How to Progress a Database®

Fangzhen Lin and Ray Reiter!
Department of Computer Science
University of Toronto

Toronto, Canada M5S 1A4

email: fl@ai.toronto.edu reiter@ai.toronto.edu

http://www.cs.toronto.edu/ “cogrobo/

Abstract

One way to think about STRIPS is as a mapping from databases to databases,
in the following sense: Suppose we want to know what the world would be like
if an action, represented by the STRIPS operator «, were done in some world,
represented by the STRIPS database Dy. To find out, simply perform the op-
erator a on Dy (by applying a’s elementary add and delete revision operators
to Dg). We describe this process as progressing the database Dy in response to
the action a.

In this paper, we consider the general problem of progressing an initial
database in response to a given sequence of actions. We appeal to the situation
calculus and an axiomatization of actions which addresses the frame problem
(Reiter [21]). This setting is considerably more general than STRIPS. Our
results concerning progression are mixed. The (surprising) bad news is that, in
general, to characterize a progressed database we must appeal to second order
logic. The good news is that there are many useful special cases for which we
can compute the progressed database in first order logic; not only that, we can
do so efficiently.

Finally, we relate these results about progression to STRIPS-like systems
by providing a semantics for such systems in terms of a purely declarative
situation calculus axiomatization for actions and their effects. On our view,
STRIPS is a mechanism for computing the progression of an initial situation
calculus database under the effects of an action. We illustrate this idea by
describing two different STRIPS mechanisms, and proving their correctness
with respect to their situation calculus specifications.

*This paper revises, and combines, results that first appeared in Lin and Reiter [12, 14].
tFellow of the Canadian Institute for Advanced Research

1 INTRODUCTION

One way to think about STRIPS is as a mapping from databases to databases, in
the following sense: Suppose we want to know what the world would be like if an
action, represented by the STRIPS operator «, were done in some world, represented
by the STRIPS database D,. To find out, simply perform the operator a on Dy (by
applying o’s elementary add and delete revision operators to Dy). We describe this
process as progressing the database Dy in response to the action « (cf. Rosenschein
[24] and Pednault [16]). The resulting database describes the effects of the action
on the world represented by the initial database.! However, it may not always be
convenient or even possible to describe the effects of actions as a simple process of
progressing an initial world description. As we shall see in this paper, once we go
beyond STRIPS-like systems, progression becomes surprisingly complicated.

In this paper, we consider the general problem of progressing an initial database
in response to a given sequence of actions. We appeal to the situation calculus and
an axiomatization of actions which addresses the frame problem (Reiter [21], Lin and
Reiter [13]). This setting is considerably more general than STRIPS. Our results
concerning progression are mixed. The (surprising) bad news is that, in general,
to characterize a progressed database we must appeal to second order logic. The
good news is that there are many useful special cases for which we can compute the
progressed database in first order logic; not only that, we can do so efficiently.

Finally, we relate these results about progression to STRIPS-like systems by pro-
viding a semantics for such systems in terms of a purely declarative situation calculus
axiomatization for actions and their effects. On our view, STRIPS is a mechanism for
computing the progression of an initial situation calculus database under the effects
of an action. We illustrate this idea by describing two different STRIPS mechanisms,
and proving their correctness with respect to their situation calculus specifications.

The need to progress a database arises for us in a robotics setting. In our approach
to controlling a robot ([8, 10]), we must address the so-called projection problem:
Answer the query Q(do(A, Sy)), where do(A, Sy) denotes the situation resulting from
performing the sequence of actions A beginning with the initial situation Sy. This can
be done using regression (cf. Waldinger [27], Pednault [17], and Reiter [21]) to reduce
the projection problem to one of entailment from the initial database, consisting
of sentences about the initial situation So. Unfortunately, regression suflers from a
number of drawbacks in this application:

1. After the robot has been functioning for a long period, the sequence A, con-

"This is also the way that database practitioners think about database updates (Abiteboul [1]). In
fact, the STRIPS action and the database update paradigms are essentially the same. Accordingly,
this paper is as much about database updates as it is about STRIPS actions and their generalizations.
For more on the database perspective, see Reiter [23].

sisting of all the actions it has performed since the initial situation, has become
extremely long, and regressing over such a sequence becomes computationally
expensive.

2. Similarly, after a long while, the initial world state often becomes so rearranged
that significantly many final steps of the regression become entirely unnecessary.

3. Most significantly, for robotics, perceptual actions (Scherl and Levesque [25])
lead to new facts being added to the database. But such facts are true in the cur-
rent situation — the one immediately following the perceptual action — whereas
the other (old) database facts are true in Sp. Reasoning about databases con-
taining mixed facts — facts about the current and initial situations — is very
complicated, and we know of no satisfactory way to do this.

Our way of addressing these problems with regression is to to periodically progress
the robot’s database. In particular, every perceptual action is accompanied by a
progression of the database, coupled with the addition of the perceived fact to the
resulting database. We envisage that these database progression computations can
be done off-line, during the time when the robot is busy performing physical actions,
like moving about.

2 LOGICAL PRELIMINARIES

The language L of the situation calculus is first-order, many-sorted, with sorts sit-
uation for situations, action for actions, and object for everything else. It has the
following domain independent predicates and functions: a constant Sy of sort situa-
tion denoting the initial situation; a binary function do(a,s) denoting the situation
resulting from performing the action a in the situation s; a binary predicate Poss(a, s)
meaning that the action a is possible (executable) in situation s; and a binary pred-
icate <: situation x situation. s < s’ means that s’ can be reached from s by a
sequence of executable actions. We assume a finite number of situation independent
predicates with arity object™, n > 0, a finite number of situation independent func-
tions with arity object” — object, n > 0, and a finite number of fluents which are
predicate symbols of arity object™ x situation, n > 0. We denote by £? the second-
order extension of £. Our foundational axioms for the situation calculus will be in
£? (Lin and Reiter [13]), because we need induction on situations (Reiter [22]).
Often, we must restrict the situation calculus to a particular situation. For ex-
ample, the initial database is a finite set of sentences in £ that do not mention any
situation terms except Sy, and do not mention Poss and <. For this purpose, for
any situation term st, we define L to be the subset of £ that does not mention any

other situation terms except st, does not quantify over situation variables, and does
not mention Poss or <. Formally, it is the smallest set satisfying

1. ¢ € L provided ¢ € £ does not mention any situation term.

2. F(l1,...,ln, st) € Lg provided F is a fluent of the right arity, and ¢4, ..., 1, are
terms of the right sort.

3. If ¢ and ¢ are in Ly, so are =, o V@', o A @', © D ¢, ¢ = ¢, (Va)p,
(dz)p, (Va)ep, and (Ja)gp, where = and a are variables of sort object and action,
respectively.

We remark here that according to this definition, (Va)F(do(a, So)) will be in Ly,(q,s,)-
This may seem odd when we want sentences in L to be propositions about situation
st. Fortunately, we shall use L4 only when st is either a ground term or a simple
variable of sort situation.

We shall use L2, to denote the second-order extension of Ly by predicate variables
of arity object”, n > 0. So the second-order sentence (Ip)(Vz).p(z) = F(z,S) is
in L%, but (Ip)(Va)(3s).p(z,s) = F(x,Sy) is not, since the latter quantifies over
a predicate variable of arity object x situation. Formally, £2, is the smallest set
satisfying

1. Every formula in Ly is also in £2,.

2. p(ty, ..., t,) € L2, provided p is a predicate variable of arity object™, n > 0, and
ty,...,1, are terms of sort object.

3. If ¢ and ¢’ are in L2, so are =, o V', p A, 0 D¢, o = ¢, (Va)e, (37)p,
(Va)p, (3a)e, (¥p)p, and (Ip)p, where 2 and a are variables of sort object and
action, respectively, and p is a predicate variable of arity object™, n > 0.

3 BASIC ACTION THEORIES

We assume that our action theory D has the following form (cf. Reiter [23] and Lin
and Reiter [13]):
D = X UDs; UDuy UDyna UDs,,

where

e Y. given below, is the set of the foundational axioms for situations.

e D, is a set of successor state axioms of the form:?

Poss(a,s) D [F(Z,do(a,s)) = ®p(Z,a,s)], (1)
where F'is a fluent, and ®p(Z,a,s) is in L.
o D,, is a set of action precondition axioms of the form:
Poss(A(Z),s) = W4(Z,),
where A is an action, and U4 (#,s) is in L.

e D,,, is the set of unique names axioms for actions: For any two different actions
A(Z) and A'(y), we have
A(T) # A'(Y),

and for any action A(zy,...,z,), we have

A(z1y ey tn) = Ay1, o yn) D1 =y1 A= ATy = g

Ds,, the initial database, is a finite set of first-order sentences in L, .

We shall give an example of our action theory in a moment. First, we briefly explain
our foundational axioms ¥ since they are independent of particular applications.
Y contains axioms about the structure of situations. Formally, ¥ consists of the
following set of axioms:

So # do(a, 5), (2)
do(ay, s1) = do(ay, s3) D (a1 = ay A s1 =), (3)
(VP).P(So) A (Va, s)[P(s) D P(do(a, s))] D (Vs)P(s), (4)
—s < Sy, (5)

s < do(a,s') = (Poss(a,s') A s <). (6)

Notice the similarity between ¥ and Peano Arithmetic. The first two axioms
are unique names assumptions; they eliminate finite cycles, and merging. The third
axiom is second-order induction; it amounts to a domain closure axiom which says

2In the following, unless otherwise stated, all free variables in a formula are assumed to be prenex
universally quantified. Variables will always begin with a lower case Roman character; constants
will always begin with upper case.

that every situation must be obtained by repeatedly applying do to Sy.? The last two
axioms define < inductively.

