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Abstract

We describe a novel application of planning in
the situation calculus to formalize the evolu-
tion of a database under update transactions.
In the resulting theory, query evaluation be-
comes identical to the temporal projection
problem. We next define a class of axioms
for which the classical AT planning technique
of goal regression provides a sound and com-
plete method for solving the projection prob-
lem, hence for querying evolving databases.
Finally, we briefly discuss several issues which
naturally arise in the settings of databases
and planning, namely, proofs by mathemat-
ical induction of properties of world states,
logic programming implementations of the
projection problem, and historical queries.

1 Introduction

The situation calculus (McCarthy [7]) is enjoying new
popularity these days. One reason is that its expres-
siveness is considerably richer than has been commonly
believed (Gelfond, Lifschitz, Rabinov [2]). Another is
the possibility of precisely characterizing the strengths
and limitations of various general theories of actions
expressed within its formalism (see [6, 5, 12] for ex-
amples). In this paper we propose yet another reason
for not giving up too hastily on the situation calculus.
Specifically, we propose a novel application of it to
the problem of specifying the evolution of a database
under update transactions. Qur proposal is to repre-
sent a database in the situation calculus. Updatable
database relations will be fluents; transactions will be
functions, and will be treated exactly as are actions in
the usual situation calculus formalizations of dynamic
worlds. As we shall see, querying an evolving database

is precisely the temporal projection problem in Al plan-
ning. This motivates the theoretical focus of this pa-
per, which presents a sound and complete regression-
style procedure for solving the projection problem in
the case of a limited, but sizable class of background
axiomatizations.

The theoretical results of this paper complement those
of (Reiter [10]), where a sound and complete plan syn-
thesis procedure is described, based on goal regression.
Proofs of our results, and further discussion, may be

found in (Reiter [12]).

2 Formalizing Database Evolution in
the Situation Calculus: An Example

In this section we describe a novel application of the
situation calculus and its relationship to the tempo-
ral projection problem in planning. In the theory of
databases, the evolution of a database is determined by
transactions, whose purpose is to update the database
with new information. For example, in an educational
database, there might be a transaction specifically de-
signed to change a student’s grade. This would nor-
mally be a procedure which, when invoked on a specific
student and grade, first checks that the database sat-
isfies the transaction’s preconditions (e.g., that there
is a record for the student, and that the new grade dif-
fers from the old), and if so, records the new grade. In
current database practice, transactions are procedures
which physically modify data structures representing
the current database state, much like STRIPS oper-
ators. Our objective in this section is to provide a
specification of the effects of transactions on database
states. OQur proposal is to represent a database in the
situation calculus. Updatable database relations will
be fluents; transactions will be functions, and will be
treated exactly as are actions in the usual situation
calculus formalizations of dynamic worlds.



To illustrate our approach to specifying database
transactions, we consider the following toy education
database.

Relations The database involves the following three
relations:

1. enrolled(st, course, s): Student st is enrolled in
course course when the database is in state s.

2. grade(st, course, grade,s): The grade of student
st in course course is grade when the database is
in state s.

3. prerequ(pre, course): pre is a prerequisite course
for course course. Notice that this relation is state
independent, so is not expected to change during
the evolution of the database.

Initial Database State We assume given some first
order specification of what is true of the initial state
Sp of the database. These will be arbitrary first order
sentences, the only restriction being that those predi-
cates which mention a state, mention only the initial
state Sp. Examples of information which might be true
in the initial state are:

enrolled(Sue, C100, Sp) V enrolled(Sue, C200, Sp),
(Fe)enrolled(Bill, ¢, Sp),
(Vp).prerequ(p, P300) = p = P100V p = M 100,
(Vp)—prerequ(p, C'100),
(Ve).enrolled(Bill, e, So) =
c=M100Vec= C100V c = P200,
enrolled(Mary, C100, Sp),
—enrolled(John, M200, Sp), . ..
grade(Sue, P300, 75, Sp),
grade(Bill, M200,70, Sp), ...
prerequ(M200, M100), —prerequ(M100,C100), ...

