem of determining whether

D = Q(do(ay, do(ay_1,- - ,do(a, S) - -+))).

We define the answer to () relativeto this sequence to be “yes” iff

D = Q(do(ay,, do(ay—1,- - ,do(a,S) - -+))).

The answer is“no” iff

D E —Q(do(ay, do(a,—1, - -+ ,do(ag, So) --+))).
So on this definition, evaluating whether () is true in situation s is performed relative to a ground se-
guence, and in the most general setting, it isatheorem-proving task.

3.3 A Modd Theoretic Semanticsfor the Situation Calculus

Normally, the standard semantics of second order languages (see, e.g., [End73]) is sufficient for ascrib-
ing a meaning to wffs of L:..1.. However, some aspects specific to the situation calculus need to be

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 44

explicitly addressed to highlight the dynamics captured by thislanguage. For example, it is necessary to
explicitly address the problem of ascribing an appropriate denotationto the distinguished situationterms
So and do(t 4, s), wheret 4 isan action term, and s a situation variable. We map those situation terms
to sequences of individualsof sort action. The same ideaisalso used in [BL96], [PR99], and [Lak96],
sometimes under different names.*

We define a second order structure 90t for Ly;s.q1. as apair (4, 3), where 4l is a universe such that
=44 Ui, and T isan interpretation function such that:

1. For each individual constant C such thatj € {A, O}, 3(CY) € ;.
2. For the situation constant So, J(So) = [].

—

3. For each action function of the form a (%), J3(a(7)) = J(a) : L, x ... x L, — Ua, where
i = 0.

4. 3(do(A,s)) = 3(s) o [J(A)], where o denotes the list concatenation function, s is a situation
variable, and A is an action constant.

5. For each predicate symbol I’ other than C and Poss, 3(F) C &, x...x &, x4, wherej; = O.

Let v, 71, and o be wffs of Lizeare, I a structure for L1010, and V a mapping from the set of
variablesinto the universe il; V is avariable assignment applied to variables of sorts 0, A, and S, and

we define it as follows.
1. For each individua variable z, V(z) € o
2. For each action variablea, V(a) € Uy
3. For each situation variable s, V(s) € 45

4. For each n + 1-ary relaional fluent variable I, V(F) C U* x 4, where U" is of the appropriate
sort.

5. For each n-ary action function variable a(z), V(a) C U™ x Ly, where 4" is of the appropriate
sort.

Theinterpretation of C and Poss isinferred from J in away to be seen later in this section.
The denotation ||¢;||sn,y Of aterm ¢; of sort j is now defined by:

L ||tallom,y = V(ta),if t 4 isan action variable.

2. ||tallsny = A(||#]lan,v), if t4 isan action term constant A(%).

4In particular, the semantics used in the proof of Theorem 1 in [PR99] has influenced our semantical account.

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 45

3. |Itsllamyy = V(ts), if ts isasituation variable.

4. ||ts|lomy = [1,if ts = So.

5. [ltsllany = [1t'sllany o [[[Lallamv], if ts = do(ta;t's).

6. ||tallany = V(a)(||tallonv), if t.4 isaction term variable a (7).

Next, we define the semantics of wffs of Lyscq1.. L&t 9 = (U, T) be astructure for Lyizcq1.. The
truth value of a wff of L;;.q;. in the structure 971 with respect to the variable assignment V is given by
the following semantical rules:

Eay F(fo, So) iff < [|tallany, [|Sol| >€ J(F), where I isarelational fluent constant .
oy Poss(a(to), So) iff [=amy Ma(to, So) A alto) = A(T),

where A(Z) has an action precondition axiom of theform Poss(Z, s) = [14(Z, s).
Emy f(to, So) iff < ||talloy, [|Sol| >€ V(F), where f isarelational fluent variable.

|:gm7yt5 C t'siff HtsH isaprefix of HtlsH.

o yta =t 4 iff [[ta] = [t 4]l-
Eamyts = t's iff ||ts]| = [|t's]]-
Emyto = t'o iff [[to] = [|oll-

oy iff iy v
Faryy1 D 72 iff whenever [=any 71, then F=ony v2.
oy (Va)y iff |=an ypa/a7 7, foral A € gy
ony (V)7 i Fanygys) 7, fordl S €1
oy (V2)y iff g yp/x] 7, forall X € Uo.
Foy F(fo, do(a(7), s)) iff f=amy ®r(fo,a, 7, s), where I has a successor state axiom of the
form F(to, do(a(7),s)) = ®r(to, a, 7, s).
v f(to, do(a(E),) iff Emy vy (to,a, T, s), where V() has a successor state axiom of
theform V() (to, do(a(7), s)) = ®y(y)(to, a, T, s).
Fany Poss(a(fo), do(d'(Po), 9)) iff |y Ta(fo, do(d'(F0), 5)) A alio) = A(F),
where A(Z) has an action precondition axiom of theform Poss(Z, s) = [14(Z, s).
In this definition, V[« /K] denotes a variant of V where x is mapped to K.
A formula v is true in the structure 901, denoted by =9n 7, iff we have j=9xy ~ for al variable

assignments V. A structure 9 of Lgis.q1. iSamodd of the wff ~ iff v istrue in 91; one also says that
9N satisfiesy. We say that awff ~ isvalid (i.e, = ~) iff we have =gn v + for al structures 9t and

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 46

all value assignments V. In the context of relational databases, we will encounter many wffs which are
truein agiven relationa database viewed as amodel, and a few other wifs which are valid, i.e. truefor
all possiblerelational databases. When it is not the case that =gy 7, then v isfase in the structure 9.
Finally, awff v, isalogica consequence of another wff vy, written v, = 4, iff every model of v, is
also amodel of 5.

Let 3 beaset of wifs. A structure9Jt isamodel of X iff it isamodel of every wif inX. A wif v is
alogical conseguence of ¥ (X = «) iff every model of X isasoamode of ~.

Example 3.2 Consider the Example 3.1. Then the tablesin Figure 3.2 define an interpretation for the
database formalized there. Both

(Vst, pr,t, s).price(st, pr,t,s) D stockld(st,s) A price(pr) A time(t)

and

(Vst, pr,t,s).price(st, pr,t,s). A\ price(st’, pr,t,s) D st = st'.

aretruein thisinterpretation which, therefore, is a model for these sentences. |

price stock

ST1 $100100100:4PM[] ST1 $100 $100 [
ST2 $110 10010:9AM [] ST2 $110 $100 [
ST3 $50 100100:1PM[] ST3 S50 $60 [

customer stockld price
Sue $10000 ST1 [] ST1 $100
]

Zang $5000 ST2 |

—_

ST2 $110
ST3 $60
$50
time customerld balance
100100:4PM Sue $10000
100100:9AM Zang $5000

100100:1PM

Figure 3.2: An interpretation for the stock trading example

It has become usua to validate any proposed semantics for the situation calculus by proving the va-
lidity of the foundational axiomsin it ([Lak96]). Conversely, it isimportant to show the validity of any
set of foundational axiomsused to construct theoriesof L;:..;. 8s—we shall seeit —they are animportant
part these theories. We use the foundational axioms proposed in [Rei01]:

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 47

Theorem 3.2 Thefollowing are valid sentences of L;zcq1c:
1. = (Vay,ag, 51, 89).do(ay, s1) = do(az, s2) D a; = ag A s1 = sg
2. E (YP).P(So) A (Va, s)[P(s) D P(do(a,s))] D VsP(s)
3. | (Vs).=(s C So)

4. E (Vs).sC do(a,s') =sC ¢

3.4 Basc Results of the Situation Calculus

Inthesequel of thisthesis, wewill use somefundamental resultsof thesituationcalculusstatedin[Rei01]
and proven in [PR99]. This section is devoted to summarizing these results, each of which will be mo-
tivated before being formally introduced.

Automated reasoning in the situation cal culus has been organized mostly around the mechanism of
regression. Intuitively, regression is a syntactic manipulation mechanism aimed at reducing the nesting
of the complex situation term do(«, o) in any sentence W of the appropriate syntactic form. Suppose
W mentions afluent atom F' (£, do(a, o)) atom with F’s successor state axiom being F (7, do(a, s)) =
®(7, a, s). Then we can use regression — in the form of an operator R applied to W (R[W]) — to de-
terminealogicaly equivalent variant W’ of W inwhich F(£, do(a, o)) hasbeen replaced by ®(#, o, o).
The formal definition of the regression operator R is reviewed in Appendix A. By taking W', which
mentions o, instead of ¥, which mentions do(«, o), the nesting of do is reduced by one.

In order for the regression operator to be applicabletoit, aformula ¥ must bein regressableform
which, in essence, means that W must have its situationsterms grounded in Sy and it does not mention
any predicate , nor any equality between situation terms; moreover, for any atom Poss(a, o) men-
tionedin W, o isof theform A(¢4, ... ,t,), where A isan n-ary action function symbol.

Regression uses action precondition axiomsand successor state axiomsto simplify the situationterm
of aformula . In doing so, it (repeatedly) transforms W into aformula R[W]. Theimportance of this
mechanism is shown in the following theorem.

Theorem 3.3 (Regression Theorem) Suppose W isa regressable sentence of Ly;:cq1., and D isabasic
action theory.®> Then
D EWiff Dg, UDyna = R[W].

Computationally, Theorem 3.3 is of extraordinary importance. It states that in order to evaluate a
sentence W against abasic action theory D, it is necessary and sufficient to evaluate R[WW] in theinitial
theory Ds,. We shall useit to answer regressable queries in the context of active databases.

5See Appendix A for aformal definition of the notion of regression and regressable sentence.

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 48

In additionto the Regression Theorem, which furnishesatheoretical justification of posing regressed
gueries against initial databases, there is a further result (the Implementation Theorem) of the situation
calculusthat justifies a simple Prolog implementation of dynamical systemsformalized via basic action
theories. Before stating the Implementation Theorem, we introduce two preliminary concepts that are
used in that theorem.

Definition 3.4 (Closed Form Database) SupposeD isabasicactiontheory of Lg;;.q1.. ItSinitial database
Ds, isin closed formiff

e For eachfluent F" of Dg,, D, containsexactly one sentence of the form F'(Z, Sp) = ¥ (Z, So),
where W (Z, Sp) isafirst order formulauniformin Sy with free variablesamong z.

e For each non-fluent predicate symbol P, D, contains exactly one sentence of the form P(Z) =
Op(Z), where ©p(Z) isa situation independent first order formulawith free variablesamong .

e Theremaining sentencesof Dg, are uniquenameaxiomsfor thesort O, together with all instances
of the schemast[s] # s and t[a] # a, wheret[s] and t[«] are a situation term and an action term
other than s and ¢« mentioning s and a, respectively.

Definition 3.5 (Definitional Theory) Atheoryisdefinitional iff each one of itsaxioms consistsof afirst
order sentence (definition) of theform (Vz4, ..., z,).P(z1,...,z,) = ¢ for each predicate symbol P
mentioned, except for equality.

Theorem 3.6 (Implementation Theorem) Supposethat D isa basic action theory of Lg;;.q;. With the
following restrictions:

o Lircqrc hasfinitely many relational fluents and action function symbols.
e Dg, isinclosed form.

Supposefurther that 77 isa Prolog program obtained from the following sentences, after transform-
ing them by the revised LIoyd-Topor rules®:

e For each definition of a non-fluent predicate of D, of theform P(z) = ©p(&):
Op(Z) D P(Z).
e For each equivalencein D, of theform F(Z, So) = VUr(Z, So):

U (F, So) D F(, So).

5See Appendix B for further details on theserules.

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 49

e For each action precondition axiom of D, of theform Poss(A(Z), s) = 1 4(Z, s):
4(Z,s) D Poss(A(Z),s).
e For each successor state axiomof D of theform F'(Z, do(a, s)) = ®r (7, a, s):

O (Z,a,s) D F(Z,do(a,s)).

Then P isacorrect (i.e. sound, but perhapsnot complete) Prolog implementation of the basic action
theory D for proving regressable sentences.

To prove a regressable sentence G, first transformit using the revised LIoyd-Topor transformations,
then issuethe resulting query to P.

Example 3.3 The stock trading domain includes the following sentences, obtained after transforming
the if-halves of the corresponding definitions according to the Implementation Theorem.

Precondition Axioms. These are the following sentences.

—price(stockld, price,time,s) D Poss(price_insert(stockld, price,time),s),

—stock(stockld, price, closing Price, s) D Poss(stock_insert(stockld, price, closing Price), s),
—customer(custld, balance, stockld, s) O Poss(customer_insert(custld, balance, stockld), s),
price(stockld, price,time, s) O Poss(price_delete(stockld, price,time,s)),

stock(stockld, price, closingPrice,s) D Poss(stock_delete(stockld, price, closingPrice), s),

customer (custld, balance, stockld,s) O Poss(customer_delete(custld, balance, stockld), s).
Successor State Axioms. They are the following sentences.

a = price_insert(stockld, price,time) D price(stockld, price,time, do(a, s)),
price(stockld, price,time, s) A a # price_delete(stockld, price,time) D
price(stockld, price,time, do(a, s)),
a = stock_insert(stockld, price, closingPrice) D stock(stockld, price, closing Price, do(a, s)),
stock(stockId, price, closingPrice,s) A\ a # stock_delete(stocklId, price, closing Price) D
stock(stockld, price, closing Price, do(a, s)),

a = customer _insert(custld, balance, stockld) O customer(custld,balance, stockld, do(a, s)),
customer(custld, balance, stockld, s) A a # customer _delete(custld, balance, stockld) D

customer(custld, balance, stockld, do(a,s)).

CHAPTER 3. LOGICAL PRELIMINARIES: THE SITUATION CALCULUS 50

Initial Database. Thisis

price(ST1,$100,100100: 4PM), price(ST2,$110,100100 : 9AM), price(ST3,$100,100100: 1PM),
stock(ST1,$100,$100), stock(ST2,$110,$100), stock(ST3,$50, $60), customer(Sue, $10000, ST1),
customer(Zang, $5000, ST2).

3.5 Summary

In the current chapter, we described a knowledge representation scheme based on the situation calculus
for modeling dynamic domains. The schemeturnsaround basic actiontheories. In particular, we stressed
on the importance of the notion of regression in order to answer regressable queries posed against basic
action theories and that of correct Prolog implementation of these theories. In the chaptersto come, we
will use this scheme to represent and reason about active relational databases. To start with thistask, the
next chapter will integrate this scheme with a theory of database transactions with ACID properties.

Chapter 4

Specifying Database Transactions

Thusfar, specifically in the previous chapter, we have treated ageneral schemefor representing dynamic
domains. This scheme has been used in [Rei95] to specify database updates. In this chapter, we extend
this specification with a theory of database transactionswith ACID properties.

In Chapter 2, we havefollowed the distinctionmadein the classical transaction theory between trans-
actions and transaction programs. A transaction can be viewed as a particular execution (or execution
trace) of atransaction program whichiswrittenin an Algol-likelanguage. It isimportant to keep thisdis-
tinction in mind when modeling transactions. The present chapter deal s with execution traces as opposed
to transaction programs modeled in the next chapter. So the present chapter really models transactions
per se, not transaction programs. Moreover, database transaction models covered here are concerned
with execution traces, not with programs.

On the other hand, the database community seems confused about the aforementioned distinction
when it comes to advanced transactions, since (with the notable exception of some versions of nested
transactions) many so-called advanced transactionsusually arejust programming methodol ogiesfor writ-
ing transaction programs.

In this chapter, we propose a theory of database transactions that deals only with execution traces,
and not with programs, thus a theory of transactions, not of transaction programs.

We start the chapter by extending the general scheme of the previous chapter to non-Markovian the-
ories, which explain change in terms of all past situationsand not solely based on the previous situation.
Next, Section 4.1.2 introduces the building blocks of our specification framework for representing rela-
tional database transactionsin the situation calculus. In Section 4.2, we model relational flat databases
transactions as second order theories called basic rel ational theories. Here, wewill focus on using basic
relational theoriesto model flat transactionswith ACID properties. Section 4.3 deals with modeling of
advanced transactions.

51

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 52

4.1 The Specification Language

411 Non-Markovian Control in the Situation Calculus

Including dynamic aspectsinto database formalization has emerged as an active area of research. In par-
ticular, avariety of proposal shave been made concerning the formalization of the evolution of databases
with respect to update operations. These approaches can be classified into procedural (essentially due to
thework of Abiteboul and Vianuin [SV87], [Abi88], [AV88], [AV90]) and logical ([FUV83], [Win9(],
[GLOQ], [Gra9]], [KM91], [BK 98], [Rei95],[BPV99]). Procedura approaches deal with updates at the
level of stored data. Logical approaches generally view updates as aremova and addition of sentences
into the logical theory capturing the evolution of the database.

Proposalsin [Rei95], and [BPV99] use the language of the situation calculus ([McC63], [Rei01]).
These proposals use basi ¢ action theoriesfor reasoning about actionsthat rely on two important assump-
tions: their axioms describe deterministic primitive actions, and their execution preconditions and ef-
fects depend solely on the current situation. The later assumption is what the control theoreticians call
the Markov property. Thus both indeterminate and non-Markovian actions are precluded in the theories
introducedin [Rei95] and [BPV99]. However, informalizing database transactions, one quickly encoun-
ters settingswhere using non-Markovian actions and fluents are unavoidable. For example, atransaction
may explicitly execute a Rollback action to go back to the last database state s’ in the past in which a
Begin action was executed; and an F'nd action is executable only if it closes a bracket opened by a
Begin action in the past and no other transaction specific action occurred meanwhile. Thus more than
one situation is involved in considering the semantics of actions such as Begin and Rollback. Thus
one clearly needs to address the issue of non-Markovian actions and fluents explicitly when formaliz-
ing database transactions, and researchers using the situation calculus or similar languages to account
for updates and transactions are not addressing this need. Moreover, one also needs to accommodate
for indeterminate actions that arise in realistic database settingsin the form of null values. Thisissue,
however, remains out of the scope of our thesis.

Theinabhility of basic action theories of [Rei95] and [BPV99] to characterize both the truth val ue of
fluents and the actions preconditionsin the current situation in terms of more than one past situationsis
formally caused by the fact that the predicate C cannot be used on the right hand side of successor state
and action precondition axioms.

Thus, afirst step towards formalizing database transactionsisto extend action precondition axioms
of theform Poss(A(Z),s) = l14(7, s) by dlowing Il 4(Z, s) to be aformulawith free variables among
¥, s that may mention the predicate C. Similarly, we must extend successor state axioms of the form
F(Z,do(a,s)) = ®r(Z,a, s) by dlowing (7, a, s) to beaformulawith free variablesamong 7, a, s
that may mention the predicate C. Moreover, the notion of uniformity in a given situation term seen in
the precedent chapter must be extended to this new setting.

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 53

Following [Gab00], we call such an extension of action precondition and successor state axioms to-
gether with the foundational axioms, unique name axioms, and axioms describing theinitial situation of
Definition 3.1 anon-Markovian basic action theory. Thisisformally introduced as follows:

Definition 4.1 ([Gab00]) Let Lsircare = (A, 20,J) be the language of the situation calculus. Then a
theory D C 20 is a non-Markovian basic action theory iff it has a set Act of actions and a set F'[of
fluents, and, moreover, it is of theform

DIDfUDapupssUDunaUDSo7

where D¢, Dy, Dss, Duna, and D, areasin Definition 3.1, except that the action precondition axioms

and the successor state axioms now mention the predicate C on their right hand sides.

Non-Markovian basic action theories are suited for expressing non-Markovian control in the situation
calculus.
Inorder torepresent rel ational databasetransactions, weneed someappropriaterestrictionson Lg;;cqic-

Definition 4.2 Abasicrelationa languageisa subset of L;:.q1. that hasthefollowing restrictionson the
alphabet :

1. 2 hasa finite number of constants, but at least one.
2. 2 hasa finite number of action functions.
3. 2 hasa finite number of relational fluents.

Fluents now contain a further argument specifying which transaction contributed to its truth value in a
given log. The domain of this new argument could be arbitrarily set to, e.g., integers. So abasic re-
lational language is a finite fragment of the situation calculus that is suitable for modeling relational
database transactions. In the sequel of this chapter we shall introduce an extension of non-Markovian
basic action theories called basic relational theories which istailored to relational languages and shall
devote the subsequent chapters to extending them. Again, a afew occasions, we shall use functional
fluents and will introduce them whenever we need them.

For simplicity, we consider basic relational languages whose only primitive update operations cor-
respond to insertion or deletion of tuplesinto relations. For each such relation of the form F(7,t, s),
where 7 isatuple of objects, ¢ is a transaction argument, and s is a situation argument, a primitive in-
ternal action is aparameterized primitive action of the situation calculus of theform F _insert(z,t) or
F_delete(Z,t). Intuitively, I’ insert(Z,t) and F'_delete(Z, t) denotethe actions of inserting thetuple ¥
into and deletingit from therelation F' by thetransaction, respectively; for convenience, wewill abbre-
viate long symbols when necessary (e.9., account insert(Z,t) will be abbreviated as a_insert(z,t)).
Below, we will use the following

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 54

Abbreviation 4.1
writes(a, I, T,t) =q a = F_insert(Z,t) V a = F_delete(Z,t),
Abbreviation 4.2
reads(a, I, Z,t) =g (3s)a = F_reads(Z,t, s),

onefor each fluent. Noticethat Abbreviation 4.2 istypical of the database context where we need to in-
clude certain test actionsin thelog. We distinguishthe primitiveinternal actionsfrom primitive external
actionswhichare Begin(t), Commit(t), End(t), and Rollback(t), whose meaning will be clear inthe
sequel of this chapter; these are external as they do not specifically affect the content of the database.*
Theargument ¢ isauniquetransactionidentifier. Finally, the set of fluents of arelational languageis par-
titioned into two disjoint sets, namely a set of database fluentsand a set of systemfluents. Intuitively, the
database fluents represent the relations of the database domain, while the system fluents are used to for-
malize the processing of the domain. Usually, any functional fluent in arelational language will always
be a system fluent.

4.1.2 The Specification Framewor k

In [Chr91], the following building blocksfor transaction models are identified: history, intertransaction
dependencies, conflict between operations, and del egation of responsibility for objectsto a transaction.
We now show how these building blocks are represented in the situation calculus.

In the situation calculus, the history of [Chr91] corresponds to the log. We extend the basic action
theories of [Rei01] to include a specification of relational database transactions, by giving action precon-
dition axioms for external actions such as Begin(t), E'nd(t), Commit(t), Rollback(t), Spawn(t,t'),
etc. Commit(t) and Rollback(t) are coercive actions that must occur whenever they are possible. We
also give successor state axiomsthat state how change occursin databasesin the presence of bothinternal
and external actions. All these axioms provide the first dimension of the situation calculus framework
for axiomatizing transactions, namely the axiomatization of the effects of transactions on fluents; they
also comprise axioms indicating which transactions are conflicting with each other.

A useful concept that underlies most of the transaction modelsisthat of responsibility over changes
operated on dataitems. For example, in anested transaction, a parent transaction will take responsibility
of changes done by any of its committed children. The only way we can keep track of those responsi-
bilitiesisto look at the transaction arguments of the actions present in the log. To that end, we intro-
duce a system fluent responsible(t, a, s), which intuitively means that transaction ¢ is responsible for
the action « in the log s, which we characterize with an appropriate successor state axiom of the form

1The terminology internal versus external action is also used in [LMWF94], though with a different meaning.

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 55

responsible(t,d’, do(a, s)) = Py (t, a,d, s), where @y, (¢, a, o', s) isatransaction model-dependent
first order formulawhose only free variablesare among ¢, a, a’,, and s. For example, in the flat transac-
tions, we will have the following, simple axiom:

responsible(t,a,s) = \/ 4. 4(I7)a = A(Z,)

i.e., each transaction is considered responsiblefor any action whose last argument bears its name; here,
A isthe set of actions of the relational language.

To express conflicts between transactions, we need the predicate term Act(a, t) and the system flu-
entsupdCon flict(a,d’, s) and transCon flict(t,t', s), whose intuitive meaning is that the action « is
atermina action of ¢, theaction a isconflictingwiththeaction a’ in s, and thetransaction ¢ is conflicting
with the transaction ¢ in s; their characterization is as follows:

Abbreviation 4.3
termAct(a,t) =4 a = Commit(t) V a = Rollback(t);

Abbreviation 4.4
updConflict(a,a’,s) =g (3Z,1,). \/ =[F(Z,t,do(a,do(d, s))) = F(Z,t',do(d, do(a, s)))] V
FeF

\/ [writes(a, F, T,t) A writes(d’, F, Z,t') Vv
FeF

writes(a, F, T, t) A reads(d’, F, Z,t') v
reads(a, F, T, t) A writes(a’, F, 7, t")].

In Abbreviation 4.4, F isthe set of database fluents of the relational language; this definition says that
twointernal actionsa and o’ conflictin thelog s iff the value of the fluents depends on the order in which
a and a’ appear in s. Moreover, two internal actions conflict if at least one of them isawrite operation.
Notice that we assumed only reads and writes, to ease presentation. Any further database modifying
action that is introduced must be accompanied by a change in the definition which would be adding a
new disjunct intheright hand side of the abbreviationabove. Thisislikethetreatment of actionsbeyond
reads and writesin [BHG87]. Noticeaso that if we remove thefirst disjunct in the right hand side of the
abbreviation above, our definition of update conflict will capture the one that the database community

uses.
Abbreviation 4.5
transConflict(t,t',do(a,s)) =t # t' A responsible(t’, a, s) A

(3d', §')[responsible(t,d’, s)A do(d’,s") C s A updConflict(d',a,s)]V (4.1)

transConflict(t,t', s) A ~termAct(a,t);

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 56

i.e., transaction ¢ conflicts with transaction ¢’ in the log s iff ¢’ executes an internal action « after ¢ has
executed an internal action ' that conflicts with a inthelog s.

Notice that we define updCon flict(a, d’, s) in terms of performing action a and action «’ oneim-
mediately after the other and vice-versa; in the definition of transCon flict(t,t', s), however, we alow
action «’ to be executed long before action «. This does not mean that actions that are performed be-
tween o’ and « are irrelevant with respect to update conflicts. Rather, the first disunct in the right hand
side of Abbreviation (4.4) just meansthat actionsa and «’ conflict whenever executing oneimmediately
after the other would results in a discrepancy in the truth value of at least one of the relationa fluents;
and Abbreviation (4.1) allows for the possibility of other update conflicts arising between o’ and other
actions before the execution of a.

A further useful system fluent that we providein thegeneral framework isreadsFrom(t,t’,s). This
isused in most transaction models as a source of dependencies among transactions. In the database tra-
dition, it intuitively means that the transaction ¢ reads a value written by the transaction ¢’ in the log s.
In general however, the axiomatizer must provide a successor state axiom for this fluent depending on
the application.

The second dimension of thesituation cal culusframework ismade of dependencies between transac-
tions. All the dependenciesexpressedin ACTA ([Chr91]) can a so be expressed in the situation calculus.
Asan example, we have:

Commit Dependency of ¢ on ¢’
do(Commit(t),s) C s* D [do(Commit(t'),s') C s* D do(Commit(t'),s") C do(Commit(t), s)];
i.e, if t commitsinalog s*, then, whenever ¢’ also commitsin s*, ¢ commits before .
Strong Commit Dependency of ¢ on ¢’
(3s")do(Commit(t'),s") C s* D (Is)do(Commit(t),s) C s,
i.e., if ¢ commitsin alog s*, then ¢ must also commit in s*.
Rollback Dependency of ¢ on ¢/
(3s")do(Rollback(t'),s") T s* D (Is)do(Rollback(t),s) C s*;
i.e, if t’ rollsback inalog s*, thent must aso roll back in that log.
Weak Rollback Dependency of ¢ on#’

do(Rollback(t'),s") C s* D
{(Vs)[s C s* A do(Commit(t), s) £ do(Rollback(t'),s")] D (3s")do(Rollback(t), s") C s*};

i.e, if ¢ rollsback in alog s*, then, whenever ¢ does not commit beforet’, ¢ must also roll back in s*.

Begin on Commit Dependency of ¢ on ¢’

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 57

do(Begin(t),s) C s* D (3s')do(Commit(t'),s') C do(Begin(t),s) C s*;

i.e, if t beginsinalog s*, then, ¢ must commit before the beginning of ¢ in s*.

All these dependencies are properties of legal database ogs of various transaction models.

To control dependenciesthat may devel op among running transactions, we use a set of predicatesde-
noting thesedependencies. For example, weusec_dep(t,t’, s), sc.dep(t,t', s), r_dep(t,t', s),wr_dep(t,t', s),
andandbc_dep(t,t', s) to denotethe commit, strong commit, rollback, weak rollback, and begin on com-
mit dependencies, respectively. These are system fluents whose truth value is changed by the relevant
transaction model s by taking into account dependenci es generated by the execution of itsexternal actions
(external dependencies) and those generated by the execution of itsinternal actions (internal dependen-
cies). As an example, in the nested transaction model, we have the following successor state axiom for
wr_dep(t,t', s):

wr_dep(t,t',do(a,s)) = a = Spawn(t,t') v
wr_dep(t,t', s) A —termAct(a,t) A ~termAct(a,t’).
This says that a weak rollback dependency of ¢ on ¢’ arisesin do(a, s) when either « is the action of ¢
spawning ¢’, or that dependency existed already in s and neither ¢ nor ¢’ terminated with the action a.

4.2 Specifying Flat Transactions M odels

421 BascRdational Theories

Flat transactions exhibit ACID properties. Thissection introduces a characterization of flat transactions
in terms of theories of the situation calculus. These theories give axioms of flat transaction models that
constrain database logsin such away that theselogs satisfy important correctness properties of database
transaction, including the ACID properties.

Definition 4.3 (Flat Transaction) A sequence of databaseactionsisa flat transaction iff it is one of the
following:

1. Atomictransaction: [ay, . .. ,a,], wherethea; mustbe Begin(t), anda,, must beeither Commit(t),
or Rollback(t); a;,i =2, -- -, n—1, may beany of theprimitiveactions, except Begin(t), Rollback(t),
and Commit(t); here, the argument ¢ isa unique identifier for the atomic transaction.

2. Transaction: atye ... at,,, wheretheat;, 1 < i < m, are atomic transactions.2

Notice that we do not introduce aterm of anew sort for transactions, asisthe casein [BPV99]; wetreat
transactions as run-time activities— execution traces — whose design-time counterparts will be Con-

Given two atomic transactions A = [A;,---,A,] and B = [Bi,---,Bn], A ¢ B is an abbreviation for
[A17"' 7Aﬂ7Bl7"' 7Bm]

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 58

Golog programs introduced in the next chapter. We refer to transactions by their names that are of sort
object. Notice also that, on this definition, atransaction is a semantical construct which will be denota-
tions of situationsof a special kind called lega logsin the next section.

The axiomatization of a dynamic relational database with flat transaction properties comprises the
following classes of axioms:

Foundational Axioms. These are constraints imposed on the structure of database logs ([PR99], See
Theorem 3.2):

do(ar, 1) =do(az, s3) > ay=as A 51 =53, 42)
(VP).P(So) A (Va, s)[P(s) > P(do(a, s))] > (Vs)P(s), 43)
(s C So), (4.4
s C do(a,s') =sCs. (4.5)

These characterize database | ogs as finite sequences of updates and were provento bevalid in the previ-
ouschapter. Noticethat the second axiom isasecond-order induction axiom; thethird and fourth axioms
characterize the subsequencerelation .

Integrity Constraints. These are constraintsimposed on the data in the database at a given situation s;
their set is denoted by ZC. for constraints that must be enforced at each update execution, and by ZC,
for those that must be verified at the end of the flat transaction.

Update Precondition Axioms. There isonefor each internal action A(Z, ¢), with syntactic form
Poss(A(Z,t),s5) = ()14 (T, 1, 5) A IC.(do(A(T,t),s)) A running(t, s). (4.6)

Here, I14(Z, ¢, s) isafirst order formulawith free variablesamong 7, ¢, and s. Moreover, theformulaon
the right hand side of (4.6) is uniformin s.3 These axioms characterize the preconditions of the update
A; IC,(s) and running(t, s) are defined as follows:*

Abbreviation 4.6 1C.(s) =4t Arcere IC(5)-

Abbreviation 4.7

running(t, s) =4 (3s').do(Begin(t),s') C s A
(Va, s")[do(Begin(t),s') C do(a,s") T s D a # Rollback(t) A a # End(t)].

3See Appendix A for the formal definition of uniformity in agiven situation term.
*In fact, the definition of running(t, s) could be replaced by the successor state axiom

running(t, do(a, s)) = a = Begin(t) V running(t, s) A a # Rollback(t) A a # End(t).

However, we keep the definition to avoid introducing too much system fluents.

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 59

In abanking Credit/Debit example formalized below (in Section 4.4), thefollowing statesthat it is pos-
sibleto delete a tuple specifying the teller identity ¢:d and balance tbal into thetellers relation relative
to the database | og s iff, as aresult of performing the actionsin the log, that tuple would not aready be
present inthetellers relation, the integrity constraints are satisfied, and transaction ¢ is running.

Poss(t_delete(tid, thal,t), s) =(3t")tellers(tid, thal t', s) A

1C (do(t_delete(tid, thal,t),s)) A running(t,s). @4.7)

Successor State Axioms. These have the syntactic form

—

F(%,t,do(a,s)) =(3t1)®r(Z, a,t1,s) A =(3")a = Rollback(t") v

(3t"Ya = Rollback(t") A restore BeginPoint(F, Z,t", s),

4.8)

Thereisonesuch axiom for each databaserelational fluent F'. Theformulaon theright hand side of (4.8)
isuniformins, and ® (7, a, , s) isaformulawith free variablesamong 7, a, t, s; ® (7, a, £, s) stands
for the right hand side of the successor state axioms of Section 3.2.2 and has the following canonical
form ([Rei01]):

I

7F(f7a7t_;5)\/F(f73)/_‘71;(57“7{;5)7 (4.9)

where v1 (%, a, t, 5) (v (%, a, t, 5)) denotes a first order formula specifying the conditions that make a
fluent F true (false) in the situation following the execution of an update a.
The predicate restore Begin Point(F, £, t, s) isdefined as follows:

Abbreviation 4.8
restoreBeginPoint(F, T, t,s) =g
{(Elah ay, 5/7 51y 52, t/)'
do(Begin(t),s') C do(ag, s2) C do(aq,s1) C s A writes(ay, F, Z,t) A writes(az, F, Z,t') A
non non / . " =
) -0 23) ' ’ s By
[(Va",s").do(az, s2) Cdo(a”, s") Cdo(aq,s1) D ~writes(a”, F, T, t)]A
[(Va",s").do(a1,51) Cdo(a”,s") T s D —~(3t"Ywrites(a”, F, z,t")]A(F")F(Z,t", s1)]} V
{(Va*,s*,s").do(Begin(t),s') C do(a*,s*) C s D —writes(a*, F, Z,t)] A (3')F(Z,1',s)}.
Notice that system fluents have successor state axioms that have to be specified on a case by case basis

and do not necessarily have the form (4.8). Intuitively, restore BeginPoint(F, Z,t, s) means that the
system restores the value of the database fluent F° with arguments ' in a particular way:

e Thefirst disunctin Abbreviation 4.8 captures the scenario where the transactions+ and ¢’ running
inparalel, and writinginto and reading from 7 are such that t overwriteswhatever ¢’ writesbefore
it (¢) rollsback. Supposethat ¢ and ¢’ are such that ¢ begins, and eventually writes into F before

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 60

rolling back; ¢’ beginsafter t has begun, writesinto F before thelast write action of ¢, and commits
before ¢ rolls back. Now the second disjunct in 4.8 says that the value of F' must be set to the
"before image” ([BHG8T7]) of thefirst w(t), that is, the value the I” had just before the first w(t)
was executed.

e Thesecond disunct in Abbreviation 4.8 captures the case where the value F’ had at the beginning
of the transaction that rolls back is kept.

Given the actual situation s, the successor state axiom characterizes the truth values of the fluent ' in
the next situation do(a, s) in terms of al the past situations. Notice that Abbreviation 4.8 captures the
intuitionthat Rollback(t) affects al tupleswithin atable.

In the banking example, the following successor state axiom (4.10) states that the tuple (tid, thal)
will beinthetellers relationrelativetothelog do(a, s) iff thelast database operationa intheloginserted
itthere, oritwasalready inthetellersrelationrelativetothelog s, and e didn’t deleteit; all this, provided
that the operation « is not rolling the database back. 1n the case the operation « is rolling the database
back, thetellers relation will get avalue according to thelogic of (4.8).

tellers(tid, thal,t,do(a,s)) = ((Ft1)a = t_insert(tid, thal, t;) V (Fta)tellers(tid, thal,ty, s) A
=(3t3)a = t_delete(tid, thal, t3)) A =(3t')a = Rollback(t') v
(3t').a = Rollback(t') A restore BeginPoint(tellers, (tid, thal), t', 5§4'10)

In this successor state axiom, the formula
(Ft1)a = toinsert(tid, thal, t1) Vv (3tg)tellers(tid, thal,ty, s) A ~(3ts)a = t_delete(tid, thal, t3)

correspondsto the canonical form 4.9.

Precondition Axiomsfor External Actions. Thisisaset of action precondition axioms for the trans-
action specific actions Begin(t), End(t), Commit(t), and Rollback(t). The external actions of flat
transactions have the following precondition axioms:®

Poss(Begin(t), s) = =(3s')do(Begin(t), s') C s, (4.12)
Poss(End(t), s) = running(t, s), (4.12)
Poss(Commit(t),s) = (3s').s = do(End(t), s') A

/\ IC(s) A (V') [sc_dep(t,t',s) D (Is")do(Commit(t'),s") C s],
ICeIC,

(4.13)

51t must be noted that, in reality, a part of rolling back and committing lies with the user and another part lies with the
system. So, we could in fact have something like Rollback.y.(t) and Commit.,.(t) on the one hand, and Rollback..r(t)
and Commit.,.,(t) ontheother hand. However, the discussionis simplified by considering only the system’srolein executing
these actions.

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 61

Poss(Rollback(t), s) = (3s')[s = do(End(t),s") A

- /\ IC(s)] v (', s")[rdep(t,t',s) A do(Rollback(t'), s") C s].
ICeIC,

(4.14)

Notice that our axioms (4.11)—(4.14) assume that the user will only use interna actions Begin(t) and
End(t) and the system will execute either C'ommit(t) or Rollback(t).

Dependency axioms. These are transaction model -dependent axioms of the form
dep(t,t',s) = C(t, ¢, s), (4.15)

whereC(t,t', s) isacondition involving a relationship between transactions¢ and ¢/, and dep(¢,t', s) is
one of the dependency predicates c_dep(t,t’, s), sc_.dep(t,t', s), etc. Intheclassical case, we have the
following axioms:

r_dep(t,t’', s)=transConflict(t,t',s), (4.16)
sc_dep(t,t’, s)=readsFrom(t,t', s). (4.17)

The first axiom says that a transaction conflicting with another transaction generates a rollback depen-
dency, and the second saysthat atransaction reading from another transaction generates a strong commit
dependency. Axioms (4.16) and (4.17) generate interna dependencies.

Unique Names Axioms. These state that the primitive updates and the objects of the domain are pair-
wise unequal .

Initial Database. Thisis a set of first order sentences specifying the initial database state. They are
completion axioms of the form

(VZ,1).F(Z,t,5) = e=CVv.. vi=C), (4.18)

one for each (database or system) fluent . Here, the C* are tuples of constants. Also, D s, includes
unique name axioms for constants of the database. Axioms of the form (4.18) say that our theories ac-
commodate a complete initial database state, which is commonly the casein relational databases as un-
veiledin[Rei84]. Thisrequirement is made to keep the theory simpleand toreflect the standard practice
in databases. It has the theoretical advantage of simplifying the establishment of logical entailmentsin
theinitial database; moreover, it hasthe practical advantage of facilitating rapid prototyping of the ATMs
using Prolog which embodies negation by failure, a notion close to the completion axioms used here.

One striking feature of our axiomsisthe use of the predicate C on the right hand side of action pre-
condition axioms and successor state axioms. That is, they are capturing the notion of a situation being
located in the past relative to the current situation which we express with the predicate C in the situa-
tion calculus. Thusthey are capturing non-Markovian control. We call these axioms a basic relational
theory, and introduce the following:

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 62

Defini
atheo

tion 4.4 (Basic Relational Theory) Suppose R = (%, 20) isa basic relational language.® Then
ry D C 20 isanon-Markovian basic relational theory iff it isof theform

D= Df U7Drc UDapUDSS UDpr UDdep U Duna UDSO

where

Defini

2 comprises, inadditiontotheinternal actions, theexternal actions Begin(t), E'nd(t), Commit(t),
and Rollback(t).

Dy isthe set of foundational axioms.

D¢ isa set of integrity constraints /C'(s). More specifically, we have built-in ICs (D¢,) and
genericICs (Dycw»). Built-inICsare: not null attributes, primary keys, and uniqueness ICs.

D, isaset of non-Markovian action precondition axioms of the form(4.6), onefor each primitive
internal action of .

D, isaset of non-Markovian successor stateaxiomsof theform(4.8), onefor each databasefluent
of R. Also, D, includes successor state axioms for all the system fluents of the flat transaction
model.

Drr isa set of action precondition axioms for the primitive external actions of 3.
Dy, isa set of dependency axioms.
D.una consists of unique names axioms for objects and for actions.

Ds, isaninitial relational theory, i.e. a set of completion axioms of the form

—

(VZ).F(Z,S0) =f=CDv...vi=C0,

onefor each fluent F whoseinter pretation containsr n-tuples, together with compl etion axioms of
theform (VZ)—F(Z, Sy), onefor each fluent F* whose interpretation is empty. Also, D, includes
unique name axioms for constants of the database.

tion 4.5 (Relational Database) A relational databaseis a pair (R, D), where R isa relational

language and D isa basic relational theory.

4.2.2

Strict Schedulesthat Avoid Cascaded Rollback

Cascading rollback is the phenomenon where rolling back a transaction leads to further transactions

rolling back. Usualy, practical DBMSs try to avoid this phenomenon. Our formalism so far captures

8In most of what follows, we omit the J component of relational languages whenever the context is clear.

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 63

genera logsthat allow cascading rollbacks. This can be seen by examining Axiom (4.14). Thisaxiom
impliesthat arollback of atransactiont is possiblewhenever atransaction on which ¢ isrollback depen-
dent hasindeed rolled back. Since—aswewill seebelow —rollback isan action that must occur whenever
itis possible, rollback dependency may lead to a cascading rollback. Therefore, we must spend toughts
on how to capture the notion of avoiding cascading rollbacksin the situation calculus.

Following [BHG87], a schedule— corresponding to our log — avoids cascading rollback (is strict) if
a transaction reads (reads and writes) a database item only if all transactionsthat previously wrote that
item have committed or aborted. Then, a possible way of capturing these restrictionsin our framework
would beto do the following:

e First, addthecondition”if al transactionsthat previously wrotetheitem have committed or aborted”
to the action precondition axioms (4.6). Doing so, we obtain the following general form for the
action precondition axioms:

Poss(A(Z,t),s) =
(I A(T, ¢, 8) A IC(do(A(T, 1), s)) A running(t, s) A
[(VF, ¢ a).[reads(a, F, Z,t') V writes(a, F, Z,t")] D (4.19)
[(3s").do(Commit(t'),s') T sV do(Rollback(t'),s") T s]].

Here, as before, 114 (7, ¢, s) isafirst order formulawith free variables among 7, ¢, and s, and the
formulaon theright hand side of (4.19) isuniformin s. This correspondsto the database practice
of suitably delaying read and write operations to achieve strict schedules.

e The successor state axioms will remain as formalized in (4.8) and Abbreviation 4.8.

Noticethat the most general case of rollack should expungetheactionsof arolled back transactionz from
the history. In the situation calculus, this amounts to striking out ¢'s actions from the log. Now, since
many transactions may be running in parallel, the end effect of the this striking out should not disturb
the rest of the transactions. We do not pursue this case here further. Also, for ease of presentation, the
rest of thisthesiswill assume the basic logsthat alow cascading rollbacks.

4.2.3 Legal Flat Transactions

A fundamental property of Rollback(t) and C'ommit(t) actionsisthat, the database system must execute
them in any database state in which they are possible. In this sense, they are coercive actions, and we
call them system actions:

Abbreviation 4.9

systemAct(a,t) =4 a=Commit(t) V a= Rollback(t).

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 64

We constrain legal logs to include these mandatory system actions, as well as the requirement that
al actionsin the log be possible:

Abbreviation 4.10
legal(s) =4 (Va, s")[do(a,s™) C s D Poss(a,s™)] A
(Vd',a”, s t)[systemAct(a’, t) A responsible(t,a’,s’) A
responsible(t,a”, s') A Poss(a’,s') ANdo(a”,s') C s D a' = a"] (4.20)
LetT = AT, o --- e AT, be atransaction, where the AT; are atomic transactions, and recall that
do(T, Sp) isan abbreviation for do(A,,, do(A,_1,- -+, do(A1, So) - - -)). Then, we extend the notion of
legality to transactions by requiring that legal transactions be thosethat lead to legal database situations.
Thuswhenever we can establish that D |= legal(do(T', Sy)), wewill say that 7" isalegal transaction.

In proving the different propertiesof transaction model s, the following three lemmas exhibiting sim-
ple properties of legal logswill be useful.

Lemma 4.6 Let D bea basic relational theory. Then

Dy U {(4.20)} = (Vs, a){legal(So) A
[legal(do(a,s)) = legal(s) A Poss(a,s) A

(Vd',t).systemAct(a', t) A responsible(t,d’, s) A Poss(d',s) D a = a'l}.
Lemma 4.7 SupposeD isa basic relational theory. Then
DU{(4.20)} | legal(s) D (Vs')[s' C s D legal(s")].
Lemma 4.8 Suppose|ay, - -, a,] isa sequence of ground action terms. Then

Dy U{(4.20)} Elegal(do([ay,- -, ay,],s))

/\{Poss(ai, do([ay, - ,a;—1],8)) A

=1
(Va,t)[systemAct(a,t) A responsible(t, a,do([ay, - ,a;—1],s)) A

Poss(a,do([a1,---,a;-1],5)) D a; = al}.

424 Properties

Simple properties such as well-formedness of atomic transactions ([LMWF88]) can be formulated in the
situation calculus and proven aslogica consegquences of basic relational theories. We first introduce the
following abbreviation:

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 65

Abbreviation 4.11
external Act(a,t) =4 a = Begin(t) Va = End(t) V a = Commit(t) V a = Rollback(t).
Theorem 4.9 (Well-Formedness of Flat Transactions) Suppose D isa basic relational theory. Then
1. No external action may occur twiceinalegal log; i.e,
D = legal(s) D {do(a,s’) C s Ado(a,s") C s A external Act(a,t) D s’ = s"}.
2. Thereare no dangling C'ommit or Rollback actions; i.e.,

D = legal(s) D
{[do(Commit(t),s') C s D (Is")do(Begin(t),s") T do(Commit(t),s")] A
[do(Rollback(t),s") T s D (Is”)do(Begin(t),s") C do(Rollback(t),s)]}.

3. No transaction may commit and then roll back, and conversely; i.e.,

D = legal(s) D
{[do(Commit(t), s') T s D =(3s")do(Rollback(t),s") C s] A
[do(Rollback(t),s") C s D —(3s")do(Commit(t),s") C s]}.

These properties are similar to the fundamental axioms, applicableto all transactions, of [Chr91]. They
are well-formedness properties since they rule out al theill-formed transactions such as

[Begin(t), a_insert(Ay, B1,1000,71), Begin(t), adelete(Ay, B1,1000,71), Commit(t)],

[Begin(t), a_insert(Ay, B1,1000,T1), Commit(t), adelete(Ay, B, 1000, T1), Commit(t)],

[Begin(t), a_insert(Ay, By, —1000,Ty), Commit(t), adelete(Ay, By, —1000,T}), Rollback(t)],etc

Theorem 4.10 Suppose D is a basic relational theory. Then any legal log satisfies the strong commit
and rollback dependency properties; i.e.,

D = legal(s) D
(Vt,t") {sc_dep(t,t', s) D [(3s')do(Commit(t'),s') C s D (Is*)do(Commit(t),s*) C s|} A
{r_dep(t,t',s) D [(Is')do(Rollback(t'),s") C s D (Is*)do(Rollback(t),s*) T s]}.

Now we turn to the ACID properties, which are the most important properties of flat transactions.

Theorem 4.11 (Atomicity) SupposeD isarelational theory. Then for every database fluent F
D = legal(s) D
(Vt,a, s1,89){[do(Begin(t), s1) C do(a, s3) C s] A
(Fa”, s*, &) [do(Begin(t), s1) C do(a™, s*) C do(a, s3) A writes(a™, F, Z,t)] D
[(a = Rollback(t) D ((3t1)F(Z,t1,do(a, s3)) = (Tt2) F(T,t2,81))) A
(a = Commit(t) D ((3t1)F(Z,t1,do(a, s9)) = (Tt2) F(T, t2, $2)))]}

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 66

This saysthat rolling back restores any database fluent to the value it had just before the last Begin(t)
action, and committing endorses the value it had in the situation just before the C'ommit(t) action.

Theorem 4.12 (Consistency) Suppose D isarelational theory. Then all integrity constraintsare satis-
fied at committed logs; i.e.,

D = legal(s) D {do(Commit(t),s') E s D Arceze,uze. 1C(do(Commit(t), ') }.

Theorem 4.13 D issatisfiableiff Ds, UD . UD1c[So] is.” In other words, provided the constraintsare
consistent with the initial database state and unique names for actions, then the entire relational theory
is satisfiable, and conversely.

Some properties of transactions need the notions of committed and rolled back updates. With the
predicates committed(a, s) and rolled Back(a, s), we express these notions in the situation calculus
using the following definitions:

committed(a, s) =q (3t, s').responsible(t, a, s) A do(Commit(t),s') C s, (4.21)

rolledBack(a, s) =4 (3t,s').responsible(t,a, s) A do(Rollback(t),s') C s. (4.22)

Theorem 4.14 (Durability) Suppose D is a relational theory. Then whenever an update is committed
or rolled back by a transaction, another transaction can not change this fact:

D Elegal(s) D {do(Rollback(t),s’) C s D
[committed(a,s’) = committed(a, do(Rollback(t), s"))] A
[rolledBack(a, s") = rolled Back(a, do(Rollback(t),s))].

425 Flat Transactionswith Savepoints

Flat transactionswith savepoints are a variation of flat transactions which provides the user with a new
external action Save(t) to establish savepoints in the database log ((GA95]). The user program can
roll back to those savepoints from later database logs. A flat transaction with savepointsis a sequence
[a1,...,a,] Of primitive actions, where a; must be Begin(t), and a,, must be either Commit(t), or
Rollback(t);a;,i = 2,---,n—1,may beany of the primitiveactionsincluding Save(t) and Rollback(t, n),
except Begin(t), Commit(t), and Rollback(t); a,,_, may be End(t).

The external action Rollback(t,n), where t is a transaction, and n is a monotonically increasing
number — the savepoint —, brings the database back to the database state corresponding to that save-
point. With this action, we now can roll back with respect to savepoints; thus the precondition axiom for
Rollback(t, n),whichnow hasasavepoint asargument, must be specified accordingly. If a Rollback(t, n)

"Here, Drc[So] isthe set D;¢ relativized to the situation Sy .