Y is the only place where axioms about the structure of situations can appear.
It is often needed if we want to show, usually by induction, that a state constraint
of the form (Vs)C(s) is entailed by an action theory. For the purpose of temporal
projection, in particular progression as we shall see, D has exactly the same effect as
D — % For any formula ¢(s) in £, and any sequence A of ground action terms,

D |: 99(d0(A’ SO))
iff
Dss U Dyp U Dyna U Ds, = @(do(A, Sy)).

This follows directly from the following proposition which will be used throughout
this paper.

Proposition 3.1 Given any model M~ of D—1X., there is a model M of D such that:

1. M~ and M have the same domains for sorts action and object, and interpret
all situation independent predicates and functions the same;

2. For any sequence A of ground action lerms, any fluent F', and any variable
assignment v:*

M,v = F(Z,do(A, Sy))

iff
M~,v | F(Z,do(A, Sy)).

Proof: We begin with the observation that no sentence of D—% = D, UD,, UD,, U
Ds, mentions an equality atom whose arguments are of sort situation, and (2) and
(3) are unique names axioms about situations. It follows from this that if M~ is a
model of D — ¥, then there is a model M of Dy, U D,, U Dy, UDs, U{(2),(3)} such
that the conditions of the proposition are satisfied. So without loss of generality, we
can assume that M~ is a model of Dy, U D,, U Dy, U Dy U {(2),(3)}.

In the following, we use £ for the denotation of the symbol ¢ in an interpretation
M. Given M~ construct a structure M as follows. First, let M’s domains be the
same as that of M~ for sorts action and object. Next, let the domain dom™, for the
sort situation be the smallest subset of the situation domain of M~ such that:

1. S¥™ ¢ dom™,

stt*

3For a discussion of the use of induction in the situation calculus, see (Reiter [22]).
M, v |= ¢ means that M satisfies ¢ under the variable assignment v.

2. If o € dom!, and if a is an element of the action domain of M=, then do™™ (a, o) €
M

domg,.

So, M has exactly the same domain of sorts action and object as does M~, and its
situation domain is a subset of that of M.

To complete the specification of M, we describe how it interprets function and
predicate symbols.

1. M interprets all situation independent function and predicate symbols (includ-
ing the equality predicate) exactly as does M.

2. M interprets the equality predicate over situation terms of dom™, exactly as

does M.

3. M interprets do, Poss, and fluents over M’s domain exactly as does M~ over
this domain.

4. Finally, we specify how M interprets the < relation on situations. <M is the
smallest set with the properties:

(a) If o € dom™, and (a,) € Poss™ then (o, do(a, o)) e<M.

sut

(b) If o, 0’0" € dom™, and (0,0") €<M and (o/,0") €<M then (o,0") e<M.

st

We prove that M is a model of D = ¥ U D,; U D,y U Dyyy U Ds,, from which the
proposition follows.

1. To begin, consider any sentence of £ of the form (Vs)¢, where ¢ does not mention
<, where ¢ does not mention an equality atom with situation arguments, and
where ¢ does not quantify over situations. Then whenever M~ is a model of
(Vs)é, so is M. This is so because M and M~ interpret do, Poss, fluents
and situation independent function and predicate symbols identically over the
elements of M’s domain, and M’s domain for sort situation is a subset of that
for M~. Since every sentence of Dss U D,, U Dypy U Dg, is of the form (Vs)e, it
follows that M is a model for Dys U D,;, U Dy, U Ds,, since M~ is.

2. It remains to prove that M is a model of ¥.

(a) M satisfies the unique names axioms (2) and (3) for situations because

M~ does.

(b) M satisfies the induction axiom (4), because this says that M’s situation
domain is the smallest set containing S37 which is closed under the function
doM | and this is true of M’s situation domain.

(c) Finally, it is not hard to see that <M, as defined in 4 above, satisfies the
axioms (5) and (6) of X.

The conditions of the proposition follow from the properties of M.
|

The following is an example of a basic action theory.
Example 3.1 An educational database (Reiter [23]). There are two fluents:
e cnrolled(st, course, s): student st is enrolled in course course in situation s.
e grade(st,course,grade, s): the grade of st in course is grade in situation s.
There are two situation independent predicates:
e prereq(pre, course): pre is a prerequisite course for course course.
o betler(gradel, grade2): grade gradel is better than grade grade2.
There are three database transactions:
o register(st, course): register the student st in course course.

o change(st,course, grade): change the grade of the student st in course course
to grade.

e drop(st,course): drop the student st from course course.

This setting can be axiomatized as follows.
Dss consists of the following successor state axioms:

Poss(a,s) D [enrolled(st,c,do(a,s)) =
a = register(st,c) V enrolled(st, c,s) A a # drop(st, c)],

Poss(a,s) D [grade(st,c,g,do(a,s)) =
a = change(st,c,g) V
grade(st,c,g,s) N —(3¢")(g # ¢’ N a = change(st,c, ¢')].
D,, consists of the following action precondition axioms:
Poss(register(st,c),s) = (Vpr).prereq(pr,c) D (3g)(grade(st, pr, g, s) A better(g,50)),
Poss(change(st,c,g),s) = True,
Poss(drop(st,c),s) = enrolled(st,c, s).

Ds,, the initial database, can be any finite set of axioms about the initial situation,
for example, the following:

John # Sue # C'100 # €200,
prereq(C'100, C200),
enrolled(Sue, C'100, So),
enrolled(.John, C'100, S) V enrolled(.John, C200, So).

4 FORMAL FOUNDATIONS

Let a be a ground simple action, e.g. enroll(Sue,C100), and let S, denote the
situation term do(a, Sp). A progression Dg, of Dg, in response to « should have the
following properties:

1. Dg, is a set of sentences about situation S, only, i.e., in Lg, or in L3 .

2. For all queries about the future of S,, D is equivalent (in a suitable formal
sense) to

S U Dy UD,y UDypa UDs,

In other words, Dg, acts like the new initial database with respect to all possible
future evolutions of the theory following a.

To define progression, we first introduce an equivalence relation over structures.
Let M and M’ be structures (for our language) with the same domains for sorts
action and object. Define M’ ~g M iff the following two conditions hold:

1. M’ and M interpret all predicate and function symbols which do not take any
arguments of sort situation identically.

2. M and M’ agree on all fluents at S,: For every predicate fluent F', and every
variable assignment o,

M' o = F(Z,do(a, Sy)) iff M,o | F(Z,do(a, Sp)).

It is clear that ~g,_ is an equivalence relation. If M’ ~g, M, then M’ agrees with M
on S, on fluents and situation independent predicates and functions, but is free to
vary its interpretation of everything else on all other situations. In particular, they
can interpret Poss and do differently. We have the following simple lemma.

Lemma 4.1 If M ~g, M', then for any formula ¢ in L , and any variable assign-
ment o, Mo = iff Mo |E ».

Definition 4.1 A sel of sentences Ds, in L% is a progression of the initial database
Ds, to S, (wrt D) iff for any structure M, M is a model of Ds, iff there is a model
M’ of D such that M ~g, M’'.

Notice that we define the new database only up to logical equivalence. We allow
the new database to contain second-order sentences because, as we shall see later,
first-order logic is not expressive enough for our purposes.

Proposition 4.1 Let Ds,, be a progression of the initial database to S,. Then every
model of D ts a model of ¥ U Dyg U Dy, U Dy UDs, .

Proposition 4.2 Let Ds, be a progression of the initial database to S,. Then for
every model M of
E U Dss U Da,p U 'Duna U DSaa

there exists a model M' of D such that:

1. M’ and M interpret all situation independent predicate and function symbols
identically.

2. For every variable assignment o, and every predicate fluent F,

Mo k=S, <sANF(@s)iff Mo =S, <sAF(Z,s).

Proof: Let M be a model of
Y UDss UD,p U Dypa UDs,.
Since M is a model of Dg,_, there is a model M’ of
Y UD;ss UDyp UDyp, UDs,
such that M’ ~g M. It can be easily seen that M’ has the desired properties. m

From these two propositions, we conclude that D and ¥ U D, U D, U Dy U Ds,
agree on all situations > S,. So Dg, really does characterize the result of progressing
the initial database in response to the action a. Furthermore, the following theorem
says that the new database, when it exists, entails the same set of sentences in L3

as D:

10

Theorem 1 Let Dg, be a progression of the initial database to S,. For any sentence
v €LS,, Ds. Ev il D=

Proof: If D | ¢, then by Lemma 4.1, we have Ds_, = ¢. If Ds, = ¢, then D |= ¢
by Proposition 4.1. m

This theorem informs us that Ds, is a strongest post-condition (cf. Pednault [16],
Dijkstra and Scholten [3], and others) of the pre-condition Dg, with respect to the
action a.

Pednault [16] shows that his definition of progression cannot in general be a finite
set of first-order sentences in Lg,. By Theorem 1, this result applies to our definition
as well. In the next section, we shall extend this result, and show that Ds_ need not
even be a set of first-order sentences in Lg,.

4.1 Progression Is Not Always First-Order Definable

At first glance, the fact that progression cannot always be expressed in first-order
logic may seem obvious in light of Theorem 1, and the fact that D includes a second-
order induction axiom. However, as we mentioned in section 3, for the purpose of
progression, D is equivalent to D — X, which is a finite set of first-order sentences.

