
A Constraint-Based Approach to Preference Elicitation and Decision Making

Craig Boutilier and Ronen Brafman and Chris Geib and David Poole
Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T 1Z4 Canada

Abstract

We investigate the solution of constraint-based configuration
problems in which the preference function over outcomes is
unknown or incompletely specified. The aim is to configure
a system, such as a personal computer, so that it will be op-
timal for a given user. The goal of this project is to develop
algorithms that generate the most preferred feasible configu-
ration by posing preference queries to the user. In order to
minimize the number and the complexity of preference queries
posed to the user, the algorithm reasons about the user’s pref-
erences while taking into account constraints over the set of
feasible configurations. We assume that the user can struc-
ture their preferences in a particular way that, while natural in
many settings, can be exploited during the optimization pro-
cess. We also address in a preliminary fashion the trade-offs
between computational effort in the solution of a problem and
the degree of interaction with the user.

1 Introduction
There has been considerable interest in the area of automated
decision analysis and the development of automated decision
making aids. Such tools can be used to act on behalf of a user,
make decisions which are communicated to the user, or sim-
ply help a user in the process of formulating and solving a
particular decision problem. The specification of a decision
problem generally requires four components: an estimate of
the current state or conditions under which the decision is to
be made; a set of actions or decisions that can be taken; a
model of the system dynamics which describes the potential
outcomes of any action; and a set or preferences qualifying
the relative goodness of particular outcomes.

Extracting these four types of information can be ex-
tremely difficult and time consuming, and human decision
analysts have developed sophisticated techniques to help
elicit this information from decision makers [8]. For many
application domains, however, once a model of the system
is known, it is unlikely to change in substantial ways. This
can provide considerable leverage in the construction of auto-
mated decision making agents (DAs) for a given application;
the models can be “hard-wired” into the DA program. This
is precisely the type of situation we wish to address, namely,

the development of DAs for particular applications that can
be used by any of a number of different users to solve their
decision problems within that domain.

More difficult to deal with in such a model are user prefer-
ences. While many users may be faced with the “same” de-
cision scenario, these users will not generally have the same
preferences over decision outcomes.1 In order to make the
right choices, a DA must interact with the user to determine
their preferences over outcomes. This form of preference
elicitation is yet another role often filled by human decision
analysts, who rely on sophisticated, intuitive techniques for
eliciting preferences. Any intelligent DA must have the abil-
ity to extract user preferences on a case by case basis. This
type of information cannot be hard-wired or precompiled,
since the aim is to act on the behalf of, or advise, a partic-
ular user.

Preference elicitation is a very difficult task in general and
is a key focus in work on decision analysis [10, 8, 6]. Au-
tomating the process of preference extraction can be very dif-
ficult. Straightforward approaches involving the direct com-
parison of all pairs of outcomes are generally infeasible for
a number of reasons, including the exponential number of
outcomes (in the number of relevant variables or attributes
for which preferences are indicated) and the complexity of
the questions that are asked (the comparison of complete out-
comes). There has been considerable work on exploiting the
structure of preferences and utility functions in a way that al-
lows them to be appropriately decomposed [10, 1, 2]. For
instance, if certain attributes are preferentially independent
of others [10], one can assign degrees of preference to in-
dividual attribute values without worrying about other at-
tribute values. Furthermore, if one assumes more stringent
conditions, often one can construct an additive value func-
tion in which each attribute contributes to overall preference
to a certain “degree” (the weight of that attribute) [10]. For
instance, it is common in engineering design problems to
make such assumptions and simply require users to assess the1By the “same decision problem” we mean simply that the un-
derlying system (i.e., the actions, dynamics, and initial state) is the
same.

weights [4]. This allows the direct tradeoffs between values
of different attributes to be assessed concisely.

Models such as these make the preference elicitation pro-
cess easier by imposing specific requirements on the form of
the value function. In general, one must allow users to spec-
ify the structure of their preferences in an automated decision
making context. One of the problems we address in the paper
is the development of a particular graphical model for struc-
turing preferences based on the dependence of attribute value
preference on a certain set of attributes and their conditional
preferential independence with respect to others. This model
will be fairly natural and concise in many settings, and has
good computational properties.

Even with good models of preference structure, assess-
ment of an entire preference ranking can involve consider-
able effort: there will still be a large number of parameters to
specify. Furthermore, the effort involved can be “wasted” if
we assess preferences (in detail) over outcomes that are in-
feasible (given the set of actions available), or that are domi-
nated by other feasible outcomes. In general, one would like
to explore only regions of the search space (space of possible
outcomes) that are feasible and assess preferences over this
region. For instance, this is the intuition underlying much
of goal programming [9, 5] and certain approaches to prob-
lem of engineering design [4]. Algorithms that generate non-
dominated (e.g., Pareto optimal) outcomes that are feasible
have been developed; a user is then presented with this set
and asked to rank them or determine the most preferred al-
ternative from this set. The second contribution of this pa-
per is the development of an algorithm that serves a simi-
lar purpose using our particular graphical model of prefer-
ences. We assume that the set of possible actions (and implic-
itly the set of outcomes) is represented by a set of constraints
that determine feasible configurations. We then explore the
set of feasible outcomes using a constraint-based optimiza-
tizing (branch-and-bound) search algorithm to identify non-
dominated outcomes given the constraints on preferences im-
posed by the model. Then preferences over these feasible,
nondominated alternatives can be assessed directly. As part
of this, we use a novel algorithm for testing dominance given
preference information (essentially statements of conditional
preferential independence) contained in our model.