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 67

action is executed in situation s, its effect is that we ignore any situation between some s’ and s, where
s’ isthe database | og corresponding to the savepoint ». Oneway of doing thisisto maintain apredicate
Ignore(t, s, s) inorder to know which parts of thelog to skip over. The following action precondition
axioms and definition reflect these changes to the corresponding axioms for flat transactions of Section
4.2.1:

Poss(Save(t), s) = running(t, s), (4.23)
Poss(Rollback(t), s) = (3s')[s = do(End(t),s') A= /\ IC(s)V
ICeIc,
(3¢, ") [r-dep(t,t', s) A do(Rollback(t'),s") C s] v (4.24)

(3t n, s, s,) [C s* C s Ar_dep(t,t',s*) A
s' = sitAtSavePoint(t',n) A do(Rollback(t',n),s*) C s,
Poss(Rollback(t,n), s) = running(t, s) A (3s').s' = sitAtSave Point(t, n) A

s' C s AnumO fSavePoints(t,s) > n A—(3s*,s).s* Cs' C s A

Ignore(t,s*, s*), (4.25)
Ignore(t, s’ do(a,s)) = s C do(a,s) A
((a,5)) (a, 5) (4.26)
(3n).sit AtSavePoint(t,n) = s' A @ = Rollback(t,n),
numO fSavePoints(t,do(a,s)) =n =a = Begin(t) An=1V

a = Save(t) A n = numO fSavePoints(t,s) + 1V (4.27)

numO fSavePoints(t,s) = n A a # Begin(t) A a # Save(t),
sit AtSavePoint(t,n) = s =g (Ja, s').numO fSavePoints(t,s) = n A 428

s = do(a,s') A (a = Begin(t) V a = Save(t)).

Inflat transactionswith save points, successor state axiomsfor relations havethefollowing form that
reflects changes introduced by the external Rollback(t, n) action.

F(Z,t,do(a,s)) =
(3t1).®r (7, a,t1,s) A =(3t")a = Rollback(t") A —~(3t",n)a = Rollback(t",n) v
(3t"Ya = Rollback(t") A restore Begin Point(F, % ,t",s) Vv (4.29)
(In, t").a = Rollback(t",n) A restoreSavePoint(F,Z,n,t", s),

onefor each relation /', where (7, a, ty, s) isaformulawith free variablesamong «a, s, 7, t1; Abbre-
viation (4.8) definesrestore Begin Point(F, Z,t", s), and restoreSave Point(F, Z, n,t", s) isdefined

asfollows;

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 68

Abbreviation 4.12
restoreSavePoint(F, T, n,t,s) =g

(3s").s' T s A sitAtSavePoint(t,n) = s' A (F')F (T, ¢, §), (4.30)

where sit AtSave Point(t, n) isafunction returning the log relative to the transaction ¢ at the savepoint
n, defined by (4.28); restoreSave Point(F, ¥, n,t,s) means that the value of the fluent F* with argu-
ments 7 is set back to thevalueit had at the sublog of s corresponding to the savepoint » established by
the transaction ¢.

The dependency axioms have to be adapted to this new setting where dependenciesthat held previ-
ously may no longer hold as a consequence of the partial rollback mechanism; these axioms are now of
theform

dep(t,t',do(a,s)) = C(t,t',s) A a # Rollback(t) A a # Rollback(t') A
=(3n, s')[(a = Rollback(t,n) V a = Rollback(t',n)) A (4.31)
sitAtSavePoint(t',n) = s' A (Vs").s' C " C s D ~dep(t, ¥, s")],
where C(t,t') and dep(t,t', s) are defined as in (4.15); we have one such axiom for each dependency
predicate.

A basic relational theory for flat transactions with savepointsis as in Definition 4.4, but where the
relational language includes Save(t) and Rollback(t,n) as further actions, the axioms (4.23) — (4.28)
areadded to Drr, the set D, isaset of successor state axioms of the form (4.29), and the set Dy, isa
set of dependency axioms of theform (4.31). All the other axioms of Definition 4.4 remain unchanged.

Properties

Now weturntothe ACID propertiesof flat transactionswith savepoints. Theintroductionof the Rollback(t, n)
action modifies some of the previous theorems.

Lemma4.15 SupposeD isarelational theory. Then for every relational fluent F°

D = legal(s) D
{[do(Begin(t),s1) C do(a,s2) C s] A
(Ja™, 5™, Z)[do(Begin(t), s1) C do(a®, s™) C do(a, s3) A writes(a™, F, Z,t)] D
[(3n)(a = Rollback(t,n) A sitAtSave Point(t,n) = s') D
(G0 F(E 11, dola,) = () F(F, 12,)]
Thistellsusthat Rollback(t, n) doesnot fall under the all-or-nothing logic that characterizes flat trans-

actionssincethesituation at a given savepoint of atransactionis not necessarily the same asthesituation
at the beginning of that transaction.

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 69

Notethat Theorem 4.11 continuesto holdfor flat transactionswith savepoints. Hence, from Theorem
4.11 and Lemma 4.15, we have the following

Corollary 4.16 (Atomicity of Transactionswith Savepoints) Suppose D isarelational theory. Then
for every database fluent £

D E legal(s) O
{[do(Begin(t), s1) T do(a, s3) C s] A
(a*, s*, T)[do(Begin(t), s1) C do(a*,s*) T do(a, s3) A writes(a*, F, T, t)] D
[[a = Rollback(t) > ((3t1) F(Z, 11, do(a, s5)) = (3t2) F(F, t2, 51))] A
[(3n)(a = Rollback(t,n) A sitAtSave Point(t,n) = s') D
(((B3h) F(& 11, do(a, 52)) = (I2) F(7, 1,)]
[a = Commit(t) D ((3t1)F(Z, 11, do(a, s3)) = (3t2) F(T, 2, 52))]]}-

Theorem 4.14, which also holdsfor flat transactions with savepoints, characterizes the durability of
flat transactions with Savepoints. The consistency Theorem 4.12 also holds for flat transactions with
savepoaints, as does Theorem 4.13.

Thefollowingtheorem establishesafundamental property of transactionswith savepoints: if atrans-
action rollsback to agiven savepoint, say, n, al the updates on the way back to the situation correspond-
ing to » are aborted, and no future rollback to the situations generated by these updates are possible.

Theorem 4.17 SupposeD isarelational theory. Then

D = legal(s) D
{do(Rollback(t,n),s) Cs D
[=(3n*, s*).do(Rollback(t,n),s') T do(Rollback(t,n*),s*) C s A
sit AtSavePoint(t,n) C sit AtSavePoint(t,n*) T do(Rollback(t,n), s')]}.

426 Chained Flat Transactions

A chained flat transaction is a sequence [aq, . . . , a,,] Of primitive actions, where a; must be Begin(t),
and a,, must be either Commit(t), or Rollback(t); a;,i = 2,---,n — 1, may be any of the primitive
actionsincluding C'hain(t), except Begin(t) and Commit(t).

Chained flat transactionsare equival ent to the specia case of flat transactionswith save points, where
only the most recent savepoint is restored. The intuition behind chained transactionsis to allow com-
mitting work done so far, thus waiving any further right to execute a rollback over the committed logs
([GA95]). Thenew external action C'hain(t) isused by the programmer to commit work doneso far and

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS

70

continuewith work yet to be done. For any s, wecall the situation do(C'hain(t), s) achaining situation

of transaction¢.
The following action precondition axioms capture the essence of chained flat transactions:

Poss(Rollback(t), s) = (3s')[s = do(End(t),s') A = /\ IC(s) Vv
ICeic,

(3t', s*, s*).do(Chain(t'), s*) T do(Rollback(t'),s) C s A
[(Va, s").do(Chain(t),s*) T do(a,s") C s** D a # Chain(t)] A
[(3s").do(Chain(t'),s*) C s" C s Ardep(t,t',s")],

Poss(Chain(t), s) = /\ IC(s) A running(t, s) A
ICeIC,

(Vt').cdep(t,t',s) D
(3s"){do(Commit ('), s") C sV [do(Chain(t'),s") T s A
(Va*, s*) (do(Chain(t'), s") C do(a*,s*) C s D
a* # Chain(t) A —c_dep(t, t', s))]}.

(4.32)

(4.33)

Thelater axiomis particularly critical: it preventsthe user from chaining atransaction ¢ that is commit-

dependent on another transactiont’ that has not committed beforethelast chaining situation of ¢. Axioms

for Begin(t), End(t) and Commit(t) remain unchanged.

Successor state axiomsfor fluents of chained flat transactionshavetheform (4.8), but with adifferent

definition for restoreBegin Point:

Abbreviation 4.13

restoreBeginPoint(F, T ,t,s) =g

(1) (Ja, s').{(a = Begin(t) Va = Chain(t)) A
(2) (Va*,s")[s' C do(a*,s*) C s D a* # Chain(t) A a* # Begin(t)] A
(3) {{(Fa1,az,5,s1,s2,1).

(4) do(a,s') C do(az, s2) C do(ay, s1) C s A writes(ay, F, T, t) A writes(aq, F, Z,t') A
(5) [(Vd",s").do(az, s7)
(6) [(Vd",s").do(ay, s1)
(7) C

7) {(Va*,s*,s').do(a,)

Cd
Cdo(a",s")Cdo(ay, s1) D —writes(a”, F, Z,t)]A
6 Cd
do(a”) C s D ~writes(a*, F, Z,t)] A (3)F(Z,t',s)}}.

o(a”,s"YC s D =(F")ywrites(a”, F, 7, t")]A (3" F(Z,t", s)]} V

Inthe abbreviationabove, lines(1) and (2) ensurethat restoring the valuesof fluentsisnot doneby rolling

back over chaining situations. Lines (3)—7) are as in Abbreviation 4.8.

Thedependency axioms must now be adapted to this setting where dependenciesthat held previously

may no longer hold as a consequence of the system rolling back to the last chaining situation; these ax-

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 71

ioms are now of theform

dep(t,t', do(a,s)) =
C(t,t',s) A a # Rollback(t) A a # Rollback(t') A a # Chain(t'),

(4.34)

one for each dependency predicate; C(¢,t') and dep(t,t', s) are defined asin (4.15).

A basic relational theory for chained flat transactions is as in Definition 4.4, where 20 comprises
Chain(t) as afurther action, the set D7 is modified accordingly to accommodate the new axioms
(4.32)—(4.33), the set D, isnow a set of successor state axiomsthat reflects the changes brought by Ab-
breviation 4.13, and the set D,.,, isaset of dependency axioms of the form (4.34). All the other axioms
of Definition 4.4 remain unchanged.

Thefollowingis aproperty specific to chained transactions. It captures the intuition behind chained
transactions which is that, whenever chained, a database transaction can never roll back over the last
chaining situation.

Theorem 4.18 (Durability of Chaining Situations) Suppose D is a relational theory for chained flat
transactions. Then, for all database fluents

D k= [do(Chain(t),s') C do(Rollback(t),s") T s A
(Ja*, 5*, 7)[do(Chain(t), s') T do(a*, s*)C do(Rollback(t),s") A writes(a*, F, 7,1)]
~(3s*)do(Chain(t), s') T do(Chain(t),s*) T do(Rollback(t),s")] >
(3)F(7, ¢, do(Rollback(t), s")) = (3t")F(F, 1", do(Chain(t), 5'))).

4.3 Specifying Advanced Transaction Models

431 Closed Nested Transactions

Themain ideaconveyed by the notion of nested transactionsisthat of level s of abstractions: each nesting
in the hierarchy of nested transactions correspondsto alevel of abstraction from the details of the action
execution.

Nested transactions ([Mos85]) are the best known example of ATMs. A nested transaction is a set
of transactions (called subtransactions) forming atree structure, meaning that any given transaction, the
parent, may spawn a subtransaction, the child, nested init. A child commits only if its parent has com-
mitted. If a parent transaction rolls back, all its children are rolled back. However, if achild rolls back,
the parent may execute a recovery procedure of its own. Each subtransaction, except the root, fulfills
the A, C, and | among the ACID properties. The root (level 1) of the tree structure is the only transac-
tionto satisfy al of the ACID properties. Thisversion of nested transactionsis called closed because of
thisinability of subtransactionsto durably commit independently of the outcome of the root transaction

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 72

(JWS92]). This section deals with closed nested transactions (CNTSs), open nested transactions will be
the topic of the next section.

A root transactiont isaseguence[aq, . . . , a,,] of primitive actions, where a; must be Begin(t), and
a,, must be either Commit(t), or Rollback(t); a;,i = 2,---,n — 1, may be any of the primitive ac-
tions, except Begin(t), Commit(t), and Rollback(t), but including Spawn(t,t'), Rollback(t"), and
Commit(t'), witht # t'. A child transaction ¢ is a sequence [aq, . . . , a,] Of primitive actions, where
a; must be Spawn(t',t), and a,, must be either Commit(t), or Rollback(t); a;,i = 2,---,n — 1,
may be any of the primitive actions, except Spawn(t,t’), Commit(t), and Rollback(t), but including
Spawn(t*,t**), Rollback(t**), and Commit (t**), witht # t**. We capture the typical relationships
that hold between transactionsin thehierarchy of anested transactionwiththesystemfluentstransO f (¢, a, s),
parent(t,t’', s) and ancestor(t,t', s), which are introduced in the following successor state axiom and
abbreviation, respectively:

transO f(t,a,s) = \/ (FZ)a = A(Z,1), (4.35)
AeA
parent(t,t',do(a,s)) = a = Spawn(t,t') Vv
((a,5)) (t,1) (4.36)
parent(t,t’,s) A —termAct(a,t) A ~termAct(a,t’),
ancestor(t,t',s) =4 (VB)[(Vt)B(t,t,s) A
(s, t, ¢/, t")[B(t,t", s) A parent(t”,t',s) D B(t,t',s)] D B(t,t', s)]. (437)

In (4.35), A denotes the set of actions of the domain.
Responsibility over actions that are executed and conflicts between transactions are specified with
the following axioms:

responsible(t,a’,do(a, s)) = transO f(t,a’, s) A =(3t*)parent(t,t*,s) v
(3t*)[parent(t,t*, 5) A a = Commit(t*) A responsible(t*, a’)] v (4.38)
responsible(t,a’, s) A —~termAct(a,t),

transCon flictNT (t,t',do(a,s)) =t # t' Aresponsible(t', a, s) A
(3d’, ') [responsible(t,d’, s) ANupdConflict(d',a,s) A do(d’,s') C s] A
—responsible(t, a, s) A running(t’, s) A ((3t")parent(t',t",s) D

(4.39)

—ancestor(t,t',s)) Vv
transConflict NT(t,t', s) A ~termAct(a,t).
Intuitively, (4.39) meansthat transaction ¢ conflictswith transactiont’ inthelog s iff ¢ and ¢’ are not equal,

internal actionsthey are responsiblefor are conflicting in s, is not responsiblefor the action of ¢’ it is
conflicting with, ¢ is running; moreover, a transaction cannot conflict with actions his ancestors are re-

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 73

sponsiblefor. Dueto the presence of the new external action Spawn, weneed to redefine running(t, s)

asfollows;

Abbreviation 4.14
running(t, s) =4 (3s’).{do(Begin(t),s’) C s A
(Va, s")[do(Begin(t),s') C do(a,s") T s D a # Rollback(t) A a # End(t)] v
(3t").do(Spawn(t',t),s') C s A
(Va, s")[do(Spawn(t,t),s') C do(a,s") C s D a # Rollback(t) A a # End(t)]}.

Now the external actions of closed nested transactions have the following precondition axioms:

Poss(Begin(t), s) = —(3t")parent(t',t,s) A

(4.40)
[s = SoV (3s,t').t #¢ Ado(Begin(t'),s) C s,
Poss(Spawn(t,t'),s) =t #t' A (4.41)
(3s',t")[do(Begin(t),s’) C s V do(Spawn(t”,t),s") C s,
Poss(End(t), s) = running(t, s), (4.42)
Poss(Commit(t),s) = (3s').s = do(End(t), s') A /\ IC(s) A
ICeIcC,
(Vt')[scdep(t,t',s) D (Is")do(Commit(t'),s") C s] A
(4.43)

(Vt')[c-dep(t, ', s) A =(Is*)do(Rollback(t'), s*) C s D (Is')do(Commit(t'), s') C s)],

Poss(Rollback(t), s) = (3s')[s = do(End(t),s") A /\ IC(s)V
ICeIC,

(3t', s")[r_dep(t,t', s) A do(Rollback(t'),s") C s] Vv (4.44)
(3¢, ") [wr_dep(t,t', s) A do(Rollback(t'),s') C s A
=(3s*)do(Commit(t), s*) T do(Rollback(t'), s')].
Dependency axioms characterizing the system fluentsr _dep(t, t', s), c_dep(t, t', s), sc_dep(t, t', s), and
wr_dep(t,t', s) are

r_dep(t,t',s) = transCon flict NT(t,t', s), (4.45)
sc_dep(t,t', s) = readsFrom(t, ' s), (4.46)
cdep(t,t',do(a,s)) = a = Spawn(t,t') v
((a,s)) (t,1) (4.47)
cdep(t,t', s) A —termAct(a,t) A —termAct(a,t),
wr_dep(t,t',do(a,s)) = a = Spawn(t' t) VvV
((a,5)) (1) (4.48)

wr_dep(t,t’', s) A —termAct(a,t) A —termAct(a,t).

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 74

As an example of what they mean, the last axiom says that a transaction spawning another transaction
generates a weak rollback dependency of the later one on the first one, and this dependency ends when
either transactions execute a terminating action.

The successor state axioms for nested transactions are of the form:

F(7,t,do(a, s)) = (31)®r(Z, a,t1,5) A =(3t")a = Rollback(t") v
[(3t").a = Rollback(t") A =(3t*)parent(t*,t", s) A restore BeginPoint(F,z,t",s)] v
[(3t").a = Rollback(t") A (3t*)parent(t*,t", s) A restoreSpawnPoint(F, Z,t", s)], (4.49)
onefor each databasefluent of therelational language. Here @ (7, a, t, s) isaformulawithfreevariables
among #, a, t, and s; restore Begin Point(F, Z,t, s) isasin Abbreviation 4.8, and wereplace Begin (t)
by Spawn(t',t) in Abbreviation 4.8 to define restoreSpawnPoint(F, ,t, s):

Abbreviation 4.15
restoreSpawnPoint(F, Z,t,s) =4
{(Fa1,ag, s, 51, 89,1, 7).
do(Spawn(t*,t),s") C do(as, s3) C do(ay, s1) C s A writes(ay, F, T, t) A writes(aq, F, Z,t') A
[(Va", s").do(ag, s3) Cdo(a”, s")Cdo(ay, s1) D ~writes(a”, F, T, t)]A
[(Va", s").do(ay, s1) Cdo(a”,s")C s D —=(Ft" writes(a”, F, Z,t") A (F")F(Z,t",s1)]} V
{(Va*, s*, 8, t*).do(Spawn(t*,t),s') C do(a*,s*) C s D ~writes(a*, F,Z,t)] A (3')F(Z,1',5)}.
A basic relational theory for nested transactions is defined as in Section 4.2, but where the relationa
languageincludes Spawn(t,t') asafurther action, and the axioms (4.40) — (4.41) replace axioms (4.11)
—(4.14), theaxioms (4.45) — (4.48) replacetheaxioms (4.16) — (4.17), and the set D, isa set of successor
state axioms of theform (4.49). All the other axioms of Section 4.2 remain unchanged.
Now we state some of the properties of nested transactions as an illustration of how such properties

are formulated in the situation calculus. Similarly to Theorem 4.10, we can show that a basic relational
theory for nested transactionslogically implies the commit and weak rollback dependency properties.

Theorem 4.19 (Atomicity of Nested Transactions) Suppose D isa relational theory for nested trans-
actions. Then for every database fluent F’
D = legal(s) D
(Vt,t',s1, 82){[[s' = do(Begin(t),s;) Vs = do(Spawn(t,t'), s1)] A
s' C do(a, sy) C s A
(Fa*, s*)[¢' T do(a*, s*) C do(a, s3) A writes(a*, F,t)]] D
[(a = Rollback(t) O ((3t1)F(Z,t1,do(a, s3)) = (
(a = Commit(t) D ((3t1)F(Z,t1,do(a, s3)) = (

) Eth)F(f,tg,Sl)))/\
) = (F2) F(F, 12, 52)))]}-

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 75

Theorem 4.20 (No-Orphan-Commit: [Chr91]) Suppose D is a relational theory. Then, whenever a
child's parent terminates before the parent does, the child is rolled back;i.e.,

D = legal(s) D
{parent(t,t',s) A termAct(a,t) A
do(Commit(t'),s') £ do(a,s") C s D (3Is*)do(Rollback(t’),s*) C s}.

Thisproperty, combined with theatomicity of al subtransactionsof the nested transactiontree (i.e. The-
orem 4.19), leadsto thefact that, should aroot transaction roll back, then so must al its subtransactions,
also the committed ones. Thisiswherethe D inthe ACID acronym is relaxed for subtransactions.

4.3.2 Cooperative Transaction Hierarchy

The cooperative transaction hierarchy (CTH: [NRZ92]) model has been proposed for supporting coop-
erative applications in the context of CAD.8 A cooperative nesting of transactionsis a nesting, where
sibling subtransactions are allowed to interact. A cooperative transaction hierarchy is structured as a
rooted tree whose |eaf nodes, the cooperative transactions (CTs), represent the transactions at the level
of individual designers,and whose internal nodes, the transaction groups (TGs), are each a set of chil-
dren (CTsor TGs) that cooperate to perform a single task. There isno central correctness criterionin a
CTH; instead, each TG has its own, user-defined correctness criteria. A TG is not atomic; it performs
specific tasksviaits members, enforces its own correctness criterion, and organi zes cooperation among
its members; moreover, it keeps private copies of the objects that its members acquire at creation time,
and is a unit of recovery by managing its own recoverability. A TG correctness is expressed in terms
of patterns and conflicts. Patterns specify interleavings of actionsthat must occur, and conflicts specify
those interleavings that must not occur. A TG’slog is correct iff it satisfies all its pattern specifications
and satisfies none of its conflict specifications. A child passesits copy to the parent upon committing, at
which time that copy subsumesthe parent’s copy. Ultimately, the copy of the root TG will be subsumed
when the entire design commits. We now give a situation cal culus characterization of CTHSs.

We have two new external actions: Join(t,t’,n), and Leave(t, t'), wheret and ¢’ are transactions,
and n indicates whether the joining node is CT or TG. A root transaction ¢ is a sequence [ay, . . . , a,]
of primitive actions, where a; must be Begin(t), and a,, must be either Commit(t), or Rollback(t);
a;,i=2,---,n—1, may beany of theprimitiveactions, except Begin(t), Commit(t),and Rollback(t),
but including Join(t',t,n), Rollback(t'), and Commit(t'), witht # t'. A CT or aTG ¢ is asequence
[ai,...,a,) of primitive actions, where a; must be Join(t,t'), and a,, must be either Commit(t), or
Rollback(t); a;,i=2,---,n— 1, may beany of the primitive actions, except Join(t,t'), Commit(t),
and Rollback(t), but including Join(t*,t**), Rollback(t*), and Commit(t*), witht # ¢/, t* # t**,

8Note that we shall give no theorems stating properties of this model. Neither won’t we prove properties of the open nested
transactions. These properties are formulated and proven in asimilar way as those of flat and closed nested transactions.

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 76

andt* # t.
The external actions of roots, and CTs and TGs, are enumerated as follows, respectively.

Abbreviation 4.16
external ActR(a,t) =4a = Begin(t) V a = End(t) Va = Commit(t) V a = Rollback(t).

Abbreviation 4.17

external ActC(a,t) =g (3t',n)a = Join(t,t',n) V (3t)a = Leave(t,t') V a = End(t) v
a = Commit(t) V a = Rollback(t).

We continue to capture the typical relationshipsthat hold between transactions in the CTH model with
the same fluents parent(t,t', s) and ancestor(t,t', s) asin nested transactions, but now with a slightly
different successor state axiom for parent(t,t', s).

parent(t,t’, do(a,s))=(In)a=Join(t',t,n)Vparent(t,t', s)A\—a+# Leave(t', t).
(4.50)

Furthermore, we need the fluentstransGroup(t, s) and coopTrans(t, s) whichintuitively tell whether
atransactionisa TG or aCT; these have the foll owing successor state axioms:
transGroup(t, do(a, s)) = (Ht)a = Join(t,t', TG) V

(4.51)
transGroup(t, s) A —~(3t')a = Leave(t,t'),

coopTrans(t,do(a,s)) = (Ft')a = Join(t,t',CT) Vv

(4.52)
coopTrans(t,s) A =(3t'")a = Leave(t,t').

A user-defined predicate transCon flictCT H (t,t', s) must be provided, where t and ¢’ are trans-
actions; intuitively, transCon flictC'T' H (t,t', s) means that transactions¢ and ¢’ conflict in thelog s.
Asan example of such adefinition of this predicate, the following one captures the cooperative serializ-
ability property of [MP90Q]:

Abbreviation 4.18

transCon flictCTH (t,t',s) = (3t").t # t' AtransGroup(t”,s) A
{=parent(t",t) A —parent(t",t') ANtransConflict NT(t,t', s) V
(") [-parent(t”,t) A parent(t”,t') A parent(t”,t*) A transConflict NT (t,t*, s)] \/(4_53)
(3t*) [parent(t”,t) A —parent(t” ,t') A parent(t”, t*) A transConflict NT (t*,¢, s)]}.

Intuitively, (4.18) means that transaction ¢ conflicts with transaction ¢’ in the log s iff ¢ and ¢’ are not
equal and there is atransaction group t* such that: (1) either ¢ and ¢’ do not havet” as parent, in which

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 7

case they conflict in the usual way of closed nested transactions; or (2) ¢’ hast” as parent and ¢ does not,
but ¢’ hasasibling t* withwhich is conflicting in the usua way of nested transactions; or else (3) ¢ has
t" as parent and ¢’ does not, but ¢ has a sibling #* which is conflicting with ¢’ in the usual way of nested
transactions.

The pattern specifications that must be verified and the conflict specifications that must be avoided
are captured in action precondition axioms. Suppose P (¢, s) and C (¢, s) denote the pattern and conflict
specificationsfor a TG ¢, respectively. Then precondition axioms for internal actions are of the form

Poss(A(T,t),s) = 4(T,t,s) ANIC(do(A(Z,t),s)) A
{[(3t").parent(t*,t,s) ANP(t*, do(A(Z,t),s)) A=C(t*,do(A(Z,t),s)) A running(t, s)] V
[—(3t%).parent(t*,t, s) A P(t, do(A(Z,1), s)) A ~C(t, do(A(%, 1), s)) A running(t, 5)]} (454
In CTHs, the following dependencies must be maintained among transactions: a rollback depen-

dency of achild on its parent, and a weak commit dependency of a parent on al its children. A Weak
Commit Dependency of ¢t ont’ is characterized as follows:

do(Commit(t),s) C 8" D
[do(Rollback(t'),s') £ s* D do(Commit(t'),s') C do(Commit(t), s)];

i.e., If t commitsinalog s*, then, whenever ¢’ doesnot roll back in s*, ¢ commits before .
Now the external actions of a CTH have the following precondition axioms:

Poss(Begin(t), s) = —(3t')parent(t',t, s) A
[s=So V (3s',¢).t#t" A do(Begin(t'),s') C s,

(4.55)

Poss(End(t), s) = (3s'){do(Begin(t), s') C s A ~(3s")do(End(t),s") C s A
(Va, s*)[do(Begin(t),s’) C do(a, s*) C s D —external ActR(a,t)]} V
(3s', ', n){do(Join(t',t,n),s’) C s A =(3s")do(End(t),s") C s' A

(VYa, s*)[(do(Join(t',t,n), s") C do(a, s*) C s) D —external ActC(a,t)]},

(4.56)

Poss(Commit(t),s) = (3s').s = do(End(t), s') A /\ IC(s) A
ICeIC,
(Vt').we_dep(t,t', s) A —(3s*)do(Rollback(t'), s*) C s’ D
457
(3s"ydo(Commit(t'),s") C &, (457)

Poss(Rollback(t), s) = (3s').s = do(End(t),s’) A= /\ IC(s) Vv
ICeIC, (4.58)
(3t', s").rdep(t,t', s) A do(Rollback(t'), s") C s,
Poss(Join(t,t',n),s) =t £t A

(3s',t",n")[do(Begin(t'),s") C sV do(Join(t',t",n'),s') T sAn' #CT]. (4.59)

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 78

Dependency axioms characterizing the fluents r _dep and we _dep are:

r_dep(t,t',do(a,s)) = (In).a = Join(t,t',n) vV
((a,s)) = (3n) () (460)
transCon flictCTH (t,t', do(a, s)) V r_dep(t,t',s) A a # Leave(t,t'),
wedep(t, ¥, do(a, s)) = a = Join(t',t) V we.dep(t,t', s) A a # Leave(t,t').
(4.61)
The successor state axioms for CTHs are of the form:

F(Z,t,do(a,s)) = ®p(T,a,t,s) A —(Ft")a = Rollback(t") v
(3t [a = Commit(t') A parent(t,t',s) A F(Z,t',s)]V
(3t',n)[a = Join(t,t',n) A F(Z,t,s)]V
(3t"Ya = Rollback(t") A —=(3t")parent(t',t", s) A restore Begin Point(F, T,t", s) W4.62)
(3t"Ya = Rollback(t") A (3t")parent(t',t", s) A restoreJoinPoint(F, z,t", s),
onefor each relation of therelational language, where ® (7, a, s) isaformulawith free variablesamong
a, s, T, restore Begin Point(F, 7, t, s) isdefinedin Abbreviation4.8, and restore.J oin Point(F, T, t, s)

isthefollowing:

Abbreviation 4.19

restoreJoinPoint(F, Z,t,s) =g
{(Ja, az, s’ 81, 89,1 %, n).
do(Join(t,t*,n),s) C do(az, s3) C do(ay, s1) C s A writes(ay, F, Z,t) A writes(aq, F, Z,t') A
[(Va", s").do(ag, s3) Cdo(a”, s")Cdo(ay, s1) D ~writes(a”, F, T, t)]A
[(Va",s").do(ay, s1) Edo(a”,s") T s D —~(Ft")writes(a”, F, T, t")|ANS")F(Z,t",s1)]} V
{(Va*,s*, 8, t*).do(Join(t, t*,n),s') C do(a*,s*) C s D —writes(a”, F,Z,t)] A (") F(Z,t',s)}.
A basic relational theory for CTHsis asin Definition 4.4, but where the rel ational language includes
Join(t,t', n) asafurther externa action, and the axioms (4.55) — (4.59) replace axioms (4.11) — (4.14),

the axioms (4.60) — (4.61) replace theaxiom (4.15), and the successor stateaxiomsin D, are of theform
(4.62). All the other axioms of Definition 4.4 remain unchanged.

4.3.3 Open Nested Transactions

Open nested transactions ([WS92]) are a generdized version of nested transactions. An open nested
transaction is a system of component transactions forming an unbalanced tree whose nodes represent
specific tasks that are performed by executing their children. All the other components with exception
of theroot of the system are called subtransactions. Theleaves of such atree are constituted by primitive

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 79

actions. Given anodet of an open nested transactionwith » childrent,, - - - , ¢,,, theseare classified into
the following types:

e Open Subtransactions. Theseallow for unilateral commit and rollback independently of the par-
ent transaction ¢. In other words, they are a collection of top-level transactions that may act in-
dependently from each other; but, if ¢ rolls back, they also must rollback. So they are allowed to
make their updates visibleto other subtransactions before committing.

e Closed Subtransactions. These are structured like in Moss nested transactions ([Mos85]) (See
Section 4.2). They do not alow for unilateral commit independently of the parent transaction ¢.
For this reason, they are not alowed to make their updates visible to any other subtransactions
before committing, at which point they only make their results available to their parent . Any
time, if ¢ rolls back, they also must rollback.

e Compensatable Subtransactions. These are associated with compensating subtransactions; that
is, rather than simply vanishing when its parent ¢ rolls back, a compensatable ¢; that has aready
committed triggers a compensating transaction comp; whose semanticsis described below. Since
their actions can always be undone, they can in general be alowed to be open.

e Compensating Subtransactions. These undo any changes done by the committed compensat-
able subtransactions. So acompensating transaction comp; undoesany changes doneby the corre-
sponding compensatabl e subtransaction#;. A compensating transaction can again be another open
nested transaction. The order of compensating subtransactions must be compatible with the order
of their corresponding compensatable transactions, that is, if ¢, commits beforet; then whenever
comp; begins, it does so only after comp; has committed.

e Non-Compensatable Subtransactions. These are subtransactionthat cannot be compensated for
whenever they have aready committed. For this reason, they can in general not be allowed to be
open.

We now give a situation cal culus characterization of open nested transactions.

The external actionsare: Begin(t,t',m,c), End(t), Commit(t), and Rollback(t). Among these,
Begin(t,t', m, c) is new; intuitively, it means that the (sub)transaction ¢ begins as a component of the
(sub)transaction¢’ in mode m and class ¢, where the mode argument can beoneof OPEN,CLOSED
and I NV, and the class argument can be one of COM P, NONCOM P and INV. We introduce a
predicate compensates(t, comp,), meaning that comp, compensates the actions of .

A root transaction ¢ is a sequence [aq, . .. , a,] Of primitive actions, where the action «; must be
Begin(t, NIL,INV,INV), and a,, must beeither Commit(t), or Rollback(t); a;,i=2,--- ,n—1,
may be any of the primitive actions, except Begin(t,t’, m, ¢), Commit(t), and Rollback(t). A sub-
transaction ¢ is a sequence [a4, . .. , a,| Of primitive actions, where a; must be Begin(t,t', m, c), and

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 80

a, must beeither Commit(t), or Rollback(t);a;,t = 2,---,n—1, may beany of theprimitiveactions,
except Begin(t*,t**, m*, ¢*), Commit(t*), and Rollback(t*).

The external actions of (sub)transactions are enumerated as follows.

Abbreviation 4.20

external Act(a,t) =4

(3t',m,c)a = Begin(t,t',m,c)V a = End(t)V a = Commit(t) V a = Rollback(t).
We haveto slightly reconsider theaxiomfor thefluent parent (¢, t', s), and theabbreviationrunning(t, s):

parent(t,t', do(a,s)) = (Im, c)a= Begin(t,t',m,c) v

parent(t,t',s) A a # Rollback(t) A a # Rollback(t')Aa#Commit(t)Aa# Commit(t'); (4.63)

running(t, s) =4 (3s',¢',m, c){[s* = do(Begin(t,t',m,c),s') V s* = do(Begin(t',t,m,c),s)] A

s* C sA (Va,s")[s* C do(a,s") C s D a# Rollback(t) A a # End(t)]}. (4.64)

We also add a predicate compensatable(t) with the characterization
compensatable(t) =4 (It')compensates(t',t).

Furthermore, we need the fluents closed(t, s), and comp(t, s), which intuitively tell whether atransac-
tionis closed or compensatable, respectively. These fluents have the following successor state axioms:

closed(t,do(a, s)) =
(3t',m, c)a= Begin(t,t',m,c) ANt # NILAm = CLOSEDAc# INV V
closed(t,s) A a # Commit(t) A a # Rollback(t), (4.65)
comp(t,do(a,s)) =
(3t',m, c)a= Begin(t,t',m,c) AN\t # NILAm # INV ANe=COMPV (4.66)
closed(t,s) A a # Commit(t) A a # Rollback(t).

The conflict predicate transCon flict NT'(t,t', s) defined in (4.39) still captures the nature of con-
flict that may arise in the open nested transaction context.

In open nested transactions, the following dependencies must be maintained among transactions: a
weak rollback dependency of achild on its parent, acommit dependency of aparent on all itschildren, a
strong commit dependency of compensating transactionson their corresponding compensatabl e transac-
tions, and dependency of the order of the beginnings of compensating transactions on the commitments
of their corresponding compensatabl e transactions.

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 81

Now the external actions of an open nested transaction have the following precondition axioms:

Poss(Begin(t,t',m,c),s) = ~(m=OPENAc= NONCOMP) At £t A
s= 5V
{5= 5% (4.67)
(3s', ¢, ", m*, *)[t* £t A do(Begin(t*,t", m*, c*),s’) C s] A
[(Vt").bedep(t,t", s) D (38")do(Commit(t"),s") C s]},
Poss(End(t),s) = running(t, s), (4.68)

Poss(Commit(t),s) = (3s').s = do(End(t), s') A /\ IC(s) A
ICeIc,
(Vt', s")[cdep(t,t', s) D (do(Commit(t'),s") C s*Ddo(Commit(t'),s')Cs)] A
4.69
(Vt',s").scdep(t,t', s) D (3s")do(Commit(t'),s") C s, (4.69)

Poss(Rollback(t), s) = (3s')[s = do(FEnd(t),s") A = /\ IC(s)]V
ICeIcC,

(3¢, s")[r-dep(t,t', s) A do(Rollback(t'),s") C s] v (4.70)
(3t', s"[wr_dep(t,t', s) A do(Rollback(t),s') C s A
(Vs")(do(Commit(t),s") Z do(Rollback(t'), s))],

Now we givedependency axiomscharacterizingthefluentsr _dep(t,t', s), wr_dep(t,t', s), sc_dep(t, t', s),
cdep(t,t',s), and be_dep(t,t', s):

r_dep(t,t',s) = transCon flict NT (t, ¢, s), (4.72)
wr_dep(t,t', do(a, s)) = (Im, c)a = Begin(t,t',m,c)At' # NILAec=CLOSEDYV

wr_dep(t,t', s) A =termAct(a,t) A —termAct(a,t’),

(4.72)
sc_dep(t,t',do(a, s)) = readsFrom(t,t') v
(3t").parent(t”,t', s) A compensates(t,t') A a = Rollback(t") v (4.73)
sc_dep(t,t',s) A ~termAct(a,t) A —termAct(a,t'),
cdep(t,t',do(a, s)) = (Im, c)a = Begin(t',t,m,c) Am =CLOSEDV
transCon flict NT(t,t', do(a, s)) V (4.74)
cdep(t,t', s) A =termAct(a,t) A —termAct(a,t’),
be_dep(t,t', do(a, s)) = (3s', 8", t*,t**).compensates(t, t*) A
compensates(t',t**) A do(Commit(t*),s') C s A a = Commit(t**) Vv (4.75)

be_dep(t,t', s) A a # Commit(t) A a # Commit(t').

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 82

The successor state axioms for open nested transactions are of the form:

F(Z,t,do(a,s)) = ®p(Z,a,t,s) A= (Ft")a = Rollback(t") v
(Ft")[a = Commit(t') A parent(t,t',s) A closed(t, s) A F(Z,t,s)] vV
(3t"Ya = Rollback(t") A restore Begin Point(F, Z,t", s). (4.76)

one for each fluent I of the relational language, where & (Z, a, t, s) is a formula with free variables
among a, t, s, ¥; weintroduce restore Begin Point(F, T, t, s) asin Abbreviation 4.8 with Begin(t) re-
placed by Begin(t,t', m, ¢) and some straightforward quantifier changes.

A basicrelational theory for open nested transactionsisasin Definition 4.4, but where therelational
language includes Begin(t,t’, m, ¢) as a further action, and the axioms (4.67) — (4.70) replace axioms
(4.11) — (4.14), the axioms (4.71) — (4.75) replace the axiom (4.15), and the successor state axioms in
D, are of theform (4.76). All the other axioms of Definition 4.4 remain unchanged.

Itisimportant to notethat open nested transactionshave onemore systemactionwhichis Begin(t, t', m, ¢)
inthe special casewheret’ compensates some other transaction. Thusour definitionfor system Act(a, t)
must capture this novelty:

Abbreviation 4.21

systemAct(a,t) =g a=Commit(t) V a= Rollback(t)V
(s, t',t"bcdep(t,t', s) A parent(t”,t',s) D a = Begin(t",t, OPEN,INV).

4.4 Example

We consider a Debit/Credit example which illustrates how to formulate a relational theory for closed
nested transactions.

The database involves arelational language with:

Fluents: served(aid, s), branches(bid, bbal,bname,t,s), tellers(tid, tbal,t, s),

accounts(aid, bid, abal,t, s).

Situation Independent Predicate: requested(aid, req).

Action Functions: b_insert(bid, bbal, bname,t), b_delete(bid, bbal, bname,t),t_insert(tid, thal,t),
t_delete(tid, thal,t), a_insert(aid, bid, abal,tid,t), a_delete(aid, bid, abal, tid,t), report(aid).
Constants. Ray, Iluju, Misha, Ho, €tc.

The meaning of the arguments of fluents are self explanatory; and the relational language also includes

the external actions of nested transactions. Among the fluents above, served(aid, s) isasystem fluent,
and the remaining ones are database fluents.

To be brief, we skip unique name axioms and concentrate ourself on the remaining axioms of the

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 83

basic relational theory. We enforce the following ICs (ZC.):

accounts(aid, bid, abal, tid, t, s) A accounts(aid, bid', abal’, tid', ¢, s) D

bid = bid' A abal = abal’ A tid = tid',
branches(bid, bbal, bname,t, s) A branches(bid, bbal’, bname’ t', s) D

bbal = bbal’ A bname = bname’,

tellers(tid, tbal, t, s) A tellers(tid, thal’,t', s) D thal = thal’;
and we have to verify the IC (ZC,)
accounts(aid, bid, abal,tidt,s) D abal > 0
at transaction'send. The following are the update precondition axioms:

Poss(a_insert(aid, bid, abal, tid,t),s) = —(3t')accounts(aid, bid, abal, tid,t', s) A
IC.(do(aznsert(aid, bid, abal,tid,t), s)) A running(t, s),

Poss(a_delete(aid, bid, abal, tid,t), s) = (3t")accounts(aid, bid, abal, tid,t', s) A\
IC.(do(a_delete(aid, bid, abal, tid,t),s)) A running(t, s),

Poss(binsert(bid, bbal,bname,t), s) = —=(3t")branches(bid, bbal, bname, t', s) A
IC.(do(binsert(bid, bbal,bname,t),s)) A running(t, s),

Poss(b_delete(bid, bbal, bname, t), s) = (3t')branches(bid, bbal, bname,t’, s) A
IC.(do(b_delete(bid, bbal,bname,t), s)) A running(t, s),

Poss(t_insert(tid, thal,t), s) = —(3t')tellers(tid, thal,t', s) A
IC (do(t_insert(tid, thal,t), s)) A running(t, s),

Poss(t_delete(tid, tbal, t), s) = (3t')tellers(tid, thal,t', s) A
IC. (do(t_delete(tid, thal,t),s)) A running(t, s).

The successor state axioms (D) are:

accounts(aid, bid, abal, tid,t, do(a, s)) =
((Ft1)a = ainsert(aid, bid, abal, tid, t;) vV (3ty)accounts(aid, bid, abal, tid, ty, s) A
=(3ts)a = a_delete(aid, bid,abal,tid,t3)) A =(3t")a = Rollback(t') v
(3t").a = Rollback(t') A —~(3t")parent(t”,t', s) A
restore Begin Point(accounts, (aid, bid, abal, tid),t', s) V
a = Rollback(t') A (3t")parent(t”,t', s) A

restoreSpawnPoint(accounts(aid, bid, abal, tid),t', s,

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 84

branches(bid, bbal, bname,t, do(a, s)) =
((Ft1)a = binsert(bid, bbal, bname, t1) V (3ty)branches(bid, bbal, bname, ty, s) A
=(3ts)a = b_delete(bid, bbal,bname,t3)) A —=(Ft')a = Rollback(t') v
(3t").a = Rollback(t'y A —(3t")parent(t",t', s) A
restoreBegin Point(branches, (bid, bbal, bname),t’, s) v

a = Rollback(t') A (Ft")parent(t”,t', s) A restoreSpawnPoint(branches, (bid, bbal, bname),t', s),

tellers(tid, thal,do(a, s)) =
((Ft1)a = t_insert(tid, thal, t1) vV (3ta)tellers(tid, thal, ty, s) A
=(3t3)a = t_delete(tid, tbal, t3)) A =(3t')a = Rollback(t') v
(3t").a = Rollback(t') A —(Ft")parent(t”,t', s) A restore BeginPoint(tellers, (tid, thal),t', s) v

a = Rollback(t') A (3t")parent(t" t', s) A restoreSpawnPoint(tellers, (tid, tbal),t', s).

45 Summary

We have given aframework for specifying relational database transactions as non-Markovian theories
formulated in afinite fragment of the situation calculus. Main resultsin this chapter are:

e semantics of various versions of the classical flat transactions using relational theories;
e semantics of closed and open nested transactions using basic relational theories;

e proof of properties of ATMs by establishing logical consequences of sentences of the situation
calculus capturing these properties;

One must di stingui sh between our approach which isapurely logical, abstract specificationin which
all system propertiesare formulated relative to the database 10g, and an implementation which normally
materializes the database using progression ([Rei01]). Thisisthe distinguishingfeature of our approach.
Thelog isafirst class citizen of thelogic, and the semantics of external actions are defined with respect
toit.

A further point that we must acknowledgeisthat our axiomatization requiresalot of formulas, many
of which seem to be low level. However, we believe that this complexity is inherent to the ATMs. We
provide one with a framework whose expressiveness allowsto exactly state the properties of ATMsina
way that accurately describestheir inherent complexity.

Thusfar, wehave given axiomsthat accommodate acompleteinitial databasestate. This, however, is
not arequirement of thetheory we are presenting. Therefore our account could, for example, accommo-
dateinitial databaseswith null values, openinitial database states, initial databases accounting for object

CHAPTER 4. SPECIFYING DATABASE TRANSACTIONS 85

orientation, or initial semistructured databases. Theseare just a examples of some of the generalizations
that our initial databases could admit.

Finally, itisimportant to noticethat the only place where the second order nature of our framework is
needed isin the proof of the properties of the transaction modelsthat rely on the second order induction
principle (4.2).

Theframework described in this chapter will be extended in the next chapter where we will consider
modeling activerules and different active rule processing mechanisms. A substantial part of thebuilding
blocksfor doing so has been constructed in this chapter.

Chapter 5
Specifying Knowledge Models

In the previous chapter, we have specified rel ational database transactions models as basic rel ational the-
ories, which are non-Markovian theories formulated in afinite fragment of the situation calculus. The
present chapter isdevoted to extending the basic relational theoriesto model the representational compo-
nent of active behaviors.® The new theorieswe will introducein this chapter are called active relational
theories. As active databases are intimately related to transactions, a substantial building block of these
new theories is made of basic relational theories. Aswe shall see, an active relational theory precisely
encompasses a basic relational theory capturing a specific ATM and axioms for typical active database
fluents that are induced by the origina database fluents of the domain.

Events are traditionally described using an event algebra. Virtually every proposed ADBMS brings
about a different event algebra. Thismakesit very difficult to analyze these proposalsin a uniform way
by spelling out what they may havein common, or how they may differ. Typically, logic might act asa
framework for dealing with theseissues. This chapter treats events as (somewhat constrained) formulas
of the situation calculus. We provide a framework for devising the semantics of complex eventsin the
situation calculus. Such semantics, formulated as aclass of axioms of active relational theories, are used
for reasoning about the occurrence and consumption modes of events.

The chapter isorganized asfollows. Section 5.1 introducesthe syntax of ECA rules, and Section 5.2
specifiesthe notionsof transition tablesand net effect policy. In Section 5.3, ametamodel for abstracting
from event algebras is presented. Section 5.4 formally defines the active relational theories. Finally,
Section 5.5 summarizes the chapter.

Those readers from Knowledge Representation might get confused by the qualification “Knowledge” in the title of trhis
chapter. It seemsthat atitle like “ Specifying Events’ or ” Specifying Active Relational Theories’ would be a more appropriate
title of the chapter. However, due to [Pat99], “Knowledge model” is now prevalent in active databasesto denote all aspects of
active behavior related to events.

86

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 87

51 ECA-Rules

An ECA ruleisaconstruct of the following form:
<t:R:7:((%) = a(y)>. (5.1)

In this construct, ¢ specifies the transaction that fires the rule, = specifies events that trigger the rule,
and R isaconstant giving the rule’s identification number (or name). A ruleis triggered if the event
specified in its event part occurrs. The relationship between the event occurrence and the triggering of
arule is dictated by consumption modes. In its simplest form, the semantics of event consumption is
that aruleistriggered if the event specified in its event part occurred since the beginning of the open
transaction in which that event part is evaluated. Events are one of the predicates I’ inserted(r,t, s)
and F_deleted(r,t, s), caled event fluents, or a combination thereof using logical connectives. The ¢
part specifiestherule’scondition; it mentionspredicates F' _inserted(r, Z,t, s) and I _deleted(r, 7, t, s)
called transitionfluents, which denotethetransitiontabl es ([WC96]) correspondingto insertionsinto and
deletionsfromtherelation . In (5.1), argumentst¢, R, and s are suppressed from all thefluents; the two
first ones are restored when (5.1) is translated to a ConGolog program, and s is restored at run time.
Finally, o gives a ConGolog program which will be executed upon the triggering of the rule once the
specified condition holds. Actions also may mention transition fluents. Notice that & are free variables
mentioned by ¢ and contain all the free variables 7 mentioned by «. Detailsof ConGolog programs will
beintroduced in the next chapter.

Example5.1 Consider a stock trading database (adapted from [WC96]), whose schema contains the
relations: price(stock_id, price, time,trans, s), stock(stock_id, price, closingprice, trans, s), and
customer (cust_id, balance, stock id, trans, s), which are relational fluents. The explanation of the
attributesis as follows: stock ud is the identification number of a stock, price the current price of a
stock, time thepricingtime, closingprice theclosing priceof the previousday, cust id theidentification
number of a customer, balance the balance of a customer, and trans is a transaction identifier.

Now consider the following active behavior. For each customer, his stock is updated whenever new
pricesare notified. When current pricesare being updated, theclosing priceisal so updatedif the current
notificationisthelast of the day; moreover, suitabletradeactionsareinitiatedif some conditionsbecome
true of the stock prices, under the constraint that bal ances cannot drop bel ow a certain amount of money.
Two rules for our example are shown in Figure5.1. |

5.2 Trangtion Fluentsand Net Effect Policy

To characterize the notion of transition tables and events, we introduce the fluent considered(r,t, s)
which intuitively means that the rule r can be considered for execution in situation s with respect to the

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 88

<trans : Update_stocks : price_inserted :
(Je, time, bal, price’)[price_inserted(s_id, price, time) A
customer (c, bal, sid) A stock(s_id, price’, clos_pr)]
N

stock _insert(s_id, price, clos_pr) >

<trams : Buy_100shares : price_inserted :
(3 new_price, time, bal, pr, clos_pr)[price_inserted(s_id, new_price, time) A
customer(c, bal, sid) A stock(s_id, pr, clos_pr) A new_price < 50 A clos_pr > 70]
-

buy(e, s-id, 100) >

Figure 5.1: Rulesfor updating stocks and buying shares

transaction ¢. The following gives an abbreviation for considered(r,t, s):
considered(r,t,s) =q (It').running(t', s) A ancestor(t',t,s). (5.2

Intuitively, this means that, as long as an ancestor of ¢ is running, any rule » may be considered for exe-
cution. In actual systems this concept is more sophisticated than this scheme.?

For each database fluent /(7 ¢, s), we introduce the transition fluents F'_inserted(r, z,t, s) and

F_deleted(r, 7, t, s). Thefollowing successor state axioms characterizesthem: F_inserted(r, Z,t, s) :

F_inserted(r, ,t,do(a, s)) = considered(r,t,s) A (It')a = F_insert(z,t') Vv 53
F_inserted(r, Z,t,s) A —=(3t")a = F_delete(,t"). -

F_deleted(r, T,t,do(a, s)) = considered(r,t,s) A (t')a = F _delete(Z,t') v (5.4

F_deleted(r, T, t,s) A —~(3t")a = F_insert(z,t").