We shall construct a basic action theory D and two structures M; and M, with
the following properties:

2. M; and M, satisfy the exactly same set of sentences in Lg,.

3. There is no model M’ of D such that M’ ~g_ M.

It will then follow from our definition that for D, the progression of the initial database
to S, cannot be in Lg,: Suppose otherwise, then by (1), M; |= Ds,; by (2) and the
assumption that Dg, is a set of sentences in Lg,, we have My |= Dg, as well, but this
contradicts with (3) and our definition of progression.

We now proceed to construct a such basic action theory, and the two associated
structures.

Consider the following theory D with a unary fluent Fi, and a binary fluent Fj,
one action constant symbol A, one constant symbol 0, and one unary function symbol
suce:

DSO - @ Duna - @
D.p = {(Vs).Poss(A,s) = True}.

11

Dss consists of the following pair of axioms:

Fy(z,s) A (y)[z = suce(y) A Fo(y,s)] V
—Fy(z,s) ANz # 0N (Yy)[z = suce(y) D ~Fi(y, s)]].

To see the intuitive meaning of the successor state axioms, think of the constant
symbol 0 as the number 0, and the unary function suce as the successor function.
Then for any =, Fy(z,do(a,s)) holds if either z = 0 and F5(0,s) holds, or Fy(z,s)
and F,(predecessor(z),s) happen to have the same truth value. The purpose of Fy
is to keep track of the truth values of F; in the previous situation.

We first construct My which is a structure such that:

1. M; is a standard model of arithmetic with respect to sort object. Thus the
domain for object in My is the set of nonnegative numbers, 0 is mapped to the
number 0, and suce is mapped to the successor function.

2. My = Fi(do(A, So)) A (Vo) Fy(x,do(A, Sp)).

We claim that there cannot be a model M’ of D such that My ~g5, M'. Suppose
otherwise. Then M’ also satisfies the above two properties 1 and 2. From M’ |= D,,,
and M' = Fi(do(A,Sy)), we have M’ |= (Jz)-Fy(z,Sp). Similarly, from M’
(V) Fy(z,do(A, Sp)), by the successor state axiom for Fy, we have M’ = F3(0, So) A
Fy(suce(0), So) A ---. Thus M’ |= (Vx)Fy(z, So), a contradiction. Therefore there is
no model M’ of D such that My ~s, M.

We now show that there is a model M; of D such that for any sentence ¢ in Lg,,
M, | ¢ iff My |= ¢. By Skolem’s theorem (cf. Kleene [7], page 326), there is a first-
order structure M* such that for any sentence ¢ in Ls,, My = ¢ iff M* |= ¢, and
(M, 0, succ) and (M*,0, succ) are not isomorphic, i.e., My and M* are not isomorphic
on sort object. In particular, M* |= Fy(do(A, So)) A (Vz)Fy(z,do(A, So)). Now revise
M* into a structure M; such that:

1. My, and M™ have the same domains for sorts action and object, and interpret
situation independent predicates and functions the same.

2. M = (VYa,s)Poss(a, s).
3. My |= X U Dypa U Ds,.

4. For the truth values of the fluents on Sy: M; = Fi(Sp), and for the truth values

of Fy(z,Sp), we have that for any variable assignment o

12

(a) If o(z) is a standard number, i.e., there is a n > 0 such that M;,0 =2 =
succ™(0), then My, o |= Fo(x, So).

(b) If o(z) is a nonstandard number, i.e., there isno n > 0 such that M;,o(z) =
z = succ®(0), then My, 0 = =Fy(x,Sp). Notice that since M* and M, are
not isomorphic on sort object with respect to Peano arithmetic, there must

be a nonstandard number in the domain of M*, and thus in the domain of

M.

5. For the truth values of the fluents on do(A,Sy): For any fluent F, and any
variable assignment o, My, 0 | F(Z,do(A, Sy)) iff M*, o | F(Z,do(A,Sy)).

6. Inductively, for any variable assignment o, if
Mi,0 = do(A,S) < s,

then the truth values of the fluents on s will be determined according to the
successor state axioms and the truth values of the fluents on do(A, Sy); if

Mi,o = So < s A—=do(A, Sp) < s,

then the truth values of the fluents on s will be determined according to the
successor state axioms and the truth values of the fluents on Sy. This will define
the truth values of the fluents on every situation because M; = (Vs).5 < s,

which follows from the fact that M; = (Va, s)Poss(a, s).

It is clear that My ~g, M*. It follows that M; and M, satisfy the same set of
sentences in Lg,. We now show that M, satisfies the successor state axioms. By the
construction of My, we only need to prove that it satisfies the successor state axioms
instantiated to Sy and action A, i.e.

M | Poss(A, Sy) D [Fi(do(A, Sy)) = (3z)~Fa(x, So)],
and

M; | Poss(A, Sy) D (Va).Fy(z,do(A, Sy)) =
x=0A Fy0,5)V
Fy(z,S0) A (Fy)[z = suce(y) A Fi(y, So)] V
—Fy(x,50) AN # 0A (Vy)[z = suce(y) D = Fa(y, So)l.

To show the first, we need to prove that M; |= (3z)=F,(s, Sp). This follows from our
construction of M; and the existence of nonstandard numbers in the domain of M;.

13

To show the second, we need to prove that

M, | (Vz).2 =0 A F3(0,S0) V
Fy(z,S0) A (Fy)[z = suce(y) A Fa(y, So)] V
—Fy(x,S0) AN #£ 0A (Vy)[z = suce(y) D —Fa(y, So)l.

There are three cases:

L. If z = 0, then F3(0, Sy) follows from our construction.

2. Ifz = succ™(0) for somen > 0, then both Fy(suce™(0), So) and Fy(succ™1(0), So)
hold. Thus Fy(z, So) A (y).x = suce(y) A Fi(y, So) holds;

3. If z is a nonstandard number, then Fy(z,Sy) does not hold. Furthermore, for
any y such that z = suce(y), y is also a nonstandard number, so Fy(y, So) does

not hold either. Thus =F,(z, So) Az #£ 0A(Vy)[z = suce(y) D —F3(y, So)] holds.

Therefore, M; satisfies the successor state axioms instantiated to Sy and A. So
M, |E Ds,. This means that My = D, and M; and M, satisfy the same sentences in
Lg,. In view of the discussion at the beginning of the example, we see that the new
database at S for D cannot be captured by a set of first-order sentences.

4.2 Progression Is Always Second-Order Definable

We now show that, by appealing to second-order logic, progression always exists. We
first introduce some notation.

Given a finite set Dy, of successor state axioms, define the instantiation of D, on
an action term at and a situation term st, written Dy[at, st], to be the sentence:

/\ Poss(at, st) D
Fisafluent (g3 p(z do(at,st)) = ®p(Z, at, st),
where
(Va, s).Poss(a,s) D (VI)[F(Z,do(a,s)) = ®p(Z,a,s)]

is the successor state axiom for F' in D,,.

Given a formula o in £%, the lifting of ¢ on the situation st, written o1 st, is the
result of replacing every fluent atom of the form F(t4,...,t,,st) by a new predicate
variable p(t1,...,t,) of arity object”™. For example,

enrolled(John,C200, Sy) A enrolled(John, C100, Sg) 1 So

14

is p(John, C200) A p(John,C100).5
Lemma 4.2 The following are some simple properties of lifting:
1. If ¢ is a sentence thal does not mention st, then p7Tst is ¢.
2. If ¢ is a sentence in L2,, then @1 st is a siluation independent senlence.

3. If ¢ does not mention quantifiers over situations, then ¢ = @7 st.
Now we can state the main theorem of this section:
Theorem 2 Let Ds, be the union of D,,, ltogether with the sentence:

(3p1, s pe){ /\ @ A Dygler, Sol(Poss /U,)} 1S,

¢€Dg,

where

1. p1y..., pr are the new predicate variables introduced during the lifting.

2. U, is a sentence in Lg, such that

Poss(a, So) = U,
is an instance of the the axiom in D,, corresponding to the action c.

3. Dssla, Sol(Poss/W,,) is the resull of replacing Poss(a, Sy) by ¥, in Dgslar, Sol.

Then Ds, is a progression of Ds, to S, wrt D:

Proof: First, it is clear that the sentences in Ds, are in L3 .
Let M be a structure. We need to show that M |= Dg, iff there is a model M’ of

D such that M ~g, M.
Suppose that there is a model M’ of D such that M ~s, M’'. By Lemma 4.2,

D E Ds,, thus M' |= Ds,,. Therefore by Lemma 4.1, M |= Ds, .
Now suppose that M |= Ds,. Then there is a variable assignment o such that

M, o = /\ © A Dys[a, So)(Poss/¥,) T So.

»€Dsg,

Now construct a structure M’ such that

SLifting as we have defined it does not generally preserve logical equivalence. For example,
[(Vs).F(s)] 1 So is (Vs).F(s), but the logically equivalent [F'(So) A (Vs).F(s)] 1T So is p A (Vs).F(s).

Fortunately, we shall only be lifting those sentences that do preserve logical equivalence.

15

1. M and M’ have the same universe, and interpret all situation independent
function and predicate symbols identically.

2. For every fluent F if F/(Z,Sy) is lifted in Dg, as p, then

M' o E F(Z,50) iff Mo |= p(7).