Finally we note that while search can determine the set of
feasible outcomes, thus minimizing the degree of intrusion
upon a user required for preference assessment, the converse
effect also exists: preference information can be used to dras-
tically prune the search space. It is often easy to tell that all
outcomes below a particular branch is a search tree are domi-
nated by an already enumerated feasible outcome. Thus there
is a tension between the two desiderata of minimizing user ef-
fort and reducing computation time. The search algorithmwe
develop does prune the search space to whatever extent pos-
sible given the information in the graphical preference model

(which can often be considerable). However, we suggest that
this points to a clear need for interactive search algorithms
in which the objective function in a particular region of the
search space can be obtained through user queries in an ef-
fort to minimize computational effort. This observation is not
novel (see work, e.g., on interactive goal programming [5]).
There are clear tradeoffs involved between the number and
complexity of the user queries required to prune part of the
search space and the amount of search time (or size of the
search space) expected to be pruned. The final contribution
of this paper, somewhat more speculative, is a set of sugges-
tions for how such a process might be realized in the context
of our search algorithm, and what sorts of preference struc-
ture and queries might best support this goal. The ultimate
aim of this line of research is the development of on-line op-
timization procedures in which the underlying objective is
initially unknown (or partially known), where the objective
functioncan be “filled in” through interaction with a user, and
where user queries about preferences are minimized (in num-
ber and complexity) subject to the need for effective search.

The paper is structured as follows. In Section 2, we de-
scribe the necessary background on preference functions. In
Section 3 we define constraint-based configuration problems
in an effort to make our task more concrete. We define our
graphical preference model, CP-networks, in Section 4 and
describe its semantics in terms of ceteris paribus or condi-
tional preferential independence statements. We also present
an algorithm for domination testing using such a model. Sec-
tion5 deals with optimizationusing CP-models and describes
a branch-and-bound algorithm for determining the set of non-
dominated feasible outcomes in an efficient manner. Sec-
tion 6 offers some suggestions for making the search algo-
rithm interactive, and we offer some thoughts on future re-
search in Section 7.

2 Preferences and Optimization
We focus our attention on single-stage decision problems
with complete information, ignoring in this paper any issues
that arise in multi-stage, sequential decision analysis and any
considerations of risk that arise in the context of uncertainty.2
We begin with an outline of the relevant notions from deci-
sion theory. We assume that the world can be in one of a
number of states S and at each state s there are a number of
actions As that can be performed. Each action, when per-
formed at a state, has a specific outcome (we do not concern
ourselves with uncertainty in action effects or knowledge of
the state). The set of all outcomes is denotedO. A preference
ranking is a total preorder � over the set of outcomes: o1 �o2 means that outcome o1 is equally or more preferred to the
decision maker than o2. The aim of decision making under2Such issues include assigning preferences to sequences of out-
come states, assessing uncertainty in beliefs and system dynamics,
and assessing the user’s attitude towards risk.

certainty is, given knowledge of a specific state, to choose
the action that has the most preferred outcome. We note that
the ordering�will be different for different decision makers.
For instance, two different customers might have radically
different preferences for different types of computer systems
that a sales program is helping them configure. Often, for a
state s, certain outcomes in O cannot result from any actiona 2 As: those outcomes that can obtain are called feasible
outcomes (given s).

What makes the decision problem difficult is the fact that
outcomes of actions and preferences are not usually repre-
sented so directly. We focus here on preferences. We assume
a set of features (or variables or attributes)F = fF1; � � �Fng
over which the decision maker has preferences. Each fea-
ture Fi is associated with a domain of feature values Fi =ff i1; � � �f inig it can take. The product space F = F1� � � ��Fn is the set of outcomes. Thus direct assessment of a pref-
erence function is usually infeasible due to the exponential
size of F . We denote a particular assignment of values to a
set X � F as x, and the concatenation of two such partial
assignments to X and Y (X \Y = ;) by xy. IfX [Y = F ,xy is a (complete) outcome.

Fortunately, a preference function can be specified (or par-
tially specified) concisely if it exhibits sufficient structure.
We describe certain types of structure here, referring to [10]
for a detailed description of these (and other structural forms)
and a discussion of their implications. These notionsare stan-
dard in multi-attribute utility theory. A set of features X is
preferentially independent of its complement Y = F � X
iff, for all x1; x2; y1; y2, we havex1y1 � x2y1 iff x1y2 � x2y2
In other words, the structure of the preference relation over
assignments to X, when all other variables are held fixed, is
the same no matter what values these other variables take.
If the relation above holds, we say x1 is preferred to x2 ce-
teris paribus. Thus, one can assess the relative preferences
over assignments to X once, knowing these preferences do
not change as other attributes vary. We can define conditional
preferential independence analogously. Let X, Y and Z par-
tition F (each set is nonempty). X and Y are conditionally
preferentially independent given z iff, for all x1; x2; y1; y2,
we have x1y1z � x2y1z iff x1y2z � x2y2z
In other words, the preferential independence of X and Y
only holds when Z is assigned z. If this relation holds for
all assignments z, we say X and Y are conditionally prefer-
entially independent given Z.

