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Abstract

Partially-observable Markov decision processes provide a gen-
eral model for decision theoretic planning problems, allowing
trade-offs between various courses of actions to be determined
under conditions of uncertainty, and incorporating partial ob-
servations made by an agent. Dynamic programming algo-
rithms based on the belief state of an agent can be used to
construct optimal policies without explicit consideration of
past history, but at high computational cost. In this paper, we
discuss how structured representations of system dynamics
can be incorporated in classic POMDP solution algorithms.
We use Bayesian networks with structured conditional prob-
ability matrices to represent POMDPs, and use this model to
structure the belief space for POMDP algorithms, allowing
irrelevant distinctions to be ignored. Apart from speeding up
optimal policy construction, we suggest that such representa-
tions can be exploited in the development of useful approxi-
mation methods.

1 Introduction

Recent interest in decision-theoretic planning (DTP) has been
spurred by the need to extend planning algorithms to deal with
quantified uncertainty regarding an agent’s knowledge of the
world and action effects, as well as competing objectives
[9, 7, 4, 16] (see [2] for a brief survey). A useful underlying
semantic model for such DTP problems is that of partially
observable Markov decision processes (POMDPs) [6]. This
model, used in operations research [17, 12] and stochastic
control, accounts for the tradeoffs between competing objec-
tives, action costs, uncertainty of action effects and observa-
tions that provide incomplete information about the world.
However, while the model is very general, these problems
are typically specified in terms of state transitions and obser-
vations associated with individual states—even specifying a
problem in these terms is problematic given that the state
space grows exponentially with the number of variables used
to describe the problem.

Influence diagrams (IDs) and Bayesian networks (BNs)
[10, 14] provide a much more natural way of specifying the
dynamics of a system, including the effects of actions and ob-
servation probabilities, by exploiting problem structure and
independencies among random variables. As such, prob-
lems can be specified much more compactly and naturally

[8, 4, 16]. In addition, algorithms for solving IDs can exploit
such regularities for computational gain in decision-making.
Classic solution methods for POMDPs within the OR com-
munity, in contrast, have been developed primarily using
explicit state-based representations which adds a sometimes
unwanted computational burden. However, unlike ID algo-
rithms, for which policies grow exponentially with the time
horizon, POMDP algorithms offer concepts (in particular,
that of belief state) that sometimes alleviate this difficulty.

In this paper we propose a method for optimal policy con-
struction, based on standard POMDP algorithms, that ex-
ploits BN representations of actions and reward, as well as
tree [4] or rule [16] representations within the BN itself. In
this way, our technique exploits the advantages of classic
POMDP and ID representations and provides leverage for
approximation methods.

In Section 2, we define POMDPs and associated notions,
at the same time showing how structured representations,
based on BNs (augmented with tree-structured conditional
probability tables), can be used to specify POMDPs. In Sec-
tion 3, we describe a particular POMDP algorithm due to
Monahan [12], based on the work of Sondik [17]. In Sec-
tion 4, we describe how we can incorporate the structure
captured by our representations to reduce the effective state
space of the Monahan algorithm at any point in its computa-
tion. Our algorithm exploits ideas from the SPI algorithm of
[4] for fully observable processes. In Section 5 we suggest
that our method may enable good approximation schemes for
POMDPs.

2 POMDPs and Structured Representations

In this section we build upon the classic presentation of
POMDPs adopted in much of the OR community. We refer
to [17, 11, 6] for further details and [12, 5] for a survey.
We describe the main components of POMDPs and related
concepts. However, by assuming that problems are specified
in terms or propositional (or other random) variables, we are
able to describe how structured representations, in particular,
decision trees or if-then rules, can be used to describe these
components compactly. We begin with a (running) example.

Example Imagine a robot that can check whether a user
wants coffee and can get it by going to the shop across the
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Figure 1: Action Networks for (a) GetC and (b) TestC

street. The robot is rewarded if the user wants coffee WC
and has coffee HC, but is penalized if HC is false when WC
is true. The robot will also get wetW if it is rainingRwhen
it goes for coffee, unless it has its umbrella U . We can
imagine a number of other tasks here as well. Although
the robot can check on the weather, grab its umbrella,
etc., we focus on two actions: getting coffee GetC and
checking whether the user wants coffee by means of a
quick inspection TestC.