Database Transactions Update transactions will be
denoted by function symbols, and will be treated in
exactly the same way as actions are in the situation
calculus. For our example, there will be three trans-
actions:

1. register(st, course): Register student st in course
course.

2. change(st, course, grade): Change the current
grade of student st in course course to grade.

3. drop(st, course): Student st drops course course.

Transaction Preconditions Normally, transactions
have preconditions which must be satisfied by the cur-
rent database state before the transaction can be “exe-
cuted”. In our example, we shall require that a student

can register in a course iff she has obtained a grade of
at least 50 in all prerequisites for the course:'

Poss(register(st,c), s) = {(Vp).prerequ(p,c) D
(39).grade(st,p,g,s) A g > 50}.

It is possible to change a student’s grade iff he has a
grade which is different than the new grade:

Poss(change(st,c, g),s) =
(39").grade(st, e, g',s) Ng' # g.
A student may drop a course iff the student is currently
enrolled in that course:

Poss(drop(st,c),s) = enrolled(st, c, s).

Transaction Specifications These are the central
axioms in our formalization of update transactions.
They specify the effects of all transactions on all up-
datable database relations. As usual, all lower case
roman letters are variables which are implicitly uni-
versally quantified. In particular, notice that these
axioms quantify over transactions.

Poss(a, s) D [enrolled(st,c,do(a, s)) =
a = register(st,c) V (1)
enrolled(st, c,s) A a # drop(st, c)],

Poss(a, s) D [grade(st, c,g,do(a,s)) =
a = change(st,c,g) V
grade(st, e, g,s) A (Yg')a # change(st, e, g")].

Although incidental to the main thrust of this paper,
notice that it is these transaction specification axioms
which “solve” the frame problem in the database set-
ting. The equivalences in these axioms were motivated
by Pednault’s approach to the frame problem [9], and
the appeal to quantification over transactions stems
from the exzplanation closure azioms of Haas [3] and
Schubert [14]. See (Reiter [10, 12]) for further discus-

s101n.

Querying a Database Notice that in the above ac-
count of database evolution, all updates are wirtual;
the database is never physically changed. To query
the database resulting from some sequence of transac-
tions, it is necessary to refer to this sequence in the
query. For example, to determine if John is enrolled
in any courses after the transaction sequence

drop(John, C100), register(Mary, C100)
has been ‘executed’, we must determine whether

Database |= (3¢).enrolled(John, e,
do(register(Mary, C'100),
do(drop(John, C'100), Sp))).

Thus, querying an evolving database is precisely the
temporal projection problem in Al planning [4]; this
motivates the theoretical focus of this paper.

'In the sequel, lower case roman letters will denote vari-
ables. All formulas are understood to be implicitly univer-
sally quantified with respect to their free variables when-
ever explicit quantifiers are not indicated.



3 An Axiomatization

In this section we precisely characterize the class of
axioms which the theory of this paper addresses. The
axioms of Section 2 all fit these patterns. Throughout,
we assume a sorted second order language £, with sorts
for states and for actions.? We omit the details of this
language, which are described in (Reiter [12]).

Unique Names Axioms for Actions For distinct
action names 7" and 7",

T(#) # T'(y)
Identical actions have identical arguments:

T(21, o 2n) =TW1y o Yn) DZ1 =1 Ao A2y = Yn

for each function symbol T of £ of sort action.

Unique Names Axioms for States
(Va, 8)Sg # do(a, s),

(Va,s,a’,s').do(a,s) = do(a’,s') Da=a" As=15".

Definition: The Simple Formulas The simple for-
mulas of £ are those first order formulas which do not
mention the predicate symbols Poss, < or <, whose
fluents do not mention the function symbol do, and
which do not quantify over variables of sort state.

Definition: Action Precondition Axiom An ac-
tion precondition axiom is a sentence of the form

(Vf, S).POSS(T(,],‘L e In)’ 8) = HT,

where T 1s an n-ary function of sort action of £, and
II7 is a simple formula of £ whose free variables are
among i, -, Zn, S.