Axiom (5.3) meansthat atuplez’isconsideredinsertedin situationdo(a, s) iff theinternal action ' _insert(Z, ')
was executed in the situation s while the rule r was considered, or it was already inserted and « is not
the internal action [’ _delete(Z,t'); here, t' is transaction that can be different than ¢. This captures the
notion of net effects ([WC96]) of a sequence of actions. Such net effects are accumul ating only changes

2For example, in Starburst ((WC96]), will be considered in the future course of actions only from the time point where it
last stopped being considered.

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 89

that really affect the database; in this case, if arecord is deleted after being inserted, this amounts to
nothing having happened. Further net effect policies can be captured in thisaxiom.

5.3 Event Logics

5.3.1 Primitive and Complex Event Fluents

Eventsthat trigger ECA rules are generally associated with the DML of the underlying database. In the
situationcalculus, for each databasefluent (7, ¢, s), weintroducetheprimitiveevent fluents I _inserted(r, t, s)
and I'_deleted(r,t, s).

The primitive event fluent I’ inserted(r, t, s) corresponding to an insertion into the relation I has
the following successor state axiom:

F_inserted(rt,do(a,s)) =

(37,t")a = F_ansert(z,t') A considered(r,t,s)V F_inserted(r,t,s). (55)
Theprimitiveevent fluent I’ _deleted(r, t, s) correspondingto adeletionfromtherelation /” hasasimilar
successor state axiom:

F _deleted(r,t,do(a,s)) =

(37, t")a = F_delete(Z,t') A considered(r,t,s)V F_deleted(r,t,s). (5.6)
Definition 5.1 (Primitive Event Occurrence) A primitive event e occursin situation s with respect to
aruler andatransactiont iff D |= e[r, ¢, s]. Here D isarelational theory incor porating the successsor
state axioms for the primitive event fluents.

So, onthisdefinition, an event occurrence (or, equivalently, event detection) in asituation cal culus query
in the sense of Section 3.2.3. Following [BMO1], we call thisan event query.

In many ADBMSs, complex events are built from simpler, and ultimately, the primitive ones using
some event algebra ([BMO01], [ZU01]). Using logical means, we now specify the semantics of complex
events that accounts for the active dimension of consumption mode. This development will ultimately
lead to alogic for events, instead of an algebra.

That complex events are built from simpler onesisjust one of intuitive assumptions one can make
about events. In[ZU01], Zimmer and Unland make five basi ¢ assumpti onsabout events, whichwe adopt
in the context of the situation calculus as follows:

e Eventsareinterpreted over a set of situations(logs).

e Primitive events are detected at situations, in the order at which they occured.

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 90

Fluent Informal semantics
seq_ev(r,t, ey, €2, 5) event e; occurs beforeevent e, in s
simult_ev(r,t, e, ez,) events e; and e, occur simultaneoulsy in s

conj_ev(r,t,e1,€2,s) | eventse; and e; occur together in any order in s

disj_ev(r,t, ey, €2, 5) either event e; or event e, occursin s

neg-ev(r,t, e, s) event e does not occur in s

Table5.1: Informal semantics of basic complex events

e Complex eventsare built from primitive ones (components) using logical connectives, and many
complex events can independently be built from the same set of simpler ones.

e The situation at which a complex action is considered to have occured is the situation at which
the very last of its components occurs; here, “last” means the ordering of situations mentionned
above.

e Many events may occur at the same situation, that is, simultaneously.

In order to build complex events, the usua logical connectives and symbols A, Vv, —, ¥, aswell as
theordering predicate _. Theselogical symbolsand predicateswill be used to introduce complex events
intheform of abbreviations. Thefollowing fluents are used to express some basic constructsfor building
complex events: seq_ev(r,t, e, €2, s), simult_ev(r,t, ey, e, s),conj_ev(r,t, e1, ea,s),disj_ev(r,t, e, €2,),
and neg_ev(r, t, e, s). Table5.1 gives the informal semantics of these fluents.

In what follows concerning execution semantics, it isappropriateto definewhat countsasaterm or a
formulawhoserul e and transaction arguments have been either suppressed or restored. I1n the same spirit
as for Definitions 6.1 and 6.7, we can introduce the concepts of rule id and transaction id suppressed
terms and formulas, and ruleid and transactionid restored terms and formul as, respectively.

Definition 5.2 (Rid and Tid-Suppressed Terms and Formulas) Supposef? is a relational language.
Then therid and tid suppressed-terms(rts-terms) and formulas(rts-formulas) of 93 are inductively given
by a procedure similar to Definition 6.1 whose details should by now be obvious. So we omit these.

Definition 5.3 (Rid and Tid-Restored Termsand For mulas) SupposefR isarelational language. Then
therid andtid restored-terms(rtr-terms) and formulas(rtr-formulas) of 93 areinductively given by a pro-
cedure similar to Definition 6.7. Again, details of such a procedure should be clear by now and we omit

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 91

them. Whenever ¢ and ¢ are rts-term and rts-formula, respectively, and r and ¢ are rule and transac-
tion names, respectively, we use the notation ¢[r, t] and ¢|r, t] to denote the corresponding rtr-term and
rtr-formula, respectively.

With reference to the syntax of an ECA rule (see (5.1)), the notation (Z)[r, t] means the result of
restoring thearguments and ¢ to al event fluentsmentioned by r, ¢ (Z)[r, t] meanstheresult of restoring
theargumentsr and ¢ to al transition fluentsmentioned by ¢, and «(Z)[r, t] meansthe result of restoring
the arguments r and ¢ to all transition fluents and passing ¢ to actions mentioned by «. For example, if
T isthe complex event

price_inserted A customer _inserted,
then 7[r, t]is

price_inserted(r,t) A\ customer_inserted(r,t).
In the absence of consumption modes, the formal situation calculus based-semantics of complex
eventsin terms of simpler onesis asfollows:

neg-ev(r,t, e, s) =q (Ir')=e[r' 1, 5], (5.7)
seq_ev(r,t,eq, eq,8) =4 (Ir')ea[r’,t,s] A (Ir",s').s' T snelr” t, 5], (5.8)
stmult_ev(r,t, ey, e3,8) =ar (3r')er[r',t, s] A (3")ea[r”, ¢, s], (5.9
conj_ev(r,t, ey, eq,s) =g (Ir1)seq-ev(ri,t,er, ez, s)V (5.10)

(Fre)seqev(ra, t, ez, e1,8) V (Irs)simult_ev(rs, t, er, €2, s), (5.12)
disj_ev(r,t,er, e2,8) =g (Ir')es[r' ¢, 8]V (Ir")es[r" t, s],. (5.12)

Definition 5.4 (Complex Event Occurrence) A complex event e occursin situation s with respect to a
ruler andatransactiont iff D |= e[r, ¢, s]. Here D isarelational theory incor porating the abbreviations
above for the complex event fluents.

In spirit of [ZU01], the following good language design principl es are emphasized with respect to com-
plex events of any logic for events:

e Minimality: the logic must provide a very small minimal core of constructs that are such that
different constructs express different semantics.

e Symmetry: The semantics of the constructsis context free.
e Orthogonality: Thecorelanguage must alow every meaningful complex event to be expressible.

From the basic constructs (5.7-5.12) above, the set {seq_ev(r,t, e1,e2,5), €1, -, €,} istheminima
core from which all the others complex events are built, wherethee;,: = 1, - - - | n, are primitive event
fluents. More precisely, al the other complex events can be defined using this set. Any other construct

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 92

not belonging to that core must satisfy the good language design principles of symmetry and orthogo-
nality listed above.

5.3.2 Event Fluentsand Consumption Modes

Once we have specified away of building a complex event e from simpler ones, we still have to spec-
ify which occurrences of the component of e must be selected in order for e to occur (event occurrence
selection), and what to do with those occurrences once they have been used in the occurrence of e (oc-
currence consumption). Consumption modes are used to determine the event occurrence selection and
consumption of the events.

Presumably, it sufficesto assign consumptionmodestotheminimal core{seq_ev(r,t, €1, ez, s), €1, - - -

of thelogicfor events.

As for primitive event fluents, occurrence selection istrivial: from axioms (5.5) and (5.6) we see
clearly that thefirst occurrence of a primitive event fluent may trigger any considered ECA rule. From
axioms (5.5) and (5.6), we a so see that a primitive event fluent remains unconsumed for any later con-
sidered rule. So this way we achieve a no-consumption scope (See Section 2.1.4). To achieve alocal
consumption scope, we change (5.5) and (5.6) respectively to

F_inserted(r,t,do(a, s)) =(3Z,t").a = F_insert(Z,t') A considered(r,t,s)V

F_inserted(r,t,s) A—(37,t")(a = Fansert(y,t') At' =t"),

(5.13)
and
F_deleted(r,t,do(a,s)) =(37,t')a = F_delete(z,t') A considered(r,t,s)V
F_deleted(r,t,s) A —(37,t")(a = F_delete(g,t') AN t' = t"). (5.14)
Finally, we achieve a globa consumption scope by changing (5.5) and (5.6) respectively to
F_inserted(r,t,do(a,s)) =(3%,t")a = F_insert(T,t') A considered(r,t,s)V
F_inserted(r,t,s) A —=(3r")(F_anserted(r',t,s) Ar £ 1'), (5.15)
and
F_deleted(r,t,do(a,s)) =(37,t')a = F_delete(T,t') A considered(r,t,s) V
F_deleted(r,t,s) A —~(3r')(F_deleted(r',t,s) AT # r'). (5.16)

A particular consumption modeisimposed upon the sequence fluent seq_ev(r, ¢, e1, eq, s) by defin-
ing aconjunt Weay (t, 5) such that

Se‘?—ev(r7 t,e1, ez, 5/) —df (Elg)\pseq (t7 s, 8/) ANV¥onm (t7 g)v (517)

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 93

where ¥, (t, §, s’) isasituation cal culusformula specifying the semantics of seq_ev(r,t, e1, ez, s) (i.€,
the right-hand side of (5.8)); Y¢ar(¢, §) is asituation calculus formula that specifies the consumption
mode used.

If £ isadistinguished fragment of the situation calculus such that U ¢y (£, 5) € £, then thisinduces
the consumptionmodeclassC'M . Ingeneral, £ can beany fragment of the situationcal culus. However,
asweshall seein the sequel of thissection, formulas W ¢y (¢, §) used in practice belong to logics £ that
enjoy particularly desirable properties (e.g., decidability) with respect to specific problems such as the
equivalence of two given complex events ([BMO1]).

Todeal with consumption modesfor sequences, weintroducefurther terminol ogy adapted from [ZUO1].
Suppose e = seq_ev(r, t, e1, €z, s); then ey is called theinitiator and e the terminator of e. A compo-
nent e’ of a sequence e is said to be consummed iff it no longer can contribute to the detection of e.

By virtue of the Zimmer-Unland assumptions about events, a sequence seq_ev(r, t, €1, €2, s) OCCUrS
whenitsterminator e, occurs, provided that itsinitiator occurred according to agiven consumption mode.

Some possible consumption modes for event sequences are (many of these can be found in [ZU01]
and [BMO01]):

o First: Salectsthe oldest occurrence of theinitiator, after which this occurrence is consumed.

e Consumed Last: Sdlects the most recent occurrence of the initiator, after which this occurrence
is consumed.

e Non-Consumed L ast: Selectsthe most recent occurrence of the initiator, which remains uncon-
sumed as long as there is no occurrence of theinitiator.

e Cumulative: Sdlectsall occurrencesof theinitiator up tothe situationwheretheterminator occurs,
after which al these occurrences of the initiator are consummed.

e FIFO: Selectsthe earliest occurrence of the initiator that has not yet been consumed, after which
this occurrence is consumed.

e LIFO: Selects the latest occurrence of the initiator that has not yet been consumed, after which
this occurrence is consumed.

Example 5.2 Supposewe have have 17 situationsand the following occurrences of events £y and F:

El : 50751752753754758759751175157516
Fy S5, S6, 57,510, S12, S13, S14, S17
The six consumption modes considered in this section can now beillustratedasin Figure5.2. An arrow

Fy — FE, meansthat F; is selected asinitiator when 5 occursin order for seq_ev(r,t, £y, Ey, s) to

Ooccur.

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 94

miimi/\u‘iiiiﬂl‘~ﬁrst
SO S1 S2 S3 A S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15S16 S17
El1El1 E1 E1 E1E2 E2 E2 E1 E1 E2 E1 E2 E2 E2 E1 E1 E2

P Y Consmed L

F—f—1
SO SI S2S3 4S5 S6 S7 S8 S9 SI10 S11 S12 S13 Sl14 S15S16 S17
ElEl1 E1E1E1E2 E2 E2E1 E1 E2 E1 E2 E2 E2 El E1 E2

w—v—'—r—@?—'—g—m Non-Consurmed Last

SO S1 S2 S3 $4 S5 S6 S7 S8 S9 SI10 Sl11 S12 S13 S14 S15S16 S17
El1 El1 E1 E1 E1 E2 E2 E2 E1 E1 E2 E1 E2 E2 E2 E1 El1 E2

N Y B E E R B E R E— > Cumulative
S7 S8 S9 S10 Sl11 S12 S13 Sl14 S15S16 S17

El1 E1 E1 E1 E1 E2 E2 E1 E1 E2 E1 E2 E2 E2 E1 E1 E2

S S S S S E I B BN A BN EN E R B — > FIFO

SO S1 S2S3 SA S5 S6 S7 S8 9 S10 Sl11 S12 S13 S14 S15S16 S17

El El E1 E1 E2 E2 E2 El E1 E2
Y I B S R B B B B > LIFO

[|
SO S1 S2 S3 $4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15S16 S17
E1El1 E1 E1 E1 E2 E2 E2 E1 E1 E2 E1 E2 E2 E2 El El1 E2

Figure 5.2: Informal semantics of basic complex events

Now we spell out details of these consumption modes.

First. We expressthis by taking ez (¢, 5) in (5.17) as
(Vs*).s' C s C s D ((Ir1)erfr1, t, s]V —(Ire)ezlrsz, t, 5]). (5.18)
So to detect the sequence under this mode, we have to establish the entail ment

D =(3r)eg[r' t,s] A (3s', r")[s' T s Ae[r” t, 8] A
F(3r)ealr’, ¢, s] A () 1]] (5.19
(Vs*).s' C s* C s D ((Ir1)er[r1, t, 8]V = (Tre)ezlrs, t,)]

Consumed Last. We expressthisby taking ¥ ¢ (¢, 5) in (5.17) as

(Vs*).s' C s C s D =(3r1)er[r1, t, ST A =(Irz)ea[ra, t, s¥]. (5.20)

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS

So to detect the sequence under this mode, we have to establish the entail ment
D EGrear' t,s] A (s, r")[s' T s Aer[r” t, 8T A
(Vs*).s' C s* C s D —(3Ir1)erlr1, t, 8" A =(Ira)ea[rq, t, s*]].
Non-Consumed Last. We expressthisby taking ¥y (¢, 5) in (5.17) as
(Vs*).s' T s* C s D =(3ry)es[ry, ¢, s¥].
So to detect the sequence under this mode, we have to establish the entail ment
D =(3r)es[r' t,s]A (s, r")[s' T s Aer[r” £, 8] A
(Vs*).s' C s* C s D =(3r1)erlre,t, 7).
Cumulative: Here, wetake Wy (¢, 3) in(5.17) as
(Vs*).s' T s* C s D =(3rz)ezlrs, t, s¥].
So to detect the sequence under this mode, we have to establish the entail ment
D =(3r)eq[r' t, s]A (s, r")[s' T s Aer[r” ¢, 8] A
(Vs*).s' C s* C s D =(3rg)eslra, t, 5]
FIFO: Here, U (2, 5) in(5.17) is
(Vs™)[s* T s D =((Fry)er[r1,t, s*] A seq_ev(r,t,eq, e, 7)) A
(Vs*)[s* C s’ D [(Tr1)er[r1,t,s*] D (Is™)s*™ C s A seq_ev(r,t, €1, ez, 5)]].
So to detect the sequence under this mode, we must establish the entailment
D EGr)es[r' t,s]A (3, r")[s' T s Ae[r”,t, ST A

(
(Vs™)[s" C s D —(ex[r,t, 8] A seq_ev(r,t, e1, e, 5™))] A
(

Vs*)[s* T &' D [(Tr1)ei[r1,t,s] D (Is*)s*™ C s A seq_ev(r,t, 1, €2, 5°)]]]-

LIFO: Here, W (¢, 5) in(5.17) is

(VS*)[S* LsDO _'((37“1)61[?“17 t7 S*] A seq_ev(r, t7 €1, €2, S*))] A

(Vs*)[s' C " C s D [(r)er[r1, £, 8] D (Is™)s™ T s A seq_ev(r, t, e, €2, 5™)]].

So to detect the sequence under this mode, we must establish the entailment
D EGr)ex[r t,s] A (3, r")[s' T sAe[r”,t, ST A

(Vs*)[s* C s D =(e1[r, t, s A seqev(r,t, €1, e, 5%))] A

95

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(Vs*)[s' T s* C s D [(r1)er[r1,t,s7] D (™)™ T s A seq-ev(r,t, er, €2, 5)]]]. (5.29)

For the purpose of characterizing (some of) the consumption modes, and, later, specifying properties

of ECA rule sets, the set of operators of first order past temporal logic can be introduced using a set of

appropriate abbreviations as follows: (JAB98]):

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 96

Definition 5.5 (First Order Past Temporal Logic)

previously(¢, s) =4 (3s')(3a).s = do(a, s’) A ¢(s'),
past(p, s) =g (3s').50 C s’ T s A B(s),
always(¢, s) =q (Vs').So C s’ C s D ¢(s),

since(¢, 1, s) =q (Is)[So C s’ C s A¢(s') A (Vs").s' C " C s D ¢(s)).

First order past temporal formulasexpressed in the situation cal culus are formulasthat may includethe
logical connectives —, A, V and D, quantification over individuals of sort objects, and the predicates
abbreviated above. In the abbreviations above, ¢ and ¢ arefirst order past temporal formulas.

Now we may characterize (some of) the consumption modes above by stating the following:

Proposition 5.6 Each of the First, Consumed-Last, Non-Consumed-Last, and Cumulative consumption
modes are expressible in the the past temporal fragment of the situation calculus.

Inthe context of the situation cal culus, the whol e devel opment aboveleads to the concept of an event
logic which we now formally express as a definition.

Definition 5.7 (Event Logic) Anevent logicisatriple (£, C, L), where F isa set of event fluents, C' is
a set of event connectives, together with the predicate , and £ is a fragment of the situation calculus
specifying the consumption mode associated with event sequences.

Definition 5.8 (Implication and Equivalence Problems for an Event Logic) Suppose e[r, ¢, s] and
e'[r, t, s] are two events of a given event logic £. Then the implication and equivalence problems for £
are the problems of establishing whether, for given R and 7', D = (Vs).e[R,T,s] D €'[R, T, s],and
D E (Vs).e[R,T,s] = €'[R, T, s], respectively. Here D specifies the semantics of events according to
theevent logic €.

Assume the fluents seq_ev! (r,t, eq, eq, 5), seqev®l(r,t,e1,e9,5), seqev™NE(rt, ey, eq,), and
seq_evCUMUL(r ¢ ¢, ey, 5) denoteevent sequencefluentswith the consumption modesFirst, Consumed-
Last, Non-Consumed-L ast, and Cumul ative, whose semantics have been given above. Then we havethe
following result:

Theorem 5.9 Suppose& = (F, C, L) isthe event logic given by:

o = {F_inserted(r,t,s), F_inserted(r,t,s), seqev"M (r,t, ey, ey,), simult_ev(r,t, e, e, s),
conj_ev(r,t, eq, ez,s),disjev(r,t, er,eq,s), negev(r,t, e, s)},

WithCM € {F,CL,NL,CUMUL);

e C = {—,ACk

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 97

e [isthe past temporal fragment of the situation calculus.

Then both the implication and the equivalence problemsfor £ are PSPACE-hard.

5.4 Active Relational Theories

An activerelational languageis arelational language extended in the followingway: for each n+2-ary
fluent F'(Z, ¢, s), weintroducetwont3-ary transitionfluents I sinserted(r, 7, ¢, s) and F' _deleted(r, T, t, s),
and two 3-ary event fluents I _inserted(r,t, s) and F_deleted(r,t, s).

Definition 5.10 (Active Relational Theory for a transaction model M) Suppose £ = (5%, 20) isan
activerelational language. Then atheory D C 20 isan activerelational theory for a transaction model
M iff Disof theformD = Dy,; UDss U D¢, Where

1. Dy,.; isabasicrelational theory for the transaction model M,
2. D,y isthe set of axiomsfor transition fluents;

3. D,y isthe set of axioms and definitions for simple and complex event fluents which are expressed
in a given event logic.

Definition 5.11 (Active Relational Database) An activerelational databaseisa pair (%, D), where R
isan active relational language and D is an active relational theory.

Assumethesamenotationsseq_ev’ (r,t, €1, eq,), seqev®l (r t, e, e, 5), seq_evNE(r t, ey, €3, 5),
and seq_evCUMUL(r ¢ e, ey, s) withmeaningsasin Theorem5.9, and supposeseq_ev™ 15O (r ¢, ey, ey, 5)
and seq_ev™'FO(r 1, e1, €9, s) denote event sequence fluents with the consumption modes FIFO and
LIFO, respectively. Then we have the following result:

Theorem 5.12 SupposeD isan activerelational theorywith global consumption scopefor the primitive
event fluents. Then the following equival ences can be established:

1. First, Consumed-Last and cumul ative consumption modes are equivalent; i.e.,

D |= seq_evt (r,t, €1, €9, 8) iff D |= seq_ev(r,t, €1, €9, 5) iff D |= seqevUMUL(r 1 €1, 9, 5).
2. Non-Consumed-Last, LIFO, and FIFO consumption modes are equivalent; i.e.,

D |= seqevNl(r,t, e, e9,5) iff D |= seqev FO(r t, e, €9, 5) iff D |= seq_evFO(r,t, 61, €9, 5).

It isimportant to make clear what the equiva ences above means. Intuitively, thelogical equivalence
of two consumption modes M and M, amountsto the fact that any given sequence will occur at exactly
the same situationsunder both A and M,. Thisultimately leads to the same active behavior under both
M, and M. Noticethat the theorem asssume global consumption scope. It still is open whether these
equivalences still hold in the case of local consumption scope.

CHAPTER 5. SPECIFYING KNOWLEDGE MODELS 98

55 Summary

In this chapter, we have extended the basic relational theories of the previous chapter to activerelationa
theories that capture the reactive and execution models of active behaviors. Aswe saw, an activerela
tional theory precisely extendsabasic relational theory capturing aspecific ATM with axiomsfor typica
active database fluents such as event fluents that are induced by the original database fluents of the do-
main.

More specifically, we have introduced further building blocks that are specific to active databases
into the specification framework laid down so far in this chapter. These building blocks include event
logics, fragments of the situation cal culus used to capture and specify event algebrasin logic. Then, we
haveformally defined the active rel ational theoriesand show some of the propertiesof event logics. The
main result here is a classification theorem for the various consumption modes identified. Thistheorem
say's roughly which consumption modes are equivalent and which are not.

In anutshell, we have achieved the following results:

e specification of event algebras aslogicsin the situation calculus;

e semantics of the following dimensions of active behavior: event consumption modes, and net ef-
fects;

e classification theorem for the various consumption modes identified.

Chapter 6

Specifying Execution Models

The previous chapter was devoted to extending basic relational theories to model the reactive models of
active behaviors. The new theories introduced there were called active relational theories.

Up to this point, we have uniquely dealt with transactions, informally viewed as execution traces. It
is now time to turn our attention to what kind of programs we are supposed to execute in order to get
the execution traces we have characterized in Chapter 4, and to how we execute these programs. So
we continue to keep the distinction between transactions which are sequences of database actions and
transaction programs which must be executed in order to get those sequences of database actions. In the
present chapter, we specify transaction programs as well formed programs written in ConGolog, asitua-
tion calculus based programming language. Such well formed ConGolog programsare executed using a
special ternary predicate Do(P, s, s') whichwill serveasan abstractinterpreter; Do(P, s, s'), introduced
in[LRLT97], intuitively means: s isasituation reached by executing program P inthesituations’. The
predicate Do isdefined such that the situations reached by executing well formed ConGolog programs
are dl legal in the sense of Chapter 4. Therefore, these situationswill have the various (relaxed) ACID
properties of the ATMs.

We specify a given execution model of active behavior by compiling a set of given ECA rulesinto
a ConGolog program called rule programwhose structureis constrained according to that given execu-
tionmodel. Now, the semanticsof the predicate Do(P, s, s') isgivenin away such that the rule program
isimplicitly executed whenever atransaction program is executed. It isimportant to notice that an ex-
ecution model of the active behavior of transactionsis still concerned with execution traces, not with
programs, as we still are concerned with the situations — thus with sequences of database actions —
reached by executing transaction programs.

Section 6.1 shows how well formed ConGolog programs are used to capture transaction programs
and how to abstractly execute the well formed ConGolog programs using the basic relational theories
corresponding to the various ATMs as background axioms. Next, Sections 6.2 and 6.3 specify various
execution model s of activebehaviorsasrule programs. Section 6.4 containsthe main resultsof thischap-

99

CHAPTER 6. SPECIFYING EXECUTION MODELS 100

ter, namely classification theoremsfor the various execution modd s of active behavior that we consider.
We specify the notion of rule prioritiesin Section 6.5. Finally, Section 6.6 tacklestheissue of properties
of aset of rules.

6.1 Non-Markovian ConGolog

GOLOG, introduced in [LRL*97] and enhanced with parallelismin [DGLL97] and [DGLL0OQ] toyield
ConGolog, isasituation cal culus-based programming language for defining complex actionsin terms of
a set of primitive actions axiomatized in the situation calculus. It has the following Algol-like control
structures:

e nil, the empty program,;

e sequence ([« ; []; do action «, followed by action 3);

e test actions (¢7; test the truth value of expression ¢ in the current situation);
e nondeterministic action choice (« | 3; do « or 3);

e nondeterministic choice of arguments ((7 Z)«; nondeterministically pick a value for #, and for
that value of z, do action «);

e conditionalsand while loops; and

e procedures, including recursion.

The following are ConGolog constructs for expressing parallelism:
e Concurrency ([a || f]; do« and g in parale);

e Concurrent iteration (o!l; do a zero or moretimesin parallél).

The purpose of thissection isto show how ConGol og programs are used to capture transaction programs
and how the semantics of this programsis used to simulate the ATMs.

6.1.1 Waeéll-formed ConGolog Programs

ConGolog syntax is built using constructsthat suppressany reference to situationsin which test are eval-
uated. These will be restored at run time by the ConGolog interpreter. The following isarestriction to
relational languages of a similar definition given in [PR99].

Definition 6.1 (Situation-Suppressed Termsand For mulas) Suppose$? isarelational language. Then
the situation-suppressed terms (ss-terms) of 9% are given by:

CHAPTER 6. SPECIFYING EXECUTION MODELS 101

1. Anyvariableor constant of sort A, O, or § of R isan ss-term.

2. Whenever I’ isafunctional ss-fluentof R andtq, - - - , ,, aress-termsof the appropriatesort, then
F(ty,---,t,) isanssterm.

3. Ifeisanactionfunctionsymbol of %, andt,, - - - , ¢, arevariablesor constantsof R, thena(ty, - - - , t,,)
isassterm.

4. For any situationterme and any actionterma, do(a, o) isan ss-term.

The situation-suppressed formulas (ss-formulas) of R are inductively given as follows:

1. Whenever ¢, t’ are ss-termsof thesamesort, thent = ¢’ isan ss-formula. Noticethat an ss-formula
here, contrary to [PRI9], may mention an equality between terms of sort situations.

2. Whenever ¢ isan sstermof sort .4, then Poss(t) isan ss-formula.

3. Whenever Fisann + 1-ary relational fluent of /& and ¢4, - - - | £,, are ss-terms of sort O, then
F(ty,---,t,) isassformula.

4. Whenever P isan m-ary situationindependent predicateof R andt,, - - - , ¢, are ss-termsof sort
O,then P(ty,--- ,t,) isassformula.

5. Whenever ¢ and ¢/ are situationterms of R, thent C ¢’ isan ss-formula.

6. Are ¢ and ¢ ss-formulasof &, so arealso —¢, ¢ A v, and (3z)¢ for any variable z.

CdlingsituationtermslikeSy, do(A, Sp), etc* situation” -suppressed might sound counterintuitive. How-
ever, thisdefinition just means that ss-formulas are first order and may still mention situation terms, but

never aslast argument of fluents; therefore ss-formulas quantify only over those situationsthat are men-

tioned in equalities between terms of sort situations and in C-atoms. For example, the followingisan

ss-formula

So C do(A, (do(B, S0))) A (Vz,y, z, w, t)[accounts(z, y, z,w,t) D z > 0],

since the fluent accounts(z, y, z, w, t, s) has its situation argument removed, whereas the following is
not:

So C do(A, (do(B, S0))) A (Vz,y, z, w, t, s)[accounts(z,y, z,w,t,s) D z > 0].

CHAPTER 6. SPECIFYING EXECUTION MODELS 102

Definition 6.2 (Well formed ConGolog Program for Flat Transactions) A ConGolog programfor flat
transactions has the following syntax:*

(prog) = (internal action) | (test action)? | ((prog); (prog)) | ({prog)|(prog)) |

((prog) || (prog)) | (prog)l | (zz)(prog) | (prog)™ | (procedure call) |
(proc Py (#1)({prog) endProc;- - - ; proc P, (Z,)(prog) endProc; (prog))

Notice that
1. (internal action) isa situation-suppressed internal action term.
2. (test action) isan ss-formula.
3. Thevariablez in (7z)(prog) must be of sort actions or objects, never of sort situations.

4. (procedure call) isa predicate — a procedure name — of the form P(¢4, - - - , ¢,,) where thet;
are ss-terms whose sorts match those of the n argumentsin the declaration of P.

A well formed ConGolog program for flat transactionsis syntactically defined as foll ows:
(w fprog) = (proc P (&1)(prog) endProc ;- - - ; proc P,(Z,)(prog) endProc ;
Begin(t); (prog); End(t)) |

(wfprog) || (wfprog)

Definition 6.3 (Well formed ConGolog Program for CNTs)? A ConGolog programfor CNTs hasthe
following syntax:

(prog) = (internal action) | (test action)? | ((prog); (prog)) | ({prog)|(prog)) |

~
((prog) || (prog)) | (prog)l | (wz)(prog) | (prog)” |
(Spawn(t,t') ; (prog) ; End(t")) | (procedure call) |

(

proc P (Z1)(prog) endProc ;- - - ; proc P, (Z,){prog) endProc; (prog))

Here, (internal action), (test action),thevariablez in (7 z)(prog),and(procedure call) aredefined
asin Definition 6.2.
A well formed ConGolog programfor CNTs is syntactically defined as follows:

(w fprog) = (proc P (1) (prog) endProc ;- - - ; proc P, (Z,)(prog) endProc ;
Begin(t); (prog); End(t))

'Asin[LRL* 97], loops and conditionals can be defined in terms of the constructs given here.
2Recall that CNT in this definition stands for closed nested transactions. In the next definition, ONT will stand for open
nested transactions.

CHAPTER 6. SPECIFYING EXECUTION MODELS 103

Noticethat we express atransaction behavior asamain programthat isenclosed between a Begin(t) and
an End(t) action. Such amain program may call use Spawn(t,t') initsbody to spawn subtransactions.

Definition 6.4 (Well formed ConGolog Program for ONTS) A ConGolog programfor ONTs has the
same syntax as in Definition 6.3, except that the EBNF alternative

(Spawn(t, ') ; (prog) ; End(t'))
isreplaced by
(Begin(t,t',m, c) ; (prog); End(t')),

where the argument m of Begin(t,t',m,c) canbe OPEN,CLOSED, or INV, and the argument ¢
canbeCOMP, NONCOMP,or INV.
A well formed ConGolog programfor ONTsis syntactically defined as follows:

(w fprog) == (proc P (Z1)(prog) endProc ;- - - ; proc P, (Z,)(prog) endProc ;
Begin(t, NIL,INV INV); (prog); End(t))

From now on, when writing about a well formed ConGolog program for a given transaction model,
we shall omit any mention of the transaction model and ConGolog. The context will clearly determine
the appropriate transaction model.

6.1.2 Semanticsof Well Formed ConGolog Programs

With the ultimate goal of handling database transactions, it is appropriate to adopt an operational se-
mantics of well formed ConGol og programs based on a single-step execution of these programs; such a
semanticsisintroduced in ([DGLL97]). First, two specia predicates T'rans and Final are introduced.
Trans(d,s,d,s") meansthat program 6 may perform one step in situation s, ending up in situation s/,
where program §’ remains to be executed. /'inal (4, s) means that program § may terminatein situation
s. A single step hereis either a primitive or atesting action. Then the two predicates are characterized
by appropriate axioms. These axioms contain, for example, the following cases (See [DGLL97] and
Appendix C for full details):

Trans(81; 09, 8,8,8') = Final(81,8) A Trans(8z,s,6,s") Vv
(37).8 = (v; d2) A Trans(dy,s,7,5"),
Trans(81]d,s,6,8') = Trans(dy,s,68,s') V Trans(dz, s, 6, s')
to express the semantics of sequences and nondeterministic choice of actions, respectively.

Our axiomsfor Trans differs from that of [DGLL97] with respect to the handling of primitive and
test actions:

CHAPTER 6. SPECIFYING EXECUTION MODELS 104

Definition 6.5 (Semantics of T'rans)

Trans(a,s,a’,s') = Poss(a,s) A a' = nil A
{(Fa",s",t)[s" = do(a, s) A systemAct(a",t) A Poss(a",s") A's' = do(a”,s")] v
s'=do(a, s)A\[(Va", t)systemAct(a”,t) D ~Poss(a”, s")]}, (6.1)

Trans(¢?,s,d’,s') = Holds(¢,s,s') A a’ = nil. (6.2)

In the characterization above, we take particularities of system actions into account when processing
primitive actions. These actionsmust occur whenever possible, so theinterpreter must test for their pos-
sibility upon each performance of a primitive action. The formula (6.1) captures this requirement; it
intuitively means that the primitive action « may legally execute one step in thelog s, ending in log s’
where a’ remains to be executed iff « is possible, the remaining action «’ is the empty transaction, and
either any possible system action «” is executed immediately after the primitive action « has been exe-
cuted and thelog s’ containstheaction « followed by thesystem actiona”, or no systemactionispossible
and thelog s’ contains only the action a. The formula (6.2) says that the test action ¢? may legally be
performed in one or more stepsinthelog s, endinginlog s’ where a’ remains to be executed iff ¢ holds
ins, yieldingalog s’ in away to be explained below, and «’ isan empty program.

Given situation cal culus axioms of adomain theory, an execution of aprogram § in situation s isthe
task of finding asituation s’ such that thereisafinal configuration (4, s’), for some remaining program
&', after performing a couple of transitions from é, s to 4’, s’. Program execution is captured by using
the abbreviation Do(4, s, s’) ([Rei01]). In the single-step semantics, Do(4, s, s’) intuitively means that
program § issingle-stepped until the remainder of program § may terminatein situation s’; and s’ isone
of thelogsreached by single-steppingthe program &, beginningin agivensituation s. Formally, we have
([DGLLI7)):

Do(8, s,s") =g (38").Trans*(8,s,48',s') A Final (8, '), (6.3)

where T'rans* denotesthetransitiveclosureof Trans. Finally, aprogram execution starting in situation
Sp isformally thetask of finding asituations’ suchthat D |= Do(4, Sy, s'), where D isthedomaintheory.

Definition 6.6 The notation ¢[s] denotes the situation cal culus formula obtained from a given formula
¢ by restoring the situation argument s in all the fluents (as their last argument) occurringin ¢.

Thepredicate Holds(¢, s, s') capturestherevised LIoyd-Topor transformationsof [Rel01]; theseare
transformationsin the style of Lloyd-Topor([L1088]), but without itsauxiliary predicates. The predicate
Holds(¢, s, s') takesaformula¢ and establishwhether it holdsinthelog s or not. If ¢ isafluent literal,
thenthenextlog s’ will bedo(¢, s); ifitisanonfluent literal, then s = s; otherwiserevised LIoyd-Topor
transformations are performed on ¢ until we reach literals.

CHAPTER 6. SPECIFYING EXECUTION MODELS 105

To formally define the Holds(¢, s, s') predicate, we need to define concepts of situation-restored
term and situati on-restored formulawhose semanti cs are the oppositeof those of ss-termsand ss-formulas,
respectively.

Definition 6.7 (Situation-Restored Terms and Formulas) Suppose$R isa relational language. Then
the situation-restored terms (sr-terms) of 91 are inductively given by:3

1. Anyvariableor constant of sort A, O, or S of R isan sr-term.

2. Whenever F’isafunctional ss-fluent of 1R, o isa situationterm, andt, - - - , ¢,, are sr-termsof the
appropriatesort, then F'(¢1, - - - , £, o) isan sr-term.

3. Ifaisanactionfunctionsymbol of &, andt4, - - - , ¢, arevariablesor constantsof R, thena(ty, - - - , t,,)
isasr-term.

4. For any situationterme and any actionterma, do(a, o) isan sr-term.
The situation-restored formulas (sr-formulas) of R are inductively given as follows:
1. Whenever ¢, ¢’ are sr-terms of the same sort, thent = ¢’ isan sr-formula.

2. Whenever ¢ isan sr-termof sort A, then Poss(t) isan sr-formula.

3. Whenever F'isann + 1-ary relational ss-fluent of R and ¢4, - - - , ¢,, are sr-terms of sort O, and
o isasituationterm, then F'(¢1, - -- ,t,, o) isasr-formula.

4. Whenever P isan m-ary situationindependent predicateof 9t and ¢4, - - - , ¢,, are sr-terms of sort
O,then P(ty,- - ,t,) isasr-formula.

5. Whenever ¢ and ¢/ are situation terms of $R, then ¢ C ¢’ isan sr-formula.

6. Are¢ and ¢ sr-formulasof R, so arealso —¢, ¢ A 1, and (Jz) ¢ for any variable z.

Whenever ¢ and ¢ are a ss-term and a ss-formula, respectively, and o is a situation term, we use the
notation t[¢] and ¢[o] to denote the corresponding sr-term and sr-formul a, respectively.

Definition 6.8 (Semanticsof Holds) 4

Holds(¢,s,s") =4 ¢[s] A s' = do(¢_reads[s], s), when ¢ is a database fluent literal,
Holds(¢,s,s") =4 ¢[s] A s' = s, when ¢ isanonfluent literal,

Holds((d1 A ¢3),5,5") =g¢ (35").Holds(¢q,s,8") A Holds(¢g, s", s
((¢)7) if ¢7) 12)

3Any fluentswhose situation is suppressedwill be called ss-fluents.
“In the sequel, we will sligthly abuse the notation of read actions: whenever we will have aread action F_reads(Z, t, s),
we will just write F(Z, ¢, s)?.

CHAPTER 6. SPECIFYING EXECUTION MODELS 106

(61 V ¢2),5,8) =qr Holds(¢y,s,8")V Holds(¢s, s,5),
(61 D b2),5,8) =4 Holds(=¢,V ¢3,5,5),

(61 = ¢2),5,5") =4y Holds(($1D ¢2) A (d2 D 61), 5, 5),
(V2)¢, s, 8') =g Holds(~(3z)=o, s, s,

(32)¢, 5, 8') =4 (3z)Holds(¢, s, s,

Holds(~(61 A éa), 5, 8') =g Holds(~ér, s, 5') V Holds(~es, s,),
Holds(—~(¢1 V 62), 5, 5') =g (3"). Holds(=r, s, s") A Holds(=s, s, '),
Holds(~(¢1 D), 5,5') =g Holds(=—(¢1 V é2), 5,),
Holds(~(¢1 = ¢2), 5, 5') =45 Holds(=[(é1 D d2) A (¢2 D $1)], 5,),
Holds(~(Va), s, s') =y Holds((32)=g, s,),

(

5(
(
(
(
(
Holds(~—, s, s') =4 Holds(s,s,),
(
(
(
(
(
Holds(~(32)¢, s, ') =4 —(3z) Holds(¢, s, 5').

Definition 6.8 expresses a particular semantics for test actionsthat is appropriate for handling database
transactions. It isimportant to notice how our test actions are different than those of [DGLL97] and why
they are needed. Our test actions differ from those of ConGolog ([DGLL97]) in two ways. First of all,
unlikein ConGolog, ours are genuine actions and not merely tests that may be forgotten as soon as they
are executed. We record test actionsin the log; i.e. performing a test changes the situation. Second,
depending on the syntactic form of the formula in the test, we may end up executing more than just a
“singlestep”. More precisely, more than one single actions are added to the log whenever more than one
tests of fluent literals are involved in the formula being tested. This semantics is dictated by the very
nature of ATMs. Here, many test actions correspond to database reading actions. A transaction has no
means of remembering which transaction it had read from other than to record reading actionsinthelog.
Thiscannot be donewiththe semanticsfor test action foundin [DGLL97]. In other words, in the absence
of test actionsin thelog, the semantics of [DGLL97] has no straightforward way to express such things
as transaction 7 reads datafrom transaction 7.

6.1.3 Simulation of Well Formed ConGolog Programs

We use the ConGolog language as a transaction language for specifying and simulating ATMs at the
logical level. To simulate a specific ATM, we first pick the appropriate basic relational theory D cor-
responding to that ATM. Then, we write a well formed ConGolog program 'I" expressing the desired
transactional behavior. Simulating the program 7" amounts to the task of establishing the entailment

D = (3s") Do(T, So, s'). (6.4)

CHAPTER 6. SPECIFYING EXECUTION MODELS 107

To establish the entailment (6.4), we need to accommodate non-Markovian tests. These are tests
involving the predicate ; they allow to test whether alog isa sublog of another log. Henceforth, there-
gression operator (see Appendix A) must incorporate a case handling the predicate . Such aregression
operator isdefined in [Gab00] and adapted to active relationa theoriesin Appendix A.

Example 6.1 Consider the Debit/Credit example of Section 4.4. In addition to the axioms given in Sec-
ction 4.4, we have the following successor state axiom characterizing the system fluent served(aid, s)
which isused for synchronization purposes:

served(aid, do(a, s)) = report(aid) V served(aid, s).
The action report(aid), whose precondition axiomis

Poss(report(aid), s) = true,

is used to make the fluent served(aid, s) true by indicating that a request emitted by the owner of the
account aid has been granted. The situation independent predicate requested(aid, req) registerssuch
requests, where req is a positive or negative real number corresponding to a deposit or a withdrawal of
that amount of money.

Now we give the following ConGol og procedures which are well-formed and capture the essence of
the debit/credit example:

proc a_update(t, aid, amt)
(7 bid, abal, abal’, tid)[accounts(aid, bid, abal, tid,t)? ;
[abal’ = abal + amt]? ;
a_del(aid, bid, abal, tid,t) ;
a_ins(aid, bid, abal, tid, t)]
endProc
proc execDebitCredit(t, bid, tid, aid, amt)
a_update(aid, amt) ;
(r abal) [accounts(aid, bid, abal, tid, t)? ;
t_update(t,tid, amt) ; b_update(t, bid, amt)]
endProc
proc processReq(t, tid, aid, amt)
(7 bid, abal)[accounts(aid, bid, abal, tid, t)? ; execDebitCredit(t, bid, tid, aid, amt)]

endProc

CHAPTER 6. SPECIFYING EXECUTION MODELS 108

proc processTrans(t)
Begin(t);
[(7 bid, aid, abal, tid, req).
{accounts(aid, bid, abal,tid,t) A requested(aid, req) N —served(aid)}? ;
report(aid) ; Spawn(t, aid) ; processReq(t,tid, aid, req) ; End(aid)]” :
=((3 aid, req).requested(aid, req) A served(aid))? ;
End(t)

endProc

Smilarlyto thefirst procedure, we can give procedurest _update(tid, amt) and b_update(bid, amt) for
updating teller and branch balances, respectively. |

The ACI(D) properties are enforced by the interpreter that either commits work done so far or rolls
it back whenever the database general 1Cs are violated. Thus, well formed programs are a specification
of transactionswith the full scale of aprogramming language at the logical level. Notice that aformula
¢ inatest ¢7 isinfact an ss-formulawhose situation argument is restored at run-time by theinterpreter.
Notice a so the use of the concurrent iteration in the last procedure; this spawns a new child transaction
for each account that emitted a request but has not yet been served. For simplicity in this example, we
have assumed that each account has at most one request; thisallows us to use the account identifiers aid
to denote spawn subtransactions.

Now we can simulate the program, say processTrans(1') of Example 6.1, by performing the theo-
rem proving task of establishing the entail ment

D = (3s') Do(processTrans(T), So, s'),

where Sy istheinitial, empty log, and D is the basic relational theory for nested transactions that com-
prisesthe axiomsabove; thisexactly meansthat we look for somelog that isgenerated by theprogram 7'.
We are interested in any instance of s resulting from the proof obtained by establishing this entailment.
Such an instanceis obtained as a side-effect of this proof.

In Definition 6.5, we take particul arities of system actions into account. These actions must occur
whenever they are possible, so the interpreter must test for their possibility upon each performance of a
primitive action. Definition 6.5 captures this requirement.

Definition 6.9 (Universal Possibility Assumption (UPA) for Test Actions) Thisis the sentence
(VF,Z,t,s)Poss(F_reads(Z,t)[s], s). (6.5)

TheUPA allowsunrestricted carrying out of test actionswhich inthe database setting are database queries.
Using the UPA and Definition 6.5, we can show that Do generates only legal situations:

CHAPTER 6. SPECIFYING EXECUTION MODELS 109

Theorem 6.10 Suppose D is a relational theory (either for CNTs, or for ONTS), and let 7" be a well
formed ConGolog programfor CNTs or for ONTSs. Then,

D = (¥s).Do(T, So, s) D legal(s). (6.6)

6.2 Specifying the Execution Modelswith Flat Transactions

In this section, we specify the execution models of active databases by assuming that the underlying
transaction model isthat of flat transactions.

6.2.1 Classification

Thethree components of the ECA rule—i.e. Event, Condition, and Action— are the main dimensions
of the representational component of active behavior. Normally, either an indicationis givenin therule
language asto how the ECA rules areto be processed, or agiven processing model isassumed by default
for al therules of the ADBMS. To ease our presentation, we assume the execution models by default.

An execution model istightly related to the coupling modes specifying the timing constraints of the
evaluation of the rule’s condition and the execution of the rule's action relative to the occurrence of the
event that triggers the rule. We consider the following coupling modes (See Section 2.1.4):°

1. EC coupling modes:

Immediate; Evaluate C' immediately after the ECA ruleistriggered.
Delayed: EvaluateC' at somedelayed timepoint, usually after having performed many other database
operations since the time point at which the rule has been triggered.

2. CA coupling modes:

Immediate; Execute A immediately after C' has been evaluated.
Delayed: Execute A at some delayed timepoint, usualy after having performed many other database
operations since the time point at which C' has been evaluated.

Aswe saw in Section 2.1.4, the execution model isaso tightly related to the concept of transaction.
In fact, the question of determining when to process the different components of an ECA ruleis also
answered by determining the transactionswithin which —if any —the ' and A components of the ECA
rule are evaluated and executed, respectively. In other words, the transaction semantics offer the means
for controlling the coupling modes by allowing one the flexibility of processing the rule componentsin

5They were first introduced in the HiPAC system ([HLM88]) and have since been widely used in most ADBMS proposals
([Pat99]). Our presentation is slightly more general than the original one, in which the relationships between coupling modes
and execution models, and thoses between transactions and execution models were not conceptually separated.

CHAPTER 6. SPECIFYING EXECUTION MODELS 110

different, well-chosen transactions. In the sequel, the transaction triggering arule will be called trigger-
ing transaction and any other transaction launched by the triggering transaction will be called triggered
transaction. We assume that all database operations are executed within the boundaries of transactions.
From this point of view, we obtain the following refinement for the delayed coupling mode:

1. Delayed EC coupling mode: Evaluate C' at the end of the triggering transaction 7°, after having
performed all the other database operationsof T, but before T’ stermina action.

2. Delayed CA coupling mode: Execute A at the end of the triggering transaction T, after having
performed al the other database operations of 7" and after having evaluated C', but before 7" ster-
minal action.

In presence of flat transactions, we a so obtain the following refinement of the immediate coupling
mode:

1. Immediate EC coupling mode: Evaluate C' withinthetriggering transactionimmediately after the
ECA ruleistriggered.

2. Immediate CA coupling mode: Execute A within the triggering transaction immediately after
evaluating C'.

Noticethat the semantics of flat transactionsrulesout the possibility of nested transactions. For example,
we can not processC' in aflat transaction and then process A in afurther flat transaction, sincewe quickly
encounter the necessity of nesting transactions whenever the execution of a rule triggers further rules.
Also, we can not have a delayed CA coupling mode such as. Execute A at the end of the triggering
transaction 7" in atriggered transaction 7", after having performed all the other database operations of
T, after T’ sterminal action, and after theevaluation of C'. Thereasonisthat, in the absence of nesting of
transactions, we will end up with alarge set of flat transactionswhich are independent from each other.
Thiswould make it difficult to relate these independent flat transactions as belonging to the processing
of afew singlerules.

Therefinements aboveyield for each of the EC and CA coupling modestwo possibilities: (1) imme-
diate, and (2) delayed. There are exactly 4 combinations of these modes. We will denote these combi-
nationsby pairs(:, j) where and j denote an EC and a CA coupling modes, respectively. For example,
(1, 2) isacoupling mode meaning a combination of theimmediate EC and delayed CA coupling modes.
Moreover, we will call the pairs (¢, j) interchangeably coupling modes or execution models. The con-
text will be clear enough to determine what we are writing about. However, we have to consider these
combinations with respect to the constraint that we always execute A strictly after C' isevaluated.® The

5This constraint isin fact stricter than a similar constraint found in [HLM88], where it is stated that “ A cannot be executed
before C' isevaluated” . Theformulation of [HLM88], however, doesnot rule out simultaneous action executionsand condition
evaluations, a situation that obviously can lead to disastrous behaviors.

CHAPTER 6. SPECIFYING EXECUTION MODELS 111

following combinations satisfy this constraint: (1, 1), (1,2), and (2, 2); the combination (2, 1), on the
contrary, does not satisfy the constraint.

6.2.2 Immediate Execution Model

Here, we specify the execution model (1, 1). Thiscan be formulated as: Evaluate C' immediately af-
ter the ECA ruleistriggered and execute A immediately after evaluating C' within the triggering
transaction.

Supposewe have aset R of n ECA rules of the form (5.1). Then the following GOL OG procedure
captures the immediate execution model (1, 1):

proc Rules(t)
(r@1, 1) [m R,)75 (@) [Ra,t]?7 5 cq(57) [Ry, t]]

(6.7)
(%, G) [Tn[Ry 1]7 5 Co(Z0) [Ry 8]7 5 v () [, 1]
S[(370) (m[Ra, (AG(Z) [R, t]) V. .V (3Z) (o[R, EIAC(E0) [Ra, £])] 7

endProc .

SoaruleisaGOL OG programwhichwecan executeusing Do. Noticethat theprocedure (6.7) above
formalizes how rules are processed using the immediate model examined here: the procedure Rules(t)
nondeterministically selectsarule R; (hence the use of |), testsif an event 7;[R;, t] occurred (hence the
use of 7), in which case it immediately tests whether the condition ¢;(Z;)[R, t] holds (hence the use of
;), @ which point the action part «;(7;) is executed. The last test condition of (6.7) permits to exit from
the rule procedure when none of the rulesistriggered.