2.1 System Dynamics
We assume a finite set of propositions P that describe all
relevant aspects of the system we wish to control. This in-
duces a finite state space S = 2P consisting of all possible
assignments of truth values to P . There is a finite set of
actions A available to the agent or controller, with each ac-
tion causing a state transition. We assume the system can
be modeled as a POMDP with a stationary dynamics (i.e.,
the effects of actions do not depend on the stage of the pro-
cess). For simplicity we assume all actions can be taken (or
attempted) at all states. While an action takes an agent from
one state to another, the effects of actions cannot be pre-
dicted with certainty; hence (slightly abusing notation) we
write Pr(s2js1; a) to denote the probability that s2 is reached
given that action a is performed in state s1. This formulation
assumes the Markov property for the system in question.

One can represent the transition probabilities associated
with action a explicitly using a jSj � jSj probability ma-
trix. However, the fact that jSj increases exponentially with
the number of problem characteristics jPj generally requires
more compact representation; thus we represent an action’s
effects using a “two-slice” (temporal) Bayes net [8]: we have
one set of nodes representing the state prior to the action (one
node for each variable P ), another set representing the state
after the action has been performed, and directed arcs repre-
senting causal influences between these sets (see Figure 1).
We require that the induced graph be acyclic. For simplicity
we assume also that arcs are directed only from pre-action to
post-action nodes.1 See [8, 4] for details.

The post-action nodes have the usual conditional proba-
bility tables (CPTs) describing the probability of their values

1We often denote post-action variables by P 0 instead of P to
prevent confusion. Causal influences between post-action variables
should be viewed as ramifications and will complicate our algorithm
slightly, but only in minor detail.

given the values of their parents, under action a. We assume
that these CPTs are represented using a decision tree, as in
[4] (or if-then rules as in [15]). These are essentially com-
pact function representations that exploit regularities in the
CPTs. We will exploit the compactness and structure of such
representations when producing optimal policies. We denote
the tree for variable P under action a by Tree(P 0ja).2
Example Figure 1(a) illustrates the network for action GetC.

The network structure shows, for instance, that the truth
of W 0, whether the robot is wet after performing GetC,
depends on the values of R, U and W prior to the ac-
tion. The matrix for W 0 quantifies this dependence; and
Tree(W 0jGetC) illustrates the more compact representa-
tion (the leaf nodes indicate the probability of W 0 after
GetC given the conditions labeling its branch: left arcs
denote true and right arcs false). We elaborate on the Obs
variable below.

2.2 Observations
Since the system is partially observable, the planning agent
may not be able to observe its exact state, introducing another
source of uncertainty into action selection. However, we
assume a set of possible observationsO that provide evidence
for the true nature of (various aspects of) the state. In general,
the observation at any stage will depend stochastically on the
state, the action performed and its outcome.

We assume a family of distributions over observa-
tions, For each si; sj ; ak such that Pr(sj jsi; ak) > 0, let
Pr(oljsi; ak; sj) denote the probability of observing ol when
action ak is executed at state si and results in state sj . (As
a special case, a fully observable system can be modeled by
assuming O = S and Pr(oljsi; ak; sj) = 1 iff ol = sj .)
We assume for simplicity that the observation probability de-
pends only on the action and starting state, not the resulting
state; that is, Pr(oljsi; ak; sh) = Pr(oljsj ; ak; sh) for eachsi; sj .3

To represent observation probabilities compactly, we add a
distinguished variableObs to each action network that repre-
sents the observations possible after performing that action.
We use Obs(a) to denote the set of possible observations
given a.4 The variables that influence the observation are in-
dicated by directed arcs, and this effect is described, as above,
using a decision tree. We note that complex observations
may also be factored into distinct observation variables (e.g.,
should the agent get information pertaining to propositionsP
and Q by performing one action, two distinct variables Obs1
and Obs2 might be used); we ignore this possibility here.

2The network structure is not strictly necessary: the parent of a
post-action node can be determined from its CPT or decision tree
(see, e.g., Poole’s [15] rule-based representation of Bayes nets).

3This is a natural assumption for information-gathering actions,
but others are possible; e.g., Sondik’s [17] original presentation of
POMDPs assumes the observation depends only on the resulting
state. This assumption makes our algorithm somewhat simpler to
describe; but it can generalized (see Section 4).