3. M' =D, UD,,.
4. If M' E =¥, then for any fluent F', and any variable assignment o’,

M' o' |= F(Z,5,) it M,o' = F(Z,5,).
It is clear that such a M’ exists. We claim that M ~g, M'. There are two cases:

1. If M’ E =¥, then it follows from our construction that for any fluent F'; and any
variable assignment o,

M',o' |= F(#,5.) iff Mo’ = F(%,5,).

2. If M' E ¥, then since M’ = D,,,, and D,, | Poss(a, So) = W, therefore M’ =
Poss(a, Sp). But M' |= Dg,. Thus for any fluent F', and any variable assignment o,

M, o' |= F(Z,5,) iff M',o" = ®p(Z,a, So), (7)

where @ is as in the successor state axiom (1) for F' in Dys. Now since M’ E U,
by our construction of M’, we have that M,o | ¥, 1S,. But

M, o |= Dgsler, So|(Poss /U,)T So.

Therefore for any fluent F', and any variable assignment ¢’ such that o'(p) = o(p) for
any predicate variable p,

Mo | F(#,5,) it M',o' |= ®r(%,0,50) 1 S0 ®)

But for any variable assignment ¢’ such that o'(p) = o(p) for any predicate variable
p, since ®p(Z, o, Sp) is in Lg,, by our construction of M,

M,o' |E ®p(Z,a,5)1 S iff M',o' = ®p(Z,a,So),

Therefore from (7) and (8), we see that for any fluent F', and any variable assignment

!
a bl

M' o' |= F(Z,5,) it M,o' = F(Z,5,).

16

It follows then that M ~g, M’. By the construction of M’ and the fact that
M = Dyna, we have that M’ |= Dss U D,y U Dype. Thus from Proposition 3.1, there
is a model M" of D such that M’ ~gs, M"”. Then by the transitivity of ~g_, we
have that M ~g, M"”. This concludes the proof that Dg, as defined is a progressed
database. m

It is clear that the theorem still holds when the initial database Dg, is a finite set
of second-order sentences in L . Therefore, at least in principle, the theorem can
be repeatedly applied to progress the initial database in response to a sequence of
actions.

The new database Dg_ as defined in the theorem can be unwieldy. However, it
can often be simplified by using the unique names axioms in D,,,, as we shall see in
the following example.

Example 4.1 Consider our educational database. The instantiation of the successor
state axioms on drop(Sue, C'100) and Sy, Dss[drop(Sue, C'100), Spl, is the conjunction
of the following two sentences, where a = drop(Sue, C'100) and S, = do(c, Sp):

Poss(a, So) D [enrolled(st, ¢, S,) =
a = register(st,c) V
enrolled(st, ¢, So) A\ a # drop(st, c)],

Poss(a, So) D [grade(st,c,g,5,) =
a = change(st,c)V
grade(st,c,g,s) A (Vg')a # change(st, ¢, g')].

By unique names axioms, these two sentences can be simplified to

Poss(a, So) D [enrolled(st, c,S,) =
enrolled(st,c, So) N (Sue # st v C'100 # ¢)],

Poss(a, So) D [grade(st,c,g,5,) = grade(st,c, g, s)].

By Dap,
Poss(a, So) = enrolled(Sue, C100, Sp).
Thus Dgsler, Sol(Poss/V,,) is the conjunction of the following two sentences:
enrolled(Sue, C'100, So) D [enrolled(st,c,S,) =
enrolled(st, ¢, So) N (Sue # st v C'100 # ¢)],
enrolled(Sue, C100, So) D [grade(st,c,g,5,) = grade(st,c, g, s)].

17

Thus (Elpl,pg)[/\%DSO © A Dygler, Sol(Poss/WU,)] TS is

(3p1, p2).John # Sue # C'100 # C200 A
[p1(John, C'100) V pi(John,C200)] A
p1(Sue, C100) A prereq(C'100,C200) A
p1(Sue, C100) D [enrolled(st, ¢, S,) = pi(st,c) A (Sue # st vV C100 # ¢)] A

p1(Sue, C100) D [grade(st,c,g,S,) = p2(st, ¢, g)].

This is equivalent to

John # Sue £ C100 #£ C200 A prereq(C'100,C200) A
(3p1, p2).[p1(John, C100) V py(John, C200)] A pi(Sue, C100) A
[enrolled(st,c,Sa) = pi(st,c) A (Sue # stV C100 # ¢)] A

[grade(st,c,g,S) = p2(st, ¢, g)],

which is equivalent to
John # Sue £ C100 #£ C200 A prereq(C'100,C200) A
(3p1).[p1 (John, C'100) V pi(John, C200)] A
p1(Sue, C100) A

[enrolled(st,c, S,) = pi(st,¢) A (Sue # stV C'100 # ¢)],
which is equivalent to

John # Sue # C'100 # C200 A prereq(C'100,C200) A
[enrolled(John,C100,5,) V enrolled(John,C200, S,)] A

—enrolled(Sue, C100,5,) A
(3p1).enrolled(st, ¢, S,) = pi(st,c).

Finally, we have a first-order representation for Dg,, which is D,,, together with the

following sentences:
John # Sue # C'100 # €200,
prereq(C'100, 0200),
enrolled(John, C'100, 5,) V enrolled(John, 0200, S,),
—enrolled(Sue, C100, S,).

18

4.3 More on First-Order Progression

Theorem 1 informs us that, in particular, the progression of Dg, entails the same set
of first order sentences about S5, as does D. In view of this, one may wonder why
we did not define progression to be the set of first-order sentences in Lg, entailed
by D. Indeed, this is basically what Pednault did [16], and will, by definition, side
step our negative result that in general, progression cannot be captured in first-order
logic. There are several reasons why we did not do this. First, such a definition is
purely syntactic, and hence has an arbitrary quality to it. What justifies the prior
assumption that progression is first order definable, especially in view of the fact that
many other notions, for example transitive closure, are not? Ideally, one should begin,
as we did, with a purely semantic characterization of one’s intuitions about database
progression, and see where that leads. Secondly, Peppas et al [19] show that, for quite
general action theories, progression defined in terms of first order entailments, may
lose information, in the sense that a first-order sentence about a future situation of
S, may be a consequence of D but not of (D — Dg,) U Dg,. While this result by
Peppas et alis for more general action theories than ours, it does show that it is not a
priori obvious that a first order definition of progression is warranted. Unfortunately,
we have not been able to find a result for basic theories of actions comparable to that
of Peppas el al. Nevertheless, we are convinced of the following:

Conjecture 4.1 For an arbitrary basic action theory D, and an arbitrary ground
action «a, let Fs, be the set of first-order sentences in Lg, entailed by D. Then there
is a basic action theory D, a ground action lerm o and a first-order senlence o such

that o is entailed by (D — Ds,) U Ds, but not by (D — Ds,) U Fs,.

If true, this conjecture would establish that a definition of progression in terms of
first-order entailments would be too weak.

However, for an important class of first-order sentences, this “weaker” definition of
progression is entirely adequate. Specifically, for addressing the projection problem,
first order progression is sufficient.

Proposition 4.3 Suppose ¢(s) € L, and thal A is a sequence of ground aclion
terms. Then

(D — Ds,) U Ds

a

= S, < do(A,S,) A ¢(do(A,S,)) (9)

iff
(D — Ds,) U Fs, E Sa < do(A, Sa) A d(do(A, S.)). (10)

Proof: We make use of the soundness and completeness of regression, as described

in Reiter [?]. Specifically, for sentences of the form S, < do(A,S.) A ¢(do(A, S,)),

19

Reiter shows how, using the regression operator, to determine a first order sentence
o € Lg, such that

D —Ds, o =[5 <do(A,S,) A P(do(A,S,))]. (11)

Moreover, Reiter shows that (10) iff Dy, UFs, | o iff (since Dy, C Fs,) Fs, E o iff
(by the definition of Fs_) D |= o iff (by the remarks following the proof of Proposition
4.2) (D — Ds,) UDs, o iff (by (11)) (9).

|

5 PROGRESSION WITH RELATIVELY COM-
PLETE INITIAL DATABASES

In the previous section we showed that, in general, progression is definable only in
second-order logic. However, there are some interesting and important special cases
for which progression is first-order definable. In this section and the next, we consider
two such cases.

We say Ds, is relatively complete (with respect to situation independent proposi-
tions) if it is a set of situation independent sentences together with a set of sentences,
one for each fluent F', of the form:

(VZ).F(Z,50) = lIp(2),
where () is a situation independent formula whose free variables are among .

Theorem 3 Let D be an action theory with a relatively complete initial database Ds,,
and let a be a ground action term such that D |= Poss(a, Sy). Then the following
set:

Duna U{¢ | ¢ € Ds, is situation independent} U
{(VZ).F(Z,do(a, Sp)) = Pr(Z, e, S0)[So] | F is a fluent}

is a progression of Ds, to S,, where
1. ®p is as in the successor state aziom (1) for F in Dy;

2. Op(Z, , So)[So] is the result of replacing, in ®r(Z, o, So), every occurrence of
F'(t_; So) by]Tp(f), where Mg is as in the corresponding aziom for F' in Ds,,
and this replacement is performed for every fluent F' mentioned in ®p(Z, o, Sp).

20

Proof: Denote the set of the sentences of the theorem by S. Clearly, S is a set of
first-order sentences in Lg,. It is easy to see that S | Ds,. Conversely, it is clear

that D | S. Thus by Theorem 1, Dg, = S. m

Clearly, the progressed database at 5, as given by the theorem is also relatively
complete. Thus the theorem can be repeatedly applied to progress a relatively com-
plete initial database in response to a sequence of executable actions. Notice that
the new database will include D,,, and the situation independent axioms in Dsg,;
therefore we can use these axioms to simplify ®z(Z, o, So)[So).