This decomposability of a preference functions often al-
lows one to identify the most preferred outcomes rather read-
ily. Unfortunately, the ceteris paribus component of these

definitions ensures that the statements one makes are rela-
tively weak. In particular, they do not imply a stance on spe-
cific value tradeoffs. For instance, suppose two variables A
and B are preferentially independent so that the preferences
for values of A and B can be assessed separately; e.g., sup-
posea1 � a2 and b1 � b2. Clearly, a1b1 is the most preferred
outcome and a2b2 is the least; but if feasibility constraints
make a1b1 impossible, we must be satisfied with one of a1b2
or a2b1. We cannot tell which is most preferred using these
separate assessments. However, under stronger conditions
(e.g., mutual preferential independence) one can construct an
additive value function in which weights are assigned to dif-
ferent attributes (or attribute groups). This is especially ap-
propriate when attributes take on numerical values. We refer
to [10] for a discussion of this problem.

Given such a specification of preferences, a number of dif-
ferent techniques can be used to search the space of feasible
outcomes for a most preferred outcome.

3 The Configuration Problem
For concreteness, we focus on configuration problems with
full information. A configuration problem is one in which
the decision to be taken consists of a number of aspects,
each of which must be decided on—that is, one chooses
a configuration—and which interact in potentially complex
ways to determine the outcome of the decision.

Intuitively, one can view such a decision problem as the
problem of “configuring a system.” The decision maker is
forced to choosing a number of different components, from
a variety of options, which when put together determine just
how good the resulting system is. For example, one could
configure a computer system by choosing a processor from a
particular set of options, a specific amount of memory, cer-
tain peripherals, and so on. Just how good this system is de-
pends on the needs and preferences of the user for whom the
system is being configured. These preferences will often be
specified with respect to set of features or attributes (as dis-
cussed in the previous section), these being determined by the
chosen configuration. This induces indirect preferences over
configurations.

We formalize the problem as follows:

Definition We assume the existence of a finite set of compo-
nent attributes C1; � � �Cn. With each attribute Ci we as-
sociate a domain, or finite set of component values, Ci =fci1; � � �cinig. The configurationspace for a given problem
is the set C = C1 � � � � � Cn. Each element of C is a con-
figuration.

For instance, the domain of component processor might
be f486; pent75; pent100; pent133g, while the component
games might have values none, basic, and advanced.

Definition We assume the existence of a finite set of feature
attributesF1; � � �Fn. With each attributeFi we associate a

domain, or finite set of feature values, Fi = ff i1; � � �f inig.
The outcome space or feature space for a given problem
is the set F = F1 � � � � � Fn. Each element of F is an
outcome.

As an example, we might have the feature desk-top-publ with
valuesfrudmntry; basic; advncd; highvolg. Again we empha-
size that the distinction between features and components is
that components represent the controllable aspects of the de-
cision problem (essentially the action space), while features
represent those qualities of an overall configuration for which
a user can readily (or more easily) articulate direct prefer-
ences. There is no reason that Ci = Fj is forbidden—a user
may have direct preferences over certain component values;
but generally, we expect these sets to have little overlap.

Configurationsare bound to satisfy certain constraints. We
will take a logical approach to the specification of constraints
and their solution—inparticular treating them as satisfiability
problems (see [11])—though more classic CSP formulations
could also be used directly.

Definition The set of configuration constraints ConsC is a
set of logical constraints over the possible assignments of
values to different components. The set of feasible con-
figurations CF � C consists of those configurations that
satisfy all constraints in ConsC.

An example of a configuration constraint might beC1 = c11 _C3 2 fc31; c35g
Definition A causal model M is a mapping M : C ! F .

We assume that M is total and deterministic. Generally,
the model M will be represented by a set of causal rules
(i.e., logical rules) M.

Two examples of such causal rules are:C1 = c11 � F1 = f11C1 2 fc12; c13g ^C3 6= c35 � F1 = f11
We will assume that the set of causal rules given is consistent
and complete. We note that ConsC andM together determine
which elements of feature space are “reachable.” We define
the set of feasible outcomes FF � F to be the image of CF
under the mapping M ; that is, M (CF) = FF .

Given a preference ranking � over feature space, an opti-
mal configuration is any c 2 CF such that M (c) � f for anyf 2 FF . In other words, we would like a feasible configura-
tion that determines a (necessarily feasible) outcome that is
at least as good as any other feasible outcome.

Our configuration problem can be stated concisely as fol-
lows: given a set of components and features, a set of con-
figuration constraints and a causal model; given the ability to
ask preference queries overF ; determine an optimal feasible
configuration.

4 CP-Networks
We now define a representation for user preferences that
is somewhat graphical in nature, and exploits conditional
preferential independence in structuring a user’s preferences.
The model is similar to a Bayesian network on the surface,
however, the nature of the relation between nodes within a
network will generally be quite weak (e.g., compared with
the probabilistic relations that exist in Bayes nets). Oth-
ers have defined graphical representations of preference re-
lations; for instance Bacchus and Grove [1, 2] have shown
some strong results pertaining to undirected graphical repre-
sentations of additive independence. Our representation and
semantics is rather distinct, and our main aim in using the
graph is to capture statements of conditional preferential in-
dependence.

For each featureF , we ask the user to identify a set of par-
ent features P (F) that can affect her preference over vari-
ous F values. That is, given a particular value assignment
to P (F), the user should be able to determine a preference
order for the values of F , all other things being equal. For-
mally, denoting all other features aside from F and P (F) byF , we have that F and F are conditionally preferentially in-
dependent given P (F). Given this information, we ask the
user to explicitly specify her preferences over F values for
all possible P (F) values. We use the above information to
create an annotated graph in which each feature F has P (F)
as its set of parents. The node F is annotated with a table de-
scribing the user’s preferences over her values given every
combination of parent values. We call these structures con-
ditional preference networks (or CP-networks).