4These are similar to observation variables in influence diagrams
[10]; however, there are no emanating information arcs.
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Example The variable Obs in Figure 1(a) takes on a sin-
gle value (Null), obtained with certainty when GetC is
executed (i.e., the action provides no feedback). More
interesting is the action TestC shown in Figure 1(b). Al-
though it has no effect on the state variables (we assume
persistence), it is useful as an information gathering ac-
tion: the value of the variable Obs (Yes or No) is strongly
dependent on whether the user wants coffee. Should the
value Yes be observed, our robot may be quite confident
the user does, in fact, want coffee (see below).

2.3 Rewards
The final component needed to describe a POMDP is a real-
valued reward functionR that associates rewards or penalties
with various states: R(s) denotes the relative goodness of
being in state s. We also assume a cost function C(a; s)
denoting the cost of taking action a in state s. The reward
(cost) function can be represented in a structured fashion
using a value node and decision tree describing the influence
of various combinations of variables on rewards (as with tree-
structured CPTs). Leaves of the tree represent the reward
associated with the states consistent with the labeling of the
corresponding branch.

Example Figure 2 shows the reward function for our prob-
lem, indicating that the reward for a particular state is
influenced only by the truth of the propositions W , WC
and HC. A similar representation for action cost can be
used. In this example action costs are constant: a cost of
1:0 for GetC and 0:5 for TestC is assumed.

The sets of actions, states and observations, the associated
transition and observation probabilities, and the reward and
cost functions, make up a POMDP. We now turn our attention
to the various concepts used in decision-making.

2.4 Policies
We focus on finite-horizon problems here: given a horizon of
size n an agent executes n actions at stages 0 through n� 1
of the process, ending up in a terminal state at stage n. The
agent receives reward R(s) for each state s passed through
at stages 0 through n (its trajectory). A plan or policy is a
function that determines the choice of action at any stage of
the system’s evolution. The value of a policy is the expected
sum of rewards accumulated (incorporating both action costs
and state rewards and penalties). A policy is optimal if no
other policy has larger value.

In choosing the action to perform at stage k of the process,
the agent can rely only on its knowledge of the initial state s0
(whether it knows the state exactly, or had an initial distribu-
tion over states), and the history of actions it performed and

observations it received prior to stage k. Different action-
observation histories can lead an agent to choose different
actions. Thus, a policy can be represented as a mapping
from any initial state estimate, and k-stage history, to the ac-
tion for stage k+1. This is roughly the approach adopted by
solution techniques for IDs [10]. However, an elegant way
to treat this problem is to maintain a current belief state, and
treat policies as mapping over from belief states to actions.

2.5 Belief States
A belief state � 2 ∆(S) is a probability distribution over
states. The probability �i assigned to state si by � is the
degree of belief that the true (current) state of the system issi.

Given some state of belief �k estimating the system state
at stage k of the decision process, we can update our belief
state based on the action ak taken and observation ok made
at stage k to form a new belief state �k+1 characterizing the
state of the system at stage k+1. Once we have�k+1 in hand,
the fact that ak, ok and �k gave rise to it can be forgotten.
We use T (�; a; o) to denote the transformation of the belief
state � given that action a is performed and observation o is
made: it is defined asT (�; a; o)i = Psj2S Pr(ojsj ; a; si)Pr(sijsj ; a)�jPsj ;sk2S Pr(ojsj ; a; sk)Pr(skjsj ; a)�jT (�; a; o)i denotes the probability that the system is in statei once a, o are made, given prior belief state �.

The new belief state T (�; a; o) summarizes all informa-
tion necessary for subsequent decisions, accounting for all
past observations, actions and their influence on the agent’s
estimate of the system state. This is the essential assump-
tion behind classical POMDP techniques: at any stage of the
decision process, assuming �k accurately summarizes past
actions and observations, the optimal decision can be based
solely on �k — history (now summarized) can be ignored
[17]. Intuitively, we can think of this as converting a par-
tially observable MDP over the original state space S into
a fully observable MDP over the belief space B (the set of
belief states �).

A belief state may be represented using a vector of jSj
probabilities; but structured representations are possible. We
do not pursue these here, since most POMDP solution algo-
rithms do not use a belief state to construct a policy.