6.2.3 Delayed Execution Model

Now, we specify the execution model (2, 2) that has both EC and CA coupling being delayed modes.
This asks to evaluate C' and execute A at the end of a transaction between the transaction’s last
action and either its commitment or itsfailure. However, notice that the constraint of executing A
after C' has been evaluated must be enforced.

Let the interval between the end of a transaction (i.e., the situation do(F'nd(t), s), for some s) and
itstermination (i.e., the situation do(C'ommit(t), s) or do(Rollback(t), s),for some s) be called asser-
tioninterval. We usethefluent assertionInterval(t, s) to capture the notion of assertion interval. The
following successor state axiom characterizes this fluent:

assertionInterval(t,do(a,s)) =a = End(t) vV 69)

assertionInterval(t,s) A —termAct(a,t).

CHAPTER 6. SPECIFYING EXECUTION MODELS 112

Now, the following GOL OG procedure captures the delayed execution model (2, 2):

proc Rules(t)

(7Z1, 71)[m[R1,t]7 5 (C(Z1)[Ry, t] A assertion]nterval(t))? ; a1(i1)]]

(7 Z s Un) [Tn[B, t]7 5 (Co(@n)[rn, t]AassertionInterval (t))? 5 o, (7,)]]| (6.9
—{[3%) (11 [R1,] ACL(T) [Ry, t]) V...
V (3%, (Tn[Ry] AC(Z0) [Ry t])] A assertionInterval(t)} ?

endProc.

Here, both the C' and A components of triggered rules are executed at assertion intervals.

6.2.4 Mixed Execution Modd

Here, we specify theexecutionmodel (1, 2) that mix bothimmediate EC and del ayed CA coupling modes.
Thisexecution model asksto evaluate C'immediately after the ECA ruleistriggered and to execute
A after evaluating C'in the assertion interval. Thismodel has the semantics

proc Rules(t)

(7Z1, 1) [m[R1,t]7 5 G (Z1)[R1,t]? ; assertionInterval(t)? ; oq(i1)]]

(7%, Un) [Tn[Ry t]7 5 Cn(T0)[rn, t]7 5 assertionInterval (t))? ;5 o (F,)]]
~{[(3%1) (m[Ry, NG (Z) [Ra,] V.. (6.10)
V (3Z0) (T Ry) ACh (Z0) [R, t])] A assertionInterval ()} 7

endProc.

Here, only the A components of triggered rules are executed at assertion intervals.

Example 6.2 Consider the stock trading database of Example 5.1, and also the active behavior de-
scribed there. That is, customer stocks are updated whenever new prices are notified. When a current
price of a stock is being updated, its closing priceis also updated if the current price notificationis the
last of the day. Suitable trade actions are initiated whenever some conditions become true of a stock
price, under the specific constraint that the customer balance cannot drop below a certain amount. Un-
der thedelayed execution model, thetwo rulesshownin Figure5.1 can be compiledinto therule program
shown in Appendix E.

CHAPTER 6. SPECIFYING EXECUTION MODELS 113

6.3 Specifying the Execution Modelswith ONTs

In this section, we specify the execution models of active databases by assuming that the underlying
transaction model isthat of ONTS.

6.3.1 Clasdsification

We consider the same coupling modes (i.e., immediate and delayed) asin Section 6.2. However, as for
the relationship to the concept of transaction, we obtain a different refinement introduced first in HIPAC
(THLM88]) for the delayed coupling mode:

1. Delayed EC coupling modes:

Deferred: Evaluate C' at the end of the triggering transaction 7', after having performed all the
other database operations of 1", but before 7" sterminal action.

Partially detached: EvaluateC' at theend of thetriggeringtransaction?” in atriggered transaction
T, after having performed all the other database operations of 1", but before 7"’ s terminal action.
Fully detached: Evauate C' at the end of the triggering transaction 7" in a triggered transaction
T, after having performed all the other database operationsof 7', and after 7" sterminal action.

2. Deayed CA coupling modes:

Deferred: Execute A at the end of the triggering transaction T, after having performed all the
other database operations of T’, but before 7" sterminal action.

Partially detached: Execute A at theend of thetriggeringtransaction 7" in atriggered transaction
T', after having performed all the other database operations of 7", but before 7’ s terminal action.
Fully detached: Execute A at the end of thetriggering transaction 7" in atriggered transaction 7",
after having performed all the other database operations of 7', and after 1"’ sterminal action.

In presence of transactions, weal so obtai n thefoll owing refinement of theimmediate coupling mode:

1. Immediate EC coupling modes:

Fully immediate: Evaluate C' within the triggering transaction immediately after the ECA ruleis
triggered.

Partially immediate: Evaluate C' within a triggered transaction immediately after the ECA rule
istriggered.

2. Immediate CA coupling modes:

Fully immediate: Execute A withinthe triggering transaction immediately after evaluating C'.
Partially immediate: Execute A withinatriggered transaction immediately after evaluating C'.

CHAPTER 6. SPECIFYING EXECUTION MODELS 114

So therefinements aboveyield for each of the EC and CA coupling modesfive possibilities: (1) fully
immediate, (2) partially immediate, (3) deferred, (4) partially detached, and (5) fully detached. Thereare
exactly 52 combinations of these modes. Asin Section 6.2, we will denote these combinations by pairs
(¢,7) wherei and 5 denotean EC and a CA coupling modes, respectively. We continueto consider these
combinationswith respect to the constraint that we always execute A strictly after C' has been evaluated.
The following combinations satisfy this constraint:

—~~
—_
—_

~—

—~~
—_
]

~—

—~~
—_
w

~—

—~
—_
e

~—

—~~
[
(%)

~—

—~~
[\
—_

:ﬂ

~no
]
—

2,3),(2,4), (2,5),

—
w
—_

~—

—

w
]

~—

—

w
w

~—

—~
w
W

~—

—
w
<t

~—

—

L
—_
~—

—_

G
]
~—

—~~

4,3),(4,4), (4,5),(5,5).

Some of these combinations are not yet fine-grained enough. Take, for example, (5, 5). Depending on
whether the triggered transactionsfor the C' and A components are the same or not, we get two different
couplingmodes (5, 5);1 and (5, 5)2, respectively.

6.3.2 Immediate Execution Models

Here, we specify those execution models (¢, 7) that have both : and ; being immediate coupling modes.
Theseare (1,1),(1,2),(2,1),and (2,2).

(1,1): EvaluateC and execute A immediately after the ECA ruleistriggered within thetriggering
transaction. Supposewehave aset R of n ECA rulesof theform (5.1). Then the GOLOG procedure
that captures the immediate execution model (1, 1) istheonegivenin (6.7).

(1,2): Evaluate C within the triggering transaction and execute A in a triggered transaction im-
mediately after evaluating C'. The following GOLOG procedure captures the immediate execution
model (1, 2):
proc Rules(t)
(7 &1, §u,)[R, 17 5 GU(Z0) [R, 8] 5) = setld?

Begin(t,t', CLOSED, NONCOMP) ; a1(#h)[R1,t'] ; End(t')] |

(7%, G, V) [T [By 8]7 5 Ca(F) [R, 1]7 5 8 = setld? (6.11)
Begin(t,t', CLOSED, NONCOMP) ; a,(§,)[Rn,t']; End(t)] |
=[(3%1) (11[R1, t]ACG (D) [R, t]) V..V (3T) (Th[By A G (T0) [Rns £])] 7
endProc.

Here, setld(s) isasystemfluent whoseintuitivemeaning isto set afresh identity number for asubtrans-
actionto spawn. To characterize setld(s), weintroducearelational systemfluent numO fTrans thatis

CHAPTER 6. SPECIFYING EXECUTION MODELS 115

used to record the number of transactionsso far inthelog. The successor stateaxiom for numO fTrans
isgiven asfollows:

numO fTrans(n,do(a,s)) =
(An',t,t', m, ¢)[numO fTrans(n’, s) A a = Begin(t,t',m,c)An=n"+1V
numO fTrans(n’,s) A a = Begin(t',t,m,c) An =n"+ 1]V (6.12)

numO fTrans(n,s).

This axiom saysthat the number of transactionsis obtained by counting the Begin(t,t', m, c) actionsin
thelog. Now setld(s) isintroduced as an abbreviation:

setld(s) = id =4 (In).numO fTrans(n,s) Aid =n+ 1. (6.13)

So, we assign a fresh identity number to a transaction by monotonically increasing by one the identity
numbers aready assigned so far.

(2,1): Evaluate C within a triggered transaction and execute A in the triggering transaction im-
mediately after evaluating C. This semanticsis captured by the following GOLOG procedure:

proc Rules(t)
(m&1, 71, t")[m[R1,t]7 5 ' = setld? ;
Begin(1,1',CLOSED, NONCOMP) ;G (&)[, 17 : End(t') s o ()[F, 1] |

(TZpy Gy) [T [R,] 5 ' = setld? ; (6.14)
Begin(t,t', CLOSED, NONCOMP) ; (,(%n)[Rn, t']? ; End(t') an(Fn)[Rn,] |
S[(37) (1 [R1, (ACG(D)[R1, t]) V. . .V (3Z) (o[R, tIAC(E0) [Rn, £])] 7

endProc.

(2,2): Evaluate C' within a triggered transaction and execute A in a triggered transaction imme-
diately after evaluating C'. Depending on whether the transactions for the C' and A components are

CHAPTER 6. SPECIFYING EXECUTION MODELS 116

the same or not, we get the coupling models (2, 2); and (2, 2), whose semanticsis captured as follows

proc Rules(t)
(m&y, o1, t' ") [[R, 8]7
t' = setld? ; Begin(t,t’,CLOSED, NONCOMP) ;(i(Z1)[R1,t']? ; End(t') ;
t" = setld? ; Begin(t,t",CLOSED,NONCOMP) ;((Z1)[R1,t"]? ; a1(7h)[R1,t"] ; End(t")]|

(TZ, Gyt ") [0 R,y)7 (6.15)
t' = setld? ; Begin(t,t’,CLOSED, NONCOMP) ;(,(Z1)[Rn,t']? ; End(t) ;
t" = setld? ; Begin(t,t",CLOSED,NONCOMP) ; Cu(Z1)[Rn, t"7 5 an(Fn)[Bn, t"] ; End(t")]|
S[(37) (1 [R1, ACG(Z) [R1, t]) V.. .V (3Z) (o[R, TIANC(Z0) [Ra, t])] 7
endProc

for the mode (2, 2),, and as

proc Rules(t)
(m&1, 71, t")[m[R1,t]? 5 t' = setld? ;

Begin(t,t', CLOSED, NONCOMP) ; (1(Z1)[R1,t']? ; a1(7h) ; End(t")]|

(TZ 0y Gy) [T [Ry 8]7 5 ¢ = setld? ; (6.16)
Begin(t,t', CLOSED, NONCOMP) ; (, (%) [Rn, t']? ; ()[R, t']; End(t)] |

S[(370) (m[Ra, AG(E) [Re, t]) V. .V (3Z) (o[R, EIACW(Z0) [Rn, t])] 7
endProc

for the mode (2, 2)..

6.3.3 Deferred Execution M ode

Now, we specify the execution models (¢, j) that have both 7 and j being deferred coupling modes. There
isjust onesuch mode, namely (3, 3). Thisasksto evaluateC' and execute A at theend of atransaction
between the transaction’s last action and its commitment.

CHAPTER 6. SPECIFYING EXECUTION MODELS

The deferred execution model is captured by the following procedure:

proc Rules(t)

(%1, 71)[n[R1,t]7 5 (C(Z1)[Ry, t] A assertionInterval(t))? ; a1(i1)]]

(7Z 0y Un) [Tn[B, t]7 5 (Co(@n)[rm,] AassertionInterval (t))? 5 o, (7,)]|
—{[3%)) (11 [R1, t]ACL(T)[Ry, t]) V...
V (3%,) (o[Ry) AC(Zn) [Ry t])] A assertionInterval (t)} ?

endProc.

Here, the fluent assertionInterval(t, s) isasintroduced in (6.8).

6.3.4 Detached Execution Modds

117

(6.17)

Here, we specify those execution models (7, j) that have both 7 and 5 being detached coupling modes.

Theseare (4,4), (4,5),and (5, 5).

(4,4): EvaluateC' inatriggered transaction nested in the assertion interval of thetriggering trans-
action and execute A in atriggered transaction nested in the same assertion interval. Again, de-

pending on whether the transactionsfor theC' and A componentsare the same or not, we get the coupling
models (4, 4); and (4, 4), whose semanticsis captured as follows. Themodel (4, 4), hasthe semantics

proc Rules(t)

(%1, 71, ') [m1[R1,8]? ; assertionInterval(t)? ; t' = setld? ;

Begin(t,t',OPEN, NONCOMP) ; (;(%1)[R1,t']? ; ex(§1)[R1, 1] ; End(t')] |

(7T, Uny ') [Tu[Rn, t]7 ; assertionInterval(t)? ; t' = setld? ;

Beyin(t7 tlv OPE]Vv *NO‘NCOMP) 7Cn('fn) [Rna t/]? 3 Qi (gn)[an t/]) End(t/)] ?

—{[(3%1) (11 [R1,]ACL(Z) [R1,]) V. ..
V (3Z,) (Tu[Ry t]ACn(Zn) [R, t])] A assertionInterval(t)} 7

endProc.

6.18)

Here, triggered rul esare executed at assertioninterval sas open and noncompensatabl etransactionswhose

semantics has been developed in Section 4.3.3.

CHAPTER 6. SPECIFYING EXECUTION MODELS 118
Themodel (4, 4), has the semantics

proc Rules(t)
(7@, g1, ', t")[11[R1,t]7 ; assertionInterval(t)? ;
t' = setld? ; Begin(t,t’,CLOSED, NONCOMP) ;(i(Z1)[R1,t']? ; End(t') ;
t" = setld? ; Begin(t,t",CLOSED,NONCOMP) ;(i(71)[R1,t"]? ; a1(7h)[R1,t"] ; End(t")]|

(TZ 0, Gyt ") [Ta[Ry t]7 5 assertionInterval (t)? ;
t' = setld? ; Begin(t,t',CLOSED,NONCOMP) ;(,.(Z1)[Rn,t']? ; End(t) ;
t" = setld? ; Begin(t,t",CLOSED,NONCOMP) ; (1) [Rn, t"7 5 an(Fn)[Bn, t"] ; End(t")]|
—{[(371) (n[R1, NG (Z)[R, t]) V. ..
V (3Z,) (Tn[Ry tIAC (Zn) [Rn, t])] A assertionInterval(t)} 7

(6.19)

endProc.

(4,5): EvaluateC' inatriggered transaction nested in the assertion interval of thetriggering trans-
action and execute A in atriggered transaction spawned after the same assertion interval.

proc Rules(t)
(m&y, 01, t' ") [[R1,8]?7 ; assertionInterval (t)? ;

t' = setld? ; Begin(t,t',CLOSED, NONCOMP) ;(i(%1)[R1,t']? ; End(t') ;
—assertionInterval(t)? ;

t" = setld? ; Begin(t,t",CLOSED,NONCOMP) ;(i(71)[R1,t"]? ; a1(7h)[R1,t"] ; End(t")]|

(TZ 0, Gy t' ") [Tu[Ry t]7 5 assertionInterval (t)? ; (6.20)
t' = setld? ; Begin(t,t',CLOSED, NONCOMP) ;(,(Z1)[Rn,t']? ; End(t) ;
—assertionInterval(t)? ;
t" = setld? ; Begin(t,t",CLOSED,NONCOMP) ;Cu(Z1)[Rn, t"]7 5 an(Fn)[Bn, t"] ; End(t")]|
—{[(FL1) (11 [R1, t]AG(Z)[R1, t]) V...V (FL) (TR, EING(Z0) [Ri, t])] A assertion]nterval (t)} 7

endProc.

(5,5): EvaluateC'in atriggered transaction spawned after the assertion interval of thetriggering
transaction and execute A in a triggered transaction spawned after the same assertion interval.

CHAPTER 6. SPECIFYING EXECUTION MODELS 119

Themodel (5, 5); hasthe semantics
proc Rules(t)
(7Z1, 71, t)[11[R1,t]? 5 —assertionInterval(t)? ; t' = setld? ;

Begin(t,t',OPEN, NONCOMP) ; (;(Z1)[R1,t']? ; ex(51)[R1, 2] ; End(t')] |

(TZ, Uy) [T By 8]7 5 —assertionInterval (t)? 5 ' = setld? ; 6.21)
Begin(t,t', OPEN, NONCOMP) ; (,(%Tn)[Rn, t']? 5 @n(0n)[Rn,t']; End(t)] |
—{[(3L1) (11 [R1, t]AG(Z)[R1,t]) V...V (FL,) (TR, EING (Z0) [Ri, t])] A assertionnterval (t)} 7
endProc.
Themodel (5, 5), has the semantics
proc Rules(t)
(nZ1, g1, ', t") [[R1,t]? ; —assertionInterval (t)? ;
t' = setld? ; Begin(t,t’,CLOSED, NONCOMP) ;((Z1)[R1,t']? ; End(t') ;
—assertionInterval(t)? ;

t" = setld? ; Begin(t,t",CLOSED,NONCOMP) ;((Z1)[R1,t"]? ; a1(7h)[R1,t"] ; End(t")]|

(TZpy Gy U ") [Tn[Ry £]7 5 —assertionInterval (t)7 ; (6.22)
t' = setld? ; Begin(t,t',CLOSED, NONCOMP) ;(,(71)[Rn,t']? ; End(t) ;
—assertionInterval(t)? ;
t" = setld? ; Begin(t,t",CLOSED,NONCOMP) ;u(71)[Rn, t"17 5 an(§n)[B, t"] ; End(t")]|
—{[(3L1) (11 [R1, t]AG(Z)[R1, t]) V...V (FL) (TR, EING(Z0) [Ra, t])] A assertion]nterval (t)} 7

endProc.

6.4 Semanticsof Rule Programs

6.4.1 Abstract Execution of Rule Programs

Given the program Rules(t) specified as in (6.7)—(6.22), we can now complete the logical characteri-
zation of the execution models by showing how the predicate Trans(4, s, §', s') of [DGLL97] must be
modified to handle primitive actions:

Trans(a,s,d’,s') = (Ja*, 5", s*,t).transO f(a,t, s) A Poss(a,s) A a' = nil A
{[s" = do(a, s) A systemAct(a*,t) A Poss(a*,s") A s = do(a*,s")] Vv
[s*=do(a, s)A[(Va", t')system Act(a”,t") D= Poss(a’, s*) A Do(Rules(t), s*, s’)]]}.(6'23)

CHAPTER 6. SPECIFYING EXECUTION MODELS 120

With the last conjunct, we interleave the execution of each action with the execution of Rules(t). The
while-loop picks one of thetriggered rules, according to (6.7)—(6.22), executesit, and comes back at the
beginning of Rules(t); it doesso until thelast test condition of (6.7)—(6.22) becomestrue; the semantics
(6.7)<(6.22) will make sure that rule execution follows the appropriate execution model.’

We execute a GOL OG program 1" embodying an active behavior by performing thetheorem proving
task of establishing entailments of the form (6.4), where D is now the active relational theory for an
appropriate transaction model.

Using the notion of well formed ConGolog programsintroduced in Definitions 6.3 and 6.4, together
with the notion of legal databaselog defined in (4.20), we can show the following:

Theorem 6.11 SupposeD isan activerelational theoryfor ONTs, and let 7" be a well formed ConGolog
programfor ONTs. Then,

D = (¥s).Do(T, So, s) D legal(s), (6.24)
and, more generally,

D = (s, s').legal(s) D [Do(T, s, s') D legal(s')]. (6.25)

6.4.2 Classification Theorems for Execution Models: the Flat Transactions Case

Thereisanatural question which arises with respect to the different execution model s whose semantics
havebeen given above: isit possibleto reducethe set of execution model sdescribed aboveto ahandful of
classes by virtue of some equivalence mechanism? To answer this question, we must develop a(logical)
notion of equivalence between two given execution models. Suppose that we are given two programs
Rules')(t) and Rules*) (t) corresponding to the execution models (i, j) and (k,), respectively.

Definition 6.12 (Database ver sus system queries) Suppose () isa situation calculusquery. Then() is
a database query iff the only fluentsit mentionsare databasefluents. A system query isone that mentions
at least one system fluent.

Intuitively, establishing an equivalence between the programs Rules"/) (t) and Rules*)(t) with re-
spect to a background active relational theory D amounts to establishing that, for all database queries
Q(s) and transactions ¢, whenever the answer to)(s) is“yes’ in a situation resulting from the execu-
tion of Rules™9) (t) in Sy, executing Rules™(t) in S, resultsin asituationyielding “yes’ to Q(s).

Definition 6.13 (Implication of Execution Models) Suppose D is an active relational theory, and let
Rules')(t) and Rules*!) (t) be ConGol og programscorresponding to the execution models (i, j) and

"Notice that this semantics meansthat transitions may in fact be big leapsinvolving many actions. This may prevent some
desirable concurrency. We leave this problem out of the scope of this document.

CHAPTER 6. SPECIFYING EXECUTION MODELS 121

(k, 1), respectively. Moreover, suppose that for all database queries @, we have®
(Vs,s', 5", t).Do(Rules"™ ™ (1), s, ') A Do(Rules™™ (1), s, s") D Q[s'|=Q[s"],

where (m, n)is(i, j) or (k,). Tnenaruleprogram Rules\/) (¢) impliesanother ruleprogram Rules*:) (t)
(Rules'™)) (t) = Rules™! (1)) iff, for every database query Q,

(v, 5){[(3s"). Do(Rules'™(t), s, s") AQ[s']] D

(6.26)
[(3s").Do(Rules®D (1), s, s") A Q[s"]]}.

Definition 6.14 (Equivalence of execution models) Assume the conditions and notations of Defini-
tion 6.13. Then Rules'")(t) and Rules*) (t) are equivalent (Rules'™)(t) = Rules*(t)) iff, for
every databasequery @,

(vt,){[(3s"). Do(Rules'™) (1), s, ') A Q[s']] = [(3s").Do(Rules®)(t), s, s") A Q[s"])]}.

It isimportant to see why werestrict our attentionto database queries. We do so sinceweareinterested in
thefinal state of the content of the database, regardless of thefinal values of the system fluents. Consider
the executionmodels (1, 1) and (1, 2) and supposethat we use the Do predicate to execute awel | formed
program 7" assuming the rulesin Figure 5.1. Assume that the classic flat transaction model is used for
the transaction program 7". Therefore the execution model (1, 1) will involve no system fluent since the
flat transaction model does not involve any. On the contrary, the execution model (1, 2) will involve a
systemfluent if thetriggered transacti on associated with thisexecution model involvesany system fluent.
In general, different execution modelsare most likely to involve different system fluents so that, fromthe
point of view of these, virtually no two execution modelswould be equivaent. Fortunately, the content
of the database is usually what matters to the user, not the internal state of the system which may be
considered as a black box. Thisjustifies restricting our attention to database queriesin establishing the
rel ationships among execution models.

Theorem 6.15 Assumethe conditionsof Definition 6.13. Then Rules(>2)(t) = Rules(:V(t).
Theorem 6.16 Assume the conditions of Definition 6.13. Then Rules"2)(t) = Rules(>?)(t).
Corollary 6.17 Assumethe conditions of Definition 6.13. Then Rules(1?)(t) = Rules(1:1)(t).

6.4.3 Clasdsification Theorems for Execution Moddas: the ONTs Case

In the case of ONTS, the execution model (1, 1) seemsto be the onethat isthe most natural and simplest
one; it isthe same as for the case of flat transactionsand is supported in virtually all existing ADBMSs.

8We will come back to this sentencelater in Section 6.6. The sentence expressesthe so-called confluence property of active
rules.

CHAPTER 6. SPECIFYING EXECUTION MODELS 122

Thus it also appears natural to consider (1, 1) as the basic execution model with respect to which one
may wonder whether, whenever any given execution model (7, j) leadsto some final situation s’ then, if
(1,1) asoleadsto somefinal situation s”, the database quesriestruein s’ are also truein s”; or whether
(1,1) and (¢,), whenever they terminate, do so in situations in which exactly the same sentences are
true. This motivates the following two definitions.

Definition 6.18 (Correctness of execution models) Assume the conditions of Definition 6.13. Then a
rule program Rules7) (t) is correct iff Rules(™) (t) = Rules(!:1)(t).

Definition 6.19 (Completeness of execution models) Assume the conditions of Definition 6.13. Then
arule program Rules'™)(t) is completeiff Rules(v9) (t) = Rules(¢).

There are a so cases where theroles of (1, 1) and (¢, 7) inthe implication (6.26) are reversed:

Definition 6.20 (Hypercompleteness of execution models) Assume the conditions of Definition 6.13.
Then arule program Rules("7) (t) is hypercompleteiff Rules™V) (1) = Rules(*)(t).

Theorem 6.21 All the immediate, deferred, and detached execution models considered above are cor-
rect.

Conjecture 6.22 No execution model is either complete or hypercomplete.

The theorems above can be considered as positive classification results. They arejust afew examples of
many other positive classification resultsthat can be obtained when comparing execution models. How-
ever, in practice, it is equally important to know which execution models cannot achieve what we can
achieve with the basic immediate model. In thissense, it isimportant to be ableto validate or invalidate
the conjecture above. We believe that this conjecture is true, as none of the execution models that we
have considered is either complete, or hypercomplete. The reason isthat any nested transaction requires
a situation in which the integrity constraints are satisfied in order to commit. However, whenever one
obtains a log following the execution of the rule program Rule(':!) (t), that situation does not give any
guarantee whatsoever that its sublogs satisfy the integrity constraints; therefore, there is no guarantee
that the log generated by the execution of Rule("!)(¢) would alow any insertion of internal actions.

6.5 Priorities

Rules are assigned priorities by the programmer who provides an explicit (partial) order among rules.
Givenaset R #) of rules, thisamountsto partitioning the set R into subsets R ;, 1 < 7 < k, such that
rulesin R; al haveequal priority, and rulesin R ; have priority higher thantherulesinR ;, for al j such

CHAPTER 6. SPECIFYING EXECUTION MODELS 123

that : < 7. Asan example, we partition the set of rules of Example 5.1 into two subsets; the first subset
containsthe rule Update_stocks and the second one contains Buy_100shares.

Supposethat the set R of rules has been partitioned into subsets R ; = {r,, .. ., ri, Hh1<i<kin
the fashion explained above. Then the procedure below represents the set R of rules with priorities:

proc Rules(t)
1y |T‘12 | | LT |

{2l AGD)G, (2) VeV (7, ABE)G, ()17

[r21 | T2, | ...|7“212 |
(2[(Tro, ABE)Gra, (D)) VoV (T, AFE)Cr, (8))]7 5 Ruulesyest)]}
endProc,

where Tr, and Cm] (¥) denotethe event and the condition parts of rule ry,, whichisthe j-th rule of the
subset R of R, respectively; Rules,.s; 1ISaGOLOG program representing the remaining rulesand their
prioritiesinRsU. . .URy; and Rules,.; iteratesthe constructionin thebody of the procedure Rules(t).
Rules within a subset R; are selected nondeterministically until oneis found, at which point their
action parts are executed according to the semantics expressed in (6.7)—<6.22). The test action at the
end of R; means that if no triggered rule of R; has atrue condition, the rule processing stops for that
subset and continues with rules of lower priorities. Notice that if the processing of rulesin R ; leads to
the triggering of one of therulesr;, , such that j > 4, control goes back to the rules of higher priority.

Example 6.3 Using the immediate execution model, the procedure for the prioritized rulesin Example
5.1isgiveninFigure6.1: Upon the signaling of a price_inserted event, rule Update_stocks updates
thestock pricein the databasefor some customer if this stock isbeing monitored. Rule Buy 100 _shares
isalso triggered by the same price inserted event. If the price of some monitored stock has been up-
dated and the new pricelies between some threshold, then a suitabletrading action is performed. How-
ever, Update_stocks has priority over Buy_100_shares and will be processed first. In this example,
instead of using the notation ¢[7], we have restored the arguments i invol ved, in this case the arguments
Update_stocks, Buy_-100_shares, and ¢ (for “ transaction”). |

6.6 Propertiesof Rule Programs

Usually, even arelatively small number of ECA rules can display acomplex and unpredictablerun-time
behavior, such as non-termination, and discrepanciesin thefinal states of the database depending on how
rules are selected for execution. Therefore, in designing ECA rules, it isimportant to be able to predict
run-time behavior of rule at design-time. Thisis done by analyzing the set of ECA rules. Rule analysis

CHAPTER 6. SPECIFYING EXECUTION MODELS 124

proc Rules(t)
(m sad, pr', clos_pr)[priceinserted(Update_stocks, t)? ;
(3 ¢, time, bal, pr')[price_inserted(Update_stocks, s_id, pr, time,t) A
customer(c, bal, s_id, t) A stock(s_id, pr', clos_pr,t)]? ;
stock_insert(s_id, pr, clos_pr,t)] |
{—[price_inserted(Update_stocks, t) A
(3 s_id, pr, c,time, bal, pr', clos_pr)[price_inserted(s_id, pr, time,t) A
customer(c, bal, sid, t) A stock(s_id, pr', clos_pr,t)]]7? ;
(7 ¢, s4d,100)[pricesinserted(Buy_-100_shares,t)? ;
(3 new_pr, time, bal, pr, clos_pr)[price_inserted(Buy_-100_shares, s_id, new_pr, time, t) A
customer(c, bal, sid, t) A stock(s_id, pr, clos_pr,t) A new_pr < 50 A clos_pr > 70]7 ;
buy(c,s1d, 100,t)] |
{=[price_inserted(Buy-100_shares,t) A (3 ¢, s_id, new_pr, time, bal, pr, clos_pr)
[price_inserted(Buy-100_shares, s_id, new_pr, time, t) A customer(c, bal, s_id,t) A
stock(s_id, pr, clos_pr,t) A new_pr < 50 A clos_pr > 70]]7 }}

endProc .

Figure 6.1: Prioritized rulesfor updating stocks and buying shares

is adesign-time inspection of rules for compliance with a set of desired properties. The most important
properties rule designers must care about are ([WC96]):

e Termination: Thisensuresthat a database stateis reached in which no further rules are triggered.

e Confluence: Thisensuresthat whenever arule program reaches two fina database states, then the
two states are the same, independently of the order of the execution of non-prioritized rules.

e Observable determinism: This ensures that arule program aways performs the same visible ac-
tions, independently of the execution order of non-prioritized rules.

This section shows how thefirst two of these properties can be expressed in the situation calculus. The
last oneisleft out. The genera treatment of these properties deserves afull thesisof its own. Here, we
just show how to formulate the propertiesin the situation cal culus without reasoning about them.

CHAPTER 6. SPECIFYING EXECUTION MODELS 125

6.6.1 General Properties

Here, we briefly illustrate the use of our framework for specifying properties of well formed ConGolog
programs. We appeal to awell known hierarchy of properties expressible in temporal logic of Manna
and Pnueli ([MP91]) who distinguish two classes of properties. Safety, and Progress. In the situation
calculus, asafety property is syntactically characterized by aformula of theform (V) ¢, where ¢ isany
first order past temporal formulaexpressed in the situation calculus. A progressproperty issyntactically
characterized by a formula of the form (Q1s1) - - - (Qnsn) ¢, Where ¢ is any first order past temporal
formula expressed in the situation calculus, and the ¢); must contain at least one occurrence of 3.

A classical example of safety property is the partial correctness of a given program 7°: if T' termi-
nates, then it does so in a situation satisfying a desirable property, say ¢; i.e.

(Vs).Do(T, So,s) D ¢(s).

Noticethat ATM systemsare designed to terminate. So they constituteadomain wherethiskind of prop-
erty can be considered.
Checking partia correctness amounts to establishing the entailment

D = (Vs).Do(T, S, s) D ¢(s). (6.27)

As an illustration of partial correctness checking, we have the entailment (G.16) from Theorem 6.10.
Another illustrationis
D k= (Vs).Do(T, Sy, s) D always(é, s),

where T is a given well formed ConGolog program, and ¢ is any first order past temporal formula ex-
pressed inthe situation calculus . Suppose we have thefollowing abbreviation for well-f ormed—sit(s):

well—formed —sit(s) =4 (Vs')[do(Commit(t),s’) C s D =(3s")do(Rollback(t),s") C s].
Then the following is a further example of checking correctness:
D = (¥s).Do(T, So, s) D well—formed—sit(s),

with T" being a given well formed ConGolog program.

Given arelational theory D, a property ¢(s), and awell formed ConGolog program 7', it isimpor-
tant to look for computationaly feasible ways of establishing the entailment (6.27). The answer to this
guestion would take us too far aside; nevertheless, we can mention one possible mechanism for doing
this: in order to check the property ¢(s), we must answer a historical query, i.e. check the validity of
¢(s) over afinitelog starting in Sy and involving only ground operations. We do this by first generat-
ing aground log S such that Do(T', Sy, S) using the relational theory D. Then we use the regression

CHAPTER 6. SPECIFYING EXECUTION MODELS 126

mechanism for non-Markovian situation cal culus theories defined in [Gab00] to reduce our task to es-
tablishing an entailment involving only the initial database. Regressing the given formula ¢(s) means
using D to transform it into alogically equivalent formula ¢’(s’) which mentions a shorter sublog s” of
s. Repeatedly performing this mechanism |leads ultimately to aformulawhoseonly logis.Sy. So, thanks
to the regression, checking a property in thelog resulting from the execution of atransaction amountsto
checking that property — as atheorem proving task —in theinitial database.

6.6.2 Termination and Correctness

Recall that termination ensures that a rule program reaches a database state in which no further rules are
triggered. In the situation cal culus, this can be expressed by writing aformulathat captures the fact that
arule program Rules(i, 7)(t) reaches afinal situationwith the Do predicate. Formally, suppose D isan
active relational theory, and let Rules(%9) (t) be the ConGolog program corresponding to the execution
model (i, 7). Then arule program Rules'™7)(t) terminates iff
(vt,s)(3s") Do(Rules™ (1), s, s'). (6.28)
So, termination of active rulesisa progress properties since one of the quantifiers of the formula (6.28)
isan existential quantifier.
Strictly speaking, termination just means that rule processing ceases at some point. That iswhat the
formula (6.28) expresses. If westrictly follow the way terminationisdefined above, that is, asaproperty

that “ ensuresthat arule program reaches a database state in which no further rules are triggered” , we can
view termination as a correctness property. In fact, it iseasy to see that the following holds:

Proposition 6.23 Thefollowingis a valid situation calculus formula:
(Vt,5,').Do(Rules'™ (1), s, s") > i),
where () jstheformulain thelast test condition of Rules(): i.e., for Rules'V), ®(:) istheformula

(371) (M [R1,)ACG(Z)[R1, t]) V.. .V (3Z,) (o[R, TN G (Z0) [Ra, t]).

6.6.3 Confluence

Confluence ensures that a rule program never reaches two divergent database states, independently of
the order of the execution of non-prioritized rules. Notice that, informally, a database state is the set of
all database fluents, together with their truth values. Confluence must ensurethat al possible executions
of arule program reach the same database state. We may express this property in the situation calculus

asfollows;

(VQ)(Vs, s', 8", t).Do(Rules(i’j)(t), s,8') A Do(Rules(i’j) (t),s,s")

U

(6.29)

CHAPTER 6. SPECIFYING EXECUTION MODELS 127

where () isadatabase query, and 7 and j are fixed. The formula(6.29) above showsthat confluenceisa
safety property since al the quantifiersinvolvedin it are universal quantifiers.

6.7 Summary

In this chapter, we have compiled sets of ECA rulesinto ConGolog programs that capture the execution
models of active behavior and whose (abstract) execution semantics is given by extending the seman-
tics of the ternary predicate Do originally introduced in [LLL*94]; Do serves as an abstract interpreter
for well formed ConGolog programs that capture transaction programs. In executing the well formed
programs using Do, the basic relational theories of Chapter 4 corresponding to the various ATMs serve
as background axioms. The main results here is are classification theorems for the various semantics
of execution models for active behavior that we have identified. This theorem says roughly which se-
mantics are equivalent and which are not. Finally, we have shown how to formulate some standard (e.g.
confluence, and termination) and non-standard properties of a set of rules.
In summary, we have achieved the following results:

e method for simulating ATMs using ConGolog;
e semantics of rule priorities

o specification of variousexecution model s of active behavior in the situation cal culus, together with
their coupling modes: immediate, deferred, and detached execution models;

e classification theorems for the semantics of some of the various execution models.

Chapter 7

Method for Implementing Active
Relational Theories

Inthe preceding Chapters 2 through 6, we have been invol vedin atheoretical devel opment that ultimately
yields active relational theories of Chapter 5. Recall that these are theories of the situation calculus that
capture the dynamic of (relational) active databases in the context of database transactions. Moreover,
Chapter 6 expresses ECA rules as ConGolog programs, whose abstract execution isalso given a seman-
ticsin the situation calculus.

This chapter extends a method for implementing basic action theoriesin Prolog presented by Reiter
in [Rei01] to active relational theories. The justification for Reiter’s method liesin a consequence of a
fundamental theorem of logic programming due to K. Clark (See [L1088] for Clark’s result). Suppose
that we have afirst order theory in definitional form, in the sense that al its axioms are formulas of the
form (V) P(Z) = ¢ (Definition 3.5). Clark’s theorem says that, whenever alogical program P obtained
from a definitional theory 7~ by taking the if-halves of the sentences (V) P(Z) = ¢ yields the answer
“yes’ onasentence), then « islogically entailed by 7; also, whenever P yieldsthe answer “no” on v,
then - islogically entailed by 7. The Implementation Theorem 3.6 isacorollary of Clark’s theorem.

Our first objectivewill be to extend the implementation theorem to basic and active relationa theo-
ries. The second oneisto give simpleand straightforward i mplementation methods for active relational
theories. A third objectiveisto model some aspects of the knowledge and execution models of SQL3,
the ECA rule standard, following the guidelines set in Chapters 4, 5, and 6.

7.1 Implementing Basic Relational Theories

In this section, we extend theimplementation theorem of [Rei01] to basic relational theories. We restrict
ourself to the case of flat transactions and closed nested transactions.

128

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 129

7.1.1 Some Preliminaries on the Syntax of L ogic Programs

Logic programsare usually formulatedin afirst order language over avocabulary of variables, constants,
and predicates and functions symbols of various arities. In thisthesis, we are concerned with logic pro-
gramsthat contain functions. Our definitionsfollow the expositionin [L1088§].

Definition 7.1 (Terms, Atoms, and Literals) A term is inductively defined as follows: variables and
constantsareterms, and, for each n-ary functionsymbol f andtermsty, -- -, t,, f(t1, - ,t,) isaterm.
A ground termis one that mentionsno variables.

An atom is formula P(¢y, - - - ,t,), where P is an n-ary predicate symbol and the ¢; are terms. A
ground atom is one whose terms are all ground.

A literal isan atom or the negation of an atom.

Definition 7.2 (Normal and General Programs) A clauseis a formula of the form
(V&). Ay V- VA~ LiN...ANL, k,n>0,

where each A; and L; isaliteral, and # areall the variables occurring inthe A; and L;.
A normal program clause is a clause of the form

(VE). A LiA-ALy,n>0,

where A isanatom, and each ; isaliteral; A iscalledthehead, and .1 A . . .A L,, iscalled the body of
theclause. Ifthe I; areall atoms, then we have a definite program clause. 1f m = 0, thentheHorn clause
iscalled afact. A clause mentioning only ground termsisa ground clause. A normal logic programisa
finite set of normal program clauses.

A genera logic program statement (or just logic program statement) is a first order formula of the
form A « W, where A isanatomand W isan arbitrary first order formula. Finally, a general logic
program (or just a logic program) is a finite set of logic program statements.

Definition 7.3 (Normal and General Goals) A normal goal isa clauseof theform L+, - - - , L,,, where
each I; isaliteral andis called a subgoal. If the I.; are all atoms, we have a definite goal. A general
god (or just goal) isan arbitraryfirst order formula.

7.1.2 Revised Lloyd-Topor Transformationsfor non-Markovian Sentences

The Lloyd-Topor transformations are syntactical transformations that take an arbitrary first order sen-
tence and transform it into a set of clauses suitable for a straightforward translation into Prolog syntax.

! Asnoticed earlier, leading universal will always be droped and the resulting free variable will implicitly be assumedto be
universally quantifies.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 130

Let P be the input program of the transformation. The set of sentences corresponding to the output p’
of the transformation forms a program called the normal form of P. In [L1088], LIoyd-Topor rules are
used to transform general logical programs of theform A « W and general goalsinto normal formsfor
which the conditions of the generalized Clark’s theorem (to be seen below) holds.

In this document, we use the revised LIoyd-Topor transformations given in [Rei01] and collected
in Appendix B. However, we have to accommodate the C-atom that is of high interest for expressing
non-Markovian control. To start with this task, we introduce a (simplified) notion of bounded formula
proposed in [Gab024].

Definition 7.4 (Bounded Formula) A formula W of Lg;;.q; iS bounded by a situation term o iff any
further situationterm ¢’ that it mentionsissuch that W = Sy C ¢’ C 0.

Intuitively, aformula bounded by a situation term ¢ is one whose situationterms are all confined to
the past of o. All the non-Markovian sentences of our relational theories are of this sort.
The following abbreviations, based on [Gab024d], are introduced for handling bounded formulas:

Abbreviation 7.1

(Fs:0'C o)W =g (3s).c' Co AW,

(Fs:0' =)W =y (3s).0' = AW,

(Vs:0o' T o)W =4 =(3s).0' C o A=W,

(Vs :0' = o)W =4 —(3s).0' = o A=W,
(3s:0'Co)W =g (Is:0'Co)WV (3s:0' =0)W,
(Vs:o' Co)W =4 (Vs:0'Co)WA(Vs:0 =0)W.

Definition 7.5 (Lloyd-Topor Transformsfor non-Markovian Formulas)
1. When W isalliteral that does not mentionC, It (W) = W.
2. lt(c =0) =TRUE,lt(c C do(a,0)) = TRUE,lt(o1 T do(a,0,)) = lt(c1 T 03).
3. lt((As: do(a,0) =do(d',0"))W) =a=d ANlt((3s:0=0c")W).
4. lt((Fs: o' C do(a,0))W)=1t((3s:0' =)W) VIt((3s: o' C o)W).
5 t(Fs:0'Co)W)=1t((3s: o' =)W) VIt((Fs:0' T o)W).
6. lt((Fs:s=5"\W)=s=5 NItLW).

7. lt((Vs : Bound)W) = lt(—(3s : Bound)-W),
where Bound isa C-literal or an equality between situations.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 131

8. lt(—(Vs : Bound)W) = lt((3s : Bound)-W),
where Bound isa C-literal or an equality between situations.

9. lt(—(3s : Bound)W) = —lt((3s : Bound)W),
where Bound isa C-literal or an equality between situations.

Suppose we have a logic program P with program statements of the form W O A, where A isan
atom and W is afirst order formula possibly mentioning the C-atom. Then we next transform P into a
normal program, called the normal form of P asfollows:

1. When W is aformula that does not mention , we replace W O A by aformula of the form
It(W) > A, wherelt(W) isaformulainductively obtained by thetransformationsin Appendix B.

2. When W is aformulathat mentions C or any equality between situations, any bounded subfor-
mulaWW’ of W isreplaced by aformulaof theform it(1W) D A, wherelt(WW) isaformulainduc-
tively obtained by the transformationsin Definition 7.5. In the implementations of our theories,
however, whenever W mentions C or any equality between situations, we will use the predicate
Holds(¢, s, s’) whichisgiven in Definition 7.6 and extends Definition 6.8.

Definition 7.6 (Extension of the Semantics of Holds)

(
Holds(s' C do(a,s'), s, s),
Holds(s' C do(a,s"),s,s) =4 Holds(s' C s",s,s),
Holds((3s': s' = s")¢,5,51) =qf (35*).Holds(s' = ", s,s*) A Holds(¢, s*, s1),
((3s" : do(a, s1) = do(d', 52))b, s, 83) =4r a = @' A Holds((Is' : s1 = s2)¢, 5, 83),
Holds((3s" : s1 C do(a, s2)), s, s3) =4f Holds((3s" : s1 = s2)b, s,53) V Holds((3s' : s1 T s2)9, s, 83),
(35" : s1 C s3)9, s,83) =4r Holds((3s": s1 = s3)¢,s,83) V Holds((Is' : 51 C 52)¢, 5, 53),
Holds((Vs' : s1 C s2)0, s, 83) =4 Holds(—(3s' : 51 C s2)=¢, 5, 53),
Holds(—(Vs': 51 C s2), s, 83) =qf Holds((3s' : 51 C s2)=¢, 5, 53),
(

35" : 51 C s9)9, 8, 83) =4f =Holds((3s' : 51 C s2), s, s3).

7.1.3 Correct Answers, and Non-Floundering SL DNF-Resolution

In order to justify aProlog implementation of our basic and active relational theories, we use definitional
theories (Definition 3.5), together with an equality theory comprising standard axioms for equality and
unique name axioms for individuas of sorts A, S, and O. Such an equality theory will be made more
precise in the conditions of the generalized Clark’s theorem. For any given logic program P, thereisa
definitional theory Tp that can be built from it ([L1088]).

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 132

Definition 7.7 (Completion of a Program) SupposeP isa program. Then the completion 75 of P isthe
definitional theory obtained from P, together with an appropriate equality theory.

Definition 7.8 (Answers and Correct Answers) Suppose P is a normal program and & is a normal
goal. Then an answer # isan arbitrary substitutionfor variablesinP U('; and # isa correct answer for P
iff 7p = (V)G, whereTp isthe completion of P, and (V) 6 denotesthe result of universally quantifying
all the free variables (if any) of the goal G on which the answer 6 has been applied.

The concept of correct answer isa declarative one. Thisdeclarative concept has been complemented
with a procedural concept called SLDNF-resolution which is based on Kowalski’s SL DNF-resolution
procedure ([Kow74]), augmented with negation as failure ([Clar8]). Since Clark’s theorem will be as-
sumed without proof in thisthesis, werestrict ourself to an informal presentation of SLDNF-resolution.

Selected linear, definite clause (SLD) resolution is a goal-driven top-down proof procedure that is
focussed on deriving agiven definitegoal G from adefiniteprogram P. To prove(, we chooseaprogram
clause A « Ly A---A L, withhead A suchthat G and A can be unified with § as the most general
unifier (MGU) such that G = Af. Then we attempt to provethebody of (L, A--- A L,,)8 whichisthe
body L1 A --- A L,, onwhichthe MGU 6 has been applied. We iterate thistask for each of the ;8 until
we either reach facts or fail to choose an appropriate program clause. The composition of all the MGUs
accumulated during such iterationsis the SL D-computed answer for the goal &'

Clark’snegationasfailureprinciplestatesthat if, for agiven goal (¢, the SL D-proof procedurefinitely
generates no answers, then infer —(;. By adding such arule to SLD-resolution, one obtains SLDNF-
computed answers for normal goals proven from normal programs.

SLDNF-resolution is the base of many state-of-the-art Prolog implementations, including Eclipse
Prolog, thelogic programming languagethat we use toimplement some of the samplerelational theories
giventhroughout thisthesis. These systemsmake an important assumption about the SLDNF-resolution
they use: at every time during the computation, no goal isreached that containsonly non-ground negative
literals. Any SLDNF-resolution procedure that can’t guarrantee thisis said to flounder at some point,
meaning that it can reach a point where only non-ground literals are encountered.

714 Generalized Clark’s Theorem

The generalized Clark’s theorem states the soundness of the SL DNF-resolution. For our exposition, we
follow both [Rei01] and [L1088]. Though not explicitely said in the formulation below, Clark’s theorem
assumes a non-floundering SL DNF-resol ution procedure.

Theorem 7.9 (Generalized Clark’s Theorem) SQupposethat 75 isa definitional theory corresponding
toalogic programP that containsa definitionfor every predicate symbol given by somefinitefirst order
language, together with the following equality theory:

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 133

e For every n-ary function symbols f and g of the language,
f(&) # 9.

e For every n-ary function symbol f of the language,
e,z = fly - yn) DT =y A Axn =y
e For each term¢[xz] that mentions z and that is different from z,
Suppose further that /#(P) is a program obtained by applying the revised LIoyd-Topor transforma-

tionsto P and that G isa normal goal. Then

e Every SLDNF-computed answer # for P U (G isa correct answer for P and vice-versa.

e Whenever the SLDNF-resolution failsfor 7, then Ty |= (V)G

Thistheorem will serve as basis for our implementation of relational theoriesin the following way.
First, we will transform a given relational theory to obtain a definitional theory in the sense of Defini-
tion 3.5, together with an appropriate equality theory; doing so we meet the conditions of Clark’s theo-
rem. Then, we must show that, using such a definitiona theory to prove a regressable sentence, we do
not loose anything with respect to proving that the same sentencelogically followsfrom the origina re-
lational theory. Thiswasalready shownin [Rei01] for basic action theoriesand we haveto extend there-
sult of [Rei01] to relational theories. Finally, wewill concludethat the normal program clauses obtained
from theif-halves of the sentences of the definitional theory using the revised LIoyd-Topor transforma-
tions will provide a correct Prolog (more precisely: SLDNF) implementation of our original relationa
theory in the sense of Clark’s theorem.

7.1.5 Implementing BRTsfor Flat Transactions

Our first task isto extend the definition of closed initial databases for basic action theories (Definition
3.4) to basic relational theories.

Definition 7.10 (Closed Initial Database for BRTS) Suppose D isa basic relational theory with rela-
tional language R. Itsinitial database D, isin closed formiff

e For each database fluent F of R, D, contains exactly one sentence of theform
F(f, t, So) = \IIF(f, t, 50), (71)

where W (7, t, Sp) isafirst order formulauniformin Sy with free variables among .t.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 134

e For each systemfluent /” of R, D, containsexactly onesentenceof theform /'(, So) = Y (&, So),
where W (7, Sp) isafirst order formulauniformin Sy with free variablesamong z.

e For each non-fluent predicate symbol P of R, except Poss and C, D, contains exactly one sen-
tence of theform P(Z) = ©p(Z), where © p(Z) isa situationindependent first order formulawith
free variablesamong 7.

e For each dependency predicatedep of R, Ds, containsexactly onesentenceof theform—dep(t,t’, Sp),
with free variablest, t'.

e Theremaining sentences of D, are unique name axioms for the sorts S, A, and O.

Notice that a closed initial database for BRTs is slightly more than a definitiona theory in the sense of
Definition 3.5. It captures dynamical domains in terms not only of definitional equivalences, but also
of the unique name axiomsfor names of all the sortsinvolved in therelational language. However, this
restriction suits perfectly to relationa database domains where, generally, a closed world assumption
([Rei78]) ismade. Asisthecasefor basic action theoriesin [Rei01], the equivalencesin Definition 7.10
will serveto derive definitional formsfor fluents of BRTs, and the unique name axiomswill be necessary
to derive an implementation theorem for BRTs. To that end, we progressively recast all our BRT axioms
into definitions and unique name axioms for sorts S, A4, and O.