Example 1 Asking the user to describe her preference over
feature B, we are told that this preference depends on the
value for A and on that value alone (ceteris paribus). We
then make A a parent of B and ask about her preference onB for each value of A. She may say that, when a holds, she
prefers b over b, and when a holds she prefers b over b, ceteris
paribus. This is written here as:a : b � ba : b � b

In this paper, we show how to exploit the information con-
tained in CP-networks when the dependency graph is a poly-
tree (a DAG with at most one path between any two nodes
when the arcs are treated as undirected edges) and features
are binary. We note that nothing in the semantics forces the
graph to be acyclic.

Example 2 Suppose we have two features A and B, whereA is a parent of B and A has no parents. Assume the follow-
ing conditional preferences:a � a; a : b � b; a : b � b

Somewhat surprisingly, this information is sufficient to to-
tally order the outcomes:ab � ab � ab � ab:
Notice that we can judge each outcome in terms of the condi-
tional preferences it violates. The ab outcome violates none
of the preference constraints. Outcome ab violates the con-
ditional preference for B. Outcome ab violates the prefer-
ence for A. Outcome ab violates both. What is surprising is
that the ceteris paribus semantics implies that violating theA
constraint is worse than violating the B constraint (we haveab � ab). That is, the parent preferences have higher priority
than the child preferences.

Example 3 Suppose we have three features A, B, and C,
and suppose that the preference dependency graph is discon-
nected. Let’s assume that a � a, b � b, and c � c. Given
this information we can conclude that abc is the most pre-
ferred outcome, then comes abc, abc, and abc. These three
cannot be ordered based on the information provided. Less
preferred than the last two is abc, and so on. The least pre-
ferred outcome is abc.
Example 4 Suppose we have three features A, B, and C,
and the conditional preference graph forms a chain with A
having no parents, A the parent of B, and B the parent of C.
Suppose we have the following dependence information:a � a; a : b � b; a : b � b; b : c � c; b : c � c
These preference constraints imply the following ordering:abc � abc � abc � abc � abc � abc � abc;
which totally orders all but one of the outcomes. Notice how
we get from one outcome to the next in the chain: we flip (or
exchange) the value of exactly one feature according to the
preference dependency information. The element not in this
chain is abc, and we can derive the ordering abc � abc �abc. Thus, the only two outcomes not totally ordered are abc
and abc. From example 2, we saw that violations of prefer-
ence constraints for parent features are worse than violations
of constrains over child feature preferences. In one of the
two unordered outcomes we violate the preference over the
most important feature (namely A), while in the other out-
come we violate preference over two less important features
(B andC). The semantics of the CP-networks does not spec-
ify which of these tuples has preference over the other.

There are two important things to notice about these exam-
ples. First, a chain of “flipping feature values” can be used to
show that one outcome is better than another. Second, viola-
tions are worse (i.e., have a larger negative impact on pref-
erence) the higher up they are in the network, although we
cannot compare two (or more) lower level violations to vi-
olation of a single ancestor constraint. These observations

A

C

B

E F

D

G

H

Figure 1: An Example Conditional Preference Graph

are exploited in the algorithm described below for deciding
whether one outcome is preferred to another, given the pref-
erence constraints represented in a CP-networks. Consider
now the following more general example.

Example 5 Consider the preference graph of Figure 1. Sup-
pose that the conditional preferences are:a � a; b � b;(a ^ b) _ (a ^ b) : c � c; (a ^ b) _ (a ^ b) : c � cc : d � d; c : d � d; d : e � e; d : e � e;d : f � f ; d : f � f ; f : g � g; f : g � gg : h � h; g : h � h
We illustrate the intuitions behind out algorithm for domi-
nance testing through a sequence of examples.

Suppose we want to compare outcome abcdefgh (which
violates the g preference) and outcome abcdefgh (which vi-
olates the a preference). In order to show that the first is pre-
ferred, we generate the sequence: abcdefgh � abcdefgh �abcdefgh � abcdefgh � abcdefgh � abcdefgh. Intu-
itively, we constructed a sequence of increasingly preferred
outcomes, using only valid conditional independence rela-
tions represented in the CP-network, by flipping values of
variables. We are allowed to change the value of a “higher
priority” variable (higher in the network) to its preferred
value, even if this introduces a new preference violation for
some lower priority variable (a descendent in the network).
For instance, the first flip of A’s value in this sequence to its
preferred state repairs the violation of A’s preference con-
straint, while introducing a preference violation with respect
to C (the value c is dispreferred when ab holds). This pro-
cess is repeated (e.g., making C take its conditionally most
preferred value at the expense of violating the preference forD) until the single preference violation of F (in the “target”
outcome) is shown to be preferred to the single preference vi-
olation of A (in the initial outcome). This demonstrates how
the violation of conditional preference for a specific value of

Input: (1) CP-network P for featuresF1 ; : : : ; Fn (topologically sorted).
(2) Two feature-value vectors c1 = (f11 ; : : : ; f1n); c2 = (f21 ; : : : ; f2n).

Output: YES – c1 is preferred to c2 according to P .
NO – c1 is not preferred to c2 according to P .

For i = 1 to n f
Let F = (Fl1 ; : : : ; Flk) be Fi’s parents in P.
Let cj jF = (fjl1 ; : : : ; fjlk) for j = 1;2:
Let Xi = Flips(Fi; (Xl1 ; : : : ; Xlk); c1jF ; c2jF) +(Xi-violation in c2) � (Fi-violation in c1):
If Xi < 0 Return NO g
Return YES.

Figure 2: Algorithm for Dominance Checking.

some variables is dispreferred to the violation of one of its
descendent’s preferences.