2.6 Value Functions
State Value Functions: A state value function VS : S ! R
associates a value VS(s) with each state s. This reflects
the expected sum of future rewards the agent will receive,
assuming some fixed policy or sequence of actions in the
future. In addition, a state Q-function Q : S � A ! R
denotes the value Q(s; a) of performing an action a in states, assuming future value is dictated by a fixed course of
action [18]. In particular, let VSk and Qk be the k-stage-to-
go value and Q-functions. If the function VSk�1 is known,
then Bellman’s [1] optimality equation ensures thatQk(si; a)=C(a; si)+R(si)+Psj2SPr(sj jsi; a)VSk�1(sj) (1)

VSk(si) = maxa2AfQk(si; a)g (2)
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Intuitively, once the agent has determined a course of action
for the last k� 1 stages of the process (giving rise to VSk�1),
Equation 1 determines the value of executing action a at any
state. In the case of fully observable MDPs, this forms the
basis of a dynamic programming algorithm that can be used
to optimize the choice of action according to Equation 2.

We can represent value and Q-functions using decision
trees in precisely the same manner as reward functions (e.g.,
Figure 2). Figure 5 illustrates just such value and Q-trees.
In fact, as we will see below, we can apply these equations
directly to such structured representations.

Belief State Value Functions: Unfortunately, in the case
of POMDPs, determining the best action for individual states
is not often helpful, for the agent will typically not know the
exact state. However, the assignment of value to states via
value and Q-functions can also be viewed as an assignment of
value to belief states. In particular, any state value function
VS induces a value function over belief states:�(�) = � � VS = Xsi2S �iVS(si)
Following Monahan [12] we call these �-functions. The
value of a belief state is the weighted sum of the individual
state values; thus, such �-functions our linear functions over
belief states. Q-functions can be applied similarly to belief
states. Finally, we note that a value tree or Q-tree can be used
to represent a linear value function over belief states; when
interpreted this way, we call these �-trees. In the sequel, we
assume that �-functions are represented by �-trees.

In determining optimal policies for POMDPs, we need
to represent the optimal (k-stage-to-go) value functions V :
∆(S) ! R for belief states. Clearly, �-functions, being
linear, are quite restrictive in expressiveness. However, a key
observation of Sondik [17] is that optimal value functions
are piecewise linear and convex (p.l.c.) over the belief space.
In other words, we can represent the optimal (k-stage-to-go)
value function for any POMDP as a set @ of �-functions,
with V (�) = maxf�(�) : � 2 @g
(We will see exactly why this is so in the next section.)

As a graphical illustration of this p.l.c. representation,
consider Figure 3. Assume a single propositionQ (two statesq and q) and the three �-functions�1, �2, �3, all represented
as trees. Each �-tree determines a linear value function for
any belief state (e.g., �1 takes its highest value at belief state�(q) = 0;�(q) = 1). The set f�1; �2; �3g corresponds to
the p.l.c. value function indicated by the thick line.
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Dominated �-functions: Finally, we note that certain el-
ements of a set @ of �-functions may contribute nothing to
the induced p.l.c. value function, namely, those elements that
are stochastically dominated. For instance, �3 in Figure 3
is dominated by one of �1 or �2 at all points in the belief
space. Monahan [12] suggests that such dominated elements
be detected by means of a simple linear program and elimi-
nated from @ (see also [5]). Once again, the use of �-trees
can in many cases considerably reduce the size of these LPs,
which normally involve variables for each state. For exam-
ple, to consider whether the tree �4 dominates �5, as shown
in Figure 4, the required LP need only have variables corre-
sponding to the propositions AB, AB, AC and AC , rather
than jSj variables.

3 Computation of Optimal Policies

We now describe how to use the ideas above to to determine
optimal policies for POMDPs. We begin by presenting the
intuitions underlying Monahan’s [12] variant of Sondik’s [17]
algorithm, and how the p.l.c. nature of value functions is
exploited. We describe how our compact tree representations
can be exploited in the next section.

Given a POMDP, we want to determine a policy that se-
lects, for any belief state �, and k > 0 within the problem
horizon, the optimal action to be performed. Intuitively,
Pol(�; k) 2 A is the best action available to the agent as-
suming its state of belief is � and there are k stages of the
process remaining. Unfortunately, representing such a func-
tion can be problematic, since the set of belief states B is ajSj-dimensional continuous space. However, Sondik’s key
observation that k-stage-to-go value functions are p.l.c., and
thus finitely representable, also provides a means to finitely
represent policies (albeit indirectly). Intuitively, the determi-
nation of the “pieces” of the the k-stage-to-go value function
will attach actions to each of these pieces. To determine
the best action to be performed for a given belief state �, the
action associated with the “maximal piece” of the value func-
tion for � will be the best action. Thus, actions are associated
with various regions of the belief space, regions determined
by the value function itself.