Definition: Successor State Axiom A successor
state axiom for an (n+1)-ary fluent F' of £ is a sentence

of £ of the form

(Va, s).Poss(a, s) D

(Voq, ... 20). Fa, ..

Sy Zp,do(a,s)) = Op
where, for notational convenience, we assume that F’s
last argument is of sort state, and where ®p is a
simple formula, all of whose free variables are among
Ay S, XY,y Ty

Notice that these successor state axioms are suitable
only for formalizing determinate actions, i.e. actions
whose effects on all fluents are completely known. We
could not appeal to axioms of this form for character-
izing the action of putting down an object, when the

2We require a second order language in order to define
the concept of a legal action sequence. See Section 4.1
below.

resulting precise location of the object is unknown.3

While this is a severe restriction in practice, database
applications normally appeal to determinate transac-
tions, in which case these successor state axioms are
precisely what we want.

Notice also, as remarked in Section 2, these axioms
deal with the frame problem. They do not, alas, ad-
dress the ramification problem (Finger [1]), which is to
say that the ramifications of any action must be explic-
itly represented in the successor state axioms. Recent
results by Lin and Shoham [6] appear to address this
problem in our setting.

4 Regression and the Projection
Problem

“In solving a problem of this sort, the grand
thing is to be able to reason backward.”

Sherlock Holmes, A Study in Scarlet

This section describes our formal results for the tem-
poral projection problem in the situation calculus. It
defines a regression operator, and uses it to character-
ize legal plans, as well as a systematic procedure for
solving the projection problem.

4.1 Legal Plans

Not all plans need be legal. Intuitively, an action se-
quence is legal iff, beginning in state Sy, the precon-
ditions of each action in the sequence are true in that
state resulting from performing all the actions preceed-
ing it in the sequence. To formalize this notion of a
legal plan, we first define an ordering relation < on
states . The intended interpretation of s < s’ is that
state s’ is reachable from state s by some sequence of
actions, each action of which is possible in that state
resulting from executing the actions preceeding it in
the sequence. Hence, we want < to be the smallest
binary relation on states such that:

1. 0 < do(a, o) whenever action a is possible in state
o, and

2. o < do(a, o') whenever action a is possible in state
o and o < o',

This we can achieve with a second order sentence, as
follows:*

At least, we could not do so whenever a fluent
location(z,1, s) is part of the theory.

*This cannot be done with a first order sentence since
it requires transitive closure, which is well known not to be

first order definable.



Definitions: s < s’, s < &'

(Vs,s').s < s =
(VP)A[(Va, s1).Poss(a, s1) D P(s1,do(a, s1))] A
[(Va, s1,82).Poss(a, s2) A P(s1,82) D
P(s1,do(a, s2))]}
D P(s,s).
(2)

(Vs,s')s<s =s<sVs=ys. (3)

Intuitively, Sy < s states that s is an executable plan,
i.e., 1t is a sequence of plan steps, each of whose action
preconditions is true in the previous state.

Notation: Let aq,...,a, be terms of sort action. De-

fine
do([],5) = s,
and forn=1,2,...
do([a1,...,axs],8) = do(an,do([a1, ... ,an_1,8)).
do([a1,...,ays],s) is a compact notation for the state
term

do(an,do(an—1,...do(a,s)...)

which denotes that state resulting from performing the
action aj, followed by as, ..., followed by a,, begin-
ning in state s.

Definition: The Legal Action Sequences Suppose
T, ..., Ty I8 a sequence of ground terms (i.e. terms
not mentioning any variables) of £, where each 7; is of
sort action. Then this sequence is legal (with respect
to some background ariomatization D) iff

D ': So S dO([Tl, .. .,Tn],So).

Definition: In the sequel, we shall only consider back-
ground axiomatizations D of the form:

D = less-aziomsUD;s UDgp UDuns UDyna UDs, (4)
where
o less-arioms are the axioms (2), (3) for < and <.

e D, is a set of successor state axioms.

e D,y is a set of action precondition axioms.