Example 5.1 Consider again our educational database example. Suppose now that
the initial database Dg, consists of the following axioms:

John # Sue # C'100 # C200,
better(70,50),

prereq(C'100, C'200),
enrolled(st,c,So) = (st = John A ¢ = C100) V (st = Sue A ¢ = C'200),

grade(st,c,g,S0) = st = Sue Ae = C100 A g = 70.

Ds, is relatively complete, and D |= Poss(a, Sp), where a = drop(John, C100). From

0
the axiom for enrolled in Dg,, we see that Il oneq(st,) is the formula:

(st = John A e = C100) V (st = Sue A ¢ = C'200).

Now from the successor state axiom for enrolled in Example 3.1, we see that ®.p,oe4(st, ¢, a, s),
the condition under which enrolled(st,c, do(a, s)) will be true, is the formula:

a = register(st,c) V (enrolled(st,c,s) N a # drop(st, c)).
Therefore @, on1ca(st, ¢, a, So)[So] is the formula:

drop(John,C100) = register(st,c) V
{[(st = John N c = C100) V (st = Sue A ¢ = C200)] A
drop(John,C'100) # drop(st,c))}.

By the unique names axioms in D,,,, this can be simplified to
(st = John A ¢ = C100) V (st = Sue A ¢ = C200) A (John # stV C100 # ¢).
By the unique names axioms in Dg,, this can be further simplified to

st = Sue A ¢ = C'200.

21

Therefore we obtain the following axiom about do(a, So):
enrolled(st, ¢, do(a, Sp)) = st = Sue A ¢ = C200.
Similarly, we have:
grade(st,c, g,do(a, So)) = st = Sue A c = C100 A g = 70.

Therefore a progression to do(drop(John,C100), Sy) is Dy, together with the follow-

ing sentences:

John # Sue # C'100 # C200,
better(70,50),
prereq(C'100, C'200),
enrolled(st, ¢, do(a, Sp)) = st = Sue A ¢ = C200,
grade(st,c,g,do(a, Sp)) = st = Sue A ¢ = C100 A g = 70.

6 PROGRESSION IN THE CONTEXT FREE
CASE

In this section we consider progression with respect to context-free action theories. A
successor state axiom for F'is context free iff it has the form:

Poss(a,s) D [F(Z,do(a, s)) = v (Z,a) V (F(Z,5) A e (¥, a))], (12)

where v# (7, a) and 75 (7, a) are situation independent formulas whose free variables
are among those in ¥, a. The successor state axioms in our educational database are
all context free. So is the following successor state axiom:

Poss(a,s) D [broken(z,do(a,s)) = a = drop(z) A fragile(z) V
broken(z,s) A a # repair(z)].

The following successor state axiom is not context-free:

Poss(a,s) D [dead(x,do(a,s)) =
(Jy)(a = explode_bomb_at(y) A close(z,y,s))V dead(x, s)].

Now assume that:

22

1. Dg, is a set of situation independent sentences, and sentences of the form
E D £F(x1,...,2,,5), (13)
where F is a situation independent formula. For example,
ontable(x, Sy),

x # A D —ontable(z, So),
fragile(x) D broken(z, Sy),

are all of this form.

2. Dsg, is coherent in the sense that for every fluent F', whenever (V7). Ey D F(Z, Sy)
and (VZ).Fy D = F(%,Sy) are in Dg,, then

{¢ | ¢ € Dg, is situation independent} |= (VZ).=(FEy A Es).

This means that Dg, cannot use axioms of the form (13) to encode situation
independent sentences: For any situation independent sentence ¢, Ds, | ¢ iff
{¢ | ¢ € Dg, is situation independent} = ¢.

3. D, 1s a set of context-free successor state axioms.
4. a is a ground action term, and is possible initially: D | Poss(a, Sp).
5. For each fluent F', the following consistency condition (Reiter [21]) is satisfied:
Dop U Do | —(37,a,s).Poss(a,s) A ’y}'(f, a) ANyg(Z,a), (14)
where F’s successor state axiom has the form (12).

The consistency condition (14) deserves a brief explanation. Following Pednault
[18] and Schubert [26], Reiter [21] provides a solution to the frame problem in the
absence of state constraints which syntactically transforms a pair of effect axioms for
a given fluent F' into a successor state axiom for F'. The effect axioms are assumed
to have the syntactic forms:®

Poss(a,s) AN (#,a.s) D F(#,do(a, 5)),

and
Poss(a,s) Nyp(Z,a,s) D ~F(Z,do(a,s)).

6In general, v} and 45 may be situation dependent.

23

Reiter applies the explanation closure idea of Schubert [26] to obtain the following
frame axioms for [

Poss(a,s) N ~F(Z,s) A F(Z,do(a, s)) D vH(Z,a,s),
Poss(a,s) N F(Z,s) N —=F(Z,do(a,s)) D vp(Z,a,s).
The successor state axiom
Poss(a,s) D F(Z,do(a,s)) =~vF(Z,a) V (F(Z,5) A v (7, a)),

is logically equivalent to the conjunction of the above four sentences, whenever the
consistency condition holds. Notice that the consistency condition makes good sense:

If it were violated, so that for some)_(‘,A, S we have Poss(A,S5), 71"5()?,14, S), and

o ()?, A,S), then we could derive an immediate inconsistency from the above two
effect axioms.

It is easy to verify that each fluent in our educational database satisfies the con-
sistency condition.

Under these assumptions, to compute Dg_, use Theorem 1 to construct a set S,
initially empty, of sentences as follows:

1. If ¢ € Dg, is situation independent, then ¢ € S.
2. For any fluent F', add to S the sentences
FYZ-I*:(:E’ a) 2 F(f7 ClO(Oz, SO))v
v (Z,) D = F (&, do(a, So)). (16)
3. For any fluent F,if (VZ).F D F(Z,Sp) is in Dg,, then add to S the sentence

E N5 (Z,0) D F(Z,do(c, Sp)). (17)

4. For any fluent F, if (VZ).E D —~F(Z,Sp) is in Dg,, then add to S the sentence

E A=y (Z,0) D =F (%, do(a, Sp)). (18)

Theorem 4 Under the afore-mentioned assumptions, S U Dy, 1s a progression of

DSO to Sa .

Proof: We use Theorem 1. First we show that D |= S U Dypy. D |= Dyne trivially.
Suppose ¢ € S, we show by cases that D | ¢:

1. ¢ € Ds, is situation independent. Trivial.

24

2. @ is (15). By the successor state axiom (12) of F' in D, we have
Poss(a, So) Ay (Z,0) D F(&,do(a, Sy)).
From this and our assumption that D | Poss(a, Sp), we have
Vi (#, a) D F(&, do(a, So)),

that is, p.

3. @ is (16). Again by the successor state axiom (12) of F' in D, we have
Poss(0,50) > (0 A~ (F,0) > ~F(F, oo, 50))].
Now by the consistency condition (14), we have
Poss(a, So) D [yp(Z, o) D ~F (&, do(a, Sy))].

So we have
Vr (%, @) D 2 F (&, do(ar, So)),

that is, .
4. ¢ is (17). By the successor state axiom (12) of F in D, we have
Poss(a, So) D [F(Z,S0) N ~yp(Z,a) D F(Z,do(a, Sp))].

So
F(Z,50) N g (Z,a) D F(Z,do(e, So)).

But (VZ)(E D F(Z,S5)) is in Ds,, so we have
B A 7 (7,0) 5 F(7 dof, 50)),
that is, .
5. ¢ is (18). By the successor state axiom (12) of F' in D, we have
Poss(a, Sp) D [-F(Z,S0) A & (Z,a) D =F(Z,do(a, Sp))].

So
= F(%,50) A =vE(Z,) D F(Z,do(a, Sp)).

But (VZ)(E D —F(&#,S0)) is in Dg,, so we have
B A (7, 0) 5 (7, do{,),

that is, .

25

By our construction of S, this proves that D = S. But D,,, US is a set of sentences
in Ls,. Therefore by Theorem 1, Ds, =S U Dypa.
To prove the converse, we show that for any model M of § U D,,,, there is a

model M’ of D such that M ~g, M'. Suppose now that M is a model of S U D,y

We construct M’ as follows:

1. M'" and M have the same domains for sorts action and object, and interpret all
situation independent predicates and functions the same.

2. For each fluent F', M interprets I’ on Sy as follows:
(a) For every variable assignment o, if (VZ).E D F(Z,Sy) isin Dg,, and M, o |=
E (thus M’ o |= E as well), then M’ o = F(Z,S).

(b) Similarly, for every variable assignment, if (VZ).E D —F(Z,S) is in Dsg,,
and M,o = E (thus M’ o |= E as well), then M’ o |= —~F(Z, 5,).

(c) For every variable assignment o, if F'(Z,Sy) has not been assigned a truth
value by one of the above two steps, then M',o = F(Z,5) iff M,o |=
F(Z,do(a, Sp)).

Notice that by our coherence assumption for Dg,, our construction is well-

defined.

3. M’ interprets Poss according to D,,, and interprets the truth values of the
fluents on reachable situations according to Ds;.

4. M' = %. This can be done according to Proposition 3.1.

Clearly M’ = D. We show now that M ~gs, M’'. For any fluent F, suppose the
successor state axiom for F' is

Poss(a,s) D F(&,do(a,s)) = v (Z,0) V (F(Z,s) A =7 (7, @)).