Definition for Action Precondition Axioms

Supposewe havearelational language? that hasn internal actions A(7), . .. , A(Z,), together with the
external actions Begin(t), End(t), Commit(t),and Rollback(t). Moreover, let theaction precondition
axiomsfor the n internal actions have the form (4.6) asfollows:

ss(A1(T1,t),s) = (T4, (T1,¢, 8) A TC(do(A1(T1,1),8)) A running(t, s),

Poss(Ay(Z,t),8) = (I)4, (Tn, t', 8) AC(do(An (T, t), s)) A running(t, s),

and those for external actions

Poss(Begin(t), s) = llegin(t, s),
Poss(End(t), s) = Ugnal(t, s),
Poss(Commit(t),s) = Ueommit(t, S),
Poss(Rollback(t), s) = Urotiback(t, s).
Here, [1gcgin(t, 5), LEna(t, s), Loommit (t, s), and L roupack (£, s) arethefirst order formulasuniformin

s representing the right hand side of the action precondition axiomsfor Begin(t), End(t), Commit(t),
and Rollback(t), givenin (4.11), (4.12), (4.13), and (4.14), repectively.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 135

Theorem 7.11 (Definition for Poss) The action precondition axioms for internal and external axioms

of a basic relational theory logically entail the foll owing sentence:

Poss(a,s) =
(37, ¢, t'){[V(a = AT,) ANLg, (%5, 1, 8) A IC:(do(A;(T;,t), 8)) A running(t, s))] V
[a = Begin(t) A llpegin(t,s)] V [a = End(t) ANlg,q(t, s)] Vv (7.2)

[a = Commit(t) AMlcommit(t, s)]V [a = Rollback(t) A potpack(t,)]}

Corollary 7.12 Theif-half of thedefinition (7.2) islogically equival ent to the conjunction of the follow-

ing sentences:

(3t)TLa, (71,1, 8) A IC.(do(Ay (71, 1), 8)) A running(t, s) O Poss(Ay(#1,1),),
()4, (Z, 1, 8) A IC(do(An(Z, 1), 8)) A runming(t, s) O Poss(An(Zn,t),),
Begin(t, s) O Poss(Begin(t), s),
Mpna(t,s) D Poss(End(t),),
Meommit(t, 8) O Poss(Commit(t),),

(t,s) (

U Rotiback (t,8) O Poss(Rollback(t), s).

Definition for Fluents

Suppose D isabasic relational theory with closed initial database. Then, for each fluent, D containsthe
axioms (4.8) and (7.1) which werecall:

F(Z,t,do(a,s)) = (31)®r(Z,a,t1,5) A =(3t")a = Rollback(t") v
(3t"Ya = Rollback(t") A restore BeginPoint(F, Z,t", s),

(7.3)
F(#,t,80) = Ur(Z,t, So). (7.4)

Theorem 7.13 (Definition for Fluents) For each fluent /', theaxioms(4.8) and (7.1) arelogicallyequiv-

alent to the following sentence:

F(Z,t,s)=s= S0 AVE(Z,t,S)V
(3a,s'#1){[s = do(a,s") AN ®p(Z,a,t1,s) A=(Ft")a = Rollback(t")] v (7.5)
[(3t").a = Rollback(t") A restore BeginPoint(F, Z,t",s')]}.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 136

Corollary 7.14 The if-half of the definition (7.13) is logically equivalent to the conjunction of the fol-
lowing three sentences:

Vp(Z,t,S0) D F(,t,S0),
(3t))®F (7, a,t1,s) A —(3t")a = Rollback(t") D F(Z,t,do(a, s)),
(3t"Ya = Rollback(t") A restore BeginPoint(F,Z,t",s) D F(Z,t,do(a,s)).

Definition for Dependency Predicates

Suppose D is abasic relational theory with closed initial database. Then, by definition, D containsthe
axioms —r_dep(t,t', Sg) and —sc_dep(t, t', Sp), aswell as the dependency axioms (4.16) and (4.46).

Theorem 7.15 (Definition for Dependency Predicates) Axioms —r_dep(t,t’, So) and (4.16), together
with —sc_dep(t,t', Sp) and (4.17) are logically equivalent, in that order, to the following sentences:

r_dep(t,t',s) = s # So AtransConflict(t,t, s), (7.6)
sc_dep(t,t',s) = s # So AreadsFrom(t,t',s). (7.7)

Theif-halves of axioms (7.6) and (7.7) aretrivialy

s # So AtransCon flict(t,t',s) D r_dep(t,t’, s),

s # So AreadsFrom(t,t',s) D sc_dep(t, ', s).

7.1.6 Theoretical Basis of thel mplementation

In Section 3.4, we have seen that automated reasoning in the situation calculus is organized around a
computational mechanism called regression. A regression operator dueto Reiter ([Rei0l1] isreviewed in
Appendix A, where we also give an extension of thismechanism to basic relational theories by adapting
a general mechanism for non-Markovian basic action theories givenin [Gab00].

Recall that, intuitively, regression is a syntactic manipul ation mechanism aimed at reducing the nest-
ing of the complex situationterm do(«,) inany given sentence W in an appropriate syntactic form. In
the present setting, WV is a non-Markovian formula of the situation calculus. Suppose W mentions a
fluent F(X, T, do(w, o)) with F's successor state axiom being F(Z, ¢, do(a, s)) = (3t,)®(Z, 11, a, s),
where ® (7, i1, a, s) isanon-Markovian first order sentence. Then we can apply the regression operator
R to W — R[W] — to determine alogically equivaent variant W' of W in which F()f, T, do(a,0))
has been replaced by (3i7)® (X, i1, a, s). If wetake W', which mentions do(«, o), instead of W, which
mentions o, we will have reduced the nesting of do by one.

Asin the case of Markovian basic action theories, the regression operator is applicable to formulas
that arein regressable form which, for non-Markovian formulas, means the following:

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 137

Definition 7.16 (non-Markovian Regressable Formulas) Aformula W of Lg;scq;. iShon-Markovian re-

gressableiff
1. W isalfirst order formulawhosetermsof sort S areall of thesyntacticformdo([ay, - - - , o], So),
wheren > 0and aq, - - -, «, areof sort A.
2. Inevery atom Poss(a, o) mentionned by W, « is of theform A(Xy, - -+, X,,,,t), wherem > 0

and A issome m + 1-ary action function symbol of Lg;:cq1c-

3. W may quantify over situationsand mention the predicate symbol C, or equality atoms over sit-

uationterms.

Thereisatheoremjustifiyingthe regression asacomputationa mechanismfor general non-Markovian

basic action theories;

Theorem 7.17 (One-Step-Regression Theorem for non-M arkovian Basic Action Theories)([Gab00])
Suppose W is a regressable sentence of L;:.q41., @nd D is a non-Markovian basic action theory. Then
R[W]isuniformin Sy, and D = (V)W = R[W].

Now, From Theorems 4.13 and 7.17, we use non-Markovian regression to repeatedly transform a
givennon-Markovianquery W intoaformulaR [WW] that mentionsonly .S, asofficial situationarguments
of the fluents. Therefore we have the following:

Corollary 7.18 (Regression Theorem for Basic Relational Theories) Suppose W isaregressablesen-
tence of Lg;:cq10, and D isa basic relational theory. Then

D = W iff Ds, U Duna U D1c[So] = R W],

where R*[W] istheresult of repeatedly applying R on 7.

As for basic action theories of [Rei01], Corollary 7.18 is computationally important. It states that
in order to evaluate a sentence W against a basic relational theory D, it is necessary and sufficient to
evaluate R[W] against Ds, U Dype U Drc[So].

In additionto thisRegression Theorem, which furnishesatheoretical justificationof posing regressed
non-Markovian queries against initial databases, we need a result that justifies a simple Prolog imple-
mentation of active databases formalized via basic relationa theories. The following two results are a
generalization of similar results of [Rei01] for basic action theoriesto basic relational theories.

Theorem 7.19 (Definition Theorem for Basic Relational Theories) Supposethat D is a basic rela-
tional theory of L,;:.q1. With relational language 9% and whose initial database D, isin closed form.
Suppose further that D2 = DSAO U Dfp UD2 U Ddﬁp UDP1c U Duna U Duns U Duno Such that

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 138

oD SAO consists of DS, where all equival ences for fluents have been removed,;

D fp consists of the definition for Poss givenin Theorem 7.2;

Di consists of the definitionsfor each of the fluents of 98 of the form given in Theorem 7.13;

D dﬁp consists of the definitions(7.6) and (7.7) for the dependency predicates,

Drc consists of the integrity contraintsof the domain. Without loss of generality, we assume that
they are all checked by an oracl€?;

Dounar Duns, and D, consists of the unique name axioms for actions, for situations, and for ob-
jects, respectively.

Then, whenever & is a non-Markovian regressabl e sentence of ¢R,

DEG iff DA EG.

Corollary 7.20 (Implementation Theorem for Basic Relational Theories) Supposethat D is a ba-
sic relational theory of Lg;s.qi. With the restrictions of Theorem 7.19. Suppose further that P isa Pro-
log program obtained from the following sentences, after transforming them by the revised Lloyd-Topor
transformations™

e For each definition of a non-fluent predicate of D, of theform P(£) = ©p(&):
Op(Z) D P(Z).
e For each equivalencein Dg, of theform F(Z, ¢, S¢) = Vr(Z,t, So):
Vg (Z,t,S0) D F(Z,t,5).
e For each action precondition axiom of D, of the form
Poss(A(Z,t),s) = (3 4(T, ¢, 5) A IC(do(A(T,), s)) A running(t,s) :
(I 4(Z, 8, 8) AN IC(do(A(T, 1), s)) A running(t,s) D Poss(A(T), s).

e For the action precondition axioms of Dgr:

Hpegin(t,s) D Poss(Begin(t), s),

Ugnq(t,s) D Poss(End(t), s),

Heommit (t,8) D Poss(Commit(t), s),

HRottback (t, s) D Poss(Rollback(t), s).

2The predicate Holds seenin Section 6.1 is such an oracle.
3See Appendix B.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 139

e For each successor state axiomof D, of theform
F(%,t,do(a,s)) =(3t1)®r(Z, a,t1,s) A =(FH")a = Rollback(t") v
(3t")a = Rollback(t") A restore BeginPoint(F,z,t", s) :

[(31)@r(Z, a,t1,5) A =(Ft")a = Rollback(t") v

(3t"Ya = Rollback(t") A restore BeginPoint(F,Z,t",s)] D F(Z,t,do(a,s)).

e For the dependency axioms (4.16) and (4.17): (7.6) and (7.7).

Then P isa correct Prolog implementation of the basic relational theory D for proving regressable sen-
tences. Moreover, to prove a regressable sentence (&, first transformit using the revised Lloyd-Topor
transformations, then issue the resulting query to P.

7.1.7 Implementing BRTsfor Closed Nested Transactions

To implement basic relational theories for closed nested transactions, we extend the implementation of
basic relational theories for flat transactions in a straightforward way. Therefore, we will simply state
the various definitions needed without proofs.

Definition for Action Precondition Axioms

Recall that closed nested transactions have one more external action than the corresponding flat models,
namely Spawn(t,t'). Sotheonly changewehaveisthat (7.1.5) now hastheaxiom Poss(Spawn(t,t'), s) =
Hspawn (t,t', s) for the new external action. Therefore, Corollary 7.12 will have to accommodate this
fact by adding the sentence

Wspawn(t, ', 5) D Poss(Spawn(t,t'), s)

to thosethat it mentions. Also, I15cgin (¢, S), IEnd(t, 8), Hoommit (t, s), and Hroupacr (, s) are thefirst
order formulasuniformin s representing theright hand side of the action preconditionaxiomsfor Begin(t),
End(t), Commit(t), and Rollback(t), givenin (4.40), (4.42), (4.43), and (4.44), repectively.

Definition for Fluents

In the case of closed nested transactions a basic relational theory D with closed initial database has, for
each fluent, the axioms (4.49) and (7.1). So the only change we have is that Theorem 7.13 and Corol-
lary 7.14 must now accommodeate the external action Spawn(t,t’). With thischange, the definition of a

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 140

fluent I is
F(Z,t,s)=s=SoAVE(Z,t,S)V
(Ja, s',t1){[s = do(a, s') A ®r (7, a, t1,5) A ~(3t")a = Rollback(t")] v
[(3t").a = Rollback(t") A —(3t*)parent(t”,t*, s) A restore BeginPoint(F, z,t",s') v (7.8)
) A

[(3t").a = Rollback(t") A (Ft*)parent(t”,t*, s) A restoreSpawnPoint(F,z,t",s').

Theif-half of thedefinition (7.8) islogically equiva ent to the conjunction of the following four sen-
tences:

Vp(Z,t,50) D F(Z,t,5),
(3t1)®r(Z, a,t1,5) A —(3H")a = Rollback(t") D F(Z,t,do(a, s)),
(3t").a = Rollback(t") A =(3t*)parent(t”,t*, s) A restoreBeginPoint(F, Z,t",s) D F(7,t,do(a,s))

(3t").a = Rollback(t") A (Ft*)parent(t”,t*, s) A restoreSpawnPoint(F, Z,t",s) D F(z,t,do(a, s)).

Definition for Dependency Predicates

Suppose D isabasicrelational theory with closedinitial database. Then D containstheaxioms—r _dep(t,t’, So),
—se_dep(t,t', Sp), me_dep(t,t', Sp), and —wr_dep(t, t’, Sp), as well as the dependency axioms (4.45)—
(4.48).

Theorem 7.21 (Definitionfor Dependency Predicates) Axioms—r _dep(t,t’, Sp) and (4.45), —sc_dep(t,t', Sp)
and (4.46), —c_dep(t,t', Sy) and (4.47), and —wr _dep(t,t', Sp) and (4.48) are logically equivalent, in
that order, to the following sentences:

r_dep(t,t',s) = s # So AtransCon flictNT (t,1', s), (7.9
sc_dep(t,t',s) = s # Sog AreadsFrom(t,t', s), (7.20)
cdep(t,t',s) = (Ja,s')[s # So A s = do(a, s') A a = Spawn(t,t') V (7.11)
cdep(t,t',s') A —termAct(a,t) A —termAct(a,t’)],
wr_dep(t,t',s) = (Ja,s')[s # So A s = do(a,s') A a= Spawn(t',t) v (7.12)

wr_dep(t,t',s') A —termAct(a,t) A —termAct(a,t')].
Corollary 7.22 Theif-halves of axioms (7.9)—7.12) are equivalent to
s # So A transCon flickNT (t,t',s) D r_dep(t,t', s),
s # So AreadsFrom(t,t',s) D sc_dep(t,t’, s),
[a = Spawn(t,t') V cdep(t,t’,s') A —~termAct(a,t) A —termAct(a,t’)] D cdep(t,t', do(a, s)),

[a = Spawn(t,t') V cdep(t',t,s') A —~termAct(a,t) A ~termAct(a,t’)] D wr_dep(t,t',do(a,s)).

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 141

7.2 Implementing Active Relational Theories

Recall that each active relational theory has a subset that is abasic relational theory. So our task hereis
reduced to giving definitional formsfor transition and event fluents.

First, we extend thedefinition of closedinitial databasesfor basic relational theories(Definition 7.10)
to active relational theories.

Definition 7.23 (Closed I nitial Databasefor ARTS) SupposeD isan activerelational theorywithrela-
tional language 3, and let Dy, beitsbasic relational subset. The initial databaseD s, of D isin closed
formiffitisof theformDg, = DMSO U thSO U DefSO , where

1 Direg, isthe closed formof Dy,.;;

2. D; fsq isa set of axioms such that, for each database fluent of 2R, includes the two sentences
(Vr, &, t)=F anserted(r, &,t, So) and (Yr, 7, t)—F _deleted(r, Z,t, Sp);

3. D. fs, is a set of axioms such that, for each database fluent of 2R, includes the two sentences
(Vr,t)-F_inserted(r,t, So) and (Vr,t)-F_deleted(r,t, Sp). Moreover, for each complex event
fluent 1, D . containsexactly one sentence of the form (Vr,)= F'(r, £, So).

7.2.1 De€finitionsfor Transition and Event Fluents

Theorem 7.24 (Definitionfor Transition Fluents) Axioms (Vr, Z,) [_inserted(r, ¥, t, So) and (5.3),
together with (Vr, Z, t)—~F _deleted(r, 7, t, So) and (5.4) arelogically equivalent, in that order, to thefol -
lowing sentences:
F_inserted(r,z,t,s) =
(Ja, s').s # So A s = do(a, s') A considered(r,t,s") A (3t')a = F_insert(Z,t') v
F_inserted(r,Z,t,s) N a # F_delete(Z,1), (7.13)
F_deleted(r, 7,t,do(a, s)) =
(Ja, s').s # So A considered(r,t,s) A (3t')a = F _delete(Z,t')] Vv (7.14)
F_deleted(r, Z,t,s') A a # F_insert(z,t).

Theif-halves of (7.13) and (7.14) aretrivialy

(Ja, s').s # So A s = do(a, s') A considered(r,t,s") A (It')a = F_insert(Z,t') v

F_inserted(r,Z,t,s) N\ a # F_delete(Z,t) D F_inserted(r,Z,t,s), (7.15)

(Ja, s').s # So A considered(r,t,s) A (3t')a = F_delete(z,t') v

F_deleted(r,7,t,s') A a # F_insert(Z,t) D F _deleted(r, Z,t,do(a, s)). (7.16)

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 142

By atransformation similar to that applied to transition fluents, we get if-halves of definitions for
simple event fluents that are of the form

(37, a,s',t").s # So A s = do(a,s’) AN a= F_insert(Z,t') A considered(r,t,s') v

F_inserted(r,t,s) D F_inserted(r,t,s), (7.17)

(37, a,s,t").s £ So A s =do(a,s’) Na = F_delete(Z,t') A considered(r,t,s)V

F_deleted(r,t,s") D F_deleted(r,t,s). (7.18)

Since complex event fluentsin fact are abbreviations standing for complex non-Markovian formulas, it
is easy to introduce their definitional forms and to derive if-halves of the definitions that characterize
these complex event fluents. We leave the detail s out.

7.2.2 Example

Inthe Debit/Credit example of Section 6.1, for thefluent tellers(tid, thal, t, s), wewill havethefollow-
ing if-halves corresponding to sentences 7.15 and 7.16, respectively:

(Ja, s').s # So A s = do(a, s') A considered(r,t,s") A (3t')a = tellers_insert(tid, thal,t') v
tellers_inserted(r, tid, thal,t,s) A a # tellers_delete(Z,t) D tellers_inserted(r, tid, thal,t,s),
(Ja, s).s # So A considered(r,t,s) A (3t')a = tellers_delete(tid, thal, ') v
tellers_deleted(r,tid, thal,t,s') A a # F_insert(T,t) D tellers_deleted(r,tid, tbal,t,do(a,s)).

Similarly, we have the following sentences corresponding to sentences 7.17 and 7.18, respectively:

(tid, thal,a, s’ t').s £ So A s = do(a,s’) A a = tellers_insert(tid, tbal,t') A considered(r,t,s’) vV
tellers_inserted(r,t,s) D tellers_inserted(r,t, s),
(3tid, thal,a,s',t').s # So A s = do(a, s') A a = tellers_delete(tid, thal,t') A considered(r,t,s)V

tellers_deleted(r,t,s") D tellers_deleted(r,t,s).

7.3 A non-Markovian ConGolog Interpreter for Well Formed Programs
with BRTs as Background Axioms
Below, we give anon-Markovian ConGolog interpreter written in Prolog for well formed programs that

have basic relational theories as background axioms. Thisinterpreter is based on the following assump-
tions®:

4Many of these assumptionsare inherited from the basic ConGolog and GOLOG interpreters of [DGLL00] and [LRL *97],
respectively.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 143

1. ConGolog programs are represented by the following Prolog terms:

ni | : empty programs.

e ?(p): test whether the condition p istrue.
e a;: a,: sequence.

e a;#ay: nondeterministic action choice.

e pi (X, &) : nondeterministic choice of argument x whichisaProlog constant standing for a
ConGolog variable; a will usex.

e i f(p, a): conditional without else part.
e i f(p, ar, a;): conditional with else part.
e star (a): nondeterministiciteration.

e whil e(p, a) : whileloop.

e a;#=a,: concurrency.

e procedure(args): procedure namepr ocedur e and argumentsar gs.
2. Test actions are performed on conditionsof the form:

e an atomic formula

e - p : negation.

e p;1&p,: conjunction.

e pyVvp2: disunction.

e p;=>py: implication.

e p;<=>p,: equivalence.

e 01<<0;: subsequence.

e 0<<=0,: subsequence or equality.

e sone(x, p): universal quantification over database domain objects, where x is a Prolog
constant usedin p.

e sones(X, pi, pz2) : universal quantification over situations, where x is a Prolog constant
used in p; and p2, p; isaformulaof the form oy<<oy, o1<<=09, OF 01=09, and p, isan

arbitrary regressable formula of the situation calculus.
e all (x, p): universal quantification over database domain objects, with x and p as above.

e all s(x, p1, p2) (universal quantification over situations), with x, py, and p, as above.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES

144

3. Thepredicatehol ds/ 3 evaluate conditionsin test actions, whileloops, and conditionas. Notice

this predicate evaluate non-Markovian formulas.

4. final/2,trans/ 4,trans*/ 4, anddo/ 3 areastraightforward Prolog rendering of the pred-

icates of the situation calculus with same names and arities seen in Appendix C. The predicate

sub/ 4 performs term substitutionsin formulas ([LRL+97]).

5. All fluents are relational. Therefore any functional fluent must be translated into a relational one.

6. The background axioms are constituted by the following:

e acollection of Prolog clauses representing the initial database, that is, al the fluent atoms

that aretruein Sy.

acollection of Prolog clauses representing the if-halves of the situation calculus axioms for
Poss, onefor each external and internal action.

acollection of Prolog clauses representing the if-halves of the situation cal culus axioms for
databasefluents, event fluents, transition fluents, and dependency predicates. Typically, these
involvestheuseof thepredicatehol ds/ 3 inthebody of Prolog clausesin each subformulas
of the form described in Abbreviation 7.1.

acollectionof Prolog facts of theform pr oc(pName(t, argy, ---, arg,), body) de
scribing a ConGolog procedure. Here, t isatransaction argument, pNane is the procedure
name, ar g4, - - -, ar g,, areitsarguments, and body isitsbody. The transaction argument
isvery important for theimplementationto work, sincementioning that transaction argument
will aways ensure its propagation downwardsto the primitive updates and test actions men-
tioned in the procedure. Also, the only free Prolog variables allowed in the body body are

thoseamongt, argy, ---, arg,.

/*

A non- Mar kovi an ConCGol og interpreter for running prograns w th BRTs.

set _flag(print_depth, 100).

nodbgconp. % turns the debugger down.

dynam c(proc/ 2). /* Conpiler directives. They MUST */
set_flag(all _dynamc, on). /* be loaded first. */

op(750, xfy, [<<]). [* Subsequence */
op(750, xfy, [<<=]). /* Subsequence and equality */
op(800, xfy, [&]). /* Conjunction */
op(850, xfy, [V]). /* Disjunction */

*/

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES

op(870, xfy, [=>]). [/* Inplication */
:- op(880, xfy, [<=>]). /* Equival ence */
:- op(890, xfy, [#=]). [* concurrency */
i- op(950, xfy, [:1). /* Action sequence */

:- op(960, xfy, [#]). /* Nondeterm nistic action choice */

/* final (Prog,S) */

final (nil,_).
final (Al : A2,9)
final (Al # A2,9)

final (A1, S), final (A2,S).
final (A1, S); final (A2,S).

final (pi(_,A),S :- final (AS).

final (star(_),_).

final (if(P, AL, A2),S) :- holds(P,S,_), !, final(A1,S); final (A2,S).
final (while(P,A),S) :- holds(P, S,), !, final (AYS).

final (while(_,_),_).
final (Al #= A2,S) :- final (A1,S), final (A2,S).
final (! (A),S).

/* trans(Prog, S, Progl, S1) */

trans(A S, R S1) :- primtive_action(A), poss(A'S), !, R=nil,
(systemAct (A1, T), poss(Al,S2), S1 = do(Al, S2)
not (systemAct (A2, T2), poss(A2,S2)),S1l = S2).

trans(?(P),S, R S1) :- holds(P,S,S1), !', R=nil.
trans(Al : A2,S, R S1) :- final (AL, S), trans(A2, S, R S1).
trans(Al : A2, S, Rl:A2,S1) :- trans(Al, S, R1, S1).

trans(Al # A2,S, R S1) :- trans(Al, S R S1); trans(A2,S, R S1).

trans(pi (V,A),S R S1) :- sub(V,_,A Al), trans(Al, SR S1).
trans(star(A),S, R: star(A),Sl) :- trans(A S R S1).
trans(if(P,A),S R S1) :- trans((?(P) : Al),S R S1).
trans(if(P,Al, A2),S, R S1) :- trans((?(P) : Al) # (?(-P)

trans(Al #= A2, S,R S1) :- final (A1,S), !,
(trans(A2,S, R S1); trans(Al, S,R1, S1), R=(Rl #= A2)).
trans(Al #= A2, S,R S1) :- trans(Al, S, R1, S1), R=(RLl #= A2);
trans(A2, S, R1, S1), R=(Rl #= Al).
trans(!(A),S, R#=1(A), S1l) :- trans(A S, R S1).

trans(Proc, S, R, S1) :- proc(Proc, Body), !, trans(Body, S, R, S1).

/* Do(Prog,sS, S1) */

A2),S, R S1).
trans(while(P,A),S R S1) :- trans(star(?(P) : A : ?(-P),S R S1).

145

S2 = do(A S),

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 146

trans*(A S, A'S).
trans*(A S, R S1) :- trans(A S, R2,S2), trans*(R2,S2, R, S1).

do(A 'S, S1) - trans*(A S R S1), final (R S1).

/* sub(Name, New, Terni, TernmR): TernR2 is Terml with Nanme replaced by New. */

sub(X1, X2, T1, T2)
sub(X1, X2, T1, T2)
sub(X1, X2, T1, T2)

var(T1), T2 = T1.
not var(T1), T1
not T1 = X1, T1
T2 =..[F| L2].
sub_list(X1,X2,[1,[])-

sub_list (X1, X2, [T1] L1],[T2|L2]) :- sub(X1, X2,T1,T2), sub_list(X1, X2,L1,L2).

X1, T2 = X2.
. [FIL1], sub_list(XL,X2,L1,L2),

/* The holds predicate inplenents the revised LI oyd-Topor
transformations on test conditions. */

holds(S1 = S1,S,S).
hol ds(S1 << do(_,S1),S,9).
hol ds(S2 << do(_,S1),S,S) :- holds(S2 << S1,S,S).

hol ds(P & Q S,S2) :- holds(P,S,S1), holds(Q S1, S2).

holds(P v Q S, S1) :- holds(P,S,S1); holds(Q S, S1).

hol ds(P => Q S,S1) :- holds(-Pv Q S, S1).

hol ds(P <=> Q S,S1) :- holds((P=>0Q & (Q=>P),S S1).

hol ds(-(-P),S,S1) :- holds(P, S, S1).

holds(-(P & Q,S,S1) :- holds(-Pv -Q S, S1).

holds(-(P v Q,S,S1) :- holds(-P & -Q S, S1).

hol ds(-(P == Q,S,S1) :- holds(-(-Pv Q,S, S1).

hol ds(-(P <=> Q,S,S1) :- holds(-((P=>0Q & (Q=>P)),S, S1).

hol ds(-all (V,P), S, S1) :- holds(sone(V,-P), S, S1).

hol ds(-some(V, P), S, S1) :- not holds(some(V,P),S,S1). /* Negation */
hol ds(-P, S, S1) :- isAtom P), not holds(P, S, S1). /* by failure */
hol ds(all (V,P), S, S1) :- holds(-sone(V,-P),S, S1).

hol ds(sone(V, P), S, S1) :- sub(V,_,P,Pl), holds(P1,S, S1).

hol ds(sones(S1, SigmSl = S, P), S3,$4) -
sub(S1, SNew, Si gmaS1, Si gmaS2), sub(S1, SNew, P, P1),
hol ds(Si gmaS2=S, S3, S2), hol ds(P1, S2, $4) .

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 147

hol ds(sones(S1, do(A, S1)=do(B,S),P),S3,$4) :- A=B
hol ds(sones(S1, S1=S, P), S3, $4) .

hol ds(sones(S1, SigmaSl << do(A ' S), P), S2,S3) : -
hol ds(sones(S1, SigmaSl = S, P), S2, S3) ;
hol ds(sones(S1, SigmaSl << S, P), S2, S3).

hol ds(sones(S1, SigmSl <<= S, P), S2,S3) : -
hol ds(sones(S1, SigmaSl = S, P), S2, S3) ;
hol ds(sones(S1, SigmaSl << S, P), S2, S3).

hol ds(al I s(S1, SigmaSl <<= S, P),S2,S3) :-
hol ds(sones(S1, SigmaSl = S, P), S2, S3),
hol ds(sones(S1, SigmaSl << S, P), S2, S3).

hol ds(- somes(S1, Bound, P), S2, S3) :- not hol ds(somes(S1, Bound, P), S2, S3) .

hol ds(al | s(S1, Bound, P), S2, S3) :- hol ds(-sones(S1, Bound, -P), S2, S3).

/* The follow ng clause treats the holds predicate for non fluents, including
Prol og system predi cates. For this to work properly, the ConGol og programmer
must provide, for all fluents, a clause giving the result of restoring
situation arguments to situation-suppressed ternms, for exanple:

restoreSit Arg(ontabl e(X), S,ontable(X, S)). */

hol ds(A, S, S1) :- restoreSitArg(A S F), F, Sl=do(A S)
not restoreSitArg(A S, F), isAton(A), A S1 = S.

isAtom(A) :- not (A=-W; A= (W &W) ; A= (W => W)
A=W <=>W) ; A= (WM v W) ; A=some(XW; A=all(XW ;
A=(S1 =S82) ; A=(S1<<82); A=(S1 <<=82) ; A=sones(_,_,_) ;
A=alls(_,_,_)).

restoreSit Arg(poss(A), S, poss(A'S)).

/* Transacti on external actions */

primtive_action(begin(_)). primtive_action(comit(_)).
primtive_action(end(_)). primtive_action(rollback(_)).

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 148

ext ernal Act (begin(T), T). external Act(commit(T),T).
ext ernal Act (end(T), T). external Act(roll back(T),T).

termAct (commit(T), T). termAct(roll back(T),T).

systemAct (commit (T), T). systenmAct(rollback(T),T).

/* Action precondition axionms for external actions. For this to work
properly, the ConGol og programer nust provide, for all prograns, a clause
"ic(do(A S))" giving the built-in integrity constraints and a cl ause
"gic(S)" giving the generic integrity constraints. */

poss(begin(T),S) :-
hol ds(-somes(sl1, do(begin(T),sl)<<=S/true),S,).

poss(end(T),S) :- running(T,S).
poss(comit(T),S) :-

hol ds(sones(sl, do(end(T),sl)=S,true) & gic(S) &

all (t1, sc_dep(T,t1,S) =>
somes(s2, do(conmit(tl),s2)<<=S,true)),S,).

poss(roll back(T),S) :-

hol ds(sones(sl, do(end(T),sl)=S,true) & -gic(S) v

some(tl, somes(s2, r_dep(T,t1,S) & do(rollback(tl),s2)<<=S,true)),S,).

runni ng(T,do(A, S)) :- A = begin(T);
running(T,S), not A = rollback(T), not A= conmit(T).

/* Dependency axi onms*/
r_dep(T,T1,S) :- transConflict(T,T1,5S).
sc_dep(T,T1,S) :- readsFrom(T,T1,S).
transConflict (T, T1l,do(A S)) :- not T=T1l, responsible(T1,AS),
hol ds(sone(al, sones(sl, do(al, sl)<<do(A S) & responsible(T,al,sS) &
updConflict(al,A S),true)), S, _);

transConflict(T,T1,S), not termAct (A T).

readsFronm(T, T1, do(A'S)) :- readAct (A F T),
hol ds(sone(al, sones(sl, do(al,sl)<<=S, wites(al,F,T1))), S).

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 149

/* Notice that wites has 3 argunents here. W droped
the tuple argunment to ease the simulations. */

/[* Wilities (fromReiter’s book). */

prettyPrintSituation(S) :- makeActionList(S,Alist), nl, wite(Alist), nl

makeActionLi st (s0,[]).
makeActi onLi st (do(A, S), L) :- makeActionList(S,L1l), append(Ll1l, [A], L).

exec(T) :- do(T,s0,S), prettyPrintSituation(S), askForMore.

askForMore :- wite(’ More? '), read(n).

Toillustrateour methodol ogy, a Prolog implementation of thebasicrel ational theory for the Debit/Credit
exampleisgivenin Appendix D. Using that example, we get the following sample final situations:

[eclipse 3]: exec(begin(2): execDebitCredit(2,bl,t1 3,al,300) : end(2)#=
begin(1l): execDebitCredit(1,bl,t1 3,al,300) : end(1l)).

[begin(1l), accounts(al, bl, 1000, t1_1, 1), a_delete(al, b1, 1000, t1 1, 1),
a_insert(al, b1, 1300, t1 1, 1), accounts(al, bl, 1300, t1_1, 1),
tellers(tl_3, 5000, 1), t _delete(tl1 3, 5000, 1), t_insert(t1_3, 5300, 1),
branches(bl, 10000, collegeStr, 1), b_delete(bl, 10000, collegeStr, 1),
b_insert(bl, 10300, collegeStr, 1), end(1l), begin(2), comit(1),
accounts(al, bl, 1300, t1 1, 2), a_delete(al, bl, 1300, t1_1, 2),
a_insert(al, bl, 1600, t1 1, 2), accounts(al, bl, 1600, t1_1, 2),
tellers(tl_ 3, 5300, 2), t _delete(tl1 3, 5300, 2), t_insert(t1_3, 5600, 2),
branches(bl, 10300, collegeStr, 2), b_delete(bl, 10300, collegeStr, 2),
b_insert(bl, 10600, collegeStr, 2), end(2), commit(2)]

[eclipse 4]: exec(begin(l): execDebitCredit(1,bl,t1_3,al,500) : end(1l) #=
begin(2): execDebitCredit(2,bl,t1_3,al, 300) © end(2)).

[begin(1l), accounts(al, bl, 1000, t1_1, 1), a_delete(al, bl, 1000, t1 1, 1),
a_insert(al, bl, 1500, t1 1, 1), accounts(al, bl, 1500, t1_1, 1),
tellers(tl_3, 5000, 1), t _delete(tl1_3, 5000, 1), t_insert(t1_3, 5500, 1),

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 150

branches(bl, 10000, collegeStr, 1), b_del ete(bl, 10000, collegeStr, 1),
b_insert(bl, 10500, collegeStr, 1), end(1l), begin(2), comit(1),
accounts(al, bl, 1500, t1 1, 2), a_delete(al, bl, 1500, t1_1, 2),
a_insert(al, b1, 1800, t1 1, 2), accounts(al, bl, 1800, t1_1, 2),
tellers(tl_3, 5500, 2), t _delete(tl1 3, 5500, 2), t_insert(tl1_3, 5800, 2),
branches(bl, 10500, collegeStr, 2), b_delete(bl, 10500, collegeStr, 2),
b_insert(bl, 10800, collegeStr, 2), end(2), commit(2)]

[eclipse 5]: exec(begin(2): execDebitCredit(2,bl,t1_3,al, 300) ©oend(2) #=
begin(1l): execDebitCredit(1,bl,t1 3,al,500) : end(1l)).

[begin(2), accounts(al, bl, 1000, t1_1, 2), a_delete(al, bl, 1000, t1 1, 2),
a_insert(al, b1, 1300, t1 1, 2), accounts(al, bl, 1300, t1_1, 2),
tellers(tl_3, 5000, 2), t_delete(tl1 3, 5000, 2), t_insert(t1_3, 5300, 2),
branches(bl, 10000, collegeStr, 2), b_delete(bl, 10000, collegeStr, 2),
b_insert(bl, 10300, collegeStr, 2), end(2), begin(l), comit(2),
accounts(al, b1, 1300, t1 1, 1), a_delete(al, bl, 1300, t1_1, 1),
a_insert(al, b1, 1800, t1 1, 1), accounts(al, bl, 1800, t1_1, 1),
tellers(tl 3, 5300, 1), t _delete(tl1 3, 5300, 1), t_insert(t1_3, 5800, 1),
branches(bl, 10300, collegeStr, 1), b_delete(bl, 10300, collegeStr, 1),
b_insert(bl, 10800, collegeStr, 1), end(1l), commit(1l)]

[eclipse 6]: exec(begin(2): execDebitCredit(2,bl,t1_3,al,-9000) ©end(2)).

[begin(2), accounts(al, bl, 1000, t1_1, 2), a_delete(al, b1, 1000, t1 1, 2),
a_insert(al, bil, -8000, t1 1, 2), accounts(al, bl, -8000, t1 1, 2),
tellers(tl1_3, 5000, 2), t_delete(tl1 3, 5000, 2), t_insert(tl1_3, -4000, 2),
branches(bl, 10000, collegeStr, 2), b_delete(bl, 10000, collegeStr, 2),
b_insert(bl, 1000, collegeStr, 2), end(2), rollback(2)]

[eclipse 7]: exec(begin(l): execDebitCredit(1,bl,t1 3,al,500) : end(1)).

[begin(1l), accounts(al, bl, 1000, t1_1, 1), a_delete(al, b1, 1000, t1 1, 1),
a_insert(al, bl, 1500, t1 1, 1), accounts(al, bl, 1500, t1_1, 1),
tellers(tl1_3, 5000, 1), t _delete(tl1 3, 5000, 1), t_insert(t1_3, 5500, 1),
branches(bl, 10000, collegeStr, 1), b_del ete(bl, 10000, collegeStr, 1),
b_insert(bl, 10500, collegeStr, 1), end(1l), commit(1l)]

[eclipse 8]: exec((begin(l): a update(1,al,-12000) : end(1l)) #=
(begin(2): a_update(2,a2,50) : end(2))).

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 151

[begin(1l), accounts(al, bl, 1000, t1_1, 1), a_delete(al, b1, 1000, t1 1, 1),
a_insert(al, bl, -11000, t1_1, 1), begin(2), accounts(a2, bl, 100, t1 1, 2),
a_del ete(a2, bl, 100, t1_1, 2), a_insert(a2, bl, 150, t1_1, 2), end(2),
rol I back(2), end(1l), commit(1)]

[eclipse 9]: exec((begin(2): a update(2,a2,50) : end(2)) #=
(begin(l): a_ update(1,al,-12000) : end(1))).

[begin(2), accounts(a2, bl, 100, t1 1, 2), a_delete(a2, bl, 100, t1_ 1, 2),
a_insert(a2, bl, 150, t1_1, 2), end(2), begin(1l), commit(2),
accounts(al, bl, 1000, t1 1, 1), a_delete(al, bl, 1000, t1_1, 1),
a_insert(al, bl, -11000, t1_1, 1), end(1l), rollback(1)]

Notice that this interpreter is serializing transactions run concurrently. One way to force finer-grained
interleavingsis to randomly chose the actionsto execute (e.g. [Gab02b]) as follows:

trans(Al # A2,S, R S1) :- frandom(N),
(N<0.5 ->trans(Al, S, R S1) ; trans(A2,S R S1))
(trans(A2,S,R S1) ; trans(Al,S R S1)).

trans(Al #= A2, S, Alr #= A2r,Sl) :- frandon(N),
(N=<0.5 -> ((trans(P1, S, P1r, Sr), P2r=P2) ; (trans(P2,S, P2r,Sr), Plr=P1))
((trans(P2, S, P2r, Sr), P1r=P1) ; (trans(Pl,S, Plr,Sr), P2r=pP2))).

This however turns out to be inefficient. We leave this aspect out.

7.4 lllustrating the Methodology: A Further Example

This section introduces a portfolio management example (JCS94],[PD99]) to illustrate how to construct
anormal program suitable for a SLDNF-based Prolog system according to the conditions of the Imple-
mentation Theorem for activerelational theories. We assume the closed nested transationsmodel in this
example. The example is intended to illustrate the whole methodol ogy for implementing active rela
tional theories used as background theories for the ConGolog abstract interpreter given in Appendix C
for which primitive actionsare interpreted as shown in Section 6.4.1, and test actions executed using the
predicate Holds(¢, s, s') given in Definitions 6.8 and 7.6.

Database Fluents;

holder(holder#, hname, country, value,t, s),

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 152

stock(stock#, sname, price, qty,t, s),
owns(holder#, stock#, qty,t, s).

System Fluents:
vseQuotation(stock#, price, s), tseQuotation(stock4, price, s).
Internal Actions:

h_insert(holder#, hname, country, value,t), h_delete(holder#, hname, country, value,t),
s_insert(stock#, sname, price, qty,t), s_delete(stock#, sname, price, qty, t),
o_insert(holder#, stock#, qty,t), o_delete(holder#, stock4, qty,t),

noti fy(stock#).
Constants. Ray, Iluju, Misha, Ho, €tc.

Thefluent holder (holder#, hname, country, value, t, s) represents data about holders, individualsor
companies, that owns stocks. Each stock holder has an identification number holder#, aname hname,
a country country, and a total value value of owned stocks. All the stocks that are currently on the
market are recorded in stock(stock4t, sname, price, qty,t, s). Each stock has an identification num-
ber stock#, aname sname, acurrent price price, and a quantity ¢ty currently available. Finaly, any
holder holder# which owns a certain quantity ¢ty of a given stock stock# is recorded in the fluent
owns(holder#, stock#, qty,t, s) .

Unique Name Axiomsare givenin the usua way; thuswe concentrate ourself on the remaining axioms.
Integrity Constraints: We enforce thefollowing IC (¢ ZC.):
holder(holder#, hname, country, value, t, s) A
holder (holder#, hname', country’, value',t', s) D bid = bid', abal = abal’, tid = tid',

and similar ICsfor stock and owns; and we will verify theIC (¢ ZC,)
holder(holder#, hname, country, value,t, s) D value > 0

at transaction’send.

Update Precondition Axioms:

Poss(h_insert(holder#, hname, country, value, t),s) =
—(3t"Yholder (holder#t, hname, country, value,t', s) A
IC,(do(h-insert(holder#t, hname, country, value,t),s)) A running(t, s), (7.19)
Poss(h_delete(holder#, hname, country, value,t), s) =
(3t")holder (holder#, hname, country, value,t', s) A

IC,(do(h_delete(holder#, hname, country, value,t),s)) A running(t, s). (7.20)

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 153

Similar precondition axioms are given for the remaining internal actions. Here, we do not avoid cascad-

ing rollbacks.
Successor State Axioms:
holder(holder#, hname, country, value,t, do(a, s)) =
(3t1)a = h_insert(holder4t, hname, country, value,t;) V
(Fta)holder(holder#, hname, country, value, ty, s) A
=(3ts3)a = h_delete(holder#t, hname, country, value, T5)) A =(3t')a = Rollback(t') v
(3t").a = Rollback(t'y A —(3t")parent(t",t', s) A
restore Begin Point(holder, (holder#, hname, country, value),t', s) V
a = Rollback(t') A (Ft")parent (t”,t', s) A
restoreSpawn Point(holder (holder#t, hname, country, value),t', s).

Similar successor state axioms are given for the remaining database fluents. Precondition axioms for
external actions are those given in Theorem 7.11, taking into account the action Spawn(t,t') (See Sec-
tion 7.1.7). Axiomsfor dependency predicates are the ones given in Theorem 7.21.

Thefollowing is an example of an initial database for the portfolio domain:

holder(h_id, hn,c,val,t, Sg) = h_id = C; A hn = Smith A ¢ = Canada A val = $30000 V
h_id = Cy A hn = diouf A ¢ = Senegal A val = $20000 V
h_id = C3 A hn = Brown A c = USA A val = $9000,
stock(s_id, sn, pr, qty, So) = s_id = STy A sn = IBM A pr = $100 A gty = 5000 V
siid = STy Asn=ORACLE A pr = $30 A gty = 1000,
owns(h_d, szid, qty,t,S) = h_td = C1 A s_id = IBM A gty = 300V
heid = Cy A s_id = IBM A gty = 200 V
h_id = C3 A s_id = ORACLE A gty = 300,
vseQuotation(I BM, 110, Sg), vseQuotation(G'M, 10, So),
tseQuotation(ORACLFE, 50, 5), tseQuotation(FORD, 40, Sy).
The fluent vseQuotation(Sid, Pr, s) and tseQuotation(Sid, Pr, s) have the successor state ax-
ioms
vseQuotation(Sid, Pr,do(a, s)) = vseQuotation(Sid, Pr, s),
tseQuotation(Sid, Pr,do(a, s)) = tseQuotation(Sid, Pr,s).

Thefluent served(id, s) introducedin Section ref Simul ationWell FormedProg will be used for synchoniza-
tion. The action noti fy(stock#), whose precondition axiom is Poss(noti fy(stock#), s) = true, is

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 154

used to indicate that the price of the stock stock# has been updated. It's effect is to make the fluent
served(Sid, s) true.

For the database fluent owns(h_id, s_id, qty, t, s), the transition and event fluents are:

owns_inserted(r, hid, s_id, qty,t,s) =

(Ja, s').s # So A s = do(a, s') A considered(r,t,s’) A

(7.21)
(Ft")a = owns_insert(h_id, s1id, qty,t') v
F_inserted(r, h_id, sid, qty,t, s) A a # owns_delete(h_id, sid, qty,t),
owns_inserted(r,t,s) =
(Fh_id, sad, qty, a, s, t').s # So A s = do(a, ') A
a = owns_insert(, h_id, sid, gty,t') A considered(r,t,s’) V F_inserted(r,t,s). (7.22)

The following sentences are al of the form W > A and obtained using the revised Lloyd-Topor
transformations applied to the if-halves of the sample axioms given above.

—(3t"Yholder (holder#, hname, country, value,t', s) A
IC(do(h_insert(holder#, hname, country, value,t),s)) A running(t,s) D (7.23)

Poss(h_insert(holder#, hname, country, value,t), s),

{(3t1)a = h_insert(holder#, hname, country, value,t,) v
(Ft2)holder(holder#, hname, country, value,tz, s) A
=(3ts3)a = h_delete(holder#t, hname, country, value, T5)) A =(3t')a = Rollback(t') v
(3t').a = Rollback(t')y A —~(3t")parent(t”,t',s) A
(3s*)Holds(restore Begin Point(holder, (holder#, hname, country, value),t', s), s, s¥) \/(7_24)
a = Rollback(t') A (3t")parent(t”,t', s) A
(3s*)Holds(restoreSpawn Point(holder (holder#, hname, country, value),t', s), s, s*)} D

holder(holder#, hname, country, value,t, do(a,s))

vseQuotation(stock#t, price, s) A a # noti fy(stock#) D (7.25)

vseQuotation(stock##, price,do(a, s)),

vseQuotation(stock#t, price, s) A a # noti fy(stock#) D (7.26)

tseQuotation(stock#, price,do(a, s)),

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 155

(Ja, s').s # So A s = do(a, s') A considered(r,t,s") A
(3t")a = owns_insert(h_id, sid, gty,t') v
F_inserted(r, h_id, sid, qty,t,s) A a # owns_delete(h_id, s_id, qty,t) D (7.27)
owns_inserted(r, hid, szid, qty,t,s),
(3hd, sid, qty,a,s',t').s £ Sg A s = do(a, s') A
a = owns_insert(, h_id, sid, qty,t') A considered(r,t,s’) vV F_inserted(r,t,s) D
(7.28)

owns_inserted(r,t, s)

Notice the use of the predicate Holds(¢, s, s') in theif-half of the successor state axiom for the fluent
holder(holder#, hname, country,value,t, s): it is used to express the Lloyd-Topor transformation
of asubformulathat infact is an abbreviation standing for anon-Markovian formula. Thisisa method-
ological choicethat we make in transforming any given formula¢ into aLloyd-Topor form: if ¢ hasthe
form of any of the formulas abbreviated in Definition 7.1, we will alwaystreat it by using the predicate
Holds(¢, s, s) givenin Definition 7.1.

Now we give the following sample ConGolog procedures which are well-formed to update the dif-
ferent fluents of our example:

proc hV alueUpdate(t, holder#, amount)
(m hname, country, value, value')[holder (holder#, hname, country, value, t)? ;
[value’ = value + amount]? ; h_delete(holder#, hname, country, value,t) ;
h_insert(holder#, hname, country, value', t)]
endProc
proc sQtyU pdate(t, stock#, amount)
(7 sname, price, qty, qty')[stock(stock#, sname, price, qty,t)? ;
[qty’ = qty + amount]? ; s_delete(stock#t, sname, price, qty,t) ;
s_insert(stock#t, sname, price, gty',t)]
endProc
proc tQtyUpdate(t, holder#, stock#t, amount)
(7 qty, qty’)[owns(holder#, stock#, qty,t)7 ;
[qty’ = qty + amount]? ; o_delete(holder#, stock#, qty,t) ;
o_insert(holder#, stock#, qty’, t)]

endProc

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 156

proc processQuotations(t, se)
Begin(t);
[(m stock#, price).
If se = TSFE then
Spawn(t, stock#) ;
(mnew Price)[tseQuotation(stock#, new Price)? ;
sPriceUpdate(t, stock#t, new Price)| ; notify(stock#) ;
End(stock)
else
Spawn(t, stock#) ;
(mnew Price)[vseQuotation(stock4, price)? ;
sPriceUpdate(t, stock#t, new Price)| ; notify(stock#) ;
End(stock#)]1;
—[(3 stock#, price). (vseQuotation(stock#t, price) V
tseQuotation(stock#, price)) A —served(sid)]? ;
End(t)

endProc

The given procedures hV alueU pdate(t, holder#, amount), sQtyU pdate(t, stock#, amount), and
tQtyUpdate(t, holder#, stock#, amount) update the value, and quantity by the specified amount for
the fluents holder, and stock and owns, respectively. Further procedures for updating the values of the
other arguments may be given in asimilar way. Notice what the procedure processQuotations(t, se)
does: for any given stock exchange se, the procedure checks whether se is the Toronto or the Vancou-
ver stock exchange, after which it spawns a child transaction for each of the stocks quoted on the stock
exchange. Children are spawned in parallel. The child transaction updates the stock price according to
the available quotation for that stock. The update process continues until no more quotations are | eft.

Below are afew sample ECA rules for the portfolio example of the last section.

<trans : Rule; : stock_inserted :
(Ipr, sn, qtyr)[stock_inserted(st#, sn, pr, qty) A
owns(h#, st#, qtys) A pr = 0]
N

owns_delete(h#, st#, qtys) >

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 157

<trans : Ruley : stock_deleted :
(Ipr, sn, gty)stock _deleted(st#, sn, pr, qty,)
%

(7 h#, qtys)[owns(h#, st#, qtys)? ; owns_delete(h#, st#, qtyz) >

<trans : Rules : owns_inserted :

(3 ht, st#, qtyr)owns_inserted(h#, st#, qtyr)

—

(ﬂ- amt, sn, pr, h#7 3t#7 qtyh qty?)[StOCk(St#7 sn, pr, h#7 3t#7 qtyh qty?)q ; (amt = prx* qtyl)r)
hV alueUpdate(trans, h#,amt) ; sQtyUpdate(trans, st#, —qty) >

Thefirst rule captures the behavior that, whenever thereis an insertioninto therelation stock, if thereis
any stock whose price is zero and that has been inserted into the relation stock, anyone who owns that
stock must be deleted from therelation owns . Therationalebehind thisruleisthat any stock with anull
price is worthless, and therefore should not be kept by anyone. The second rule captures the behavior
that, whenever thereis adeletion from the rdation stock, if thereis a stock that has been deleted from
the relation stock, then check whether there is anyone who ownsthat stock and delete the tuple corre-
sponding to him from the relation owns. The third rule captures the behavior that, whenever thereisan
insertioninto thereation owns, if thereis anew onwer that has been inserted into owns, then check the
price of the stocks that he owns in the relation stock and update both the value of his portfolio in the
relation holder and the remaining quantity of stocksin therelation stock accordingly.
Theif-sentences given above arein aform readily expressiblein Prolog. The entire program can be

given in the same way as the Debit/Credit example given in Appendix D.
Theinterpreter for running rule programs is different than the one given above for basic action the-
oriesinthe way it handles primitive actions. To modify the interpreter, replace the clause

trans(A S, R S1) :- primtive_action(A), poss(A'S), !, R=nil, S2 = do(AS),
(systemAct (A1, T), poss(Al,S2), S1 = do(Al, S2)
not (systemAct (A2, T2), poss(A2,S)),S1l = S2).

by the following:

trans(A, S nil,S1) :- prinmtive_action(A), transO (A T), poss(A ' S), S2=do(A S),
(systemAct (A1, T), poss(Al,S2), S1 = do(Al, S2)
not (systemAct (A2, T), poss(A2,S2)),do(rules(T),S2,S1)).