Duns 1s the set of unique names axioms for states.

Duna 18 the set of unique names axioms for ac-
tions.

Ds, is a set of first order sentences with the prop-
erty that Sy is the only term of sort state men-
tioned by the fluents of a sentence of Dg,. See
Section 2 for an example Dg,. Thus, no fluent of
a formula of D, mentions a variable of sort state
or the function symbol do. Dg, will play the role
of the initial database (i.e. the one we start off
with, before any actions have been “executed”).

Definition: A Regression Operator Let W be first
order formula. Then R[W] is that formula obtained
from W by replacing each fluent atom F(t_; do(a, o))

mentioned by W by <I>F(t_: a,0) where I'’s successor
state axiom is

(Va, s).Poss(a, s) D (VZ).F(Z,do(a, s)) = ®r(Z, a, s).
All other atoms of W not of this form remain the same.

The use of the regression operator R is a classical plan
synthesis technique (Waldinger [15]). Regression also
corresponds to the operation of unfolding in logic pro-
gramming.

Notation: When G is a formula of L,
RG] =G,
R*"[G]=R[R"'G]] n=12,...

Recall that for each function 7" of sort action, D, will
contain an axiom of the form

(VZ, s).Poss(T(¥),s) = r(Z, s),

Theorem 1 (Reiter [12]) Let Ti,...,Tn be func-
tion symbols of sort action. Then the sequence
T1(g1), .-, Tm(Gm) of ground terms is legal wrt D iff

Duns UDuna UDSD ': , . )
Nz Ry, (Gi, do([Ty (1), - - -, Ti—1(Gi-1)], So))]-

Theorem 1 reduces the test for the legality of an ac-
tion sequence to a first order theorem proving task in
the wnitial database Dg,, together with suitable unique
names axioms.

Example: Legality Testing
In connection with the example database of Section 2,
we determine the legality of the transaction sequence

change(Bill, C'100,60), register(Sue, C'200),
drop(Bill, C'100).

We first compute

RO[(3g')grade(Bill, C100,¢', So) A g’ # 60] A
R[(Vp)prerequ(p, C200) D
(39).grade(Sue, p, g, do(change(Bill, C'100, 60), Sp))
Ag>50] A
R2[enrolled(Bill, C'100, do(register(Sue, C200),

do(change(Bill, C'100,60), Sp)))].
This simplifies to

{(3¢").grade(Bill,C100,g’', So) A g’ # 60} A
{(Vp).prerequ(p, C200) D Bill = Sue Ap = C100 Vv
(39).grade(Sue,p, g, So) Ag > 50} A
{Sue = Bill A C200 = C'100V
enrolled(Bill, C100, Sp)}.

So the transaction sequence is legal iff this formula is
entailed by the initial database, together with unique
names axioms for states and actions.



4.2 A Solution to the Projection Problem

The following provides a systematic regression-based
procedure for solving the projection problem for the
class of axioms (4) defined above.

Theorem 2 (Soundness and Completeness (Re-
iter [12])) Suppose Q(s) € L is simple, and that the
state variable s is the only free variable of Q(s). Sup-

pose T1, ..., Ty 18 a sequence of ground terms of L of
sort action. Then if 7,..., 7, is a legal action se-
quence,

D E Q(do([r1, ..., ™), S0))
uf
Duns U Duna U DSO ': Rn[Q(do([Tla RN Tﬂ]ﬂ SO))]

As in the case of verifying legality, the projection prob-
lem reduces to first order theorem proving in the initial
database Dg,, together with unique names axioms.

Corollary 1 (Relative Consistency) D is satisfi-
able lﬁ Duns U Duna ) DSO is.

Corollary 1 provides an important relative consistency
result. It guarantees that we cannot introduce an in-
consistency to a “base” theory Dyns U Dynga UDs, by
augmenting it with the axioms for < and <, together
with successor state and action precondition axioms.