Given a variable assignment o, suppose M', o | F(Z, do(a, Sp)). Since D |= Poss(a, Sy),
by the above successor state axiom, there are two cases:

1. M',o | ~vf(Z,a). This implies M,o | ~{(#,a). Now since v (#,a) D
F(Z,do(a, Sp)) € S, and M is a model of S, thus M,o | F(Z, do(a, Spy))
as well.

2. M',o = F(Z,50) N =yp(Z,a). Since M',o |= F(Z,5), by our construction,
either M, o = F(Z,do(a, Sp)), or there is a sentence £ D F(Z,5;) in Dg, such

that M, o |= E. Suppose the latter. Then by our construction of S, it contains
EN-vp(Z,a) D F(Z,do(a, So)). Thus M,o |= F(Z,do(a, Sy)) as well.

26

Similarly, if M', o |= = F(Z,do(c, So)), then M, o = —F(Z,do(a, So)) as well. There-
fore M ~g, M'. m

The following remarks are worth noticing:

1. The new database S has the same syntactic form as Dg,, so this process can be
iterated.

2. The computation of S is very efficient, and the size of S is bounded by the sum
of the size of Dg, and twice the number of fluents.

We emphasize that the results of this section depend on the fact that the initial
database has a certain specific form. In fact, a result by Pednault [16] shows that for
context-free actions and arbitrary Dg,, progression is not always guaranteed to yield
finite first-order theories.

7 STRIPS

Ever since STRIPS was first introduced (Fikes and Nilsson [6]), its logical semantics
has been problematic. There have been many proposals in the literature (e.g. Lifschitz
[11], Erol, Nau and Subrahmanian [4], Bacchus and Yang [2]). These all have in
common a reliance on meta-theoretic operations on logical theories to capture the
add and delete lists of STRIPS operators, but it has never been clear exactly what
these operations correspond to declaratively, especially when they are applied to
logically incomplete theories. In the sequel, we shall provide a semantics for STRIPS-
like systems in terms of a purely declarative situation calculus axiomatization for
actions and their effects. On our view, STRIPS is a mechanism for computing the
progression of an initial situation calculus database under the effects of an action. We
shall illustrate this idea by describing two different STRIPS mechanisms, and proving
their correctness with respect to their situation calculus specifications.

Following Lifschitz ([11]), define an operator description to be a triple (P, D, A),
where P is a sentence of a first order language Lsrrips and D (the delete list) and
A (the add list) are sets of sentences of Lsrrips. A world description W is any set
of sentences of Lsrrips. A STRIPS system consists of:

1. A world description Wy, called the initial world description,
2. A binary relation > C 2£STRIPS x Lorrrps,’

3. A set Op of symbols called operators, and

“In his treatment of STRIPS, Lifschitz does not provide for the relation .

27

4. A family of operator descriptions {(P,, D,, As) tacop-

With each operator « is associated a world description W,, the successor world de-
scription of Wy, defined by W, = (Wy — D,) U A,. A successor world description W,
is admissible iff Wy > P,.

Sometimes, but not always, > will be the standard entailment relation for the first
order language Lsrrrps. In this case, admissibility simply corresponds to the fact
that the precondition P, is entailed by the initial world description Wy, in which case,
on the standard view of STRIPS, the operator « is applicable. However, our intuitions
about STRIPS are not standard, and we prefer to leave open the interpretation of
the “entailment” relation b>.

Our semantics for STRIPS systems is indirect; we define certain classes of theories
in the situation calculus and show how to associate suitable STRIPS systems with
those theories. Only STRIPS systems associated with such situation calculus theories
will, on our account of STRIPS, be assigned a semantics. This leaves many STRIPS
systems (namely those without an associated situation calculus theory) without a
semantics; we are not very distressed by this, given that STRIPS systems, in their
full generality, do not currently have coherent semantics anyway.

8 TWO VERSIONS OF STRIPS

The STRIPS systems we derive apply only to a restricted class of situation calculus
action theories for which the successor state axioms have a particular syntactic form,
which we now define. A successor state axiom is strongly context free iff it has the
form:

= An(€™) Vv (19)
) A A (FE)a = By (7).

Here the A’s and B’s are function symbols of sort action, not necessarily distinct from
one another. The gand 17 are sequences of distinct variables which include all of the
variables of 7; the remaining variables of the gand 7 are those being existentially
quantified by the ¢ and w, respectively. ¥ could be the empty sequence. Notice that
strongly context free successor state axioms are special cases of context free successor
state axioms defined in Section 6. The successor state axioms of our running blocks
world example given below are strongly context free. The following successor state
axiom is context free but not strongly context free:

Poss(a,s) D [ontable(z,do(a,s)) = a = putontable(z) V
ontable(x,s) A\ a # tiptable A a # pickup(z)].

28

This is because the action tiptable does not have = as a parameter.

The STRIPS systems which we shall characterize will be for languages £* whose
only function symbols of sort object are constants. Therefore, consider a ground
action term «, and the strongly context free successor state axiom (19) for fluent F,
relativized to the initial situation Sg. How does a affect the truth value of fluent F' in
the successor situation do(a, Sy)? By the unique names axioms for actions, together
with the assumption that the successor state axioms are strongly context free, this
relativized axiom will be logically equivalent to a sentence of the form:

Poss(a, So) D
[F(Z do(e, Sp)) =i = XD v ...y i= Xy
F(Z,8) AT A YDA AT £V,
Here the X and Y are tuples of constants of £? obtained from those mentioned by
the ground action term «. If we assume further that the action « is possible in the

initial situation, i.e. that D | Poss(a, So), this is equivalent to:

—

F(Z,do(a,S)) =& =XOv...vi=Xmy

S 2
F(Z,SO)ANTAYWD A AT #Y, (20)

Example 8.1 The following blocks world will provide a running example for the rest
of this paper:

Actions

e move(z,y, z): Move the block z from block y onto block z, provided both z and
z are clear and block z is on top of block y.

e movefromtable(x,y): Move the block z from the table onto block y, provided
x 1s clear and on the table, and block y is clear.

e movetotable(x,y): Move block z from block y onto the table, provided z is clear
and z is on y.

Fluents
e clear(z,s): Block x has no other blocks on top of it, in state s.

e on(z,y,s): Block z is on (touching) block y, in state s.
e ontable(z,s): Block z is on the table, in state s.
This setting can be axiomatized as follows:
Action Precondition Axioms
Poss(move(z,y,z),s) =

clear(z,s) A clear(z,s) Non(z,y,s) Nz £yANx#zNy# z,

29

Poss(move fromtable(z,y),s) = clear(z,s) A clear(y,s) A ontable(x,s) Az # y,
Poss(movetotable(z,y), s) = clear(x,s) ANon(z,y,s) ANz #y.
Successor State Axioms

Poss(a,s) D [clear(z,do(a, s)) =
(Jy, z)a = move(y, x,2) V (Jy, z)a = move(z,y,z) V
(Jy)a = mm)(#m‘able(5, y) V (Jy)a = movetotable(y, z) V
(Jy)a = move fromtable(z,y) V
clear(z,s) A =(Jy, z)a = move(y, z,z) A —=(Jy)a = move fromtable(y,)],

Poss(a,s) D [on(z,y,do(a,s)) =
(3z)a = move(z,z,y) V a = move fromtable(z,y) V
on(z,y,s) A a# movetotable(z,y) A —(3z)a = move(z,y, z)],

Poss(a,s) D
[ontable(x, do(a, s)) = (Jy)a = movetotable(z,y) V
ontable(x,s) A =(Jy)a = move fromtable(z,y)].

Now consider the “generic” ground action move(X,Y,Z). The corresponding
instances of (20) for the fluents clear, on and ontable are logically equivalent to:

clear(z,do(move(X,Y, 7),S0)) =
r=YVaz=XVclear(z,S%) Nz # 7,

on(z,y,do(move(X,Y, Z),S)) =
r=XANy=27ZVon(z,y,So) AN —=[lzx=XANy=Y],
ontable(x, do(move(X,Y, 7),Sy)) = ontable(x, Sy).

For the generic ground actions move fromtable(X,Y) and movetotable(X,Y) we ob-
tain:

clear(x,do(move fromtable(X,Y), S X Velear(z,S) ANz #Y,

)

0)
on(z,y,do(move fromtable(X,Y), Sy))
ontable(x, do(move fromtable(X,Y), Sy)) = ontable(x, So) A v # X,
clear(z, do(movetotable(X,Y),S0)) =2 = X Va =Y Vcear(z,So),
on(z,y,do(movetotable(X,Y), S)) = on(:zz, Y, S0) AN =[x =X ANy =Y],
ontable(z, do(movetotable(X,Y), Sy)) = x = X V ontable(z, Sy).

X ANy=Y Von(z,y,S),

x

30

8.1 OCF-STRIPS: Open World, Context Free STRIPS

Our point of departure is an action theory D = ¥ U D,; U D,y U Dy U Ds,, with the
following properties:

1. The only function symbols of sort object that the second order language L2
possesses are constants.®

2. Fach situation dependent sentence of D, is a ground fluent literal, i.e. of the

form F(C So) or —|F(C So) for fluent F' and constants C of sort ob]Prf

3. Ds, contains unique names axioms for constants of sort object: For each pair of
distinct constant names C' and C' of sort object, the axiom C # C".

4. Dg

, contains no pair of complementary literals (and hence is consistent).

5. Fach successor state axiom of Ds; is strongly context free.
6. We are progressing with respect to a, a ground action term, and « is possible
initially:
D |= Poss(a, Sp).