Suppose we compare abcdefgh (which violates the G
preference and the H preference) and abcdefgh (which vio-
lates theA preference). These turn out not to be comparable
(neither is preferred to the other). The sequence of flips above
cannot be extended to change the values of both G and H so
that their preference constraints are violated. The sole viola-
tion of theA constraint cannot be dominated by the violation
of two (or more) descendents in a chain.

If we want to compare abcdefgh (which violates the E
preference and the G preference) and abcdefgh (which vi-
olates theA preference), we can use the following sequence:abcdefgh � abcdefgh � abcdefgh � abcdefgh �abcdefgh. The violation of E and G is preferred to the vi-
olation of A: intuitively, the A violation can be absorbed by
violation in each path starting at D.

Now consider the comparison of abcdefgh (which vio-
lates theG andH preferences) and abcdefgh (which violates
theA andB preferences). We can use the followingsequence
of flips to show preference: abcdefgh � abcdefgh �abcdefgh � abcdefgh � abcdefgh � abcdefgh �abcdefgh � abcdefgh � abcdefgh � abcdefgh. This
shows how two violations in ancestor variables can be used
to cover two violations in their descendents.

These examples illustrate how certain preference violations
have priority over others in determining the relative ordering
of two outcomes. Intuitively, dominance is shown by con-
structing a sequence of legal flips from the initial outcome to
the target. However, we can see that we merely need to count
the number of flips needed in a downward “sweep” through
the network to verify that such a sequence exists. The algo-
rithm in Figure 2 makes these intuitions precise.

Figure 2 presents an algorithm for checking whether one
tuple of feature values c1 is preferred to another tuple c2
given a CP-network whose graph is singly connected. The
algorithm returns YES whenever c1 is preferred to c2 and it
returns NO if this relation cannot be determined. We note that
it is a trivial matter, given c1 and c2 to rule out one (or some-

times both) of the possibilities c1 � c2 or c2 � c1.3
The algorithm works as follows: using a topological sort

of the CP-network, we assign X values to each of the fea-
tures. Intuitively, the X value of feature Fi is the maximal
number of exchanges (or flips) in the value of this feature
along any sequence of increasingly preferred outcomes (fea-
ture tuples) commencing with c2 and terminating at c1. In or-
der to calculate this value, we use the Flips function. This
function has the following inputs: (1) the (initial) value ofFi’s parents at c2, (2) the (final) value ofFi’s parents at c1, (3)
the number of flips that Fi’s parents can make (i.e., their X
values), and, implicitly (4) the dependence of Fi’s value on
its parents’ values, as recored in the CP-network. This func-
tion calculates the maximal number of value changes thatFi’s parents can induce in Fi given that they start in their c2
values, they end in their c1 values, and en route, each par-
ent Flj cannot change its values more than Xlj times. We
can calculate the Flips value by enumerating all possible
“paths” that satisfy these constraints and counting the number
of times the preferred value of Fi changes as a function of its
parents. In order to calculate theX value of Fi, we must also
consider whether or not its initial c2 value is a preference vi-
olation (in which case we can add another flip, as sanctioned
by the ceteris paribus semantics) and whether or not is finalc1 value is a preference violation (in which case we must sub-
tract one flip).

Finally, if the X value of some node is negative, then
clearly, no increasing sequence of tuples of the above form
exists, and c1 is not preferred to c2.

Our approach can be generalized to handle multiply-
connected graphs, but as in Bayesian nets, the cost of com-
putation can increase substantially. In particular, we cannot
only consider a single families in computing the X values.
Rather, we must consider all children that share parents to-
gether. In that case, we generate maximal (i.e., undominated)
vectors of X values for these children. These values de-
pend on all of these children’s parents. Then, we must check
whether for any of these undominated tuples, the algorithm
would return YES. Only when NO is returned for all possi-
ble tuples, can we return a negative answer.

We note that this is not the only possible semantics one
could use for “networks” representing preferences. For in-
stance, the conditional preference for some attributeA given
its parents could be taken to be stronger than indicated by the
ceteris paribus interpretation—a strict lexicographic notion
of importance, such as that discussed in Section 6, could be
used. Moreover, there are a number of other ways in which
one could structure a preference function. We conjecture,3We can find the first features (in a topological sort of the net-
work), F1 and F2 whose preference constraints are violated by c1
and c2, respectively. If F1 is a descendent of F2, we rule out c1 �c2; if F2 is a descendent of F1, we rule out c2 � c1; if neither, then
neither outcome is preferred and the dominance algorithm need not
be consulted.

however, that such conditional ceteris paribus assertions are
quite natural in many settings. We expect that models com-
bining different forms of preference statements, includingce-
teris paribus statements, will offer greater expressive power
and more natural models.

5 Finding the Best Configuration
We assume that the set of configuration constraints has been
given and that a CP-network of the user’s preferences over
outcome space has been specified. We present a (more or
less) non-interactive approach to the problem of finding an
optimal configuration in this section, and defer discussion of
making the model more interactive to the following section.

Our approach consists of four distinct phases:

1. Compile ConsC into a set of constraints ConsF that implic-
itly represent FF , the set of feasible outcomes.

2. Determine the set of nondominated feasible outcomes inf 2 FF (given the specified CP-network).

3. Ask the user to select a most preferred outcome f from the
nondominated set.

4. Determine a feasible configuration c for outcome f
We do not address Phase 1 or Phase 4 of the algorithm
in detail here. Translating a set of constraints ConsC, via
the causal model, into constraints ConsF over the outcome
space, is a straightforward task, as is the abductive process
required to obtain a configuration that determines a most pre-
ferred feasible outcome. This is not to say there are not inter-
esting issues pertaining to this process (e.g., can a compact
set of constraints ConsC be mapped into a more unwieldy set
ConsF); but this is not our central focus here. The one as-
sumption we make is that the set ConsF of constraints on fea-
sible outcomes is represented in conjunctive normal form.