To see this, we first note that with zero stages-to-go the
agent has no action choice to make, and the expected value of
being in any belief state is given by the�-function determined
by immediate reward R; that is, V 0(�) = � �R. Thus, V 0 is
a linear function of �. We call this single �-function �0.

The computation of V 1 depends only on V 0 and illustrates
why the value functions remain p.l.c. The value of perform-
ing any action a in a given state s is given by Q(a; s), as
defined in Equation 1, using R (or V 0) as the terminal value.



Since the agent has no choice of action at stage 0, any ob-
servations it makes subsequent to performing this action can
have no influence on its behavior or the expected value of the
action. Hence, this Q-function can be interpreted as an �-
function (say �1a) over belief states in the obvious way. The
value of � with one stage remaining requires that we choose
an action a that has maximal Q-value; in other words,V 1(�) = maxf�1a(�) : a 2 Ag
However, since each of the �1a is linear, V 1 is p.l.c. and has
a finite representation — the set of �1-functions themselves.
We dub this set @1.

It is worth noting that the optimal action choice given� with one stage-to-go, while not represented explicitly, is
easily determined from @1: if �1a is the member of @1 that
maximizes �1a(�), then a is the best action choice. For any�ka 2 @k, we say a is the action associated with �ka. In this
algorithm, a policy is represented implicitly in this way.

Determining V 2 requires that we take observations into
account. To begin, we note that to determine the value of
action a with 2 stages-to-go, we allow for the fact that the
action b chosen with 1 stage-to-go (and therefore the function�1b representing future value) can depend on the observationo made after a. This dependence is accounted for using
observational strategies: the action chosen with k-stages-
to-go can depend on the observation made following the
execution of action a with k + 1 stages-to-go. Specifically,
given a set @k of �-functions denoting possible future value,
an observational strategy is a function OS : A�Obs ! @k.
For any o 2 Obs(a), we use �ka;o to denote OS(a; o). We
write OSa to denote the restriction of OS to a particular actiona.

For a given action a, the value of performing a with k+ 1
stages-to-go, given an observational strategy OSa, is given
byQOS(a; si)= C(a; si) +R(si) + Xo2Obs(a)Xsj2S Pr(sj jo; si; a)�ka;o(sj)= Xo2Obs(a) Pr(ojsi; a)Q�ka;o(a; si) (3)

where Q�ka;o is the Q-function given by Equation 1, using�ka;o as the terminal value function. Each QOS also deter-
mines an �-function over belief states. From this we derive
the trueQ-function, by maximizing over observational strate-
gies: Q(a; s) = max

OSafQOSa(a; s)g
The state value function is determined using the Q-functions
by Equation 2, leaving us with a definition of the k+ 1 stage
value function over belief states:V k+1(�)=� � V=Xsi �i �maxa max

OSafQOSa(a; s)g
Thus, V k+1 is p.l.c. and can be represented by the set of�-functions fQOSa : a 2 Ag. We let @k+1 be this set of

�-functions, defined in terms of @k (since each OSa maps an
observation into an element of @k).

This gives the basic intuitions underlying Monahan’s vari-
ant of Sondik’s algorithm. To determine the set of k-stage-
to-go value functions V k for k � n, where n is some finite
horizon, we simply iterate the following algorithm for n
steps:

1. Let @0 = fRg
2. For 0 � k < n, compute @k+1 = fQOSa : a 2 Ag
As mentioned above, the optimal action choice at stage k
for any � is determined by the computing the �ka 2 @k that
maximizes value of � and adopting the the action associated
with �k. We emphasize that the policy is not explicitly
represented.

Generally, many of the generated�-functions in @k will be
irrelevant: they never influence the optimal policy because
they are dominated by other elements of@k. Monahan’s algo-
rithm includes a pruning phase at each iteration that removes
dominated components from @k (see Section 2.6).

4 Structured Computation of �-Functions

We now turn our attention to using the structured repre-
sentations described in Section 2 in Monahan’s algorithm.
The aim is to obviate the need to compute and represent the
values of each state—each coefficient in the �-functions—
individually. Beginning with a tree representation of the
reward and cost functions, we use the tree-structured repre-
sentation of CPTs in our action and observation descriptions
to ensure that as much structure as possible is preserved in
the generation of the elements of @k+1 from @k. Thus, we
treat each @k as a collection of�-trees, and show in two steps
how to generate a the set of trees @k+1 from the set @k.