7. For each fluent F', the consistency condition (14) is satisfied. It is easy (but
tedious) to verify that each fluent of Example 8.1 satisfies this condition.

In keeping with our intuition that STRIPS systems are mechanisms for progressing
situation calculus databases, we want now to characterize the result of progressing
Ds, under the effects of the ground action « in the case of action theories of the above
kind. This is done according to Theorem 4.

Let S be the following set of sentences:

1. Initialize S to {¢ € Ds, | ¢ is situation independent }.

2. For each fluent F do (With reference to the instance (20) of F’s successor state
axiom):
(a) Add to S the sentence F()?(i) do(a, Sp)), 1 =1,
(b) For each ground instance F(C So) € Ds, add to S the sentence F(C do(oz SO))

whenever C is a tuple of constants different from each ye) =1,
(Here, we invoke the unique names axioms for constants of sort ob_ject).

(c) Add to S the sentence ﬂF(l?(i), do(e, Sp)),t=1,...,n

8Recall that £? is the language in which D is expressed.

31

(d) For each ground instance —|F(C_", So) € Ds, add to S the sentence —|F(C_", do(a, So)),
whenever C' is a tuple of constants different from each X, i =1,...,m.
(We again invoke the unique names axioms for constants of sort object).

By Theorem 4, the resulting set S enjoys the property that SUD,,,, is a progression
of Ds, under action a. Moreover, the situation dependent sentences of & are all
ground literals, and & contains no pair of complementary literals. It follows that S
can serve as a new initial database for the purposes of iterating the above progression
mechanism.

Now we interpret the above construction of the set § as a STRIPS operator. Imag-
ine suppressing the situation argument Sy of all the ground literals of Dg,. Now ask
what sequence of deletions and additions of ground literals must be performed on the
situation-suppressed version of Dg, in order to obtain the situation-suppressed version
of § (i.e. & with the situation argument do(c, Sp) suppressed in its sentences). The
deletions and additions necessary to achieve this situation-suppressed transformation
of Ds, to § will define the delete and add lists for the STRIPS operator a.

It is easy to see that the following deletions and additions, when applied to Dy,
the situation-suppressed version of Dg,, yields the situation-suppressed version of S:

For each fluent F do (With reference to the instance (20) of F’s successor state axiom):

1. Delete from Dy the sentences ﬂF()_(‘(i)), i=1,...,m.

b

2. Delete from D, the sentences F(V(i)), 1=1,...

, N

3. Add to Dy the sentences F()?(i)), i=1,...

n.

4. Add to Dy the sentences ﬁF(?(i)), 1 =1,...

b

It is now clear how to define a STRIPS system and its associated operator for a:®

1. The language Lsrprips is the situation-suppressed version of £2.1°
2. The initial world description is Dj.

3. B is ordinary logical entailment; for a world description W and sentence o €

»CSTRIPS, Wpboif W |: o.

4. o’s precondition is the situation-suppressed version of the right hand side of the
equivalence in «’s situation calculus action precondition axiom.

9See Section T for the relevant definitions.
10We take it as self evident what is meant formally by the language obtained by suppressing
objects of sort situation from the language £2.

32

5. For each fluent F', include in o’s add and delete lists those literals specified
above for obtaining the situation suppressed version of S.

To our knowledge, OCF-STRIPS is the only variant of STRIPS which specifically
provides for an incomplete database of ground literals, and which is provably correct
with respect to a logical specification.

Example 8.2 Continuing with our blocks world example, we can “read off” the
OCF-STRIPS operator schema for move from the instances of the successor state
axioms given in Example 8.1:

move(X,Y, 7)1

P: clear(X) A clear(Z)Non(X, YIANX A ZANX Y NY # 7.
D: =clear(Y),—~clear(X), clear(Z), ~on(X, Z),on(X,Y).
A: clear(Y), clear(X), ~clear(Z),on(X, Z), —on(X,Y).

The operator description schemas for move fromtable and movetotable are obtained
in the same way:

move fromtable(X,Y)

P: clear(X) A clear(Y) A ontable(X) AN X # Y.
D: =clear(X), mon(X,Y), ontable(X), clear(Y).
A: clear(X),on(X,Y), montable(X), mclear(Y).

movetotable(X,Y)

P: clear(X)ANon(X,Y)ANX #Y.
D: =clear(X), mclear(Y),on(X,Y), ~ontable(X).
A: clear(X), clear(Y),—on(X,Y), ontable(X).

8.2 RCF-STRIPS: Relational, Context Free STRIPS

This version of STRIPS derives from action theories D of the form D = ¥ U D,, U
Dap U Dyna U Dg,, with the following properties:

1. The only function symbols of sort object that the second order language L2
possesses are constants.

2. Ds, contains one sentence of the following form, for each fluent F:

F(#,8)=7=COv...vi=C0, 21)

1Notice that these are schemas, standing for the family of operators obtained by instantiating
the “variables” XY and 7 of the schema by constants of our situation calculus language.

33

where the (') are tuples of constant symbols of sort object. These are the only
situation dependent sentences of Dg,. Notice that initial databases of this form
are special cases of the relatively complete databases defined in Section 5. The
case n = 0 is permitted, in which case this axiom is F/(#,Sy) = false. For
example, if an agent’s hand is initially empty:

holding(z, So) = false.

If initially, block A is on B, D ison A, (' is on E, and no other block is on a
block:

on(z,y,5%)=x=ANy=BVe=DAy=AVa=CAy=FE.

3. Dg

, contains unique names axioms for constants of sort object.

4. Fach successor state axiom of Ds; is strongly context free.

5. We are progressing with respect to «a, a ground action term, and « is possible
initially:
D | Poss(a, So).

Notice that the single sentence (21) is logically equivalent to:
F(CW, 8y),..., F(C™, 5, (22)

FACUNANFACW D -F(Z S). (23)

Notice also that, given all the positive instances (22) of F, we can trivially determine
the sentence (23). So it is sufficient to represent a database of this form (say for
computational purposes) by the set of all positive instances of F. This, we claim, is
what some versions of STRIPS do (but suppressing the situation argument). This
is also what relational databases do; in fact, the unique names assumption together
with the condition (21) on Dg, are the defining properties for a relational database
(Reiter [20]). The relational tables are just the ground instances of the fluents F.
(But bear in mind that logically, the database consists of the table for F', together
with the axiom (23) and unique names axioms.)

As we did in the previous section, we want now to characterize the result of
progressing Dg, under the effects of the ground action « in the case of action theories
of the above kind. To do so, we appeal to the results in Section 5. Consider the
context free successor state axiom (20) for fluent ¥’ which we relativized to the initial
situation Sp. By our assumption (21) on the syntactic form of Dg,, (20) is equivalent
to:

F(Z,do(a,Sy)) =7 =
[f;é@)\/...\/fz

Q) »<1

.../\f#f/'(”)_

Let C_"(l), ceey C™ be all the C® that are different tuples than all of the Y, Then,
by unique names axioms for constant symbols of sort object, the above sentence will
be logically equivalent to

F(Z,do(a

—7=XWOvy...y7= Xm
SE))_’_ XWv...ve=X"y (24)

T
Wy ...y 7=,
Let S be the following set of sentences:
1. Initialize S to {¢ € Ds, | ¢ is situation independent}.
2. For each fluent F do: Add the sentence (24) to S.

The resulting set S enjoys the property that S U D,,. 1s a progression of Dg, under
action a (Theorem 3). Moreover, § has the same syntactic form as Dsg,, and so can
serve as a new initial database for the purposes of iterating the above progression
mechanism.

Now we interpret the above construction of the set & as a STRIPS operator.
Imagine representing the situation dependent sentences

F(Z,S)=2=CYv...vi=CW (25)

by the situation-suppressed relational database of ground instances F(é(l)), ceey F(é(n)).
We emphasize that this representation is merely a shorthand for the sentence (25).
Now ask what sequence of deletions and additions of ground literals must be per-
formed on Dy, the situation-suppressed relational database version of Dg, in order to
obtain the situation-suppressed relational version of S. The deletions and additions
necessary to achieve this transformation of Dy to the corresponding representation of
S will define the delete and add lists for the STRIPS operator «.

It is easy to see that the following deletions and additions, when applied to Dy,
yield the situation-suppressed, relational database representation of S:

For each fluent F' do (With reference to (20)):

1. Delete from D, the sentences F(?(i)), i=1,...

m.

2. Add to Dy the sentences F()?(i)), i=1,...

3

It is now clear how to define a STRIPS system and its associated operator for a:!?

1. The language Lsrrips is the situation-suppressed version of £2.

2. The initial world description is Dj.

12Gee Section 7 for the relevant definitions.

35

3. For a sentence 0 € Lsrrips, W b o iff R(W) = o. Here, W is a world
description in relational database form for all its fluents, 1.e. the only sentences
in W that mention a fluent are ground atoms of that fluent. R(W) is the
translation of the relational database part of W to its full logical form as follows:
R(W) consists of the sentences of W that do not mention a fluent, together with
those sentences of the form

— —

F@)=z=C0v...vi=CW"
where F(é(l)), ceey F(é(”)) are all the ground instances of a fluent F' in W.
4. o’s precondition is the situation-suppressed version of the right hand side of the
equivalence in «’s situation calculus action precondition axiom.

5. For each fluent F', include in o’s add and delete lists those literals specified
above for obtaining the situation suppressed relational database representation

of S.