In this section we describe Phase 2 of the algorithm in de-
tail, and Phase 3 in less detail. The search algorithm is shown
in Figure 3. The steps of the algorithm work as follows.
We first note that the search for nondominated outcomes
proceeds by searching separately for assignments to discon-
nected components of a particular problem graph. More pre-
cisely, given a set of variables, a set of CP-arcs denoting con-
ditional independence relations among them and a set of fea-
sibility constraints over those variables, we define the prob-
lem graph to be the undirected graph obtained by removing
directionality information from the CP-arcs, and adding an
undirected arc between any two variables that occur in the
same constraint. It is not hard to see:

Proposition 1 Let Gi be some disconnected components of
a problem graph G. The variables within component Gi can
be optimized without regard to the values of variables outside
that component.

Input: Connected graphG, contextK, constraintsC
Output: Feasible, nondominated outcomes givenK
Choose any variable V with no parents in G
Let v1; v2; : : : vk be the preference ordering for the values of V givenK
LetResult = ;
FOR i = 1 : : : k DO:

Assign V = vi
Reduce constraintsC by V = vi to obtainCi
Let Sati be elements ofC satisfied by V = vi
IF Sati � Satj for some j < i
OR Ci is inconsistent THEN

Go to end of loop
ELSE

Reduce graphG to get Gi
Let G1i ; � � �Gmi be the connected components of Gi
FOR j = 1 : : : m DO:

SearchGji , K [fV = vig, Ci
IF Search(Gji) 6= ;, for all j � m THEN

Add vi � Search(Gj1)� � � �Search(Gjm) toResult
ReturnResult
Figure 3: Search Algorithm for Non-dominated Outcomes

A B F

G

H

CE

D

B F

G

H

CE

D

(a) (b)

Figure 4: (a) Problem Graph; and (b) Reduced Problem
Graph with disconnected components

This gives us a good way of decomposing the search problem
into distinct searches over smaller variable sets: the solutions
can be pieced together to obtain all nondominated outcomes.

This decomposition can be conditional as well. For in-
stance, consider the graph shown in Figure 4(a), where undi-
rected arcs indicate constraint relations and directed arcs are
CP-arcs. Suppose at some point in the search variable A has
been instantiated with valuea1 (i.e., we are searching for out-
comes where A = a1). In all subsequent search steps (i.e.,
under that node in the search tree), the CP-arcs that emanate
from A can be removed (since there is no longer any choice
in the assignment to A, it cannot influence the preference for
other child values).4 Furthermore, all constraints arcs can be
removed if they involve A, and any constraint arc between
two variables, distinct from A, corresponding to a constraint
that is satisfied byA = a1, can also be removed. This can re-
sult in new disconnected fragments being obtained, each of
which can be optimized independently given A = a1. For
instance, Figure 4(b) shows such a reduced graph. It is as-4We will see below thatA can only be instantiated once all of its
CP-parents have been instantiated and removed from the graph.

sumed: that a constraint involving variables A, B and F has
been satisfied by A = a1, disconnectingB from F (they can
now be optimized independently); and that a constraint in-
volving A, D and E was not satisfied by A = a1, so D andE remain coupled in the reduced constraint.

Our search is a straightforward, depth-first, branch-and-
bound style algorithm [7, 14, 13]. The algorithm proceeds by
assigning values to variables in a depth-first fashion, using
a variable ordering that is consistent with the ordering con-
straints imposed by CP-arcs (i.e., no child can be assigned
before its parents). The value ordering for a variable A is
that determined by the preferences forA values given the cur-
rent partial variables assignment (which must include an as-
signment to all of A’s parents). Whenever a variableA is as-
signed a value ai, the set of constraints passed on to the next
search node is reduced: any constraint satisfied by the assign-
ment is removed from the constraint set, and any constraint
involving a disjunct that requires A 6= ai is made tighter by
removing that disjunct. If this assignment causes the current
graph (or subgraph) to become disconnected, each fragment
invokes an independent search.5

We note that there is some pruning that can take place in
the search tree. In particular, suppose that the values ofA are
ordered according to preference as a1; � � �ak. If assignmentA = aj satisfies an equal or smaller set of constraints (in a
fixed context) than was satisfied by A = ai, i < j, then we
do not continue to search under A = aj: we can show that
any feasible outcome given involving A = aj is dominated
by some feasible outcome involving A = ai, and whether
or not this dominating outcome is in the set of nondominated
outcomes, any outcome involving A = aj (and the given
context) cannot belong to that set. In essence, the search is a
depth-first branch-and-bound, where the set of nondominated
alternatives so far generated correspond (in some sense) to
our current lower bound.

Finally, we note that when potential nondominated alter-
natives for a particular subgraph are returned involving some
assignment A = aj (and a given context C), we compare the
alternative to all nondominated alternatives (for context C)
involving more preferred assignments A = ai, i < j. If
the nondomination test described in the previous section is
passed, the alternative is added to the nondominated set for
the current subgraph and context. We note that the domina-
tion algorithm is run only on the subgraph, not on all vari-
ables in the original problem.