4.1 Generation of a Single �-tree for an action
The generation of an �-tree in @k+1, using a particular ac-
tion a and strategy OSa, requires we compute the functionQOSa , given by Equation 3, in structured form. We note that
this computation naturally breaks into two parts: first, we
compute the function Q�ka;o for the individual observationso 2 Obs(a); and then we piece them together, taking the
sum of the Q�ka;o-functions, weighted by the probability of
observing o. We focus on the construction of Q�ka;o first.

The function Q�ka;o describes the value of performing a
fixed action a at a state s, assuming the value of subsequent
states is given by �a;o. For clarity, we let � denote the �-tree
for �a;o and Qa denote the tree-structured function Q�ka;o
we wish to construct (i.e., a and o are fixed). Our method
for generating the new Q-tree exploits the ideas described
in [4], and is closely related to [15] (we refer to [4] for fur-
ther details). Roughly, given a structured value function �,
the conditions under which two states can have different ex-
pected future value given by � (under action a) can be easily
determined by appeal to the action network for a. In par-
ticular, although an action may have different effects at two
states, if the differences pertain only to variables (or variable
assignments) that are not relevant to the value function �,
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then those states have identical expected future value and
need not be distinguished in the function Qa. We construct
the tree �k so that only these relevant distinctions are made.

Construction of Qa proceeds abductively: given the tree�, we want to generate the conditions that, prior to the per-
formance of action a, could cause the outcome probabilities
(with respect to the partitions induced by �) to vary. We
proceed in a stepwise fashion, “explaining” each of the in-
terior nodes of � in turn, beginning with the root node and
proceeding recursively with its children. It is important to
remember that all of the propositions in � refer to the state
at stage k, and that each of the propositions in Qa refer to
stage k + 1. These propositions are related to each other via
the state-transition trees for action a. Space precludes a full
exposition of the method—we refer to [4] for details of this
method (applied to fully observable MDPs)—so we present
a simple example.

Example To illustrate this process, consider the following
example, illustrated in Figure 5. We take the immediate
reward function (see Figure 2) to be a tree �0 (the initial
value tree), and we wish to generate the expected future
value tree for stage 1 assuming action GetC is taken and
that�0 determines value at stage 0. We begin by explaining
the conditions that influence the probability of WC0 under
GetC (Step 1 of Figure 5). This causes Tree(WC0jGetC) to
be inserted into the tree �: as indicated by Figure 1, WC0
is not affected by the action GetC, and thus remains true or
false with certainty. The leaves of this partial tree denote
the probability of WC0 being true after the action given
its value (WC) before the action. We then explain HC0
(Step 2). Since the initial value tree asserts that HC is only
relevant when WC is true, the new subtree Tree(HC0jGetC)
is added only to the left branch of the existing tree, since
WC0 has probability zero on the right.
Again, the probabilities labeling the leaves describe the
probability of the variable in question after the action,
while the labels on interior nodes of the branches re-
late the conditions before the action under which these
probabilities are valid. This becomes clear in Step 3,
where we consider the conditions (prior to GetC) that af-
fect the occurrence of W 0 (wet) after GetC: the relation
(Tree(W 0jGetC)) is complex, depending on whether the
robot had an umbrella and whether it was raining. This
final tree has all the information needed to compute ex-
pected future value at each leaf—the probabilities at each
leaf uniquely determine the probability of landing in any
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Figure 6: �-trees with 1 Stage-to-go

partition of initial value tree under GetC.

Finally, we note that to get the true expected value (not just
future value), we must add to each of these trees both the
current state value R(s) and the action cost C(a; s). This
will generally require the simple addition of cost/reward to
the values labeling the leaves of the current tree, though
occasionally a small number of additional distinctions may
be required. Figure 6 shows the expected (total) value tree
for GetC obtained by adding R(s) and C(a; s) to the future
value tree of Figure 5. Figure 6 also shows the tree for TestC.