Example: Query Evaluation
Continuing with the example education database, con-
sider again the transaction sequence

T = change(Bill, C'100, 60), register(Sue, C200),
drop(Bill, C'100).

Suppose the query is

(3st).enrolled(st, C200, do(T, Sp)) A
—enrolled(st, C100, do(T, Sp)) A
(3g).grade(st, C200, g, do(T, Sp)) A g > 50.

We must compute R3 of this query. After some sim-
plification, assuming that Ds, = C'100 # €200, we

obtain

(3st).[st = Sue V enrolled(st, C200, Sp)] A
[st = Bill V menrolled(st, C'100, Sp)] A
[(3g).grade(st,C200, g, So) A g > 50].

Therefore, assuming that the transaction sequence T is
legal, the answer to the query is obtained by evaluating
this last formula in Dg, .

5 Discussion

The striking similarities between databases evolving
under update transactions and dynamically changing
worlds in the situation calculus raises a number of ad-
ditional issues of common interest to the database and
planning communities:

¢ Proving properties of world states: In com-

monsense reasoning about the physical world, we
often want to establish properties which will be
true no matter what the state of the world is, for
example, that if an object is broken and it never
gets repaired, then it will always be broken:

(Va).broken(z, So) A
[(Vs).So < s D —oceurs(repair(z), s)] D
(Vs').So < 8" D broken(z, s').

Here, occurs(a, s) means that action a occurs in
the sequence of actions leading from Sy to s. An
analogous problem arises in connection with in-
tegrity constraints in database theory. Informally,
an integrity constraint specifies what counts as
a legal database state; it is a property that ev-
ery database state must satisfy. One of the clas-
sic examples of such a constraint is that no one’s
salary may decrease during the evolution of the
database:

(Vs,s')(Vp,$,9').50 < sAs<s' D
sal(p,$,s) Asal(p,$,s') DS < ¥

As might be expected, proving such properties of
states in the situation calculus requires mathe-
matical induction. Using the axioms (2) and (3)
for < and <, Reiter [?, 11] derives suitable induc-
tion axioms for this task, and gives various exam-
ples of integrity constraints and their proofs.
Logic programming implementation: As it
happens, there is a natural translation of the ax-
ioms of Section 3 into Prolog clauses, thereby di-
rectly complementing the logic programming per-
spective on databases (Minker [8]). For example,
the successor state axiom (1) of Section 2 is rep-
resented by two Prolog clauses:

enrolled(st,c,do(a, s)) +
a = register(st,c), Poss(a, ).

enrolled(st, c,do(a, s)) +
a # drop(st,c), enrolled(st, c,s), Poss(a, s).

Similar clauses may be proposed for the other ax-
ioms of Section 2 (see Reiter [?, 13]). With a suit-
able clausal form for Dg,, it would then be possi-
ble to evaluate queries against updated databases,
for example

« enrolled(John, C200,
do(register(Mary, C100),

do(drop(John, C'100), Sp))).

In other words, there appears to be a natural
logic programming implementation of the tempo-
ral projection problem. Presumably, all of this
can be made to work under suitable conditions.
The remaining problem is to characterize what
these conditions are, and to prove correctness of
such an implementation with respect to the logi-
cal specification of this paper.



¢ Historical queries: Using the relations < and <
on states, it 1s possible to pose historical queries to
a database. For example, if T is the transaction
sequence leading to the current database state
(i.e., the current database state is do(T, Sp)), the
following asks whether Mary’s salary was ever less
than it is now:

(38,$,$/).50 <sAs< dO(T, So) A
sal(Mary,$,s) A sal(Mary,$', do(T, Sg)) A
$< 9.

Such queries are of some interest for databases.
The analogous questions for planning would be
something like: If this plan is executed, would
such and such ever be true during the plan execu-
tion? (Will block A ever be on block B during the
execution of this plan?) Within the framework of
this paper, it is possible to develop a theory of
such queries (Reiter [13]).
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