Because of the new predicatet r ansOf , taking an action and a transaction as arguments, augment
the interpreter by the clauses:

transOf (begin(T), T). transOf (end(T), T).
transOf (commit(T),T). transOf (roll back(T),T).

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 158

Next, weneed to giveaxioms characterizing the systemfluent considered introduced earlier in Chapters.
To do so, we introduce two primitive actions beginC'on(rid, t) and stopC'ons(rid,t) where rid and ¢
are a rule identification name and a transaction, respectively. These actions are used for bookkeeping
and their action precondition axioms are:

Poss(beginCons(rid,t), s) = -considered(rid, t, s),
Poss(stopCons(rid,t), s) = considered(rid,t, s).

The successor state axiom for considered used in the interpreter is
considered(rid,t,do(a,s)) = a = beginCons(rid,t).

Initialy, we have (Vr, t)considered(r,t, So). Intuitively, considered(r, t, s) means the most recent sit-
uationsin which rule r is considered for executionis s with respect to transaction ¢. Thisis a semantics
usualy foundin ADBMS, eg. in Starburst.

Below, wegivethe non-Markovian ConGologinterpreter writtenin Prolog for well formed programs
that have activerelational theories as background axioms. Thisinterpreter isbased on the same assump-
tionsasthe onein Section 7.3.

/* A non- Markovi an ConCol og interpreter for progranms with ARTs. */

:- set_flag(print_depth, 100).

: - nodbgconp.
:- dynami c(proc/2). /* Conpil er */
:- set_flag(all _dynamic, on). /* directives */

:- op(750, xfy, [<<]). [* Subsequence */

:- op(750, xfy, [<<=]). /* Subsequence and equality */

:- op(800, xfy, [&]). /* Conjunction */

:- op(850, xfy, [v]). /* Disjunction */

:- op(870, xfy, [=>]). [* Inplication */

:- op(880, xfy, [<=>]). /* Equival ence */

:- op(890, xfy, [#=]). [* concurrency */

i- op(950, xfy, [:1). /* Action sequence */

:- op(960, xfy, [#]). /* Nondeterm nistic action choice */

/* final (Prog,S) */

final (nil,S)
final (AL : A2,S) :- final (AL, S), final (A2,9)

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 159

final (AL # A2,S) :- final (AL, S); final (A2,S).

final (pi(V,A),S) :- sub(V,_,A Al),final (AL,S).

final (star(_),_).

final (if(P, AL, A2),S) :- holds(P,S,_), !, final (A1, S); final (A2,S).
final (while(P,A),S) :- holds(P, S,), !, final (AYS).

final (while(_,_),_).

final (Al #= A2,S) :- final (Al1,S), final (A2,S).

final (! (A),S).

/* trans(Prog, S, ProgRest, S) */

trans(A, S nil,S1) :- prinmtive_action(A), transOF (A T), poss(A ' S), S2=do(A S),
(systemAct (A1, T), poss(Al, S2), S1 = do(Al, S2)
not (systemAct (A2, T), poss(A2,S2)), do(rules(T),S2,S1)).
trans(?(P), S, nil,S1) :- holds(P, S, S1).
trans(Al : A2,S, R S1) :- final (AL, S), trans(A2, S, R S1).
trans(Al : A2, S, Rl:A2,S1) :- trans(Al, S, R1, S1).
trans(Al # A2,S, R S1) :- trans(Al, S, R S1); trans(A2,S, R S1).
trans(pi (V,A),S R S1) :- sub(V,_,A Al), trans(Al, SR S1).
trans(star(A),S, R: star(A),Sl) :- trans(A S R S1).
trans(if(P,A),S R S1) :- trans((?(P) : Al),S R S1).
trans(if (P, Al, A2),S, R S1) :- trans((?(P) : Al) # (?(-P) : A2),S R S1).
trans(while(P,A),S R S1) :- trans(star(?(P) : A : ?(-P),S R S1).
trans(Al #= A2, S,R S1) :- final (A1,S), !,
(trans(A2,S, R S1); trans(Al, S, R1, S1), R=(Rl #= A2)).
trans(Al #= A2, S,R S1) :- trans(Al, S, R1, S1), R=(Rl #= A2);
trans(A2, S, R1, S1), R=(Rl #= Al).
trans(!(A),S, R#=1(A), S1l) :- trans(A S, R S1).
trans(Proc, S, R, S1) :- proc(Proc, Body), !, trans(Body, S, R S1).

trans*(A S, A'S).
trans*(A S, R S1) :- trans(A S, R2,S2), trans*(R2,S2, R, S1).

do(A 'S, S1) - trans*(A S, R S1), final (R S1).

/* sub(Name, New, Terni, TernmR): TernR2 is Terml with Nanme replaced by New. */

sub(X1, X2, T1, T2)
sub(X1, X2, T1, T2)
sub(X1, X2, T1, T2)

var(T1), T2 = T1.
not var(T1l), T1 = X1, T2 = X2.
not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 160

T2 = . [F|L2].
sub_list(X1,X2,[],[]).
sub_list(X1, X2, [T1|L1],[T2|L2]) :- sub(Xl, X2, T1, T2), sub_list(X1, X2, L1, L2).

/* The holds predicate inplenents the revised LI oyd-Topor
transformations on test conditions. */

holds(S1 = S1,S,S).
hol ds(S1 << do(_,S1),S,9).
hol ds(S2 << do(_,S1),S,S) :- holds(S2 << S1,S,S).

hol ds(P & Q S,S2) :- holds(P, S, S1), holds(Q S1, S2).

holds(P v Q S, S1) :- holds(P,S,S1); holds(Q S, S1).

hol ds(P => Q S,S1) :- holds(-Pv Q S, S1).

hol ds(P <=> Q S,S1) :- holds((P=>0Q & (Q=>P),S S1).

hol ds(-(-P), S, S1) :- holds(P, S, S1).

holds(-(P & Q,S,S1) :- holds(-Pv -Q S, S1).

holds(-(P v Q,S,S1) :- holds(-P & -Q S, S1).

hol ds(-(P == Q,S,S1) :- holds(-(-Pv Q,S, S1).

hol ds(-(P <=> Q,S,S1) :- holds(-((P=>0Q & (Q=>P)),S, S1).
hol ds(-all (V,P), S, S1) :- holds(sone(V,-P), S, S1).

hol ds(-some(V, P), S, S1) :- holds(some(V,P), S, S1), fail, !'. /* Negation */
hol ds(-some(V,P),S,S1) :- S = Sl. /* */
hol ds(-P, S, S1) :- isAtom P), holds(P, S, S1), fail, !. /* by */
hol ds(-P, S, S1) :- isAtomP), S = Sl. [* failure */

hol ds(all (V,P), S, S1) :- holds(-sone(V,-P),S, S1).
hol ds(sonme(V, P), S, S1) :- sub(V,_,P,Pl), holds(P1,S, S1).

hol ds(sones(S1, SigmSl = S, P), S3,$4) : -
sub(S1, SNew, Si gmaS1, Si gmaS2), sub(S1, SNew, P, P1),
hol ds(Si gmaS2=S, S3, S2), hol ds(P1, S2, $4) .

hol ds(sones(S1, do(A, S1)=do(B, S),P),S3,54) :- A = B,
hol ds(sones(S1, S1=S, P), S3, $4) .

hol ds(sones(S1, SigmaSl << do(A ' S), P), S2,S3) : -
hol ds(sones(S1, SigmaSl = S, P), S2, S3)
hol ds(sones(S1, SigmaSl << S, P), S2, S3).

hol ds(sones(S1, SigmSl <<= S/ P), S2,S3) : -
hol ds(sones(S1, SigmaSl = S, P), S2, S3)

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 161

hol ds(sones(S1, SigmaSl << S, P), S2, S3).

hol ds(al I s(S1, SigmaSl <<= S, P),S2,S3) :-
hol ds(sones(S1, SignmaSl = S, P), S2, S3)
hol ds(sones(S1, SigmSl << S, P), S2, S3).

hol ds(- somes(S1, Bound, P), S2, S3) :- hol ds(somes(S1, Bound, P), S2, S3), fail, !.
hol ds(-somes(S1, Bound, P), S2,S3) :- S2 = S3.

hol ds(al | s(S1, Bound, P), S2, S3) :- hol ds(-sones(S1, Bound, - P), S2, S3).

/* The follow ng clause treats the holds predicate for non fluents, including
Prol og system predi cates. For this to work properly, the ConGol og programmer
nmust provide, for all fluents, a clause giving the result of restoring
situation arguments to situation-suppressed termnms, for exanple:

restoreSit Arg(ontabl e(X), S,ontable(X, S)). */

hol ds(A, S, S1) :- db_fluent(A), restoreSitArg(A S, F), Sl=do(A'S), F.

hol ds(A, S, S) :- not db_fluent(A), restoreSitArg(A S, F), F.

hol ds(A,S,S) :- not restoreSitArg(A S, F), isAtom(A), A

isAtom(A) :- not (A=-W; A= (W &W) ; A= (WM => W) ;
A=W <=>W) ; A= (WM v W) ; A=some(XW; A=all(XW ;
A=(S1 =832 ; A=(S1 << 82) ; A= (Sl <<= 32) ;
A=somes(_, ,) ; A=alls(_, _,)).

restoreSit Arg(poss(A), S, poss(A'S)).

/* Transacti on external actions */

primtive_action(begin(_)). primtive_action(comit(_)).
primtive_action(end(_)). primtive_action(rollback(_)).

ext ernal Act (begin(T), T). external Act(commit(T),T).
ext ernal Act (end(T), T). external Act(roll back(T),T).

termAct (commit(T),T). termAct(roll back(T),T).

systemAct (commit (T), T). systenmAct(rollback(T),T).

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 162

transOf (begin(T), T). transOf (end(T), T).
transOf (commit(T),T). transOf(roll back(T),T).

/* Action precondition axionms for external actions. For this to work
properly, the ConGol og programer nust provide, for all prograns, a clause
"ic(do(A S))" giving the built-in integrity constraints and a cl ause
"gic(S)" giving the generic integrity constraints. */

poss(begin(T),S) :-
hol ds(-somes(sl1, do(begin(T),sl)<<=S,true),S,).

poss(end(T),S) :- running(T,S).
poss(comit(T),S) :-

hol ds(sones(sl, do(end(T),sl)=S,true) & gic(S) &

all (t1, sc_dep(T,t1,S) =>
somes(s2, do(conmit(tl),s2)<<=S,true)),S,).

poss(roll back(T),S) :-

hol ds(sones(sl, do(end(T),sl)=S,true) & -gic(S) v

some(tl, somes(s2, r_dep(T,t1,S) & do(rollback(tl),s2)<<=S,true)),S,).

runni ng(T,do(A, S)) :- A = begin(T);
running(T,S), not A = rollback(T), not A= conmmit(T).

/* Dependency axi onms*/
r_dep(T,T1,S) :- transConflict(T,T1,5S).
sc_dep(T,T1,S) :- readsFrom(T,T1,S).
transConflict(T,T1,do(A S)) :- not T=T1l, responsible(T1,AS),
hol ds(sone(al, sones(sl, do(al, sl)<<do(A S) & responsible(T,al,sS) &
updConflict(al, A S),true)), S, _);

transConflict(T,T1,S), not termAct (A T).

readsFronm(T, T1, do(A'S)) :- readAct (A F T),
hol ds(sone(al, sones(sl, do(al,sl)<<=S, wites(al,F,T1))), S _).

/* Bookkeepi ng actions and fluents */

primtive_action(beginCons(_,)).
primtive_action(stopCons(_,_)).

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 163

poss(begi nCons(Rid, T),S) :- not considered(Ri d,T,S).
poss(stopCons(Rid,T),S) :- considered(R d, T,S).

consi dered(Ri d, T,do(A ' S)) :- A=beginCons(R d,T);
considered(Ri d, T,S), not A=stopCons(Rid,T).

transOf (stopCons(_, T), T).
transOf (begi nCons(_, T), T).

[* Uilities. */

prettyPrintSituation(S) :- makeActionList(S,Alist), nl, wite(Alist), nl.

makeActionLi st (s0,[]).
makeActi onLi st (do(A, S), L) :- makeActionList(S,L1l), append(Ll1l, [A], L).

exec(T) :- do(T,s0,S), prettyPrintSituation(S), askForMore.

askForMore :- wite(’ More? '), read(n).

/* Here ends the non-Markovian ConGol og interpreter. */

Using the Prol og axioms obtai ned from the present section as background theory, the ConGolog in-
terpreter for active relational theories runs the procedures above, and, doing so, simulates the portfolio
domain. Recall that, after each execution of a primitive action, the interpreter calls arule procedure that
is an appropriate compilation of the ECA rules given above. For simplicity and shortness, a sample pro-
gram that uses flat transactionsis given in Appendix D. Some sample runs are®:

[eclipse 2]: exec(begin(l): s_insert(st5, opel, 0,200, 1)
s_insert(st4,ford, 0,1000,1) : o_qty_update(l,c3,st2,200) : end(1l)).

[begin(l), s_insert(st5, opel, 0, 200, 1), s_insert(st4, ford, 0, 1000, 1),
owns(c3, st4, 300, 1), stopCons(rulel, 1), beginCons(rulel, 1),

o_delete(c3, st4, 300, 1), owns(c3, st2, 300, 1), o_delete(c3, st2, 300, 1),
o_insert(c3, st2, 500, 1), end(1l), commit(1l)]

S0f coursethisinterpreter can still do everything that the onein Section 7.3 does.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 164

Mor e? n.

yes.

[eclipse 3]: exec(begin(l): o_qgty_update(1,c3,st2,200)
s_insert(st4,ford, 0,1000,1) : end(1)).

[begin(l), owns(c3, st2, 300, 1), o_delete(c3, st2, 300, 1),
o_insert(c3, st2, 500, 1), s_insert(st4, ford, 0, 1000, 1),
owns(c3, st4, 300, 1), stopCons(rulel, 1), beginCons(rulel, 1),
o_delete(c3, st4, 300, 1), end(1l), commit(1l)]

Mor e? n.
yes.
75 SQL3

In the introduction of thisthesis, we have pointed out the fact that the existing ADBM Ss support active
rules in the form of triggers. However, these systems have each their own knowledge and execution
models. SQL 3 has been proposed as a standard providing a common and consistent support for active
rules. Figure 7.1 and Figure 7.2 indicate how SQL 3 fits into the classification given in Figure 2.2 and
Figure 2.3, following the description of this emerging standard in [KMC99].

In this section, we apply our framework to represent SQL 3. we will not specify the whole standard.
We will restrict ourselves to some of the most saillant aspects of SQL3 instead. This aspects are AF-
TER/BEFORE trigger activation, event source and granularity, and action interruptability. We will also
see how these aspects affect the execution model of SQL3. The simplicity of SQL3, which is not due
to their essence, makes them amenable to arapid prototyping using our logical framework. In what fol-
lows, we will summarize the dimensions of active behavior of SQL 3 using tables comparable to those
used in Figure 2.2 and Figure 2.3.

7.5.1 Knowledge and Execution Model
Knowledge M odel

The SQL 3 standard captures active behavior using two kinds of constructs:

Constraints: These are predicates defined on database states. They are defined on one singlerelation,

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 165

on attributes of arelation, or on multiplerelations. The ADBMS must ensure that they are evaluated to
true either immediately after each SQL statement execution (immediate mode) or at the end of the user
transaction, but just before this commits (deferred mode). A violation of aconstraint resultsin arolling
back of the faulty statement in the case of immediate constraints, or the entire transaction in the case
of deferred constraints. In SQL 3 there are various sorts of both relation and attribute constrai nts which
globally can be charaterized as the built-in and cardinality integrity constraints of Section 2.1 when they
are assigned an immediate mode, and as generic integrity constraints when they are assigned a deferred
mode.

Triggers. These are named ECA rulesthat are each associated with a particul ar database relation. Thus
atrigger has four syntactical parts: asubject relation, on which it is defined, an event part, an optiona
condition part, and an action part. Appendix F gives the current EBNF syntax of SQL3 and Figure 7.1
givesdetailsof thedimensionsof ECA rulesin SQL 3 according to the classification method of Figure 2.2,
and we now turn our attention to these dimensions.

e AFTER/BEFORE Trigger Activation. One important issue regarding the syntax of SQL3 trig-
gersis the distinction made between BEFORE and AFTER triggers which are syntactically dis-
tinguished by the keywords”BEFORE” and " AFTER”. A BEFORE (AFTER) trigger isactivated
before (after) the database operation associated with the event mentioned in its event part. Both
forms of triggers are a SQL 3 implementation of the idea of the event/action link which isthe con-
nection between the action execution and thetriggering action (See Section 2.1): in BEFORE trig-
gers, actionsspecified intheaction part of thetrigger are to executeinstead of theaction associated
with the event part of the trigger.

e Event Sourceand Granularity. All eventsareprimitivein SQL3 and are oneof INSERT, DELETE,
or UPDATE. SQL 3 allowstwo levels of granularity of triggers: atuple-oriented granularity, spec-
ified by the keywords FOR EACH ROW, and a set-oriented granul arity, specified by the keywords
FOR EACH STATEMENT.

e Action Interruptability. Trigger actionsmay beinterruptablein order for other triggered rulesto
beactivated or not. An non-interruptabletrigger action part isenclosed between keywordsBEGIN
ATOMIC and END.

SQL 3triggerscan accessthe current state of adatabase, the old state of the database, and the old and
new values of affected tuples. All of these four tables are made accessible to the trigger condition and
action partsby explicitly naming them in aREFERENCING clausein thetrigger definition. The old and
new values are referred to by means of two transition tables identified by the key words OLD AS and
NEW AS, respectively. The old state of the database is identified by the key word OLD TABLE ASin
thelist of aliasesthat follow thekey word REFERENCING. The new database statethat is obtained after

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 166

the modification brought about by the triggering operation is applied to the database isidentified by the
key word NEW _TABLE AS.

Finally, SQL 3 allows an order of trigger execution that correspondsto the ascending creation times
of triggers. Thismeans that anewly created trigger has execution precedence over all the other triggers
aready created.

COMPONENT | DIMENSIONS VALUESIN SQL3
EVENT TYPE primitive
SOURCE update operation
GRANULARITY | tuple- or set-oriented
ROLE mandatory
CONDITION ROLE optiona
CONTEXT BINDg, DBg, DB4
ACTION TYPE update operation, behavior invocation, do instead
CONTEXT BINDg, DBg, DB4

Figure 7.1: Overview of dimensionsof the knowledge model of SQL3

Execution Model

In SQL 3, there are no explicit language constructsfor ascribing prioritiesto triggers. Triggers are prior-
itized according to the ascending order of their creation times instead.
Normally, the execution model of SQL 3 triggers must satisfy at least two requirements:

1. Trigger actions must always be executed in consistent database states.

2. All BEFORE triggers must be entirely executed before the database operations associated with
the events mentioned in their event parts are executed; and All AFTER triggers must be entirely
executed after the execution of the database operations associated with their event parts.

The first requirement is fullfilled by checking constraints every time the database is updated. The
second requirement is met by executing any BEFORE trigger prior to any update to the database, and by
executing any AFTER trigger after all updates caused by triggers of higher priority and by the operation
associated with the event mentioned in the event part of that AFTER trigger have been executed.

Asof thetime of their 1999 writing, the authors of [KMC99], who areinvolvedin the proposal of the
SQL 3 standard, did not restrict the use of BEFORE rules. It is however usually assumed that BEFORE

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 167

rules areto be used in away such that their actions do not update the database. Such restrictions do not
exist in the standard itself, but is planned for the future ([KMC99]). In conseguence, this assumption
ensures that the database state seen by the BEFORE triggersis a state that is guaranteed to be consistent
by the first requirement.

DIMENSIONS VALUESIN SQL3
EVENT/CONDITION COUPLING | immediate

CONDITION/ACTION COUPLING | immediate

CONSUMPTION MODE none

NET EFFECT POLICY no
PRIORITY creation time
SCHEDULING sequential
ERROR HANDLING backtrack

Figure 7.2: Overview of dimensionsof the execution model of SQL3

75.2 Formalization

This section formalizes the main dimensions of SQL 3 described above.

Knowledge M odel

Primitive Events. Asin the genera framework, for each database fluent F, we introduce primitive
eventfluents I’ inserted(r, t, s) and F'_deleted(r, t, s). Thoughno consumptionmodeisofficially avail -
able for SQL3, an implicit local consumption mode seems to be assumed for the primitive events of
SQL3. Since SQL 3 does not have any complex events, we are only left with primitive events fluents
F_inserted(r,t,s) and I'_deleted(r,t, s) with successor state axioms of the kind givenin (5.13) and
(5.13):

F_inserted(r,t,do(a,s)) = (37,t')a = F_insert(Z,t') A considered(r,t,s)V

F_inserted(r,t,s) A =(3y7,t")a = F_insert(7,t'), (7.29)

F_deleted(r,t,do(a,s)) = (3Z,t")a = F_delete(Z,t') A considered(r',t,s) V

F_deleted(r,t,s) A —(37,t')a = F_delete(,). (7.30)

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 168

Tuple- versus Set-oriented Event Granularity. In order to account for the tuple- versus set-oriented
valuesof theevent granularity in SQL 3, we slightly modify the syntax of event fluents. For each database

fluent F'(Z, ¢, s), weintroducenot only primitiveevent fluents /" _inserted(r, ¢, s) and I’ _deleted(r,t, s),

but also primitiveevent fluents /7 _inserted (7, r, t, s)and I _deleted (%, r, t, s).5 Weuse F _inserted(r,t, s)

and I’ _deleted(r, t, s) to capturethe set-oriented granul arity, and ' _inserted(Z, r, t, s)and I _deleted (&, r,t, s)
to capture the tuple-oriented event granularity. Indeed, for example, the successor state axiom (7.29) in-
tuitively statesthat thereis an event of insertion — without a specification of what has been inserted —

into adatabasefluent F iff sometuplehasbeeninsertedinto F'. To capturethetuple-oriented granularity,

we give the following successor state axiomsfor I’ _inserted(Z,r,t, s) and F'_deleted(Z, r,t, s):

F_inserted(Z,r,t,do(a,s)) = (It')a = F_insert(T,t') A considered(r,t,s)V

F_inserted(r,t,s) A —=(37,t')a = F_insert(y,t'), (7.31)

F_deleted(Z,r,t,do(a,s)) = (t')a = F_delete(Z,t') A considered(r’ t,s) v

= _ =
F_deleted(r,t,s) A —(3y,t')a = F_delete(y,t'). (7.32)
The changesfrom (7.29) and (7.30) to 7.31) and (7.32) are syntactically slight, but bear abig semantical
difference; the successor state axiom (7.31), for example, intuitively statesthat thereisan insertion event
of aparticular tuple # into a database fluent F iff that specific tuple has been inserted into F'.

Interruptability of Actions. Weintroducetwo actionsbegin_atomic(t) and end_atomic(t) withthe
intended meaning that a transaction ¢ must begin executing actions without allowing any further (inter-
leaved) rule processing, and stop such a noninterleaved rule processing, respectively. These actions are
intended to control thetruth value of asystemfluent atomic(t, s), whichinturncontrolsthe Do(P, S, s)
predicate with respect to rule processing. Whenever atomic(t, s) istrue, no rule processing may occur.
Thefollowing successor state axiom characterizes the fluent atomic(t, s):

atomic(t, do(a, s)) =a=begin_atomic(t)Vatomic(t, s) N\a#end_atomic(t, s).

Execution Model

Coupling Modes and Priorities. Since SQL 3 uses immediate event/condition and condition/action
coupling modes, we specify its execution model using themodel (1, 1) of Section 6.2.2 which was for-
mulated as: Evaluate C' immediately after the ECA ruleistriggered and execute A immediately
after evaluating C' within the triggering transaction.

5Noticethe differencein syntax betweenthese new primitive event fluentsand thetransition tablesformalized in Section 5.2.

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 169

Supposewe haveaset R of n ECA rules iy, ... , R, of theform (5.1), where the action part «(7)
may be of theform begin_atomic(t); 3; end_atomic(t), with 3 being any ConGolog program. Suppose
also that these » rules were created in the order R4, ..., R,. Then, we give the following prioritized
ConGolog procedure to capture the immediate execution model of SQL 3:

proc Rules(t)
(m&y,) [m[R)75 G(@) [R5 oo (91) [y,]
{=[E7).(n[R OAG(E)[R, 1]7 5

(7@, §2) [Ta[R, 1]7 5 Co(@1)[R, 1]7 5 () [Ra, 1]

{=[(372)(m2[Ra, NG (72) [R, 1]]7 5 (7.33)

{7 T, §o) [Ta[By 1175 (@) [Rns 1175 (G) [R, 1]
[FF0) (Ta[Rny UAGu(Z0) [Ry 117 .. 1)

endProc .

Noticethat the procedure (7.33) aboveformalizeshow ECA rulesare processed asfollows: theprocedure
Rules(t) takestherule R, and nondeterministically picksvaluesfor 7'y and i1, testsif theevent [Ry, t]
occurred, inwhich caseitimmediately testswhether the condition ¢; (#1)[Ry, t] holds, at which point the
action part a1 (71) is executed. If the condition ¢; (#1)[R1, t] becomes false or R isnot triggered, the
rule procedure goes on to treat theremaining rules R, . . . , R,, in that order.

Executing BEFORE and AFTER Triggers. Supposethat the set R of triggers has been partitioned
intotwo subsetsR? = {rB rB} andRA = {r{}, ..., r2}, where R and R* containsonly BE-
FORE and AFTER triggers respectively. Then each of R” and R# may be represented using the pro-
cedure givenin (7.33). We represent R ® by arule procedure called Rules? () and R# by Rules”(t),
respectively. So given rule programs Rules® () and Rules?(t) specified as above, Figure 7.3 com-
pletes the logical characterization of the SQL 3 execution model by making the appropriate changes to
the predicate T'rans(9, s, 8, s") for handling primitive actions.

Despiteitslength, the semanticsgivenin Figure 7.3 hasarelatively simple structure. Line (1) isasin
Definition (6.23). Lines(2)—(9) treat the case where some BEFORE rulesaretriggered. Inthiscase, Line
(3) executesthe BEFORE rul es, after which Lines(4)—(6) perform aninterruptableexecution of primitive
actions while Lines (7)—(9) perform a noninterruptable execution. Lines (10)—(16) treat the case where
no BEFORE rules are triggered. Here, Lines (10)—(13) perform an interruptabl e execution of primitive
actions, and Lines (14)—(16) perform a noninterruptable execution. It isimportant to notice how BE-
FORE rulesaretreated. With the subformula Do(RulesB (t), do(a, s), do(a, s)), we check whether any
BEFORE rule would be triggered or not in the situation do(a, s). Such check is made before a is exe-

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 170

(1) Trans(a,s,a’,s’) = (Fa*,s",s",s*",t).transOf(a,t,s) A Poss(a,s) Aa' = nil A

(2) (ﬂDo(RulesB (t),do(a, s),do(a, s)) D

(3) <D0(RulesB (t),s,s™) A

(4) {—atomic(t,s™) D

(5) {[s" = do(a, s**) A systemAct(a*,t) A Poss(a*,s") A s’ = do(a*,s")] vV

(6) [s* =do(a, s**)A[(Ya" ,t')systemAct(a"’ t') D—Poss(a’, s*)] A Do(Rules? (t),s*,s')]}} A
(7) {atomic(t,s™) D

(8) {[s" = do(a, s**) A systemAct(a* ,t) A Poss(a*,s") A s’ = do(a*,s")] vV

(9) s'=do(a, s)A[(Va" ,t')systemAct(a’’ ,t') D—Poss(d’, s’)]}})) A

(10) (Do(RulesB (t),do(a, s),do(a,s)) D

(11) <{—|at0mic(t, s) D

(12) {[s" = do(a, 5) A systemAct(a*,t) A Poss(a*,s") As' = do(a*,s")] v

(13) [s* =do(a, s)A[(Va",t')systemAct(a” ') D—Poss(a’, s*)] A Do(RulesA (t),s*,s")]}} A
(14) {atomic(t,s) D

(15) {[s" = do(a, s™) A systemAct(a*,t) A Poss(a*,s") A s’ = do(a*,s")] vV

(16) s'=do(a, s)A[(Va" ,t")systemAct(a’',#') D —~Poss(a’, 5')]}})))

Figure 7.3: Semantics of the SQL 3 execution model

cuted, which in this specification means recording a in thelog. If Do(Rules®(t), do(a, s), do(a, s)) is
false, then some BEFORE ruleis triggered, we execute the procedure Ru!/ esB (t) and the action a, after
which we may or may not call the procedure Rules* (t) to execute AFTER rules depending on whether
thefluent atomic(t, s) isfalse or not. Inthecase Do(Rules® (t), do(a, s), do(a, s)) istrue, then no BE-
FORE ruleistriggered, and we execute the action «, after which we may or may not call the procedure
for AFTER rules depending on whether the fluent atomic(t, s) isfalse or not.

We could have modularized thislong formulaof Figure 7.3; however, doing this, wewould havelost
the overview of how the main ingredients of the execution model of SQL 3 are model ed.

A Lesson Learned

Any formal system specification must aim at being validated. It must also aim at discovering anything
interesting that theformal semanticsreveals, e.g., underspecified parts of the system and inconsistencies,

CHAPTER 7. METHOD FOR IMPLEMENTING ACTIVE RELATIONAL THEORIES 171

tojust nameafew things. Thequestion arises now asto what extent the limited scope of our specification
of SQL 3 has revealed us anything interesting.

Werestrict ourself to one underspecified aspect of SQL 3 execution model whose source of difficulties
isreveaed by the semantics given in Figure 7.3. We mentioned above that the SQL 3 standard did not
restrict the use of BEFORE rules, and that it is usually assumed that actions of BEFORE rules must not
update the database. To the authors of [KMC99], this assumption — which is not in the standard —
ensuresthat the database state seen by the BEFORE triggersisastatethat is guaranteed to be consistent.
Thisintuition, which is underspecified in the SQL 3 standard, is precisely captured by Figure 7.3 inlines
(3)—(6) wherewe can see how adatabase updated by aBEFORE rulemay beinconsistent with subsequent
updates. Assumeindeed that one of therulesexecuted in line (3) hasan event I’ _inserted. Assumealso
that that sameruleinsertsatupl e X intothedatabase. Then, whenever action « isexecutedinline (6), the
situation s** will correspond to a database state— that is, aset of true fluents— that is different than the
corresponding database state of situation s. The action a« however is supposed to take its preconditions
in the database state corresponding to the situation s. All this may result in actions that are executed
though their preconditions are not satisfied in the new situation s**. For example, the action ¢ may be
F_insert(X,T), for atransaction 7", and the tuple X will never be inserted into the database sinceit is
already there. Thisargument and similar ones may be tightened up into agenera theorem, but we do not
doit here.

7.6 Summary

This chapter has concretized the theoretical concepts devel oped throughout the thesis by showing how
active relational theories can be implemented in Prolog. Building on this theoretical devel opment, we
have extended a Prolog implementation method for basic action theories presented in [Rei01] to active
relationa theories. The method is justified by a consequence of Clark’s fundamental theorem saying
that, whenever alogical program P obtained from a definitional theory 7 by taking the if-halves of the
sentences (V7)) P(7) = ¢ yieldstheanswer “yes’ on asentence ¢, then ¢» isalogica consequenceof 7;
and, whenever P yieldsthe answer “no” on ¢, then 7 logically entails —).
Particular noveltiesin this chapter are:

e implementation theorem for active relational theories;

e Abstract interpreter for transactiona programs with active relational theories as background the-

ories;

e semantics of SQL3 as an illustration of the framework.

Chapter 8

Conclusion

8.1 Summary

This thesis has proposed foundations of active databases using the situation calculus. Our approach a-
lows to formally specify and reason about both the ECA rule language and the execution models for
rules. The theories introduced in the thesis alow a precise definition of the properties of the main di-
mensions of active behavior, such as relational databases, database querying and updates, (advanced)
database transaction models, events, conditions, actions, execution of ECA rules, etc.

Developing mathematical foundations for dynamical systems has attracted many research efforts
since Amir Pnudli ([Pnu77]) first showed theimportance of using temporal | ogicto specify semanticsand
dynamical propertiesof concurrent programs. Ray Reiter’sbook ([Rei01]) on situation cal culustheories
as“logical foundationsfor specifying and implementing dynamical systems” ismainly about foundations
for autonomous, cognitiverobotsthat perceive and act in changing environments and reason about their
actions and the knowledge they accumulate about these actions. This dissertation aimed to give similar
foundations, thistime not to cognitive agents, but to the dynamical world of activedatabases. 1t focussed
onlogical theoriesfor capturing advanced transaction model s, compl ex events, execution modelsof ECA
rules, and a methodol ogy for obtaining Prolog implementations of these theories.

To start with our endeavour, we have noticed that advanced transaction models (ATMs) found inthe
literature are proposed in an ad hoc way for dealing with new applications involving long-lived, end-
less, and cooperative activities. Therefore, it isnot obvious to compare ATMs to each other. Alsoitis
difficult to exactly say how an ATM extends the traditional flat model of transaction, and to formulate
its propertiesin away that one clearly differenciates functionalitiesthat have been added or subtracted.
To address these questions, we haveintroduced ageneral and common framework withinwhich to spec-
ify ATMs, simulate these, specify their properties, and reason about these properties. Thus far, ACTA
([Chr91],[CR94]) seemsto our knowledgethe only framework addressing these questionsat ahighlevel
of generality. In ACTA, afirst order logic-like language is used to capture the semantics of any ATM.

172

CHAPTER 8. CONCLUSION 173

We address the problem of specifying database transactions at the logical level using the situation
calculus. The main contributionsof this thesiswith respect to the specification of ATMs can be summa-
rized asfollows:

e Weconstructed logical theoriescalled basicrelational theoriesto formalize ATMs a ong thetradi-
tion set by the ACTA framework ([CR94]); basic relational theories are non-Markovian theories
(JGab00]) in which one may explicitly refer to all past states, and not only to the previous one.
They providetheformal semantics of the corresponding ATMs. They are an extension of theclas-
sical relational theories of [Rei84] to the database transaction setting.

o Weextended the notion of legal databaselogsintroducedin [Rei95] to accommodate transactional
actionssuch as Begin, C'ommit, etc. Theselogsare first class citizen of the logic, and properties
of the ATM are expressed as formulas of the situation cal culusthat logically follow from the basic
relational theory representing that ATM.

e Our approach goes far beyond constructing logical theories, as it provides one with an imple-
mentabl e specification, thus allowing oneto simulate the specified ATM using an interpreter. Our
implementabl e specifications are written in ConGol og, an extension of GOL OG that includes par-
alelism ([DGLL97]). We specify an interpreter for running these specifications and show that this
interpreter generates only legal logs.

After dealing with ATMs, we have extended the framework for modeling ATMs to reactive and ex-
ecution models of active behaviors. With respect to these, the main contributions of the thesis can suc-
cinctly be summarized as follows:

e We applied basic relational theories to account for open nested transactions that are the kind of
transaction models that is suitable for providing the most flexible execution semantics for ECA

rules.

e Weconstructedlogical theoriescalled activerelational theoriesto formalize active databasesa ong
the lines set by the framework in basic relational theories. Active relational theories too are non-
Markoviantheories. They providetheformal semanticsof the corresponding activedatabase model.
They are an extension of the classical relational theories of [Rei84] to the transaction and active
database settings.

o We specified event algebras in the situation cal culus, and gave precise semanticsto the following
dimensionsof active behavior: event consumption modes, rulepriorities, and net effects. We al'so
specified various execution models in the situation cal culus, together with their coupling modes,
that is, immediate, deferred, and detached execution models.

CHAPTER 8. CONCLUSION 174

e Themain result hereisaset of classification theoremsfor the various semantics identified for im-
portant dimensions of active behavior such as consumption modes, and execution models. These
theorems say roughly which semantics are equivalent and which are not.

e Our approach here too provides one with implementabl e specifications of reactive behaviorswrit-
tenin ConGolog. The semantical specification of the variousexecution modelsand databasetrans-
actions readily gives us interpreters for running the specified reactive behaviors. The thesis for-
mally justifies these implementations by extending the implementation theorem of [Rei01] to ac-
tiverelational theories. Also, the ISO standard for rule systems, namely SQL 3, is specified using
active relational theories and ConGolog.

Figure 8.1: Relational theories as conceptual models of active database management systems

_ conceptua model _ prototypej - _
- - (s> - (design) — (SR (rmpiementaion) ..

We have used one single logic — the situation calculus — to accounts for virtually all features of
rule languages and execution models of ADBMSs. The output of thisaccount is a conceptual model for
ADBMSsintheform of activerelational theories. Thus, considering the software development cycle as
depicted in Figure 8.1, an active relational theory corresponding to an ADBMS constitutes a conceptual
model for that ADBMS. Since activerelational theoriesare implementabl e specifications, implementing
the conceptual model provides one with a rapid prototype of the specified ADBMS.

8.2 FutureWork

Ideas expressed and developed in this thesis may be extended in various ways. we mention a few of
them.

e Propertiesof Ruleprograms. Formalizing rulesas ConGol og programscan befruitful intermsof
proving formal properties of active rules since proving such properties can be reduced to proving
properties of programs. Here, the problems arising classically in the context of active database
like confluence and termination ([WC96]) are dealt with. In Section 6.6, we gave a preliminary
indication on how these properties can be formulated. We appeal ed to the well known distinction
between Safety and Progress properties due to Manna and Pnueli ([MP91]) and argued that the
classical properties such termination, confluence, and determinism that are ascribed to ECA rule
programs may be fruitfully viewed in the light of the general classification of Manna and Pnueli.
However, much work remains to be done on these i ssues.

CHAPTER 8. CONCLUSION 175

e Progressing Databases. One must distinguish between our approach which is a purely logical,
abstract specificationinwhich al system propertiesareformul ated rel ative to the database log, and
an implementation which normally materializes the database using progression ([Rei01]). Thisis
the distinguishingfeature of our approach. The databaselogisafirst classcitizen of thelogic, and
the semantics of all transaction operations — C'ommit, Rollback, etc. —, primitive updates, and
gueriesare defined with respect to thislog. The main mechanism used inthisrespect isregression.
However, in order to materialize thedatabase after each update, progressing thedatabaseistheway
to go. How progression can be defined for basic and active relational theoriesis completely open.

e Comparing to other Approaches. Database transaction processing is now a mature area of re-
search. However, one needsto formally know how our formalization indeed captures any existing
theory, such as ACTA, at the same level of generality. Doing so, one proves some form of cor-
rectness of our formalization, assuming that ACTA is correct. For example, we need an effective
translation of our basic relational theoriesinto ACTA axioms for arelational database and then
show that the legal logs for the situation cal culus basic relational theory are precisely the correct
historiesfor itstranglation into arelational ACTA system.

e Achieving Desired Properties of ATMs. Usually, a transaction system needs a mechanism for
its management. Such a mechanism enforces the desired properties of the underlying ATM. Tra-
ditionally, an agorithm using some form of locking (|[BHG87]) of dataitemsisused. A natural
guestion that arisesis: How can we accommodate a mechanism for enforcing the desired proper-
tiesin our framework? Accomodating such a mechanism has oneimportant advantage: wewould
obtain away of proving the correctness of locking algorithmsin logic. Oneway of achieving this
isto embody the locking algorithms into the ternary Do predicate; however, nothing is clear yet
about how this could be done.

e Nonrelational Data Models. Thusfar, we have given axioms that accommodate a complete ini-
tial database state. This, however, is not a requirement of the theory we are presenting. There-
fore our account could, for example, accommodate initial databases with null values, open ini-
tial database states, initial databases accounting for object orientation, or initial semistructured
databases. These are just examples of some of the generalizationsthat our initial databases could
admit.

e Second Order Features. Itisimportant to noticethat the only placewherethe second order nature
of our framework is needed isin the proof of the properties of the transaction modelsthat rely on
a second order induction principle contained in the foundational axioms of the situation calculus.
For the Markovian situation calculus, it is shown in [PR99] that the second order nature of this
language is not at all needed in simulating basic action theories. It remains to show that thisis

CHAPTER 8. CONCLUSION 176

also the case for the non-Markovian setting.

e Accounting for Further ATMs. We would like to accounting for some of the recent ATMs, for
exampl e those reported in [JK97] and open nested transactions proposed in the context of mobile
computing, and reason about the specifications obtained.

e Further Classification Theorems. The issue of classifying execution models and consumption
modes needs further study. For example, we classified consumption modes under the assumption
that the scope of consumptionisglobal. Wewould liketo know what happenswhen thelocal scope
isconsidered.

e Systematic I mplementation of some of the Semantics. Being foundational, thiswork has been
theoretical by its nature. Though we have shown how to implement the theories of thisthesis, and
indeed implemented some short programsas anillustration, it remainsto systematically implement
afull fledged system by following the guidelineslaid down above.

e Development Methodology. Finaly, we could explore ways of making the framework of this
thesispart of alogic-based devel opment methodol ogy for activerulesystems. Such amethodol ogy
would exhibit the important advantage of uniformity in many of its phases by using the single
language of the situation calculus.

Bibliography

[AB9S]

[Abigs]

[AHV95]

[AHWO95]

[AVSS]

[AVO]

[BCPY5]

[BCW934]

[BCW93b]

M. Arenas and L. Bertossi. Hypothetical temporal queriesin databases. In A. Borgida,
V. Chaudhuri, and V. Staudt, editors, Proceedings of the ACM SIGMOD/PODS 5th Inter-
national Workshop on Knowledge Representation meets Databases (KRDB' 98), pages4.1—
4.8, 1998. http://sunsite.informatik.rwth-aachen.de/Publications/ CEUR-WS/Vol-10/.

S. Abiteboul. Updates, a new frontier. In Proceedings of the Second International confer-
ence on Database Theory, pages 1-18, 1988.

S. Abiteboul, R. Hull, and V. Vianu. Foundationsof Databases. Addison Wesley, Readind,
MA, 1995.

A. Aiken, JM. Hellerstein, and J. Widom. Static anaysistechniquesfor predicting the be-
haviour of active database rules. ACM Transaction on Database Systems, 20:3-41, 1995.

S. Abiteboul and V. Vianu. Procedural and declarative database update languages. In Pro-
ceedings of the 7th ACM SIGACT-S GMOD-S GART Symposiumon Principlesof Database
Systems, pages 240250, 1988.

S. Abiteboul and V. Vianu. Procedural languagesfor database queries and updates. Journal
of Computer System Sciences, 41(2):181-229, 1990.

E. Bardlis, S. Ceri, and S. Paraboschi. Improved rule anaysis by means of triggering and
activation graphs. In Rulesin Database Systems, RIDS 95, pages 165181, Athens, Greece,
1995.

E. Baradlis, S. Ceri, and J. Widom. Better termination analysisfor active databases. In N.W.
Patonand H. Williams, editors, Rulesin Database Systems, pages 163-179. Springer Verlag,
1993.

M. Baudinet, J. Chomicki, and P Wol per. Temporal Deductive Databases, chapter 13, pages
294-320. The Benjamin/Cummings Publishing Company, Redwood City, CA, 1993.

177

BIBLIOGRAPHY 178

[BG8S5]

[BGP97]

[BHGST7]

[BK92]

[BK98]

[BL96]

[BLT97]

[BMO1]

[BPVOY]

[CCO5]

[CF97]

[Chro1]

[Cla78]

P. Bernstein and N. Goodman. Serializability theory for replicated databases. Journal of
Comput. System Science, 31(3):355-374, 1985.

C. Bard, M. Gelfond, and A. Provetti. Representing actions: Laws, observation and hy-
pothesis. Journal of Logic programming, 31(1-3):201-244, 1997.

PA. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in
database systems. Addison-Wesley, Reading, MA, 1987.

A. Bonner and M. Kifer. Transaction logic programming. Technica report, University of
Toronto, 1992.

A. Bonner and M. Kifer. A logic for programming database transactions. In J. Chomicki
and Saske G., editors, Logics for Databases and Information Systems. Kluwer Academic
Publishers, 1998. Chapter 5.

C. Bara and J. Lobo. Formal characterizations of active databases. In International Work-
shop on Logic in Databases, LIDS 96, 1996.

C. Bard, J. Lobo, and G. Trajcevski. Formal characterizations of active databases. Part ii.
In Proceedings of Deductive and Object-Oriented Databases, DOOD’ 97, 1997.

J. Bailey and S. Mikulas. Expressivemenssissuesand decision problemsfor active database
event queries. In ICDT 2001, pages 69-82, 2001.

L. Bertossi, J. Pinto, and R. Valdivia. Specifying database transactions and active rulesin
the situation calculus. In H. Levesque and F. Pirri, editors, Logical Foundations of Cogni-
tive Agents. Contributionsin Honor of Ray Reiter, pages 41-56, New-York, 1999. Springer
Verlag.

T. Coupaye and C. Collet. Denotational semantics for an active rule execution moddl. In
T. Sdlis, editor, Rulesin Database Systems: Proceedings of the Second I nter national Work-
shop, RIDS’ 95, pages 36-50. Springer Verlag, 1995.

S. Ceri and P, Fraternali. Designing Database Applicationswith Objetcs and Rules: The
IDEA Methodology. Addison Wesley, Readind, MA, 1997.

PK. Chrysanthis. ACTA, A Framewor k for Modeling and Reasoning about Extended Trans-
actions. PhD thesis, Department of Computer and Information Science, University of Mas-
sachusetts, Amherst, 1991.

K.L. Clark. Negationasfailure. InH. Galaireand J. Minker, editors, Logic and Databases,
pages 293-322, New-York, 1978. Plenum Press.

BIBLIOGRAPHY 179

[CMO1]

[Cod70]

[CRO4]

[CS94]

[DGGO5]

[DGLLY7]

[DGLLOO]

[EIm92]

[End73]

[FT95]

[FUV83]

[FWP97]

[GAO5]

S. Chakravarthy and D. Mishra. An event specification language (snoop) for active
databases and its detection. Technical Report UF-CIS-TR-91-23, University of Florida,
1991.

E.F. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377-387, 1970.

P. Chrysanthis and K. Ramamritham. Synthesis of extended transaction models. ACM
Transactionson Database Systems, 19(3):450-491, 1994.

R. Chandraand A. Segev. Active data bases for financia applications. In Proceedings of
the Fourth International Workshop on Research in Data Engineering (RIDE-ADS), pages
46-52, 1994.

K.R. Dittrich, S. Gatziu, and A. Geppert. The active database management system mani-
festo: A rulebase of adbms. In T. Sellis, editor, Rulesin Database Systems: Proceedings of
the Second International Workshop, RIDS’ 95, pages 3—17. Springer Verlag, 1995.

G. De Giacomo, Y. Lespérance, and H.J. Levesque. Reasoning about concurrent execution,
prioritizedinterrupts, and exogeneousactionsin thesituation calculus. In Proceedingsof the
Fifteenth International Joint Conference on Artificial Intelligence, pages 12211226, 1997.

G. De Giacomo, Y. Lespérance, and H.J. Levesque. Congolog, a concurrent programming
language based on the situation cal culus: foundations. Artificial Intelligence, 121(1-2):109—
169, 2000.

Ahmed K. Elmagarmid. Database transaction models for advanced applications. Morgan
Kaufmann, San Mateo, CA, 1992.

H.B. Enderton. A Mathematical Introductionto Logic. Academic Press, New York, 1973.

P. Fraternali and L. Tanca. A structured approach to the definition of the semantics of active
databases. ACM Transactionson Database Systems, 20:414-471,1995.

R. Fagin, J. Ullman, and M.Y. Vardi. Updating logical databases. In Proceedings of the
second ACM SGACT-SGMOD-S GART Symposium on Principles of Database Systems,
1983.

A.A.A. Fernandes, M.H. Williams, and N.W. Paton. A logic-based integration of activeand
deductive databases. New Generation Computing, 15(2):205-244, 1997.

J. Gray and Reuter A. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers, San Mateo, CA, 1995.

BIBLIOGRAPHY 180

[GabOO]

[Gab024]

[Gab02b]

[GDY4]

[GJS92]

[GL8S]

[GL9O]

[Grag]]

[HDO3]

[HJ91]

[HLM88]

[JF96]

[JK97]

A. Gabaldon. Non-markovian control in the situation calculus. In G. Lakemeyer, editor,
Proceedingsof the Second I nter national Cognitive Roboti csWor kshop, pages 28-33, Berlin,
2000.

A. Gabaldon. Non-markovian control in the situation calculus. In Proceedings of AAAI,
Edmonton, Canada, 2002.

Alfredo Gabaldon. Programming hierarchical task networks in the situation calculus. In
AIPS 02 Workshop on On-line Planning and Scheduling, Toulouse, France, April 2002.

S. Gatziu and K.R. Dittrich. Detecting composite eventsin active database systems using
petri nets. In Proceeding on Research Issues in Data Engineering, RIDE 94, pages 2-9,
1994.

N.H. Gehani, H.V. Jagadish, and O. Shmueli. Composite event specification in active
databases: Model and implementation. In Proceedings of the 18th VLDB Conference, pages
327-338, Vancouver, 1992.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R Kowalski and K.A. Bowen, editors, Proceedings the 5th International Conference on
Logic Programming, pages 1070-1080, Cambridge, MA, 1988. MIT Press.

A. Guessoum and JW. Lloyd. Updating knowledge bases. New Generation Computing,
8(1):71-89, 1990.

G. Grahne. The Prablem of Incomplete Informationin Relational Databases. Springer Ver-
lag, Berlin, 1991.

J.V. Harrisson and SW. Dietrich. Integrating active and deductive rules. In Rulesin
Database Systems, RIDS 93, pages 288-305, Edinburgh, 1993. Springer-Verlag.

R. Hull and D. Jacobs. L anguage constructsfor programming active databases. 1n Proceed-
ings of the 17th International Conference on VLDB, Barcelona, 1991.

M. Hsu, R. Ladin, and R. McCarthy. An execution model for active database management
systems. In Proceedings of the third International Conference on Data and Knowledge
Bases, pages 171-179. Morgan Kaufmann, 1988.

U Jaeger and J.C. Freytag. Annotated bibliography on active databases. Technical report,
Humboldt-University, Berlin, 1996.