4.2 Incorporating Observations
To account for observations, every element of @k must corre-
spond to a given action choice a and an observation strategy
that assigns a vector in @k�1 to each o 2 Obs(a). We now
consider the problem of generating the actual �-tree corre-
sponding to action a and the strategy assigning �j 2 @k�1

to the observation oj .
Since the conditions that influence the probability of a

given observation affect expected future value (since they
affect the subsequent choice of �-vector with k � 1 stages-
to-go), the new tree � must contain these distinctions. Thus� is partially specified by Tree(Obsja), the observation tree
corresponding to action a. Recall that the branches of this tree
correspond to the conditions relevant to observation probabil-
ity, and the leaves are labeled with the probability of making
any observation oj . To the leaves of Tree(Obsja)we add the
weighted sum of the explanation trees (see also [16]). More
specifically, at each leaf of Tree(Obsja) we have a set of
possible (nonzero probability) observations; for exposition,
assume for some leaf these are oi and oj . Under the condi-
tions corresponding to that leaf, we expect to observe oi andoj with the given probabilities Pr(oi) and Pr(oj), respec-
tively. We thus expect to receive the value associated with
the explanation tree for �i with probability Pr(oi), and that
for �j with probability Pr(oj). We thus take the weighted
sum of these trees and add the resulting merged tree to the
appropriate leaf node in Tree(Obsja).5

5Computing the weighted sum of these trees is relatively straight-
forward. We first multiply the value of each leaf node in a given
tree by its corresponding probability. To add these weighted trees
together involves constructing a smallest single tree that forms a
partition of the state space that subsumes each of the explanation
trees. This can be implemented using a simple tree merging opera-
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Example Consider the following example illustrated in Fig-
ure 7. We assume that trees �1 and �2, the trees for GetC
and TestC in Figure 6, are elements of @1. We consider
generating the new tree � to be placed in @2 that corre-
sponds to the action TestC and invokes the strategy that
associates �1 with the observation Yes and �2 with the ob-
servation No. We begin by using the observation tree for
TestC: the observation probability depends only on WC
(see Step 1 of Figure 7). We then consider the weighted
combination of the trees �1 and �2 at each leaf: to the
leaf WC we add the tree 0:8�1 + 0:2�2 and to WC we
add 0:1�1 + 0:9�2. This gives the “redundant” tree in the
middle of Figure 7. We can prune away the inconsistent
branches and collapse the redundant nodes to obtain the
final tree �, shown to the right.

We note that this simple combination of trees is due in part
to the dependence of observations on only the pre-action state
(as is the “separation” in Equation 3). This allows the direct
use ofTree(Obsja) in assessing the influence of observations
on the values of pre-action states. However, should observa-
tions depend instead on the post-action state as is usual in the
POMDP literature [17, 6], our algorithm is complicated only
in slight detail. In this case, Tree(Obsja) refers to variables
in the state following the action, (recall we are interested in
the values of states prior to the action). Generating the prob-
ability of the observations based on pre-action variables is,
however, a simple matter: we simply generate an explanation
for the observation in a manner similar to that described in
Section 4.1 (though, in fact, much less complicated). The
standard explanation trees are then merged together within
this slightly more complicated tree instead of Tree(Obsja).
4.3 Generation of @k and Pruning
The algorithm for construction of the structured value func-
tion proceeds exactly as Monahan’s algorithm in the previous
section. The substantial difference is that we start with a tree-
structured initial reward function as the sole �-tree at stage
0, and generate collections @k of �-trees rather than sim-
ple (e.g., vector-represented) �-functions. The process de-
scribed above involves some overhead in the construction of
explanation trees and piecing them together with observation
probabilities. We note, however, that we need not generate
the trees for Q�ka;o for each observation strategy individu-

ally. This tree depends only on a and �ka;o, not on o. Thus,

tion (for example, see [4] where similar tree merging is used for a
different purpose). In terms of rules [16], this effect is obtained by
explaining the conjunction of the roots of the trees.

we need only construct jAjj@kj such trees; the jAjjOjj@k j
different trees in @k+1 are simply different weighted com-
binations of these (corresponding to different observational
strategies). Further savings are possible in piecing together
certain strategies (e.g., if OSa associates the same vector
with each observation, the explanation tree for a can be used
directly).

One can prune away dominated �-trees from @k, as sug-
gested by Monahan. As described in Section 2.6, this too
exploits the structured nature of the �-trees.

Finally we note that most POMDP algorithms are more
clever about generating the set of possible �-vectors. For
example, Sondik’s algorithm does not enumerate all possible
combinations of observational strategies and then eliminate
useless vectors. We focus here on Monahan’s approach be-
cause it is conceptually simple and allows us to illustrate the
exact nature of structured vector representations and how they
can be exploited computationally. We are currently investi-
gating how algorithms that use more direct vector generation
can be adapted to our representation. The Witness algorithm
[6] appears to be a promising candidate in this respect, for the
LPs used to generate “promising” �-vectors are amenable to
the representations described here.