The output of Phase 2 is the set of all outcomes that are
potentially most preferred: it contains all and only outcomes
that are nondominated given the CP-network specified by5We note that other constraint propagation techniques [11] can
be used in a straightforward fashion if constraints are represented in
classical ways. For instance, constraint propagation techniques are
combined with branch-and-bound in partial constraint satisfaction
algorithms [7, 14].

the user. Phase 3 then presents these alternatives to the user
for selection. We generally expect, for significant problems,
that users will have a hard time assessing complicated out-
comes involving all variables. There are several strategies
one might adopt to make this task more manageable. Apart
from dependence, our DA might ask a user to rate variables
according to importance (we discuss importance in the next
section). In addition, the same graph decomposition tech-
niques used in the search algorithm can be used structure
the questions about tradeoffs into questions involving much
smaller sets of variables.

We note that an algorithm very similar to this one has been
proposed by D’Ambrosio and Birmingham [4]. They study
“preference-directed design” of devices using a constraint-
based approach to the enumeration of the Pareto optimal set
for a given problem. The also consider the decomposition
of a constraint network as variables are instantiated, render-
ing variables independent of one another in the optimization
process. One key distinction is that their work assumes ad-
ditive and mutual preferential independence among all vari-
ables. Hence they do not deal with dependencies in the pref-
erence function.

6 Interactive Search
Given a CP-network of preferences, one can enumerate the
set of nondominated outcomes, which can then be presented
to the user to determine which of the alternatives is most pre-
ferred. The procedure described above adopts a very spe-
cific stance on what preference queries should be asked of
a user, and when they should be asked. As discussed in the
introduction, however, there are tradeoffs one might address
when considering whether to ask about a particular prefer-
ence or to search the set of feasible outcomes to determine
if this query really needs to be asked. We discuss how such
tradeoffs might be addressed within our framework. These
suggestions have a somewhat informal or speculative qual-
ity, and are the focus of ongoing research.

One assumption made in basic model is that a complete
CP-network is specified by a user before optimization is un-
dertaken. It certainly seems reasonable to expect a user to
specify (or answer questions about) the general structure of
their preferences. Arguably, a user could be quite prepared to
answer questions about dependence structure—the task is not
especially onerous. It may be quite another matter to spec-
ify complete CPTs associated with each node in the network.
For a nodeAwith k parents, there are dk separate conditional
preference functions to assess (where d is the expected do-
main size for attributes), each involving a ranking of the d
values a1; � � � ; ad of A.6 In many circumstances, the com-6We note that these CPTs may exhibit certain regularities that ad-
mit compact function representation and ease the assessment prob-
lem. For instance, although A may have k parents, the preference
ranking overA’s values may be the same if any of the A’s parents is

plete ranking over alld values ofAmay not be needed: for in-
stance, we could ask for only the “top” portion of the ranking
associated with a certain assignment to A’s parents, assum-
ing (or hoping) that any nondominated feasible outcome will
only involve these top values (and recall, search proceeds
in the order of preference over these values). To be forced
to consider elements near the bottom of the ranking means
that the problem is very constrained. For similar reasons, we
may not want to ask the user a priori to assess the condi-
tional rankings associated with each assignment of values to
the parents. The combinations of parent values that have low
preference (say, componentwise) may never be considered, if
we are fortunate and the problem is not overly constrained.

A question that needs to be addressed is just how one
can tell a priori how much information about a particular
set of conditional preferences one is expected to use dur-
ing optimization. We make only a few informal suggestions
here. First, since attributes are instantiated during search in
an order consistent with the dependence ordering in the CP-
network, we generally expect nodes “deeper” in the network
to be more constrained by the time we attempt to find values
for them. Thus, we should expect to require more values for
these variables to be ranked. Furthermore, there are a num-
ber of measures that have been developed in the CSP litera-
ture that indicate the tightness of constraints with respect to
particular variables. The more constrained a variable is, the
more values we expect to have to rank. We note that the tight-
ness of constraints about a particular attribute is a conditional
notion: in one context the constraints may be severe, while
in another they can be quite relaxed. This can be exploited
also: if in a preferred context the constraints on an attribute
are less stringent, we can expect to be able to assign that vari-
able more preferred values.

If we do not have a complete instantiation of the CPTs
in the CP-network, the search algorithm can find itself at
some point lacking the information it needs to proceed. This
indicates the interactive nature of the search problem. At
any such point, our DA will pose certain queries to the user
(e.g., asking the user to rank the values of attribute A given
some instantiation of its parents). We expect a number of or-
thogonal, yet interesting issues to arise in the implementa-
tion of such a proposal, including those pertaining to human-
computer interaction (e.g., are user’s willing to answer pref-
erence queries about the same attribute at widely spaced
points in time). Issues such as these suggest that asking
queries about preferences only when it is assured that this in-
formation is needed may not be suitable.

So far the discussion has centered on relaxing the initial
requirements of preference information from the user with

(say) true, and a second ranking only applies when each of the par-
ents is false. This will certainly ease assessment, and can exploit
compact CPT representations such as those used in Bayesian net-
works [3, 12].

the hope that this information refers only to dominated or
infeasible portions of the search space. The converse ques-
tion is: what information should one ask in order to further
prune the search space? One possible way to prune the search
space is to ask questions about preference tradeoffs that are
not derivable from the network. For instance, imagine we
have two root nodes in a network labeled with variables A
and B, with a1 � a2 and b1 � b2. While the network con-
tains no informationabout the relative preference of a1b2 anda2b1, this information could allow tremendous pruning of the
search space. If we can determine that, say, a1b2 � a2b1, we
can order the search to consider a1b2 first, and to prune parts
of the search space under a2b1 that involve similar (or more
stringent constraints) than the “corresponding” a1b2 nodes.
This kind of tradeoff query can also be applied to questions of
“conditional preference violation” at different points in CP-
network as well.