S. Jgjodiaand L. Kerschberg. Advanced Transaction Models and Architectures. Kluwer
Academic Publishers, Boston, 1997.

BIBLIOGRAPHY 181

[Kir0ld]

[Kir01b]

[Kir01c]

[Kir02]

[KM91]

[KMC99]

[Kow74]

[KRO2]

[K S86]

[L ako6]

[LHL95]

[Lif87]

| Kiringa. Simulation of advanced transaction modelsusing golog. In Proceedingsof the 8th
Biennial Workshop on Data Bases and Programming Languages (DBPL’ 01), 2001. Volume
2397 of Springer Lecture Notesin Computer Science, p. 318-341, Springer, 2002.

| Kiringa. A theory of advanced transaction modelsin the situation calculus. In LICS 01,
2001.

I. Kiringa. Towards atheory of advanced transaction modelsin the situation calculus (ex-
tended abstract). In Proceedings of the VLDB 8th International Workshop on Knowledge
Representation Meets Databases (KRDB' 01), 2001.

I. Kiringa. Specifying event logicsfor active databases. In Proceedings of the KR 9th In-
ternational Workshop on Knowledge Representation Meets Databases (KRDB'02), pages
79-91, 2002.

H. Katsuno and A.O. Mendelzon. On the difference between updating a knowledge base
and revising it. In Proceedings of the Second International Conference on Principles of
Knowl edge Representation an Reasoning, pages 387—394, Los Altos, CA, 1991. Morgan
Kaufmann Publishers.

K. Kulkarni, N. Mattos, and R. Cochrane. Active database featuresin sgl-3. In N. Paton,
editor, Active Rulesin Database Systems, pages 197-219. Springer Verlag, 1999.

R.A. Kowalski. Predicate logic as a programming language. Information Processing,
74:569-574,1974.

I. Kiringaand R. Reiter. Specifying semantics of active databases in the situation calculus
(extended abstract). Submitted, 2002.

R.A. Kowalski and M.J. Sergot. A logic-based calculus of events. New Generation Com-
puting, 4, 1986.

G. Lakemeyer. Only knowing in the situation calculus. In Proc. of the 5th International
Conference on Principles of Knowledge Representation and Reasoning, pages 14-25. Mor-
gan Kaufmann, 1996.

B. Ludascher, U. Hamann, and G. Lausen. A logica framework for active rules. In Pro-
ceedings of the Seventh I nter national Conference on Management of Data, Pune, 1995. Tata
and McGraw-Hill.

V. Lifschitz. On the semantics of strips. In M.P. Georgeff and A.L. Lansky, editors, Rea-
soning About Actionsand Plans, pages 1-9, Los Altos, CA, 1987. Morgan Kaufmann Pub-
lishing.

BIBLIOGRAPHY 182

[LLL*94]

[L1088]

[LML96]

Y. Lespérance, H. Levesque, F. Lin, D. Marcu, R. Reiter, and R. Scherl. A logical approach
to high-level robot programming — a progress report. In Control of the Physical World by
Intelligent Systems, Working Notes of the 1994 AAAI Fall Symposium, pages 109-119, New
Orleans, November 1994,

JW. Lloyd. Foundations of Logic Programming, Second, Extended Edition. Springer-
Verlag, Berlin, 1988.

B. Ludascher, W. May, and G. Lausen. Nested transactionsin alogical language for active
rules. Technical Report Jun20-1, Technical Univ. of Munich, June 1996.

[LMWEF88] N.Lynch, M.M. Merritt, W. Weihl, and A. Fekete. A theory of atomic transactions. In

M. Gyssens, J. Parendaens, and D. Van Gucht, editors, Proceedings of the Second Interna-
tional Conference on Database Theory, pages41—71, Berlin, 1988. Springer Verlag. LNCS
326.

[LMWF94] N. Lynch, M.M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan Kauf-

[LR94]

[LRL*97]

[MC98]

[McC63]

[MD8Y]

[MH69]

[Minge]

mann, San Mateo, 1994.

F.Linand R. Reiter. State constraintsrevisited. J. of Logic and Computation, 4(5):655-678,
1994.

H. Levesgue, R. Reiter, Y. Lespérance, Fangzhen Lin, and R.B. Scherl. Golog: A logic
programming language for dynamic domains. J. of Logic Programming, Special Issue on
Actions, 31(1-3):59-83, 1997.

J. McCarthy and T. Costello. Combining narratives. In A.G. Cohn and L.K. Schubert, edi-
tors, Principles of Knowl edge Representation and Reasoning: Proceedings of the Fifth In-
ternational Conference (KR’ 98, pages48-59, San Francisco, CA, 1998. Morgan Kaufmann.

J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University,
1963.

D. McCarthy and U. Dayal. The architecture of an acctive data base management system.
In ACM-SIGMOD Conference on Management of Data, Portland, 1989.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. Machine Intelligence, 4:463-502, 1969.

J. Minker. Logic and databases: A 20 year retrospective. In International Workshop on
Logicin Databases, LIDS 96, pages 3-57, 1996.

BIBLIOGRAPHY 183

[Mor83]

[Mos85]

[MPOO]

[MPO1]

[NRZ92]

[OV99]

[Pat99]

[PCFW95]

[PD99]

[PDW+93]

[Ped89]

[Fingg]

[Pnu77]

M. Morgenstern. Active databases as a paradigm for enhanced computing environments. In
Proceedings of the International Conference on Very Large Databases, pages 34-42, 1983.

J. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. Informa-
tion Systems Series. The MIT Press, Cambridge, MA, 1985.

B.E. Martin and C Pedersen. Long-lived concurrent activities. Technical report, HP Labo-
ratories, 1990. HPL-90-178.

Z.Mannaand A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer
Verlag, New-York, 1991.

M.H. Nodine, S. Ramaswamy, and Zdonik. A cooperative transaction model for design
databases. In A.K. ElImagarmid, editor, Database Transaction Models for Advanced Appli-
cations, pages 53-85, San Mateo, CA, 1992. Morgan Kaufmann.

T. Ozsu and P. Va duriez. Principlesof Distributed Database Systems, 2nd Edition. Prentice
Hall, Upper Saddle River, NJ, 1999.

N.W. Paton. Active Rulesin Database Systems. Springer Verlag, New York, 1999.

N.W. Paton, J. Campin, A.A.A. Fernandes, and M.H. Williams. Formal specifications of
active database functionality: A survey. In T. Sellis, editor, Rules in Database Systems:
Proceedings of the Second I nter national Workshop, RIDS’ 95, pages 21-35. Springer Ver-
lag, 1995.

N.W. Paton and O. Di&z. Active database systems. ACM Computing Review, 31(1):63-103,
1999.

N.W. Paton, O. Diaz, M.H. Williams, J. Campin, A. Dinn, and A. Jaime. Dimensions of
activebehaviour. In N.W. Paton and H. Williams, editors, Rulesin Database Systems, pages
42-57. Springer Verlag, 1993.

E.P.D. Pednault. Exploring the middle ground between strips and the situation calculus. In
R. Brachman, H. Levesque, and R. Reiter, editors, Proceedings of the First International
Conference on Principles of Knowledge Representation and Reasoning, pages 324-332,
Toronto, 1989. Morgan Kaufmann Publishing.

J.A. Pinto. Occurrences and narratives as constraintsin the branching structure of the situ-
ation calculus. Journal of Logic and Computation, 8:777—808, 1998.

A. Pnueli. Thetemporal logic of programs. In Proceedings of the 18th IEEE Symposium
on foundations of Computer Science, pages 46-57. |EEE Computer Society, 1977.

BIBLIOGRAPHY 184

[PROY]

[Prz88]

[PV95]

[PVO7]

[Rei 78]

[Rei84]

[Rei86]

[Rei91]

[Rei95]

[Rei96]

[Rei01]

[RPS99]

[San00]

F. Pirri and R. Reiter. Some contributionsto the metatheory of the situationcal culus. Journal
of the ACM, 46(3):325-364, 1999.

T. Przymusinski. On the declarative semantics of stratified deductive databases and logic
programming. In J. Minker, editor, Foundations of Deductive Databases and logic Pro-
gramming, pages 193-216, Los Altos, CA, 1988. Morgan Kaufmann Publishers.

P. Picouet and V. Vianu. Semantics and expressivenessissuesin active databases. In ACM
Symposiumon Principles of Database Systems, pages 126-138, San Josg, 1995.

P. Picouet and V. Vianu. Expressiveness and complexity active databases. In ICDT 97,
1997.

R. Reiter. On closed world data bases. In Logic and Data Bases, Symposiumon Logic and
Data Bases, pages 5576, New-York, 1978. Plenum Press.

R. Reiter. Towards alogica reconstruction of relational database theory. In M. Brodie,
J. Mylopoulos, and J. Schmidt, editors, On Conceptual Modelling, pages 163-189, New-
York, 1984. Springer Verlag.

R. Reiter. A sound and sometimes complete query evaluation algorithm for relationa
databases with null values. Journal of the ACM, 33:349-370, 1986.

R. Reiter. The frame problemin the situation calculus: A simple solution (sometimes) and
a completeness result for goal regression. In V. Lifschitz, editor, Artificial Intelligence and
Mathematical Theory of Computation: Papersin Honor of John McCarthy, pages 359380,
San Diego, 1991. Academic Press.

R. Reiter. On specifying database updates. J. of Logic Programming, 25:25-91, 1995.

R. Reiter. Natura actions, concurrency and continuous time in the situation calculus. In
L.C. Aidlo, J. Doyle, and S.C. Shapiro, editors, Principles of Knowledge Representation
and Reasoning: Proceedings of the Fifth International Conference (KR 96), pages 2-13,
San Francisco, CA, 1996. Morgan Kaufmann.

R. Reiter. Knowledge in Action: Logical Foundations for Describing and Implementing
Dynamical Systems. MIT Press, Cambridge, 2001.

S. Reddi, A. Poulovassilis, and C. Small. Pfl: an active functiona dbpl. In N.W. Paton, ed-
itor, Active Rulesin Databases Systems, pages 297—-308, New-York, 1999. Springer Verlag.

M.V. Santos. Specifying and reasoning about actionsin open-worldsusing transactionlogic.
In Proceedings of the ECAI 2000 Workshop on Cognitive Robotics, Berlin, Germany, 2000.

BIBLIOGRAPHY 185

[SC85]

[Schoo]

[Sve7]

[Ten76]

[Ter99]

[VEK76]

[VGRS88]

[WCO6]

[Wido2]

[Wido3]

[Wido4]

[Win9O]

A.P. Sistlaand E.M. Clarke. The complexity of propositional linear temporal logics. Journal
of the ACM, 32(3):733-749, 1985.

L.K. Schubert. Monotonic solution to the frame problem in the situation calculus: A ef-
ficient method for worlds with fully specified actions. In H.E. Kyberg, R.P. Louis, and
G.N. Carlson, editors, Knowledge Representation and Defeasible Reasoning, pages 23-67,
Boston, Mass., 1990. Kluwer Academic Press.

Abiteboul S. and V. Vianu. A transaction language compl ete for database update and speci-
fication. In Proceedings of the sixth ACM S GACT-S GMOD-S GART Symposiumon Prin-
ciples of Database Systems, pages 260268, San Diego, CA, 1987.

R.D. Tennent. The denotationa semantics of programming languages. Communications of
the ACM, 19:437-453, 1976.

E. Ternovskaia. Automatatheory for reasoning about automata. 1n Proceedings of the Sx-
teenth Inter national Joint Conference on Artificial Intelligence, pages 153-158, 1999.

M.H. Van Emden and R. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733-742, 1976.

A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics
for general programs. In Proceedings the 7th Annual ACM Symposium on Principles of
Database Systems, pages 221-230. ACM Press, 1988.

J.Widomand S. Ceri. Active Database Systems: Triggersand Rulesfor Advanced Database
Processing. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

J. Widom. A denotational semantics for the starburst production rule language. SGMOD
RECORD, 21(3):4-9, September 1992.

J. Widom. Deductive and active databases: Two paradigms or ends of a spectrum? In
N.W. Paton and H. Williams, editors, Rulesin Database Systems, pages 306—315. Springer
Verlag, 1993.

J. Widom. Research issuesin active database systems: Report from the closing panel at
ride-ads 94. ACM-SI GMOD, 25, 1994.

M. Winslett. Updating Logical Databases. Cambridge University Press, Cambridge, MA,
1990.

BIBLIOGRAPHY 186

[WS92] G. Weikum and H.J. Schek. Concepts and applications of multilevel transactions and open
nested transactions. In A.K. ElImagarmid, editor, Database Transaction Models for Ad-
vanced Applications, pages 516-553, San Mateo, CA, 1992. Morgan Kaufmann.

[Zan93] C. Zaniolo. A unified semantics for active and deductive databases. In N.W. Paton and
H. Williams, editors, Rulesin Database Systems, pages 271-287. Springer Verlag, 1993.

[Zan95] C. Zaniolo. Active database rules with transaction-conscious stable-model semantics. In
T.W. Lingand A.O. Mendelzon, editors, Fourth Inter national Conference on Deductiveand
Object-Oriented Databases, pages 5572, Berlin, 1995. Springer Verlag.

[ZzU01] D. Zimmer and R. Unland. On the semantics of complex eventsin active database manage-
ments systems. Unpublished, 2001.

Appendix A

The Regression Oper ator

A.1 Reiter’'sRegression Operator

Definition A.1 (Markovian Regressable Formulas) A formula W of Lg;s.q;. 1S Markovian regressable
iff

1. Wisalfirstorder formulawhosetermsof of sort S areall of thesyntacticformdo([a, - - - ,], So),
wheren > 0and aq, - - -, a, areof sort A.
2. Inevery atom Poss(c, o) mentionned by W, o isof theform A(¢q, - - - , ¢,,,), wheren > 0 and A

issome n-ary action function symbol of Lg;;cq1c-

3. W does not quantify over situations and does not mention the predicate symbol , nor equality
atoms over situation terms.

Suppose W, Wy, W5, and W' are regressable formulas of L;;.q1, and D is a basic (Markovian)
action theory. Then the regression operator isrecursively defined as follows ([Rei01]).

(i) Suppose W isan atom. Then

o AssumeW istheequality do([aq, - - -, o], So) = do([af, - -+, &], So) between two terms
of sort §. Then: if m = n = 0, then R[W] = true; if m # n, then R[W] = false; if
m=nandm,n > 1L, thenR[W]=a; =] A+ ANa,, = a,.

e AssumelWV istheequality do([a1, - - - ,], So) C do([a, - - -, @], So) between twoterms
of sort S. Then: if m = 0andn > 1, then R[W] = true; if m > n, then R[W] = false;
ifl<m<n,thenRW]=a1 =0 A---ANa, = al,.

e |f W isan equality involvingterms of sorts.A or O, then R[W] = W.
e If Sy istheonly term of sort S mentioned by W, then R[W] = W.

187

APPENDIX A. THE REGRESSION OPERATOR 188

e If W isaregressable atom Poss(A(t), o), where A(7) is an action with precondition ax-
iom Poss(A(Z),s) = T4(7F, s) inD,,, then RIW] = R[I14(t,s)], where al quantified
variables of 14 (7, s) conflicting with free variables of Poss(A(%), s) have been renamed.

o If W mentionsaterm of theform f(#, do(«, o)) for somefunctional fluent f with successor
state axiom f(Z, do(a, s)) = y = ®4(7, y, a, s) in Dy, then

(7, do(a, o))

RIW] = R[@y)- 5,y 0, 0) A W]]

whereall quantified variablesof & ; (7, y, a, s) conflictingwithfreevariablesof F(£, do(a, o))
have been renamed.

o If W isafluent atom of thefrom F(, do(a, o)), where I isaFluent with successor state ax-
iom F'(7, do(a, 5)) = ®F (7, a, s) iNDy,, then R[W] = R[®r(F, o, 0)], whereall quantified
variablesof ® (7, a, s) conflictingwithfree variablesof F (£, do(«, o)) have been renamed.

(i) Suppose W, Wy, and W, are anon-atomic formulas. Then R[-W] = —R[W], R[W1 A Ws] =
R[W1] A R[W,], and R[(Fz)W] = (Fz)R[W].

A.2 Regression Operator For Active Relational Theories

Definition A.2 (Non-Markovian Regressable Formulas) A formula W of Lg;;c.1. iSnon-Markovian re-
gressableiff

1. W satisfiesthe conditions (1)—(3) of Definition A.1.

2. W may quantifies over situationsand mention the predicate symbol C aswell as equality atoms
over situationterms.

Suppose W and W' are regressable formulas of L,;;.q;., and D isan active relational theory. Then
the regression operator is recursively defined as follows (slightly extending [Gab00]).

(i) SupposeW isan atom

e whichis situation-independent,
b d‘o([ah"' 7am]750) :do([a/h"' ,OA%],S()),
b d‘o([ah"' 7am]750) C do([a/h"' 7a;1]750)1

Poss(A(t1, - ,tm),0),

mentioning .S, asthe only term of sort S,

mentioning a functional term of the form ¢(Z, do(a, o)),

APPENDIX A. THE REGRESSION OPERATOR 189

o F(t,do(a,0))or F(i,tr,do(a, o)) whichisarelational fluent,
o ['(r,t,do(a, o)) whichisaprimitive event fluent,
o F(r,t,tr,do(a, o)) whichisatransition tablefluent,

e dep(t,t', do(a, o)) whichisadependency predicate.
Then R[W] isthe same as in Markovian regression.

(i) Suppose W isof theform (3s).do([ay, - - -, o], 8) T do([ed), - - -, al], So) A W', withm,n > 1.
If m > n, then R[W] = false, otherwise

RIW] = R[(3s).do([ar, -+, an],s) = do([ef, -, &
R[(3s).do([ar, -,],

_1]: S| AWV
_1], So) A W'].

!
n
!
n

)I:dO([O/l,---7og

w»

(iii) SupposeW isof theform (3s).do([aq, - - -, o], 5) = do([a], - - -, al], So) AW/, withm, n > 1.
If m > n, then R[W] = false, otherwise

RW] = R[(3s).s=do([o}, - ,al,_,],50)]Aa1 =aj,_ g A Aay, =a, AW,

(iv) Suppose W isof theform (3s).do(s = do([av1, - - -, an], So) A W/, withn > 1. Then R[W] =
RV (o].

ai,e,an],S0)

(v) Non-atomic cases are treated as in the case of basic Markovian action theories.

Appendix B
The Revised Lloyd-Topor Rules

The implementation theorem appeal s to the revised L1oyd-Topor transformation rules ([Rei01]). These
are thewell-known transformation rules proposed by LIoyd and Topor ([L1088]), except that the revised
rulesavoidintroducing new (auxilliary) predicates and clauses. We usetherevised Ll1oyd-Topor rulesfor
transforming if-halves of definitionsinto a syntactic form amenabl e to Prolog i mplementation according
to theimplementationtheorem. Therevised L1oyd-Topor rulestransform asentenceof theform W o A,
where W is an arbitrary first order formulaand A is an atom, into a formula of the form l¢(W) O A,
which is an executable Prolog formula; [t (W) is recursively defined as follows.

Wh) A Lt(W3),

= It(
= (W) V 1L(W),

(=W1)) v [t(=W2),
I(=(Wy v Wa)) = 1L(=W1)) A Lt (=),
WV W),
(Wi D Wa) At (W D Wh))),

—_—

190

Appendix C

Semantics of ConGolog Programs

The semantics of ConGolog programms in terms of F'inal (8, s), Trans(8, s, ', s'), and Do(4, s, s') is
afollows:

Final(nil,s) = TRUE, Final(a,s) = FALSE, Final(¢?,s) = FALSE,

Final(d1;d2,s) = Final(d1, s) A Final(da, s),

Final(wz §,s) = () Final(8, s), Final(87,s) = TRUE,

(
(
Final(61]02, s) = Final(d1,s) V Final(da, s),
(
Final(éy || d2,8) = Final(d1,s) /\Fz'nal((ig,3),Final(6”,3) =TRUE.

(36").6 = (6';82) A Trans(dy, 5,8, s'),
Trans(81]6s, 5,8, 5') = Trans(dy,s,8,s') V Trans(ds, 5,4, '),
Trans(rz 81, 5,89, 5') = (3z) Trans(d1, 5,2, '),
(8%, 5,82,5') = (38"). 65 = (8';67) A Trans(dy, 5,8, s'),
(81 || 62,5,8,5') = (36').6 = (6" || 62) A Trans(1,s,6',s') V

§ = (61 8") A Trans(ds,5,8"s"),

Trans(dl, s,8,s') = (38').6 = (6" || 81) A Trans(d,s,8, '),
Trans(if ¢ then 6, elsedy, s,8,5') = Trans([¢?;81] | [~67; 03], 5,6,),
Trans(While¢ do § endWhile, s, &', s') = Trans([¢7;6]" ; ~¢?, 5,4, s').

Do(6,s,s') =gt (38').Trans*(8,s,8",s") A Final(8',s").

Here, T'rans* denotesthetransitiveclosure of T'rans.

191

Appendix D

Sample Programs

D.1 TheBRT for the Debit/Credit Example

/* Transaction specification */
proc(dbTrans(T, Tid, Aid, Ant),

begi n(T) :

pi (bid, pi(abal, pi(tid, ?(accounts(Aid,bid,abal,tid, T)) :

execDebitCredit(T,bid, Tid,Aid, Ant)))):
end(T)).

proc(execDebitCredit(T,Bid, Tid, Ai d, Ant),
a_update(T, Aid, Ant) :
pi(tid, pi(abal, ?(accounts(Aid,Bid,abal,tid, T)) :
t _update(T,Tid, Amt) :
b update(T,Bid,Ant)))).

proc(a_update(T, Aid, Ant),
pi (bid, pi(aball, pi(tid,
?(accounts(Aid, bid,abal 1,tid, T)) :
pi (abal 2, ?(abal2 is aball + Amt) :
a_delete(Aid, bid,abal 1,tid, T) :
a_insert(Aid, bid,abal2,tid, T)))))).

proc(t_update(T, Tid, Ant),
pi (tbal 1, ?(tellers(Tid,tbal1,T)) :
pi (tbal 2, ?(tbal2 is tball + Am)
t _delete(Tid,tball, T) :

192

APPENDIX D. SAMPLE PROGRAMS 193

t_insert(Tid,thal2,T)))).

proc(b_update(T, Bid, Ant),
pi (bbal 1, pi (bnane,
?(branches(Bi d, bbal 1, bnane, T))
pi (bbal 2, ?(bbal2 is bball + Ant)
b_del et e(Bi d, bbal 1, bnane, T)
b_insert(Bid, bbal 2, bnanme, T))))).

/* Declaration of primtive actions */

primtive_action(a_insert(_, , ,_,_)). primtive_action(a_delete(_,_,_, ,)).
primtive_action(b_insert(_, , ,)). primtive_action(b_delete(_, , ,_)).
primtive_action(t_insert(_, ,)). primtive_action(t_delete(_, ,)).

/* Action precondition axionms for internal actions*/

poss(a_insert(Aid,Bid,Abal , Tid, T),S) :- not accounts(Aid,Bid, Abal,Tid, ,S),
ic(do(a_insert(Aid, Bid, Abal ,Tid, T),S)), running(T,S).

poss(a_del ete(Aid, Bid, Abal , Tid, T),S) :- accounts(Aid,Bid, Abal,Tid, _,9S),
ic(do(a_del ete(Aid,Bid,Abal ,Tid, T),S)), running(T,S).

poss(b_i nsert(Bid, Bbal ,Bnane, T),S) :- not branches(Bid, Bbal , Bnane, ,S),
i c(do(b_insert(Bid,Bbal,Bnanme, T),S)), running(T,S).

poss(b_del et e(Bi d, Bbal , Bnane, T), S) :- branches(Bid, Bbal , Bnane, _, S),
i c(do(b_del ete(Bid, Bbal ,Bnanme, T),S)), running(T,S).

poss(t_insert(Tid, Thal ,T),S) :- not tellers(Tid, Thal, ,S),
ic(do(t_insert(Tid, Thal ,T),S)), running(T,S).

poss(t_delete(Tid, Thal ,T),S) :- tellers(Tid, Thal, ,S),
ic(do(t_delete(Tid, Thal ,T),S)), running(T,S).

/* Integrity constraints */

ic(do(A'S)) :-
hol ds((all (a, all(b, all(bal, all(t, all(bl, all(ball, all(t1,
accounts(a, b,bal,t, ,do(A S)) & accounts(a,bl,ball,tl, ,do(AS)) =>

b=bl & bal=ball & t=t1))))))) &

all (b, all(bal, all(bnanme, all(ball1, all(bnanel,

branches(b, bal , bnane, , do(A S)) & branches(b, bal 1, bnanel, ,do(A'S)) =>
bal =bal 1 & bname=bnanel))))) &

all(t, all(bal, all(bal1l,

tellers(t,bal,_,do(A'S)) &tellers(t,ball, ,do(A'S)) =>

APPENDIX D. SAMPLE PROGRAMS 194

bal =bal 1)))), S,_S).

gic(S) :- holds(all(a, all(b, all(bal, all(t,
accounts(a, b,bal,t, ,S) => bal >=0)))), S, _9.

/* Succ state axions for base tables (database fluents) of the DB
Noti ce that the axi ons as presented here have undergone a sinplification
that allowed us to get rid of "wites/3", which, however, was inmportant
in proving some of the properties of |egal logs. */

accounts(Aid, Bid, Abal ,Tid, T,do(A'S)) :-
not A = roll back(T),
(A=a_insert(Aid, Bid,Abal,Tid,);
accounts(Aid, Bid, Abal ,Tid, _,S), not A=a_delete(Aid,Bid, Abal,Tid,));
A = roll back(T),
hol ds(sone(tprime, somes(sprime, do(begin(T),sprinme) << S,
accounts(Aid, Bid, Abal ,Tid,tprinme,sprine))), S, _).

branches(Bi d, Bbal , Bnane, T, do(A, S)) : -
not A = roll back(T),
(A=b_insert(Bid, Bbal, Bnane, _);
branches(Bi d, Bbal , Bhane, ,S), not A=b_del et e(Bi d, Bbal , Bhame, _));
A = roll back(T),
hol ds(sone(tprime, somes(sprime, do(begin(T),sprinme) << S,
branches(Bi d, Bbal , Bhnane, tprinme,sprine))), S, _).

tellers(Tid, Thal, T,do(A'S)) :-
not A = roll back(T1),
(A=t _insert(Tid, Thal,);
tellers(Tid, Thal, ,S), not A=t_delete(Tid, Thal,))
A = roll back(T2),
hol ds(sone(tprime, somes(sprime, do(begin(T),sprinme) << S,
tellers(Tid, Thal ,tprinme,sprine))), S,).

/* Restoring situation arguments */
restoreSitArg(accounts(WV, X, Y, Z), S, accounts(WV, X Y, 7 9)).
restoreSit Arg(branches(WX, Y, 2), S, branches(WX Y,Z,9)).

restoreSitArg(tellers(WX Y),S tellers(WX Y,9)).

/* Initial database */

APPENDIX D. SAMPLE PROGRAMS 195

/* Note that the Init. DB satisfies the integrity
constraints to be enforced. */

accounts(al, b1, 1000,t1_1, ,s0). accounts(a2, bl,100,t1 1, ,s0).
accounts(a3, bl,10,t1_2, ,s0). accounts(a4,bl,0,t1 3, ,s0).

account s(a5, b2, 1000,t2_1, ,s0). accounts(a6,b2,0,t2_2, ,s0).

account s(a7, b3, 5000,t3_1, ,s0). accounts(a8, b3,500,t3 2, ,s0).

account s(a9, b3, 1000,t3_2, ,s0).

branches(bl, 10000, col | egeStr, , s0). branches(b2, 10000, harbor Str, , s0).
branches(b3, 10000, uni vStr, _, s0).

tellers(tl_1,5000, ,s0). tellers(tl1_2,5000, ,s0). tellers(tl1l_3,5000, ,sO0).
tellers(t2_1,5000, ,s0). tellers(t2_2,5000, ,s0). tellers(t3_1,5000, ,sO0).
tellers(t3_2,5000, ,sO0).

/* Each transaction is responsible for actions that bear its nane. */

responsible(T,a_insert(_, , , ,T),S). responsible(T,a delete(_, , , ,T),9S).
responsi ble(T,b_insert(_, , ,T),S). responsible(T,b_delete(_, _,_,T),9).
responsi bl e(T,t_insert(_, ,T),S). responsible(T,t_delete(_, ,T),S).

responsi bl e(T,accounts(_, , ,_,T),S). responsible(T, branches(_, , ,T),S).

responsi ble(T,tellers(_, _,T),S).

/* Conflict table */

updConflict(a_insert(X, _, , ,T),a delete(X, _, , ,T1),S) :- not T=TI1.
updConflict(a_delete(X, _, , ,T),a insert(X, _, , ,T1),S) :- not T=TI1.
updConflict(b_insert(X, _, ,T),b delete(X, _,_,T1),S) :- not T=T1.
updConflict(b_delete(X, _, ,T),b_insert(X, _,_,T1),S) :- not T=T1.

updConflict(t_insert(X, _,T),t _delete(X _,T1),S) :- not T=T1.
updConflict(t_delete(X, ,T),t_insert(X _,T1),S) :- not T=T1.

updConflict(accounts(X, , , ,T),a delete(X, _, , ,T1),S) :- not T=TI1.
updConflict(accounts(X, , , ,T),a insert(X, _, , ,T1),S) :- not T=TI1.
updConflict(branches(X, _, ,T),b delete(X, _,_,T1),S) :- not T=T1.
updConflict(branches(X, _, ,T),b_insert(X, _,_,T1),S) :- not T=T1.

updConflict(tellers(X _,T),t _delete(X _,T1),S) :- not T=TI1.
updConflict(tellers(X _,T),t_insert(X _,T1),S) :- not T=TI1.

updConflict(a_delete(X, _, , ,T1l),accounts(X, _, , ,T),S) :- not T=TI1.
updConflict(a_insert(X, _, ,_,Tl),accounts(X, _, , ,T),S) :- not T=TI1.
updConflict(b_delete(X, _, ,T1),branches(X _, ,T),S) :- not T=T1.

updConflict(b_insert(X, _, ,T1),branches(X _, ,T),S) :- not T=T1.

APPENDIX D. SAMPLE PROGRAMS 196

updConflict(t_delete(X, _,T1),tellers(X _,T),S) :- not T=TI1.
updConflict(t_insert(X _,T1),tellers(X _,T),S) :- not T=TI1.

/* M scel anous predicates */

/* Notice that we droped the tuple argunent in wites/3
to ease the sinulations. */

wites(a_insert(_, , ,_ ,T),accounts, T).
wites(a_delete(_, , ,_,T),accounts, T).
wites(b_insert(_,_, ,T),branches, T).
wites(b_delete(_, , ,T),branches, T).
wites(t_insert(_, ,T),tellers, T).
wites(t_delete(_, ,T),tellers, T).
readAct (accounts(_, ,_, _,T),accounts, T).
readAct (branches(_, , , T), branches, T).
readAct (tellers(_, ,T),tellers, T).

/* End of the Exanple */

D.2 TheART for thePortfolio Example

/* The Portfolio Exanple */

/* Transaction specification */

proc(h_val _update(T, H d, Ant),
pi (hn, pi(c, pi(v, pi(vl,
?(hol der(H d, hn,c, v, T))
?2(vliis v + Ant)
h_del ete(Hi d, hn,c, v, T)
h_insert(H d,hn,c,v1, T)))))).

proc(s_qty_update(T, Sid, Ant),
pi (sn, pi(pr, pi(qty, pi(qtyl,

APPENDIX D. SAMPLE PROGRAMS 197

?(stock(Sid,sn,pr,qty, T))

?2(qtyl is qty + Ant)
s_delete(Sid,sn,pr,qty,T)
s_insert(Sid,sn,pr,qtyl, T)))))).

proc(s_pr_update(T, Sid, Ant),
pi (sn, pi(pr, pi(qty, pi(pri,
?(stock(Sid,sn,pr,qty,T)) :
?(prlis pr + Am)
s_delete(Sid,sn,pr,qty,T)
s_insert(Sid,sn,prl,qty,T)))))).

proc(o_qty_update(T, Hid, Sid, Ant),
pi (qty, pi(qtyl,
?(owns(H d,Sid,qty, T))
?2(qtyl is qty + Amt)
o_delete(H d,Sid,qty, T)
o_insert(H d,Sid,qtyl,T)))).

/* Rule procedure following the i Mmediate E/C and C/ A coupling nodes */

proc(rul es(T),
?(stock_inserted(rulel, T))
pi (hid, pi(sid, pi(qty2
?(sone(pr, sone(sn, sone(qtyl,

stock_inserted(rulel,sid,sn,pr,qtyl, T) &
owns(hid,sid, qty2, T) & pr =0))))

stopCons(rul el, T) : begi nCons(rul el, T)

o_delete(hid,sid,qty2,T)))) #

?(owns_inserted(rule2,T))
pi (hid, pi(sid, pi(qtyl,
?(owns_inserted(rule2, hid,sid,qty1,T))))) :
stopCons(rul e2, T) : begi nCons(rul e2,T)
pi (ant, pi(sn, pi(pr, pi(qty2,
?(stock(sid,sn,pr,qty2, T)) : ?(ant is pr * qtyl)
h_val _update(T, hid,ant) : s qty update(T,sid, -qtyl))))) #

?(-((stock_inserted(rulel, T) &

APPENDIX D. SAMPLE PROGRAMS 198

some(sid, sone(sn, sone(pr, sone(qtyl, sone(hid, some(qty2,
stock_inserted(rulel,sid,sn,pr,qtyl, T) &
owns(hid,sid, qty2, T) &pr =0))))))) Vv
(owns_inserted(rule2, T) &
some(hid, sone(sid, some(qtyl,
owns_inserted(rule2,hid,sid,qtyl,T)))))))).

/* Declaration of primtive actions */

primtive_action(h_insert(_, , , ,_)). primtive_action(h_delete(_,_,_, ,)).
primtive_action(s_insert(_, , ,_,_)). primtive_action(s_delete(_,_,_, ,)).
primtive_action(o_insert(_, , ,_)). primtive_action(o_delete(_, , ,_)).

/* Action precondition axionms for internal actions*/

poss(h_i nsert (H d, Hhane, Country, Value, T),S) : -
not hol der (H d, Hhane, Country, Val ue, _, S),
i c(do(h_insert (Hid, Hhame, Country, Value, T),S)), running(T,S).
poss(h_del et e(Hi d, Hhane, Country, Val ue, T),S) : -
hol der (Hi d, Hhane, Count ry, Val ue, _, S),
i c(do(h_del et e(Hi d, Hhame, Country, Value, T),S)), running(T,S).
poss(s_insert(Sid, Snane,Pr,Qy,T),S) :- not stock(Sid, Sname, Pr,Qy, ,9),
ic(do(s_insert(Sid, Sname,Pr,Qy,T),S)), running(T,S).
poss(s_del ete(Sid, Snane,Pr,Qy,T),S) :- stock(Sid, Snane,Pr,Qy, ,9S),
ic(do(s_del ete(Sid, Sname,Pr,Qy,T),S)), running(T,S).
poss(o_insert(H d,Sid Qy,T),S) :- not owns(Hi d,Sid, Qy, ,S),
ic(do(o_insert(H d,Sid, Qy, T),S)), running(T,S).
poss(o_delete(H d,Sid, Qy,T),S) :- owns(Hid,Sid, Qy, _,9S),
ic(do(o_delete(H d,Sid, Qy, T),S)), running(T,S).

/* Integrity constraints */

ic(do(A'S)) :-
hol ds((all (hid, all(hn, all(c, all(v, all(hnl, all(c1, all(v1,
hol der (hid, hn,c,v, _,do(A ' S)) & holder(hid, hnl,cl,vl, ,do(A'S)) =>
hn=hnl & c=c1 & v=vl1)))))))) &
all (sid, all(sn, all(pr, all(qty, all(sn1, all(pr1, all(qtyl,
stock(sid,sn,pr,qty, _,do(A S)) & stock(sid,snl,prl,qtyl, ,do(A'S)) =>
bal =bal 1 & bnane=bnanel))))))) &
all (hid, all(sid, all(qty, all(qtyl,

APPENDIX D. SAMPLE PROGRAMS 199

owns(hid,sid, qty, ,do(A'S)) & owns(hid,sid,qtyl, ,do(A'S)) =>
qty=qtyl))))., S, _9).

gic(S) :- holds(all (hid, all(hn, all(c, all(v,
hol der (hid, hn,c,v, ,S) =>v >=0)))), S, _9).

/* The transition tables */

hol der _i nserted(Ri d, Hi d, Hhane, Country, Val ue, T, do(A, S)) :- considered(R d, T,9),
(A = h_insert(Hid, Hhane, Country, Val ue, T1) ;
hol der _i nserted(Ri d, Hi d, Hhame, Country, Value, T, S),
not A = h_del et e(Hi d, Hhane, Country, Val ue, T1)).

hol der _del et ed(Ri d, Hi d, Hhane, Country, Val ue, T, do(A, S)) :- considered(Ri d, T,5S),
(A = h_del et e(Hi d, Hhane, Count ry, Val ue, T1) ;
hol der _del et ed(Ri d, Hi d, Hhane, Country, Val ue, T, S),
not A = h_insert(H d, Hhane, Country, Val ue, T1)).

stock_inserted(Ri d, Sid, Sname, Pr, Qy, T,do(A ' S)) :- considered(Ri d,T,9S),
(A = s_insert(Sid, Snane, Pr,Qy, T1) ;
stock_inserted(Ri d, Sid, Sname, Pr,Qy, T,S),
not A = s _delete(Sid, Snane, Pr,Qy, T1)).

stock_del eted(Ri d, Si d, Snane, Pr,Qy, T,do(A S)) :- considered(R d, T,S),
(A = s_delete(Sid, Snane, Pr,Qy, T1) ;
stock _deleted(Ri d, Sid, Snane, Pr,Qy, T, S),
not A = s_insert(Sid, Snane, Pr,Qy, T1)).

owns_inserted(Rid,H d,Sid, Qy, T,do(A' S)) :- considered(Rid, T,S),
(A=o_insert(Hd,Sid, Qy,Tl) ; ows_inserted(Rid,Hd,Sid Qy,T,59S),
not A =o_delete(H d,Sid Qy,T1)).

owns_del eted(Rid,H d,Sid, Qy, T,do(A S)) :- considered(R d, T,S),
(A =o_delete(H d,Sid,Qy,T1l) ; owns_deleted(Rid,H d,Sid Qy,T,9),
not A= o_insert(Hd,Sid Qy,Tl)).

/* Primtive event fluents */

hol der _inserted(Ri d, T, do(A, S)) :- considered(Rid, T,S),
(A = h_insert (Hid, Hhane, Country, Val ue, T1) ; holder_inserted(R d, T,S)).

APPENDIX D. SAMPLE PROGRAMS 200

hol der _del eteted(Ri d, T, do(A, S)) :- considered(R d, T,9),
(A = h_del ete(Hi d, Hhane, Country, Val ue, T1) ; holder_deleted(R d, T,S)).

stock _inserted(Rid, T,do(A ' S)) :- considered(Rid,T,59S),
(A =s_insert(Sid, Snane, Pr,Qy,T1l) ; stock_inserted(Rid,T,S)).

stock _deleted(Rid, T,do(A S)) :- considered(Rid, T,5S),
(A = s_delete(Sid, Snane, Pr,Qy, T1l) ; stock_deleted(Ri d,T,S)).

owns_inserted(Ri d, T,do(A ' S)) :- considered(R d, T,S),
(A=o_insert(Hd, Sid, Qy,Tl) ; ows_inserted(Ri d, T,S)).

owns_del eted(Rid, T,do(A' S)) :- considered(Ri d, T,9S),
(A =o0_delete(Hd,Sid, Qy,Tl) ; owns_deleted(Rid, T,S)).

/* Succ state axions for base tables of the DB */

hol der (Hi d, Hhame, Count ry, Val ue, T, do(A,' S)) : -
not A = roll back(T),
(A=h_insert(H d, Hhane, Country, Val ue,);
hol der (Hi d, Hhame, Country, Val ue, _, S),
not A=h_del et e(Hi d, Hhane, Country, Val ue,));
A = roll back(T),
hol ds(sone(tprime, somes(sprime, do(begin(T),sprinme) << S,
hol der (Hi d, Hhame, Count ry, Val ue, tprime,sprine))), S, _).

stock(Sid, Snane, Pr,Qy, T,do(A' S)) :-
not A = roll back(T),
(A=s_insert(Sid, Snanme, Pr,Qy,);
stock(Sid, Snanme, Pr,Qy, ,S), not A=s_del ete(Sid, Shanme, Pr,Qy,));
A = roll back(T),
hol ds(sone(tprime, somes(sprime, do(begin(T),sprinme) << S,
stock(Sid, Snanme, Pr, Qy,tprinme,sprinme))), S, _).

owns(H d,Sid, Qy, T,do(A'S)) :-
not A = roll back(T1),
(A=o_insert(H d,Sid Qy,);
ows(H d,Sid, Qy, ,S), not A=o_delete(H d,Sid, Qy,))
A = roll back(T2),

hol ds(sone(tprime, somes(sprime, do(begin(T),sprinme) << S,

APPENDIX D. SAMPLE PROGRAMS 201

ows(H d,Sid, Qy,tprime,sprine))), S, _).

/* Restoring situation arguments */

restoreSitArg(holder(WV, X Y, 2), S, holder(WV, X Y,Z,9)).
restoreSitArg(stock(WV, X Y, 2),S,stock(WV, X Y,729)).
restoreSitArg(owns(WV, X Y), S, oms(WV, X Y, S)).

restoreSit Arg(hol der_inserted(R WYV, X Y, Z2), S, holder_inserted(RWV, X, Y,Z29)).
restoreSit Arg(hol der_deleted(R WV, X, Y,2), S, holder_deleted(RWV, X Y,ZY9)).
restoreSitArg(stock_inserted(R WV, X Y,2),S,stock_inserted(RWV, X Y,ZY9)).
restoreSit Arg(stock_deleted(RWV, X Y,2),S, stock_deleted(RWV, X Y,Z9)).
restoreSitArg(owns_inserted(R WYV, X Y), S, oms_inserted(RWV, X Y,9)).
restoreSit Arg(owns_deleted(R WV, X, Y), S, owmns_deleted(RWV, X Y,9)).

restoreSit Arg(hol der_inserted(R 2), S, hol der _i nserted(R 2, 9)).
restoreSit Arg(hol der_del eted(R, 2), S, hol der _del eted(R, Z,S)) .
restoreSitArg(stock_inserted(R 2), S, stock_inserted(R Z,9)).
restoreSit Arg(stock_del eted(R 2), S, stock_deleted(R Z,9)).
restoreSit Arg(owns_inserted(R 2), S, owms_inserted(R Z,9)).
restoreSit Arg(owns_del eted(R 2), S, owns_del eted(R, Z,9)).

/* Axionms for notification table */

served(Sid,do(A' S)) :- A=notify(Sid) ; served(Sid,S).
vseQuotation(Sid, Pr,do(A S)) :- vseQuotation(Sid,Pr,S).
tseQuotation(Sid, Pr,do(A S)) :- tseQuotation(Sid,Pr,S).
poss(notify(Sid),S).

/* Initial database */

/* Assume that all rules are considered in the initial situation. */

consi dered(Ri d, T, s0).

/* Note that the Init. DB satisfies the integrity
constraints to be enforced. */

hol der (c1, smi t h, canada, 30000, , s0). hol der(c2, di ouf, senegal , 20000, _, s0).
hol der (¢3, br own, canada, 9000, _, s0).

APPENDIX D. SAMPLE PROGRAMS 202

stock(st1,ibm 100, 5000, ,s0). stock(st2,oracle, 30,1000, , s0).
stock(st3,gm 10, 5000, ,s0). % stock(st4,ford, 60,1000, , s0).

owns(cl, st1, 300, ,s0). owns(c2,stl, 200, ,s0). owns(c3,st2, 300, ,sO0).
owns(c3, st4, 300, ,sO0).

vseQuot ation(st1, 110, s0). vseQuotation(st3, 10, s0).
t seQuot ation(st2,50,s0). tseCQuotation(st4,40,s0).

/* Each transaction is responsible for actions that bear its nane. */

responsible(T,h_insert(_, , , ,T),S). responsible(T,h_delete(_, , , ,T),9).
responsi ble(T,s_insert(_, , , ,T),S). responsible(T,s_delete(_, , , ,T),9S).
responsi ble(T,o_insert(_, , ,T),S). responsible(T,o _delete(_,_,_,T),9).
responsi bl e(T,holder(_, , , ,T),S). responsible(T,stock(_, ,_, ,T),S).
responsi ble(T,owns(_, , ,T),9).

/* Conflict table */

updConflict(h_insert(X, _, , ,T),h _delete(X, _, , ,T1),S) :- not T=TI1.
updConflict(h_delete(X, _, , ,T),h_insert(X, _, , ,T1),S) :- not T=TI1.
updConflict(s_insert(X, _, , ,T),s delete(X, _, , ,T1),S) :- not T=TI1.
updConflict(s_delete(X, _, , ,T),s_insert(X, _, , ,T1),S) :- not T=TI1.
updConflict(o_insert(X, _, ,T),o delete(X, ,_,T1),S) :- not T=T1.
updConflict(o_delete(X, _, ,T),o_insert(X, _,_,T1),S) :- not T=T1.
updConflict(holder(X, , , ,T),h_delete(X _,_, ,T1),S) :- not T=T1.
updConflict(holder(X, , , ,T),h_insert(X _,_, ,T1),S) :- not T=T1.
updConflict(stock(X _, , ,T),s delete(X _, , ,T1),S) :- not T=TL.
updConflict(stock(X, _, , ,T),s_insert(X _, , ,T1),S) :- not T=TL.
updConflict(owns(X, , ,T),o delete(X, , ,T1),S) :- not T=T1.
updConflict(owns(X, , ,T),o_insert(X, , ,T1),S) :- not T=T1.
updConflict(h_delete(X, _, , ,T1l),holder(X _, , ,T),S) :- not T=T1.
updConflict(h_insert(X, _, , ,T1l),holder(X _, , ,T),S) :- not T=T1.
updConflict(s_delete(X, _, , ,T1),stock(X _,_, ,T),S) :- not T=TL.
updConflict(s_insert(X, _, , ,T1),stock(X _,_, ,T),S) :- not T=TL.
updConflict(o_delete(X, , ,Tl),owns(X, _, ,T),S) :- not T=T1.
updConflict(o_insert(X, _, ,Tl),owns(X, _, ,T),S) :- not T=T1.

/* M scel anous predicates */

/* Notice that we droped the tuple argunent in wites/3
to ease the sinulations. */

APPENDIX D. SAMPLE PROGRAMS

wites(h_insert(_, , ,_,T),holder,T).
wites(h_delete(_, , ,_,T), holder,T).
wites(s_insert(_, , , ,T),stock,T).
wites(s_delete(_, , , ,T),stock,T).
wites(o_insert(_, , ,T),owns,T).
wites(o_delete(_, , ,T),owns,T).
readAct (holder(_, , , _,T), holder,T).
readAct (stock(_, , , ,T),stock,T).
readAct (owns(_, , _,T),owns, T).
transOf (h_insert(_, , , ,T),T).
transCOf (h_delete(_, , , ,T),T).
transOf (s_insert(_, , ,_,T),T).
transOf (s_delete(_, , , ,T),T).
transOf (o_insert(_, , ,T),T).

transOf (o_delete(_, , ,T),T).

/* Dat abase fluents */

db_fluent(holder(_, , ,_,)).
db_fluent(stock(_, ,_, ,)).
db_fluent(owns(_, , ,)).

/* End of the Exanple */

203

Appendix E

Examples

Under the delayed execution model, the two rules shown in Figure 5.1 can be compiled into the rule
program shown below:

proc Rules(trans)
(7 ¢, time, bal, price’, s_id, price, clos_pr)
[price_inserted[Update_stocks,trans] 7 ;
[{price_inserted(s-id, price, time) A customer(c, bal, s_id) A
stock(s_id, price’, clos_pr)}[Update_stocks, trans] A assertionInterval(trans)] 7 ;
stock_insert(s_id, price, clos_pr)[Update_stocks,trans]] |
(m new_price, time, bal, pr, clos_pr, ¢, s_id, 100))
[price_inserted[Buy_100shares,trans] 7 ;
[{price_inserted(s-id, new_price,time) A customer(c, bal, s_id) A stock(s_id, pr, clos_pr) A
new_price < 50 A clos_pr > T0}[Update_stocks, trans] A assertionInterval(trans)] 7 ;
buy(c, s_id, 100)[Update_stocks, trans]] |
=[(Je, time, bal, price’) (price_inserted[Update_stocks, trans] A
{price_inserted(s_id, price, time) A customer(c, bal, s_id) A
stock(s_id, price’, clos_pr) }[Update_stocks,trans])] V
(Inew_price, time, bal, pr, clos_pr)(price_inserted[Buy_100shares, trans] A
{customer(c, bal, s_id) A stock(s_id, pr, clos_pr) A
new_price < 50 A clos_pr > T0}[Update_stocks,trans]) A assertionInterval(trans)} ?

endProc.

204

Appendix F

SQL 3 Syntax for Triggers

For these EBNF rules, see [KMC99] for detail.

<trigger definition> ::=
CREATE TRI GGER <tri gger nane>
<trigger action tine>
<trigger event> ON <rel ation name>
[REFERENCI NG <ol d or new val ues alias |ist>]
<trigger action>

<trigger action time> ::= BEFORE | AFTER
<trigger event> ::= | NSERT | DELETE | UPDATE [OF <col umm name |i st >]
<old or new values alias list> ::=
OLD [AS] <identifier>| NEW[AS] <identifier>
| OLD TABLE [AS] <identifier>| NEWTABLE [AS] <identifier>
<trigger action> ::=
[FOR EACH { ROW | STATEMENT}]
[<trigger condition>]
<triggered SQL statenent>
<trigger condition> ::= WHEN ' ('’ <condition> ‘")’
<triggered SQL statenent> ::=

<SQ. procedure statenent>
| BEG N ATOM C {<SQ. procedure statenent> ‘‘;’’'} END

205

Appendix G

Proofs

Theorem 3.2

1. Suppose that we have a structure 9t and a variable assignment) such that the following holds

):fmvv[al/fh7a2/A2781/51782/52] do(alv 51) = dO(“Zv 52)?

here, S; is a ground situation term. Thus, by the rule for =, ||do(A1, S1)||am,y = ||do(Ag, S2)||om,v,
whichamountsto ||.S1 ||on,v o [|| A1]|an,v] = [|:S2||lan,v o [|| Az||sn,v]. Thismeansthat we havetwo liststhat
are the same; thusthey agree both on their last element and on therest of elements. That is, || A1 ||sn,v =
| A2|lon,v, and [|S1 [,y = [|:S2(|an,v. Henceforthwe have Fon via, /4, s /42,51 /51,52 /5] @1 = @2AS1 =
S9.

2. Let M = (U,7) and V be a variable assignment. It is enough to prove that if =op vis/r f(S0) A
(Va, $)[f(s) > f(do(a, 5))]then g yi7/#) (¥5) F(s). Now suppose

v /Fa/a,ss) f(S0) A (Va,s)[f(s) D f(do(a,s)).
Thus, we have
Emvif/Fa/a,ss) F(So) and (+)
Famvif/Fa/a,s s F(S) D F(do(A,S)). (+)

(+x) isequivalent to [=on vif/Fa/a,s/s] F(S) = FEmyir/Fa/ass) Fldo(A,S)) whichinturnis
equivalent to f=on vf/F /4,59 F(S) = ®r(A,S), where I has a successor state axiom of the form
F(do(A,s)) = ®r(A,s). Now we show that =gy (¢, (Vs)f(s) by induction over al the situations
s suchthat Sy C s using (*) and (xx). Theinductive step isensured by the fact that, according to (xx),
Fistruein S and the condition for itstruth in the next situation is aso true.