4.4 Executing Policies
Given @k and a belief state �, we can determine the optimal
action with k stages-to-go by choosing an � 2 @k such that� � � is maximal, and carrying out the action associated with�. We can then make our observations, and use Bayes rule
to update our belief state. We are then ready to repeat and
choose an action for the next stage.

The structured representation of value functions, which
will generally be compact, can aid policy execution as well.
This will be especially true if the belief state is itself rep-
resented in a structured way. The expected value of belief
state � is the sum of the values at the leaves of the �-tree
multiplied by the probabilities of the leaves. The probability
at each leaf is the probability of the conjunction of propo-
sitions that lead to it (which can be derived from the belief
state). Moreover, this also specifies which probabilities are
required as part of the belief state (and which may be ig-
nored). For instance, if it is discovered in the generation of
the value function that certain variables are never relevant to
value, these distinctions need not be made in the belief state
of the agent.

5 Approximation Methods

While the standard vector representation of �-functions re-
quires vectors of exponential size (in the number of proposi-
tions), computing with decision trees allows one to keep the
size of the representation relatively small (with potentially
exponential reduction in representation size). However, our
example illustrates the natural tendency for these trees to
become more “fine-grained” as the horizon increases. De-
pending on the problem, the number of leaves can approach
(or reach) the size of the state space. In such cases, the
overhead involved in constructing trees may outweigh the
marginal decrease in effective state-space size.



However, an additional advantage of tree (or related) rep-
resentations is the ease with which one can impose approx-
imation schemes. If the �-tree makes certain distinctions
of marginal value, the tree can be pruned by deleting inte-
rior nodes corresponding to these distinctions. Replacing the
subtrees rooted at U in tree �1 of Figure 6 by a midpoint
value introduces a (maximum) error of 0:5 in the resulting
approximate value function. This may be acceptable given
the shrinkage in the representation size it provides. This
contraction has the effect of reducing the size of new trees
generated for subsequent stages, as well. In addition, the er-
ror introduced can be tightly controlled, bounded and traded
against computation time.6 In this sense, tree-based repre-
sentations provide an attractive basis for approximation in
large discrete problems.

A major difficulty with Monahan’s algorithm is the fact that
the number of (unpruned) �-functions grows exponentially
with the horizon: @k contains (jAjjOj)k pieces. Of course,
pruning dominated�-functions can help, but does not reduce
worst-case complexity. The methods above address the size
of �-trees, but not (apart from pruning) their number.

A second advantage of the tree-based representation, and
approximation schemes based upon it, is the possibility of
greatly reducing the number of �-trees needed at each stage.
By blurring or ignoring certain distinctions, the number of
dominated vectors (hence the amount of pruning) may be
increased. In addition, “approximate domination” testing can
be aided: for example, if one tree has strictly worse values
than another except for slightly better values in one small
region of the state space, it could be pruned away. Again,
the compactness of the �-trees can be exploited in such tests,
as in Section 2.6. Indeed, this complements certain work
that reduces the number of �-functions, such as [13].7 These
suggestions are, admittedly, not developed completely at this
point. However, a firm grasp of optimal decision making
with structured representations provides a sound basis for
further investigation of structured approximation methods.

6 Concluding Remarks

We have sketched an algorithm for constructing optimal poli-
cies for POMDPs that exploits problem structure (as exhib-
ited by rules or decision trees) to reduce the effective state
space at various points in computation. The crucial aspect of
this approach is the ability to construct the conditions relevant
at a certain stage of the process given the relevant distinctions
at the following stage. This merging of planning and opti-
mization techniques (and related approaches) should provide
significant improvements in policy construction algorithms.

Of great interest are extensions of this work to algorithms
that enumerate “vectors” (in our case, trees) in a more direct
fashion (rather than by exhaustive enumeration and elimina-
tion), as well as empirical evaluation of the overhead of tree

6See [3] on this type of pruning.
7In [13], a continuous approximation of the value function is

adjusted via gradient descent on the Bellman error; but there is one
adjustable parameter per state. A (dynamic) tree-based representa-
tion of the value function may be exploited here.

construction. In addition, the development of approximation
methods such as those alluded to above is an important step.
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