One final notion that may be applicable, especially in an
informal way, is the notion of importance of variables. Sup-
pose variables A and B are preferentially independent of all
other variables; let X denote the set of all other variables.
We say that A is more important than B iff, for all ai, aj , x,
and some bk, if aibkx � aibkx, then for all bl; bm we haveaiblx � aibmx. Intuitively, if A is more important than B
we are willing to give up any value of B in order to retain a
more preferred value of A (this could be viewed as a partial
lexicographic ordering applied only to variable A w.r.t. B).
For instance, if we have determined that a1 � a2 � a3 andb1 � b2 � b3, then we automatically know that, although for
a fixed value of A, this relation over B’s values holds, anyAB combination with a higher value of A (e.g., a1b3) is pre-
ferred to one with a lower value of A (e.g., a2b1) regardless
ofB’s value. This notion has the obvious conditional and set-
based analogs.

If a user is willing to specify that certain attributes are
more important in this sense, many tradeoffs that remain un-
expressed within the CP-network can be determined with lit-
tle effort. As a result, certain nondominated outcomes that
would be part of the output of the original search algorithm
will not be given, and large parts of the search space can
be pruned. Of course, the definition of importance imposes
stringent requirements that may not often be met in practice.
However, one can imagine looser notions of importance in-
volving a subset of the values of some attribute that might be
useful; e.g., A may be more important than B with respect to
the “jump” between a2 and a3, meaning that the user would
sacrifice any “amount” of B to prevent a3. In addition, the
notionof importance could be used less precisely to prune the
search space in domains where discovery of good outcomes
quickly is more important than discovery of an optimal out-
come (or in domains where it is expected users have only an
imprecise notion of their exact preferences over complicated
outcomes). We note that in the course of search more impor-

tant variables should be ordered before their less important
counterparts, and we conjecture that importance respects de-
pendence ordering (if a “rational” user suggests otherwise,
we have not developed a proper set of features).

7 Concluding Remarks
We have sketched a framework for constraint-based opti-
mization in settings where a user’s preferences are not known
by the decision agent. The key components of our proposal
are a graphical model for structuring user preferences based
on the notion of conditional preferential independence, and a
branch-and-bound algorithm for enumerating nondominated
outcomes. In addition, we examined a specific class of prob-
lems, configuration problems, in which constraints on feasi-
ble actions must first be mapped into constraints on features
over which preferences are specified. We have made some
preliminary suggestions for the modification of our search al-
gorithm so that it becomes more interactive.

There are a number of very important issues that need to be
addressed to make this approach to interactive optimization
feasible. As noted earlier, the form of the preference state-
ments required by CP-networks is not the only natural or con-
cise form of preference statement a user could make. Many
other types of statements could be offered (including state-
ments of importance as described earlier) and other forms of
structuring may be possible. Related to this is the extension
of this framework to deal with additive value and utility func-
tions, and continuous variables. Here models such as those
proposed in [1, 2] may prove useful, as well as techniques
used for goal programming [9, 5].

Within this discrete framework, the use of standard CSP
formulations and constraint propagation techniques could
prove quite useful in pruning search. A number of interest-
ing human-computer interaction issues also arise. Among
these, we would like to investigate: the naturalness of differ-
ent types of preference statements and queries; how sensitive
users are to the ordering of preference queries and the lag be-
tween “related” queries; as well as bounds on the number and
complexity of the queries required to solve specific classes of
problems.

References
[1] F. Bacchus and A. Grove. Graphical models for preference

and utility. In UAI-95, pp.3–10, Montreal, 1995.

[2] F. Bacchus and A. Grove. Utility independence in qualitative
decision theory. In KR-96, Cambridge, 1996.

[3] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specific independence in Bayesian networks. In UAI-
96, pp.115–123, Portland, OR, 1996.

[4] J. G. D’Ambrosio and W. P. Birmingham. Preference-directed
design. J. Art. Intel. in Eng. Des., Anal. and Manuf., 1995.

[5] J. S. Dyer. Interactive goal programming. Mgmt. Sci., 19:62–
70, 1972.

[6] S. French. Decision Theory. Halsted, 1986.

[7] E. C. Freuder and R. J. Wallace. Partial constraint satisfaction.
Art. Intel., 58:21–70, 1992.

[8] R. A. Howard and J. E. Matheson, eds. Readings on the Prin-
ciples and Applications of Decision Analysis. Strategic Deci-
sion Group, Menlo Park, CA, 1984.

[9] J. P. Ignizio. Linear Programming in Single and Multiple Ob-
jective Systems. Prentice-Hall, 1982.

[10] R. L. Keeney and H. Raiffa. Decisions with Multiple Objec-
tives: Preferences and Value Trade-offs. Wiley, 1978.

[11] A. K. Mackworth. The logic of constraint satisfaction. Art.
Intel., 58:3–20, 1992.

[12] D. Poole. Exploiting the rule structure for decision making
within the independent choice logic. In UAI-95, pp.454–463,
Montreal, 1995.

[13] G. Verfaillie, M. Lemâitre, and T. Schiex. Russian doll search
for solving constraint optimization problems. In AAAI-96,
pp.181–187, Portland, OR, 1996.

[14] R. J. Wallace. Enhancements of branch and bound methods
for the maximal constraint satisfaction problem. In AAAI-96,
pp.188–195, Portland, OR, 1996.