3. Suppose that we have a structure 9t and a variable assignment V such that =gy y(5/51 s C So for

206

APPENDIX G. PROOFS 207

some S such that ||.S||sn,y € 4. Thus, by the semantical rulefor C, ||.S||on,v isa prefix of ||.So||an,v,
and therefore aprefix of []. This, however, contradictsthefact [] doesnot have any prefix by definition.

4. LetM beastructureand V avariableassignment. Thus, by thesemanticrulefor C, if Fap yis/s,0/4,5' /51
s C do(a,s'), for some S, A, and 5" such that ||S||an,y € 475, [|Alloy € Ua, and || S|y € U7,
then ||.S||on,v isaprefix of ||do(A, S”)||on,v, and therefore a prefix of ||.57||on,v o [|| Al|sn,v]. Henceforth,
|IS]|om,v is@ahistory that is equal to aprefix of ||.S’||on,v up to the identity; henceforth s C s'. [|

Lemma 4.6

We must provetwo goals:
DyU{(4.20)} = legal(So), (G.1

and
Dy U {(4.20)} =(Vs,a)[legal(do(a, s)) = legal(s) N Poss(a,s) A

(Vd', t)[systemAct(a’,t) A responsible(t,a’, s) A Poss(a’,s) D a = a’]](G 2

Goal (G.1): By Abbreviation (4.20), we must pursue two subgoals:
DrU{(4.20)} = (Va,s")[do(a,s™) T Sy D Poss(a, s™)]
and
D;U{(4.20)} E (Vd',a", s t)[systemAct(a’,t) A responsible(t,a’,s') A
responsible(t,a”,s') A Poss(a',s') Ado(a”",s") T S D ' =d"].
For thefirst subgoal, we are lead ultimately to a successin the proof of its consequent by using the foun-

dational axiom (4.4) and the sentence Sy # do(«, s), a consequence of D; and the second subgoal is
obviously true by virtue of the fact that So # do(a, s).

Goal (G.2): Theproof isby inductionon s, usingtheinductionaxiom (4.3). Thecases = Sy isintuitive
enough:
DfU{(4.20)} = (Va)[legal(do(a, Sp)) = legal(Sp) N Poss(a, So) A
(Vd', t)[systemAct(a’,t) A responsible(t, a’, Sp) A
Poss(d', So) D a = d]];
its proof, though tedious, is straightforward. Now, assume theformulain (G.2) proven for do(a, s). We
must proveit for do(a*, do(a, s)); i.e. we must prove
Dy U{(4.20)} = (Vs,a,a")[legal(do(a”, do(a, s))) = legal(do(a, s)) A
Poss(a*,do(a,s)) A (Vd',t)[systemAct(a’,t) A responsible(t,a’,do(a, s)) A
Poss(d’,do(a, s)) D a* = d']]. (G.3)

APPENDIX G. PROOFS 208

—:
Assumefor fixed @, a*, and s legal(do(a, s)), Poss(a*, do(a, s))), and

(Vd',t).systemAct(a’,t) A responsible(t,d’, do(a, s)) A Poss(a’,do(a,s)) D a*=d'. (})
By induction hypothesis, legal(do(a, s)) can bereplaced by legal(s), Poss(a, s), and
(Vd',t).systemAct(a’,t) A responsible(t,a’, s) A Poss(a',s) D a=d'. (%)
From legal(s), Poss(a, s), and Poss(a*, do(a, s)) we obtain
(Vs™).do(a, s*) C do(a*,do(a, s))) D Poss(a,s™). (%)
From legal(s), (1), and () we have
(Vay, aq, s, t)[systemAct(ay,t) A responsible(t, ay, do(a, s)) A Poss(ay,s’) A
do(az, s') C do(a*,do(a, s)) D a; = az). ($9)

Now, from ($) and ($%) followslegal(do(a*, do(a, s))).
=
Assumefor fixed a, a*, and s legal(do(a, do(a*, s))). Then, by Definition (4.20),
(VYay, s1)[do(ay,s1) C do(a*,do(a, s)) D Poss(ay, s1)] A
(Vag, as, sz, t)[systemAct(az, t) A responsible(t, az, sg) A Poss(ag, s2) A
do(as, s3) C do(a™,do(a, s)) D ag = as). (G4
Thus we must show that (G.4) impliesiegal(do(a, s)), Poss(a*, do(a, s)),and

(Vd',t).systemAct(a’,t) A responsible(t,d’, do(a, s)) A Poss(d’,do(a,s)) D a* = d’.
(G.5)

Subgoa Poss(a*, do(a, s)) follows from the first conjunct of (G.4) alone; subgoal (G.5) follows from
the second conjunct of (G.4), and subgod legal(do(a, s)) follows from both conjuncts of (G.4). Foun-
dational axioms and the induction hypothesisare involved in this proof whose details are omitted here.
|

Lemmad4.7
We conduct an induction on s.

For thecase s = Sy, wemust provelegal(Sg) D (Vs')[s' T Sy D legal(s')]. By Lemmad4.6, legal(Sp).
Therefore, (Vs')[s' C Sp D legal(s’)] whichisclearly true by the foundational axiom (4.4).

APPENDIX G. PROOFS 209

Now assume the result for s and supposefor fixed ¢ and s that legal(do(a, s)) holds. Then we must
prove (Ys')[s'" C do(a,s) D legal(s')]. Sincelegal(do(a, s)), then, by Lemma 4.6, Poss(a, s) and
legal(s). Assume, for fixed ', s’ C do(a, s). Henceforth we must show that legal(s’). For the as-
sumption s’ = do(a, s), since legal(do(a, s)), we have immediately legal(s’). For the assumption
s' C do(a, s), by the foundational axiom (4.5), we get s’ C s; and since legal(s), we obtain, by in-
duction hypothesis, (Vs*)[s* C s D legal(s*)]. Henceforth legal(s'). [|

Lemma 4.8

by induction on the length of the sequence of actions.
For thecase n = 1, we must prove

Dy Elegal(do(a,s)) =
Poss(a, s) A (Vd',t)[systemAct(a’,t) A responsible(t,a’,s) A Poss(a',s) D a=d'].

The proof isimmediate by Lemma 4.6.

Assumetheresult for n. We must prove that D and (4.20) entail

n+1
legal(do([ay, -+ ,ant1],8)) = /\ {Poss(a,do([ay, - ,a;i_1],s)) A

=1
(Va', t)[systemAct(a’,t) A responsible(t,d’, do([a1,- -, a;_1],8)) A

Poss(a’,do([ay, -+ ,a;-1],s)) D a; = d]}.

=
Assume for fixed s legal(do([aq, - -, ant1], s)). By Lemma 4.7 and the fact, provable by induction,
thet s C do(a, s), we havelegal(do([ay, - - -, a,], s)). Henceforth, by induction hypothesis,

n

/\{Poss(a, do([ay,---,a;—1],8)) A

=1
(Va',t)[systemAct(d’,t) A responsible(t,d’, do([a1, - - ,a;_1],5)) A
Poss(d',do([ay, - ,a;_1],s)) D a; = d]}.
Thus, we must now only show that Poss(ay,+1,do([a1,- -, ay,],s)) and

(Vd', t)[systemAct(a’, t) Aresponsible(t,a’, do([ay, -, a,],s)) A
Poss(d',do([a1, - ,a],8)) D apy1 = d'].
Both of these claims follow from Lemma 4.6.

=
This part of the proof is symmetric to the previous case.

APPENDIX G. PROOFS 210

This completesthe proof of the inductive case. |

Theorem 4.9

1. Assume, for fixed s, legal(s) and let s = do([By, - - - , Bi], So). Then, by Lemma 4.8,

/\ Poss(ai,do([By, -, Bi_1], So)). (G.6)
i=1
Now assume, for fixed a, s', s”, and t, do(a, s') C s, do(a,s") C s, and external Act(a,t). Therefore
we must prove s’ = s”. From the assumption ezternal Act(a,t) and Abbreviation 4.11, we must con-
sider four cases.

Casea = Begin(t). Assume, contrary to our goal, that s’ # s”. Henceforth, either ' C s” or s C .
Supposes’ C s”. Then, by thefoundational axioms(4.2), (4.5), and theassumptionsdo(Begin(t), s') C
s and do(Begin(t),s") C s, wehave s’ C do(Begin(t),s’) C do(Begin(t),s"). By (G.6), we have
Poss(Begin(t), s"); henceforth, by the precondition axiom (4.11) for the action Begin(t), we have
—(3s*)do(Begin(t), s*) C s”. Now, thiscontradictsthefact that do(Begin(t), s') C do(Begin(t), s").
Thesubcase s’ C s isproven in an analog way.

Casea = Fnd(t). Assumethat s' # s”. Henceforth, either s’ C s” or s” C s'. Supposes’ C s”.
Then, similarly to the previous case, we get s’ C do(End(t),s’) T do(End(t),s"). By (G.6), we
have Poss(Fnd(t), s"); henceforth, by the precondition axiom (4.12) for the action E'nd(t), we have
running(t, s"), and, by Abbreviation 4.7, we have

(3s*).do(Begin(t),s*) C s" A

(Va, s**)[do(Begin(t), s*) C do(a,s™) T s"” D a # Rollback(t) A a # End(t)]. G.7)
Sinceby thepreviouscase, thelog do(Begin(t), s*) that existsmust bethe samefor both do(End(t), s')
anddo(End(t), s"), weclearly get acontradiction betweenthefactthat s’ C do(FEnd(t), s') C do(End(t),s")
and (G.7). Thesubcase s’ C s” isproven in an analog way.

Casesa = Commit(t) and a = Rollback(t) . Both cases follow immediately from the case ¢ =
End(t),asbothCommit(t) and Rollback(t) are possibleonly inlogsfollowingtheexecutionof End(t).
|

Theorem 4.10

Assume, for fixed s, legal(s). Suppose, for fixedt,t’, and s', that sc_dep(t, t'), and that do(Commit(t'), s') C
s. Thenwemust show that (3s*)do(Commit(t), s*) C s. Sincelegal(s) and do(Commit(t'),s") C s,
we have, by Lemma 4.7, legal(do(Commit(t’), s')) and, by Lemma 4.6, Poss(Commit(t’),s’). By

APPENDIX G. PROOFS 211

the action precondition axiom for Commit(t'), we have
(Vt*)[sc_dep(t,t*, s) D (Is")do(Commit(t*),s") C s].

Since sc_dep(t, t'), thisleads easily to what we had to prove.
Thesecond conjunctinvolvingr_dep(t, t', s) and Rollback(t) isproveninasimilar way and weomit
it. [|

Theorem 4.11

Assume, for fixed s, legal(s). Moreover, assume, for fixed ¢, a, s1, and s;, that
do(Begin(t),s;) C do(a, sz) C s, (1)
and
(Fa™, s*,) [do(Begin(t), s1) C do(a™, s*) C do(a, s2) A writes(a”, F, Z,t)]. (1)
We must prove that
a = Rollback(t) D ((3t1)F(Z,t1,do(a, s2)) = (Ft2) F (T, ts, s1)), (%)
and
a = Commit(t) D ((3t1)F(Z,t1,do(a, s3)) = (3t2) F(T, t2, s2)). ($9)
1. Wefirst prove ($). Assumea = Rollback(t); then we must show that
(Ft1)F(Z,t1, do(a, s3)) = (3t2) F(T,t2,51).

==
Suppose, after eliminating existentialsin the conclusion, for fixed Z, that /(% ¢1, do(a, s2)). Then, by
the assumption that « = Rollback(t) and that legal(s) holds, Theorem 4.9 assures us that there is no
other Rollback(t) neither a Commit(t) between do(Begin(t),s1) and do(a, s;). Furthermore, from
(), the assumption that « = Rollback(t), and the axiom (4.8), we get, for fixed F,

a = Rollback(t) N
[(Ja*, s*, 7).do(Begin(t), s1) C do(a*, s*) C sAwrites(a®, F, T,)]AN(FVF(Z,t',s1)V (x)

[(Va*, s*, T).do(Begin(t), s1) Cdo(a*, s*) C s D ~writes(a*, F, Z,)] A(3)F(Z,t, s).
Therefore, by assumption (1), we have to pursue the following case:

a = Rollback(t) A

[(Ja*, s*, T).do(Begin(t),s') C do(a*,s*) C s A writes(a*, F, Z,t)] A (F')F (T, 5).

APPENDIX G. PROOFS 212

From this case, we get the following formulas in a straightforward way (by performing some variable
renaming): (3tg)F'(Z,t2,51), a = Rollback(t), (3a*,s*,Z).do(Begin(t),s1) C do(a*,s*) C s A
writes(a*, I, Z,t). Henceforth we conclude that (3¢2) (%, t2, s1).

=
Assume, for fixed &, that (3¢9) F'(Z, t2, s1). Then, by (1) and the assumptionthat @ = Rollback(t), we
get

a = Rollback(t) A (Ftg) F(Z,t,51) A (xx)

(Ja™,s", Z)[do(Begin(t), s1) C do(a”, s*) C do(a, s3) N writes(a™, F, Z,t)].
From (xx), we get, by assumption (i), the following:

a = Rollback(t) A (3t2) F(Z,t2,51) A

do(Begin(t),s1) C do(a, sz) A (Fa”, s*, &)[do(Begin(t), s1) C do(a”,s*) T do(a, s2) A writes(a”, I, T, t)].

We therefore conclude, by axiom (4.8), that (3¢1) F'(Z, t1, do(a, s2)).

2. Nowweprove($$). Assumethata = C'ommit(t); thenwemust provethat (3¢,) F'(Z, t1, do(a, s3)) =
(Elt2)F(f, tg, 82)).

=
Suppose, after removing al the existentialsin the conclusion, for fixed 7, that F'(Z, t1, do(a, s3)). Since
a = Commit(t), by axiom (4.8), we have

('y;(f, Commit(t),t1,s) V (3t1) F(Z, 1, 82)/\—171;(57 Commit(t),ty, s)). (1)

Wesetv1 (Z, Commit(t), 1, s) = false and =4 (&, Commit(t), {1, s) = false. Thus(i1) isequiv-
aentto (%, s, 11, s), for somet,.

<= Thiscaseis symmetric to thefirst one.
Suppose, for fixed 7, that (Jty) (7, t2, 1, s2). Sincea = Commit(t), with the setting of the if-part,
F(%,ty,11, s9) isequivaent to

('y;(f, Commit(t),ty,s) V (Jty) F(Z, t2, 52)/\—171; (Z, Commit(t), s)),

which, by axiom (4.8), isequivalentto I'(Z, t;, do(a, s3)), for somet;. [|

Theorem 4.12

In general, whenever an update a does not have any influence on the truth value of afluent F', we set 7; (%,q, i, s)
false and =y (£, a, 7, s) = false.

APPENDIX G. PROOFS 213

By assuming, for fixed s, s’, and t legal(s) and do(C'ommit(t),s’) C s, we must provethe claim
N\ IC(do(Commit(t),s)) A\ IC(do(Commit(t),s)).
IC€D;c, ICED v
A. Assume, indeed, thatlegal(s) and do(Commit(t), s') C s. Then, by Lemmad.7, legal(do(Commit(t), s')).
Henceforth, by Lemma 4.6, Poss(Commit(t), s’). Now, by the action precondition axiom for
Commit(t), Aicep,.. [C(5). S ncev} (7, Commit, £y, s) = falseandyy (%, Commit, ty, s) =
false,then, by axiom (4.8), wehave F'(Z,t*, s') = F(Z,t, do(Commit(t),s')), forany t*. There-
fore, Arcep, . [C (do(Commit, s')).

B. Suppose s = do(T', s*), where T is a ground transaction. Since legal(do(T, s*)) and suppose 1’ is
the sequence[Ay, - - - , A,,], then, by Lemma 4.8, we have

/\ Poss(Ai, do([Ay, - -+, A;_1], 7).

=1
Since do(Commit,s’) T do(T, s*), by repestedly applying axiom (4.5), we find out that s* C
do(Commit, s') C do(T, s*).
Supposethere are n actions before Commit(t) inT'. Thus, by the action precondition axioms for
updates,

N N\ IC(do([Ar, -+, Aia], s7)).

i=1 IOEDIC‘E
Henceforth, A;qcp,. 1C(s). Fromthis point, weobtain A ;ocp . IC(do(Commit, s')) by a
reasoning similar to part A.

By combining A and B, we concludethat the claim holds. |

Theorem 4.13

We use the relative satisfiability theorem for non-Markovian basic action theories ([Gab00]) stating that
abasic actiontheory D issatisfiableiff D,,,, UDs, issatisfiable. Sincetherelative satisfiability theorem
dealswith the general case of first order initial databases, take theinitial database asbeing D s, UD .y, U
D1c[So]. Therefore, we obtain asimmediate consequencethat D is satisfiable. [|

Theorem 4.14

Supposewe fix s, ', t, and a’, and assume legal(s) and do(Rollback(t), s') C s. Thus we must prove
committed(a, s') = committed(a, do(Rollback(t), s')), (%)
and

rolledBack(a, s') = rolled Back(a, do(Rollback(t), s')). (+%)

APPENDIX G. PROOFS

1. First prove ().

=
Assumethat committed(a, s"). Then, by Abbreviation (4.21), we have

(3t*, s*).responsible(t*, a, s') A do(Commit(t*),s*) C s
Since do(Rollback(t),s") C s, thisimpliesthat
(3t*, s*).responsible(t*, a, s') A do(Commit(t*),s*) C s’ A do(Rollback(t),s') C s,

which, by the foundational axioms, and the transitivity of C, implies that

(3t*, s*).responsible(t*, a, s') A do(Commit(t*), s*) C s’ C do(Rollback(t),s’) C s.

By (4.21), thelater clearly impliesthat committed(a, do(Rollback(t), s)).
—:
Assumethat committed(a, do(Rollback(t), s')). Then, by Abbreviation (4.21), we have

(3t*, s*).responsible(t*, a, do(Rollback(t), s")) A do(Commit(t*), s*) C do(Rollback(t),

214

s').

Since clearly responsible(t*, a, do(Rollback(t), s')) impliesthat responsible(t*, a, s'), and, by

assumption, do(Rollback(t), s') C s holds, we conclude that
(3t*, s*).responsible(t*, a, s') A do(Commit(t*), s*) C do(Rollback(t),s") C s,
which, by the foundational axioms, implies that
(3t*, s*).responsible(t*, a, s') A do(Commit(t*),s*) C s’ A do(Rollback(t),s') C s.
Again, by (4.21), the later impliesthat committed(a, s').
2. Thecase (**) isproveninasimilar way.

Lemma4.15

Assuming, for fixed s, legal(s), and, for fixed ¢, s, a, sq, ¢, and I’ that

do(Begin(t),s1) C do(a, sz) C s,

(Fa™, s*,) [do(Begin(t), s1) C do(a™, s*) C do(a, s2) A writes(a”, F, Z,t)],
and

(3n).a = Rollback(t,n) A sitAtSavePoint(t,n) = §',

@
(b)

(©)

APPENDIX G. PROOFS 215

we must prove that
(Eltl)F(f, t17 do(a, 82)) = (Eltg)F(f, tz, S/).

By skolemizing the existentialsin the antecedents and some logical manipulation, we get the following
set of assumptions

do(Begin(t),s1) T do(Rollback(t,N),s;) C s, @)
do(Begin(t),s1) C do(a”™, s*) T do(Rollback(t, N), s3) A writes(a”, F, Z,t)], (b")
sitAtSavePoint(t, N) = §', ()

With (a)-(c’), we must show that
(Ft1) F(Z,t1, do(Rollback(t, N), s2)) = (Jt2) F(Z, ta, sitAtSavePoint(t, N)).

=
Supposethat (3t1) F(Z, t1, do(Rollback(t, N), s3)). Then from (4.29), we get

restoreSavePoint(F,Z, N,t,s),
and, by Abbreviation 4.30, we have F'(Z, t, sit AtSavePoint(t, N)); henceforth

(Ft2) F(Z, to, sit AtSavePoint(t, N)).

=
Supposethat (3t;) F(Z, to, sit AtSavePoint(t, N)). Then we have

(3s™)sit AtSavePoint(t, N) = s* A F'(Z,tq,s™).

Sincelegal(s), by assumption (&), we have Poss(Rollback(t, N'), s3); thus, by Axiom (4.25), we ob-
tain sit AtSavePoint(t, N) C s. Therefore, by Abbreviation 4.30, we conclude that

restoreSavePoint(F,Z, N,t,s).
So, withthefact that Poss(Rollback(t, N), s3), weget, by Axiom(4.29), (3t1) F(Z, t1, do(Rollback(t, N), s3)).

Corollary 4.16

Thisfollowsfrom Theorem 4.11, which continuesto holdfor flat transactionswith savepoints, and Lemma
4.15, by using thefactthat [(P D Q) A (P D RAS)| D[P D (QARAS)]. [|

Theorem 4.17

APPENDIX G. PROOFS 216

Asume, for fixed s, ¢, n, and s’, that

legal(s), @
do(Rollback(t,n),s') C s. (b)

Now assume by contradiction that
(In*, s*).do(Rollback(t,n),s') C do(Rollback(n*),s*) C s A (%)

sit AtSavePoint(n) C sit AtSavePoint(n*) C do(Rollback(t,n),s').

By Lemma 4.7, and assumptions (a), (b), and ($), we have (after skolemizing the existentialsin (%)),
legal(Rollback(t,n), s') and legal(Rollback(t, N*), S*). Therefore, by Lemma 4.8, we conclude that
Poss(Rollback(t,n), s") and Poss(Rollback(t, N*), S*). Now, by the action precondition axiom (4.25),
from the fact that Poss(Rollback(t, N),S*) we get

(3s1).51 =sitAtSavePoint(t, N) A sy C S* A (©)

—(3s2,83).52 C s1 C s3 A Ignore(t, sz, s3),
whichisequivalent to

sitAtSavePoint(t,N) C S* A (d)

—(3sg, 83).52 C sit AtSavePoint(t, N) C s3 A Ignore(t, s3, S3).
Now noticethat ($) also impliesthe following formula

(ds4)s4 = sitAtSavePoint(t,n) A (e
sit AtSavePoint(t,n) C do(Rollback(t, n),s).

Since sit AtSavePoint(t,n) C do(Rollback(t,n), s"), by Axiom (4.26) formula (e) is equivalent to
Ignore(t, sit AtSavePoint(t,n), do(Rollback(t, n), s')). ()
However, recal that we have
sit AtSavePoint(t,n) C sit AtSavePoint(t, N*) C do(Rollback(t,n),s")).
Thisfact, combined with (f) gives
(s7, s8).57 = sitAtSavePoint(t, N*)ss A Ignore(t, sz, sg)), ()]
which by Axiom (4.25) would make Poss(Rollback(t, N*),S*) fase, thusleading to a contradiction.

Theorem 4.18

APPENDIX G. PROOFS 217

Assume, for fixed s, s’, s”, and ¢ that

do(Chain(t),s") T do(Rollback(t),s") C s, @
(Fa*, s*,)[do(Chain(t),s") C do(a*, s*) T do(Rollback(t), s") A writes(a*, F, Z,t)], (b)
=(3s*)do(Chain(t),s") T do(Chain(t), s*) C do(Rollback(t),s"). (©

We must prove that
(FYF(Z, ¢, do(Rollback(t), s")) = (3" F(F,t", do(Chain(t), s')). ($%)

=
Suppose, for fixed Z, that (3¢') (£, ', do(Rollback(t),s")). Then, by the assumption (a), Axiom 4.8,
and Abbreviation 4.13 that
(3s1).(Va*, s%)[s1 T do(a*,s*) T " D a* # Chain(t) A a* # Begin(t)] A
{[(Fa*, s*,t*,T).do(Chain(t), s1) C do(a*, s*) Cs" Awrites(a*, F, T,t) NF(Z,t*, s1)] V

[(Va*,s*, Z).do(Chain(t), s;) C do(a*,s*) C s" D —writes(a*, F, T, t)] A (existst™)F(Z,t*,s")}.

Therefore, by assumption b and (d), we conclude that

(3s1).(Va*, s")[s1 T do(a*,s*) T " D a* # Chain(t) A ™ # Begin(t)] A

[(Ja*, s*, ¢, T).do(Chain(t), s1) C do(a*, s*) Cs" Awrites(a*, F, ,t) ANF(Z,t*, s1)].
Thisentails
(3s1,a*, ", t*,%).do(Chain(t), s1) C do(a*, s*) Cs" Awrites(a*, F, T, t) NF (T, t*, s1)],

whichin turn, by assumption (a) and (b), entails (3t*) F'(Z, t*, s').

=

Supposefor fixed z and F that (3t”) F'(Z,t", do(Chain(t), s')). Then, by conjoining thiswith assump-
tions(b) and (a), we can concludeby Axiom4.8 and Abbreviation4.13that (3t') F'(Z, ', do(Rollback(t), s")).
|

Theorem 4.19

The proof is similar to that of Theorem 4.11. The mgjor difference liesin the fact that in addition to
the assumptions (1) and () made in the proof of Theorem 4.11, we must also draw the consequences of
assuming, for fixed s, that legal(s) holds, and, for fixed ¢, a, s1, and sz, that

do(Spawn(t,t'), s1) C do(a, s3) C s, ()

APPENDIX G. PROOFS 218

and
(Fa*, s*, Z)[do(Spawn(t,t'), s1) T do(a*, s*) C do(a, s3) A writes(a*, F, T, t)]. ("

Therest of the proof is as for Theorem 4.11, but with the successor state axiom 4.49 for closed nested
transactionsto be used instead of axiom 4.8. [|

Lemma G.1 SupposeD isabasic relational theory for closed nested transactions. Then any legal log
satisfiesthe weak rollback and commit dependency properties; i.e.,
D = legal(s) D
(Vt,t") {wr_dep(t,t',s) D [do(Rollback(t'),s') C s D
[(Vs*)[s* T s Ado(Commit(t),s*) Z do(Rollback(t'),s')] D
(3s")do(Rollback(t),s") C s]]} A
{cdep(t,t', s) D [do(Commit(t),s*) C s D
[do(Commit(t'),s") C s D [do(Commit(t'),s") T do(Commit(t), s*)]]]}.

Proof: Thisisprovableinasimilar way asfor Theorem 4.10 and we omit the proof here. |

Theorem 4.20

By Abbreviation 4.3, we must establish two entailments:
1. D = legal(s) D
{parent(t,t',s) A do(Commit(t'),s") £ do(Commit(t),s") C s D
(3s*)do(Rollback(t'), s*) T s}.

and
2. D E legal(s) D
{parent(t,t',s) A do(Commit(t'),s') £ do(Rollback(t),s") C s D
(3s*)do(Rollback(t'), s*) T s}.

1. Assume, for fixed s, ¢,t, a, s’, and s” that

legal(s), @
parent(t,t's), (b)
do(Commit(t'),s') Z do(Commit(t),s") C s. ()

We must provethat (3s*)do(Rollback(t'), s*) C s.
By Axiom (4.36), and the assumptions (b) and (c), we conclude that

(Is1)do(Spawn(t,t'), s1) C do(Commit(t),s") C s).

APPENDIX G. PROOFS 219
Therefore, by the dependency axiom (4.47), we have c_dep(t,t’, s").
Sincec_dep(t,t’,s"), by Lemma G.1 and assumption (&), we obtain

do(Commit(t),s1) C s D

[do(Commit(t'), s2) C s D [do(Commit(t'), s2) T do(Commit(t), s1)]],
whichislogicaly equivaent to

do(Commit(t),s1) Z sV do(Commit(t'),ss) £ sV

do(Commit(t'), s3) T do(Commit(t), s1),
which, in turn, is equivalent to

do(Commit(t),s;) C s A do(Commit(t'), sq) do(Commit(t),s;) D (d)

do(Commit(t'), s3) £ s.
By assumption (c), appropriate unification, (d), and Modus Ponens, we get
(Vs2)do(Commit(t'), s2) Z s.
Finally, by Theorem 4.9, we concludethat (3s*)do(Commit(t'), s*) C s, which implies QED.
2. We make the same assumptionsasin Part 1 of the proof, except that the following:
do(Commit(t'),s') I do(a,s") C s (©)

replaces (c). We must prove that (3s*)do(Rollback(t'), s*) C s.
By Axiom (4.36), and assumptions (b) and (c'), we get

(Is1)do(Spawn(t,t'), s1) C do(Rollback(t),s") C s).

Thus, by the dependency axiom (4.48), we conclude that wr _dep(t', t, s").
Since c_dep(t',t,s"), by LemmaG.1 and assumption (&), we obtain

[do(Rollback(t),s1) C s D [(Vs™)[s" T s A do(Commit(t),s™) [Z do(Rollback(t),s1)] D
(3s")do(Rollback(t), s") C s]],

whichislogicaly impliesthat

do(Rollback(t), s1) C s A do(Commit(t'), s*) £ do(Rollback(t),s1)] D d)
(3s")do(Rollback(t'),s") C s.

By assumption (c), appropriate unification, (d'), and Modus Ponens, we conclude that

(3s*)do(Commit(t'),s*) C s,

APPENDIX G. PROOFS 220
which implies QED. |

Proposition 5.6

It is sufficient to give aformula of the past temporal fragment of the situation calculus for each of the
consumption modes involved.

1. First. Theformulain (5.19), i.e,

(Ar'Yeq[r' t, s]A (3, r")[s' © s Aer[r”t, 8] A
(Vs*).s' C s* C s D ((Fr1)er[r1,t, sV ~(Irz)ez[rq, £, 57])]

is expressible by the following past temporal formula:
(3r')eq[r' 1] A since((Ir")er[r", 1], (r1)er[r1, t] V =(Ira)ez[ra, t]).

2. Consumed Last. Theformulain (5.21), i.e,
(Ar'ea[r' t, s] A (s, r")[s' T s A er[r” £, 8] A
(Vs*).s' C s C s D =(3r1)erlr1, £, s*1 A =(3ra)ea[ra, t, s¥]]
is expressible by the following past temporal formula:

(Fr)ea[r’, 8] A since((Ir”)er[r", ¢], =(Ir1)er[r1, &) A =(Ira)ealrs, t]).

3. Non-Consumed Last. Theformulain (5.23), i.e,
(FrYeqlr' t,s] A (s, r") [© s Aer[r”,t, ST A
(Vs*).s' T s* T s D =(3r)er[r1,t, 5%
is expressible by the following past temporal formula:

(3rYex[r', 1] A since((Ir")er[r", t], =(Ir1)er[r1, t]).

4. Cumulative. Theformulain (5.25), i.e,
(FrYeq[r' t,s] A (s, r") [© s Aeq[r”,t, ST A
(Vs*).s' T s* T s D —(Trg)es[rs, t, s
is expressible by the following past temporal formula:

(Fr')eq[r', t] A since((Ir")eq [r", t], ~(3rg)ezrs, t]). [|

Theorem 5.9

Suppose an event logic £ = (£, C, L) given by:

APPENDIX G. PROOFS 221

o I = {F_inserted(r,t,s), F_inserted(r,t,s), seqev®™ (r,t, ey, 5, 5), simult_ev(r,t, €1, ey, 5),
conj_ev(r,t, eq, ez,s),disjev(r,t, e, eq,s), negev(r,t, e, s)},

withCM € {F,CL,NL,CUMUL};
o O = {~ALCkK
e [isthe past tempora fragment of the situation calculus.

Supposefurther that D isaset of situation calculusformulathat specify the semantics of eventsaccording
to the event logic &£, and that e[r, ¢, s] and €’[r, ¢, s] are two events of the event logic £ such that we
want to establish, for given R and 7', that D |= (Vs).e[R,T,s] D €'[R,T,s]. Assumethat S, isthe
actual situation. Since we deal with the past temporal fragment of the situation calculus, theimplication
problem is reducibleto the problem of checking whether D logically implies
—-e[R,T,So]Ve€[R,T,So] A—e[R,T,S1]Ve'[R, T, S| A---A -

~e[R, T, 8,1V €[R,T, S,], (9
withSg C S; C ---C S,,where 51, Sy, - - - .5,_1 areall the successiveintermediate situations between
Sp and S,,. Noticethat (G.8) mentionsonly atoms (all of whicharefromtheset £) anditsonly connectors
arefromtheset C'.

Using Proposition 5.6, we can transform (G.8) into aformulaof the past temporal 1ogic fragment of
the situation calculus (and vice-versa). Sincethis past temporal formulawill only mention atoms, we use
astraightforward encoding to transform each of itsatomsinto a proposition. By Theorem 4.1 of [SC85],
stating that propositional linear temporal logic is PSPACE-complete, we conclude that the implication
problem is PSPACE-hard. The proof for the equivalence problem follows easily from the implication
case. |

Theorem 5.12
1. From (5.18), (5.20), (5.24), it is sufficient to establish the following three entailments:?

DE (3)(Vs*){s' C s*C sD ((Fr1)err1,t, sV =(Tr2)ea[re, t, 8"} D

(") (V) {s" C s** C s D ~(Ir1)er[r1, ¢, 8] A =(Irg)ea[ra, t, s},

(G.9)
D (3s)(Vs*){s' T s* T s D —(Tr1)er[r1,t, s] A =(Trg)ezlrs, t, 8]} D
(3s") (Vs#x){s' T s T s D =(Ira)ealrs, t, s}, (G.10)
D (35)(Vs"){s' C 5" C s D =(Irz)ezlra, t, 5]} D
(s (Vs*){s' © ™ C s D ((r1)erlr1, t, s V =(Ira)ealra, t, s} (G.11)

2Without loss of generality, we assumethat e; and e, below are simple event fluents.

APPENDIX G. PROOFS 222

Let us establish the entailment (G.9). We must prove that the antecedent of theinvolved formula
taken as premise entails the existence of asituation s” such that

(Vs){s" T s C s D =(Fr1)er[r1, t,) A =(Irg)ea[ra, t, s}

Weset s = do(A, s”), for some A. Then, obviously, for al s** suchthat s” C s** C s, weobtain
vacuously —(3ry)eq[r1, £, s A =(3Irg)eq[rs, t, s**]. Note that the fact that —(3ry)e[r1, £, s*]
holdswill never contradict the assumptions, since thereis no situation between s” and s in which
(3r1)e1[r1, t, s**] could hold.

To establish the entailment (G.10), it suffice to notice that, by applying first order proof rules, we
obtain the following goal to prove:

exski(t,s),t,s], ska(t,s) C s, e1[sks(t,s),t, ska(t,s)],

sko(t,s) T s* C s D (—=(Iry)er[rs, t, s A =(Irg)eg[ry, t, 57]),

s'CS™CS, (=(Fr)elr:, t, S A=(Irz)ezfra, t, ™) (G.12)
—

_|(E|T‘2)€2[r2, Ta S**]

Finally, to establish the entailments (G.11), we have to prove:

eoski(t, s),t,s], ska(t,s) C s, er[sks(t,s),t, ska(t, s)],

sko(t,s) C s* C s D —~(3rq)eslrs, t, s™],

s'C S C S, ~(3ra)eara, t, S (G.13)
—

(Elrl)el[rl, /‘T7 S**] vV _|(E|7“2)€2[T2, /‘T7 S**]

Both entailments (G.12) and (G.13) are obvious.

APPENDIX G. PROOFS 223

2. Here, itissufficient to establish the following three entail ments:
D E(3s)(Vs*){s' C s* C s D =(Iry)er[r1,t, s} D
(3N {(Vs™)[s* T s D =((Fr1)er[r1, t, 8™ A seq-ev(r, t, e1, €2, 5))] A
(Vs*)[s** C 8" C s D [(Ir1)er[r1,t,s] D (Is1).51 T s A seq_ev(r,t, e, ez, s1)]]},
D E3s){(Vs™)[s* T s D =((3r1)er[r1, t,] A seq_ev(r, t, eq, e2,5))] A
(Vs™)[s™ T &' T sD[(Ir)e[r1,t, 8] D (Is1).51 C s A seq-ev(r,t, e, ez,51)]]} D
(3s")(Vs*)[s* C s D —((Ir1)ex[r1, t, s*] A seqev(r, t,e1, €2, 5))] A
(Vs*)[s" C 5" C s D [(Fri)ear1,t,5"] D (Fs1).51 C 5 A seqev(r,t, ey, €2, 5)]],
D E(3s)(Vs*)[s* C s D ~((Ir1)er[r, t, s*] A seqev(r, t, e1, €2, 5*))] A
(Vs*)[s' T s* C s D [(Fr1)er[r1,t,57] D (3s1).51 T s A seqev(r,t, e, e3,51)]] D
(3" (Vs*){s" C s* C s D =(Ir1)er[r1,t, s*]}.
The proofs are straightforward though tedious. Let us prove the first of these entailments. After

some skolemizationsand quantifier eliminations, using D, wehave, for fixed r, s, £, e1, and e (call
them R, S, T, Fy and F, respectively), the following to establish:

S'Cs*CsD~(3Ir)Ey[r, T, s
=
{(Vs™)[s™ C s D =((Fr1) Er[r1, T, s A seq_ev(R, T, Ey, Eq,s™))] A
(Vs*)[s** C s" C s D [(r1)Er[r1,t,8™] D (3s1).51 T s A seq_ev(R, T, E, E2, s1)]]},
Wefirst show that
S'C s*C s D —(3r)E[r,T,s"]
=
(Vs™)[s™ T s D =((Fr1) Fu[r1, T, 8™ A seq_ev(R, T, Ey, F3, s™))].
Thistask is equivalent (after some logical transformations) to:
S'Cs*CsD—(3r)Err, T,sY, 5 C s,
=
seq_ev(R, T, Ey, F3,5™) D =(3r1) E1[r., T, S™.
By moving seq_ev(R, T, F1, F3, S**) to the antecedents, and Modus Ponens in the antecedents
and unification, we get (3rq) Fy[ry, T, S™.
Now we show that
S'Cs*CsD~(3Ir)Fy[r, T, s
=

(Vs**)[s** C s" T s D [(r1)Erl[r1,t,s™] D (3s1).81 T s A seq_ev(R, T, Ey, Es, s1)]].

APPENDIX G. PROOFS 224

First skolemize the universa (¥s**), and then move s** T s” C s and (3r1) E1[r1, t, %] (with
appropriate skolem functionsinstead of s**) before =—>-. After that, it is easy to see that the defi-
nition of the LIFO consumption mode given in (5.28) applies. |

Theorem 6.10

The proof is by induction over the structure of the well fromed program 7. We conduct the proof only
for CNTs. Assumefor fixed s that Do(T’, S, s).

Case: T isaprimitive database update.
By Definition (6.3), we have

(38").Trans*(T, So, &', s) A Final(d', s).
By Definition (6.1), thisimpliesthat

(38").Poss(T, Sp) A& = nil A
{(3a", ", t)[s" = do(T, So) A systemAct(a”,t) A Poss(a",s") A s = do(a",s")] Vv

s=do(T, So)A [(Va", t)systemAct(a”,t) D ~Poss(a”, So)]} A

(G.19)
Final(8', So),
which, by the semantics of Fiinal (Appendix C) and minor transformations, is equivalent to
Poss(T, So) A
{(3d",s",t)[s" = do(T, So) A systemAct(a”,t) A Poss(a",s") Ns = do(a",s")] Vv
s=do(T, So) A [(Va",t)systemAct(a”,t) D = Poss(a’, Sp)]}. (G.15)
Now we must show that the following two formulas hold:
Poss(T, So) A (Fa”, ", t)[s" = do(T, So) A systemAct(a”,t) A (©.16)
Poss(a”,s") N s =do(d”,s")] D legal(s), -
Poss(T, So) A s=do(T, So) A [(Va", t)systemAct(a”,t) D =Poss(a”, Sp)] D legal(s).
(G.17)
Proof of (G.16): By Lemma 4.6, we have legal(Sy). Noticethat (G.16) is equivaent to
Poss(T, So) A (3a”, t)[system Act(a” t) A
(T, So) A (3, 1) (a”,1) ©.18)

Poss(a”,do(T, So)) A s = do(a”,do(T, So))] D legal(s).

By assuming theantecedent of (G.18), we concludeby Lemma4.6 and thefact that legal(Sp) that legal(s).
Proof of (G.17): Noticethat the formula (G.17) isequivaent to

Poss(T, So) A (a”,t)[systemAct(a”,t) D —~Poss(a”, Sp)] D legal(s). (G.19)

APPENDIX G. PROOFS 225

The proof of thisisimmediate, using Lemma 4.6.

Case: 7' isatest action of theform 7.
By Definition (6.3), we have

(3d’).Holds(®, So, s) A Final(nil, s).

Therefore, by thesemanticsof Final, wehave Holds(®, So, s). By unwinding H olds(®, Sp, s) and us-
ing Definition 6.8, whenever we reach afluent literal, werecord that literal into thelog. Therefore, since
legal(Sy), by the UPA for test actions, we get by Lemma 4.6 legal(s), withs = do([¢1, - - -, ¢n), So).
The ¢, arefluentsintroducedintothelog by test actionsgenerated throughtheunwindingof Holds(®, Sy, s).

Cases: T neither a primitive database update, nor atest action.
All these cases reduce to the base cases treated above by unwinding the program 7" using the definitions
in Appendix C. |

Theorem 6.11

Asin Theorem 6.10, the proof is by induction on the structure of T'. All casesto consider are likethere,
except for primitivedatabase updates. Hence, wedeal withthiscase. Assumefor fixed s that Do(T', Sy, s).
Then, asin Theorem 6.10, by Definition (6.3), we have

(38").Trans*(T, So, &', s) A Final(d', s).
By Definition (6.23), thisimpliesthat

(38", 5", a",s*,1). TransO f(T,t, So) A Poss(T, So) A& = nil A
{[s" = do(T, So) A systemAct(a”,t) A Poss(a”,s") A s = do(a",s")] v
s*=do(T, So) A [(Va",t).systemAct(a”,t) D =Poss(a", So)] A Do(Rules(t), s*,s)} (b.ZO)
Final(§', So),

which, by the semantics of Fiinal (Appendix C) and minor transformations, is equivalent to

(3s",a", s, t). TransO f(T,t,So) A Poss(T, So) A
{[s" = do(T, So) A systemAct(a",t) A Poss(a”,s") A s = do(a”",s")] Vv
s*=do(T, So)A [(Va", t).systemAct(a”,t) D =Poss(a’, So)] A Do(Rules(t), s*, s)}(.G'Zl)

APPENDIX G. PROOFS 226

Now we must show that the following two formulas hold:

(3s",a",s*,t). TransO f(T,t, So) A Poss(T, Sp) A

[s" = do(T, So) A systemAct(a”,t) A Poss(a”,s") Ns = do(a",s")] D legal(s)

' (G.22)
(3s",a",s", s*,t). TransO f(T,t,So) A Poss(T,So) A s*=do(T, Sp) A
[(Va",t).systemAct(a”,t) D ~Poss(a”, So)] A (G.23)
Do(Rules(t),s",s) D legal(s).
Proof of (G.22): By Lemma 4.6, we havelegal(Sy). Noticethat (G.16) is equivaent to
(Fa", s*,t).TransO f(T,t, So) A Poss(T, So) A
[systemAct(a”,t) A Poss(a”,do(T,So)) A s =do(a",do(T, So))] D legal(s). (G.24)
From the antecedent of (G.24), we get, by Lemma 4.6 and the fact that legal(Sy), that

(3s",t).TransO f(T,t,S0) A So C s Alegal(s). (G.25)

Therefore, we conclude that legal(s).

Proof of (G.23): Through an argument similar to the proof of (G.23), we find that thereis a situation s*
that islegal. Now, to executeany oneof theruleprograms(6.7) —(6.10) in somelegal situations* toreach
situation s, al the actions involved must have been possible according to the semantics of ConGolog
programs (Appendix C). Therefore the outcome s must belegal, i.e. legal(s) holds. |

Theorem 6.15

By Definition 6.13, we must provethat, whenever () isa database query, we have

(Vt,5).[(35'). Do(Rules'®>(t), s, s') A Q[s']] D

(G.26)
[(3s").Do(Rules'" (1), 5,5") A Q[s"]].

Therefore, by the definitionsof Rules!"1)(¢) and Rules(>2)(t), we need to prove that

APPENDIX G. PROOFS 227

(Vt, s).
{(3s").Do({(7Z1,71)[11[R1,t]7 ; (C1(Z1)[R1,t] A assertionInterval (t))? ; aq(71)]|

(&0, Jn) [Trl Ry t]7 5 (Cn(E0)[rn, t]AassertionInterval (t))? 5 oy, (7]
~{[(330) (i [B1, AG(E) [Ba, 8]) V
V (3 (Ta[By, IA G (&) [Bn, H])] A
assertionInterval(t)} 7}, s, §') AQ[s']} O (G.27)
{(3s").Do({(nZ1, i) [m1[R1,1]7 ; Cu(ZF1)[R1,1]7 ;5 er(§1)[Ry, 1]

(7@ G) [Tal Ry 175 Co(Tn) [Rns]7 5 0 () [R 2]
3 (R, AAGE [Rr, 1) Ve .V B0 (7 B 1 AGn ()[R)] 2, 5, 5°) AQIST)-

By the definition (6.3) of De and the semantics of ConGolog (Appendix C), we must prove:

(Vt, s).
{(3s"). Trans*({(xZ1,71)[T1[R1,t]? ; ((1(Z1)[R1,t]) A assertionInterval (t))? 5 a1 (71)]|

—

(7 &y Un) [Tn[Ry E]7 5 (Cn(E0)[rn, t]NassertionInterval (t))? ; o, (7,)]|
~{[(371) (n[Ry, ACU(Z) Ry, 1]) V
V (30) (Tn[Ry A () [R, T])] A
assertionInterval(t)} 7}, s, nil, s') AQ[s']} D (7.28)
{3") Trans*({(x 21, §1) [m[R, 875 G (@) [Ba,8]7 5 o (1) [Ba, 2]

(7T, Gn) [T By 1175 ()[R, 1]7 5 o0 () [R, 2]
(@) (1[Ry, NG (E) Ray 1) V- -V (3F0) (Ta[Ry 1AG (F) (R,)] 7Y, 5, mil, 8") A QLs"]).
By the semantics of T'rans, we may unwind the T'rans* predicate in the antecedent of (7.28) to obtain,
in each step, aformulawhich isabig disunction of the form
(3s').[(¢1 A 3 A assertionInterval(t) A ¢3) V
V (@7 A @5 A assertionInterval(t) A ¢5) V @] A Q[s'],

(7.29)

where ¢} representstheformular;[R;, t], ¢!, represents ¢; (7;) [R;, 1], and ¢ represents the situation cal-
culus formula generated from «; (7;), with: = 1, - - - | n; ® represents the formulain the last test action

APPENDIX G. PROOFS 228

of Rules(®?)(t). Similarly, we may unwind the 7'rans* predicatein the consequent of (7.28) to obtain,
in each step, aformulawhich isabig disunction of the form

(3s").[(1 APy A B3V -V (dF A ¢ A ds) VB TAQ[s], (7.30)

where ¢}, ¢b, and ¢4 are to interpret as above, and &’ represents the formulain the last test action of
Rules(lvl)(t). &' differs from @ only through the fact that @ is a conjuction with one more conjunct
which is assertionInterval(t). Also, since no nested transaction is involved, and since both rule pro-

gramsinvolved are confluent, we may set s’ = s”. Therefore, clearly (7.29) implies (7.30). [|
Theorem 6.16
Thisproof issimilar to that of Theorem 6.15, so we omit it. [|

Coroallary 6.17

The proof isimmediate from Theorems 6.15 and 6.16. |

Theorem 6.21

The proofs are very much similar to that of Theorem 6.15, so there is no need of repeating them here.
The key ideais: whenever a situation exists that satisfies a database query ¢ for some rule program,
we might obtain the corresponding situation for the model (1, 1) by just droping the nested transaction

actionssuch as Begin(t,t', CLOSED, NONCOMP), End(t), etc. |
Theorem 7.11
Thisis straightforward. |

Corollary 7.12
Withouth taking the details of quantifiersinto account, thisis easy by

(Al\/AQ)DBEﬁ(Al\/AQ)\/BE(—|A1/_|A2)\/BE
(_|A1\/B)/\(_|A2\/B) = (Al DB)/\(AQ DB) |

Theorem 7.13
Straightforward and similar to the proof of Theorem 7.12 |
Corollary 7.14

The proof isimmediate from Theorem 7.13 |

APPENDIX G. PROOFS 229

Theorem 7.19

The proof isby induction on the structure of the regressable sentence . For the purpose of carrying out
thisinduction, we use a well-founded ordering relation < defined in [PR99] for Markovian regressable
sentences and adapted to non-Markovian structuresin [Gab024].

Let usrecall thisindex structure. Suppose W is a non-Markovian regressable sentence of a given
relational language K. A maximal situation term o of W isasituation term that is such that thereis no
other situation term o’ of W with o T o'. Define index (W) asthetuple ((C, E, I, A1, Ay, --+), P),

where
e (' isthe number of logical symblols(i.e. connectives and quantifiers) mentioned by .
e F isthe number of equality atoms on situation terms mentioned by .
e [isthe number of C-atoms mentioned by .
e A;, m > 1, isthe number of bounded maximal situations mentioned by V.
e P isthenumber of Poss predicates mentioned by W.

Base Case: index(W) = ((0,0,0,---),0). That is, W does not mention any of Poss, C, or equality
between situationterms. Moreover, W may mention S, asitsonly situationterm. Clearly, thisisthecase
when W isafluent uniformin S, or asituation independent predicate. If W isafluent atom (we restrict
oursdlf to relational fluents), the only subsets of D and D* that can entail such aformula are Ds, and
D3, or Ds, and DZ . Itiseasy to verify that Ds, |= W iff D, |= W, and D, [W iff Dy, 1= W.

If W isasituation independent atom, then, whenever W wasin D, , it will also appear in ’DAO, <0 that,
trividly, D |= W iff DA = W.

Inductive Case: Supposethat thetheorem holdsfor all regressableformulas W' such that index (W') <
indez (W). The proof now proceeds by structural induction on the form of bounded formulas. In partic-
ular, it must deal with the case where W is of the form Poss(A(f), o), arelational fluent, or one of the
definitionsin Abbreviation 7.1. Thetwo first cases are teated like in the proof of Theorem 2 in [PR99].
The case of the definitionsin Abbreviation 7.1 is particular to the non-Markovian context. To treat just
one of these definitions, suppose W isof theform (3s : s = do([ay, - - -, @], So))W'.

1. If W’ isempty, then thetheorem follows, sinceboth D and DA containall thefoundational axioms
3} of the situation calculuswhich are all what is needed to establish an equality between situation
terms.

2. If W' isnot empty, then W" = W’|§O([CY1]
W" mentions some s’ such that s C s’. It must be shown that indez(W") < index(W). The
valuesof P and A;, m > 1, areclearly thesameinboth & and W”, but thevaluesfor C' and F are

S5) isbounded by asituationterm rootedin s. So

APPENDIX G. PROOFS 230

clearly different. Hence index (W") < indexz(W). Since W and W" are equivaent, thetheorem
follows by induction hypothesis. |

Theorem 7.20

Assume the conditions of this corollary. That is, assume D2 as described in the conditions of Theo-
rem 7.19. Then, by Theorem Theorem 7.19, for any given regressable sentence G, we have D = G
iff DA = G. Since D fullfilsthe conditions of Clark’s generalized Theorem 7.9, the conclusion of this

theorem follows. |
Theorem 7.21
The proof is straightforward and similar to that of Theorem 7.15 |

Corollary 7.22

The proof is easy from Theorem 7.21 |

Theorem 7.24

Thisis much likein Theorem 7.13 and Corollary 7.14 |