Example 8.3 Consider the same actions, fluents and axioms as in Example 8.1,
except treat this setting now as an instance of an RCF-STRIPS situation calculus
specification. In this case, as before, we can “read off” the RCF-STRIPS operator
schema for move from the instances of the successor state axioms of Example 8.1:

m()fue(X Y, Z)

:clear(A clear(Z)Non(X,Y)ANX A ZNX AY ANY # 7.
D: clear(Z),on(X.Y).
), clear(X),on(X, 7).

The operator description schemas for move fromtable and movetotable are obtained

A: clear(

in the same way:
move fromtable(X,Y)

P: clear(X) A clear(Y) A ontable(X) AN X #£Y.
D: clear(Y), ontable(X).
A: clear(X),on(X,Y).

movetotable(X,Y)

P: clear(X)ANon(X, Y)ANX #£Y.
D: on(X,Y).
A: clear(X), clear(Y'), ontable(X).

8.3 Pednault’s ADL

The only prior literature similar to our progression semantics for STRIPS-like systems

is by Pednault ([18], [16]). Like us, Pednault relates a STRIPS database to the initial

36

situation of a situation calculus axiomatization. But our interpretation of such a
database, namely as a situation-suppressed situation calculus theory, distinguishes
our approach from Pednault’s, in which these databases are first order structures. So
for Pednault, STRIPS is a mapping from first order structures to first order structures,
where this mapping is defined by the addition and deletion of tuples applied to the
relations of the structure. ADL, Pednault’s generalization of STRIPS, is just such a
mapping between structures. For us, as for Lifschitz [11], STRIPS is a mapping from
first order theories to (possibly second order) theories, where this mapping is effected
by add and delete lists of sentences applied to the theory. The problem with the
ADL view on STRIPS is that it does not provide a feasible mechanism for applying a
STRIPS operator in the case that the database is a logically incomplete theory (e.g.
OCF-STRIPS of Section 8.1). For in such a case, every model of this theory must be
mapped by an ADL operator into its transformed structure, and it is the set of all
such transformed structures which represents the effect of the ADL operator. When
there are infinitely many such models, or even when they are finite in number but
plentiful, ADL becomes an unattractive STRIPS mechanism. In contrast, our focus
is on STRIPS mechanisms that operate on logical theories, and hence operate on the
single sentential representations of these many models.

9 SUMMARY AND FUTURE PROBLEMS

Although progression is a widespread notion in the database and AT literatures, in its
full generality it is a surprisingly complex idea. This paper has explored some of the
properties of progression, and related them to STRIPS systems. Here we summarize
what we take to be the main contributions of the paper.

1. We have argued the need for progressing a database, both from the perspective
of STRIPS, and for the purposes of cognitive robotics.

2. We have semantically defined a notion of progression, and shown that in general,
to capture it, second order logic is required. Moreover, we have shown how to
determine a second order sentence for the progression of an arbitrary finite first
(or second) order initial database.

3. We have explored two special cases for which progression is first order definable,
namely, the case of relatively complete initial databases with arbitrary successor
state axioms, and the case of a limited form of open world initial database, with
context-free successor state axioms. In both cases, we gave efficient procedures
for computing the progression. On the other hand, as Pednault has shown [16],
even for context free successor state axioms, when the initial database is an

37

arbitrary finite first order theory, progression need not be finitely first-order
axiomatizable.

4. On our view STRIPS is a mechanism for progressing a situation calculus theory,
and its semantics can best be understood with reference to a suitable situation
calculus axiomatization of actions and their effects. Under this intuition, it
becomes possible to formulate various STRIPS-like systems, and prove their
correctness with respect to our progression semantics. In this paper we have
done just that for two different STRIPS systems (OCF and RCF-STRIPS). In
this connection OCF-STRIPS is of particular interest because it provides for
a (limited) form of logical incompleteness of the database. To our knowledge,
OCF-STRIPS is the only variant of STRIPS which specifically provides for
an incomplete database of ground literals, and which is provably correct with
respect to a logical specification.

5. It is a completely mechanical process to obtain the OCF-STRIPS operators
from the action precondition and successor state axioms of a situation calculus
axiomatization of some domain. Similarly for RCF-STRIPS. In other words,
these purely declarative situation calculus specifications can be compiled into
appropriate STRIPS systems. Moreover, Reiter’s [21] solution to the frame
problem provides an algorithm for computing the successor state axioms from
the effect axioms specifying the causal laws of the domain being modeled. In
other words, the axiomatizer can describe the action precondition axioms, and
the domain’s causal laws. and have those axioms automatically transformed
into suitable STRIPS operators for that domain (assuming the successor state
axioms and the initial situation have the right syntactic forms).

The results of this paper suggests a variety of topics for future research:

1. There are other cases for which progression can be done in first order logic. One
such case concerns actions with finitary effects, namely, when for every fluent,
the action changes the fluent’s truth value at only a finite number of instances.
This and other special cases of progression need to be explored.

In this connection, Etzioni et al [5] have recently proposed an extension of
STRIPS to accommodate sensing actions, i.e. actions that obtain (at plan
execution time) information about the world. As Levesque [9] has observed, the
resulting planner suffers from a number of limitations and drawbacks, stemming
primarily from the lack of a declarative specification of their system. As it
happens, a situation calculus account of sensing actions already exists (Scherl
and Levesque [25]). Accordingly, it should be possible to incorporate sensing
actions into our notion of progression, and use this to generalize STRIPS to

38

include such actions. It should then be possible to prove the correctness of this
version of STRIPS with respect to its progression semantics, much as we did in

this paper for RCF- and OCF-STRIPS.

2. We have considered only systems that compute the full result of progression.
Sometimes, for example for computational purposes, it may be better to com-
pute only that part of the progression that is relevant to the goals of interest.
For example, if our blocks world includes a fluent for the colors of blocks, then
there are no need to progress this fluent if our goals have nothing to do with
colors. It is still an open problem how such partial progressions can be specified
and computed in a principled way.

3. The connection of RCF-STRIPS to relational databases (Section 8.2) suggests
a natural generalization of STRIPS operators to allow for arbitrary relational
algebra operators (not just adds and deletes) in defining the operator’s effects.
This can indeed be done, and an appropriate semantics defined in terms of a
situation calculus axiomatization that relaxes the context free restriction on
successor state axioms of Section 8.2. In this connection, Pednault’s ADL [18]
provides for just such a generalized relational STRIPS, but without the rela-
tional algebra.

4. In a sense, progressing a database to S, amounts to forgetting about the initial
situation and all those situations that are reachable from S, but not from S,.
This view of progression leads to an interesting notion of what it means for a
knowledge base to forget about some of its contents that is investigated further

in (Lin and Reiter [15]).

Acknowledgements

For their generous advice and feedback, we wish to thank the other members of the Uni-
versity of Toronto Cognitive Robotics Group: Yves Lespérance, Hector Levesque, Daniel
Marcu, and Richard Scherl. This research was funded by the Government of Canada Na-
tional Sciences and Engineering Research Council, and the Institute for Robotics and In-
telligent Systems.

References

[1] S. Abiteboul. Updates, a new frontier. In Second International Conference on Database
Theory, pages 1-18, New York, 1988. Springer.

2] . Bacchus and Q. Yang. Downward refinement and the efficiency of hierarchical
g y
problem solving. Artificial Intelligence, 71(1):41-100, 1994.

39

[3]

[4]

[11]

[12]

[13]

[14]

E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, New York, 1990.

K. Erol, D. Nau, and V. Subrahmanian. On the complexity of domain-independent
planning. In Proceedings of the 'l'enth National Conference on Artificial Intelligence
(AAAI-92), pages 381-386. The American Association for Artificial Intelligence, Menlo
Park, CA, 1992.

O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An approach
to planning with incomplete information. In Proceedings of the Third International
Conference on Principles of Knowledge Representation and Reasoning (KR’92), pages
115 - 125, 1992.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to theorem proving in problem
solving. Artificial Intelligence, 2:189-208, 1971.

S. C. Kleene. Mathematical Logic. John Wiley & Sons, Inc., 1967.

Y. Lespérance, H. Levesque, F. Lin, D. Marcu, R. Reiter, and R. Scherl. Foundations of
a logical approach to agent programming. In M. Wooldridge, J. Muller, and M. Tambe,
editors, Intelligent Agents Volume Il — Proceedings of the 1995 Workshop on Agent
Theories, Architectures, and Languages (ATAL-95), pages 331-346. Springer-Verlag,
New York, 1996.

H. Levesque. What is planning in the presence of sensing? Technical report, Dept. of
Computer Science, Univ. of Toronto, 1995.

H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic pro-
gramming language for dynamic domains. Journal of Logic Programming, Special issue
on Reasoning about Action and Change, 'T'o appear.

V. Lifschitz. On the semantics of STRIPS. In Reasoning about Actions and Plans:
Proceedings of the 1986 Workshop, pages 1-9. Morgan Kauffmann Publishers, Inc.,
1986. June 30—-July 2, Timberline, Oregon.

F. Lin and R. Reiter. How to progress a database (and why) I. Logical foundations. In
Proceedings of the Fourth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’94), pages 425-436, 1994.

F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Computation,
Special Issue on Actions and Processes, 4(5):655-678, 1994.

F. Lin and R. Reiter. How to progress a database II: The STRIPS connection. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
(1JCAI-95), IJCAI Inc. Distributed by Morgan Kaufmann, San Mateo, CA., pages
2001-2007, 1995.

40

[15]

[21]

[22]

[23]

[24]

F. Lin and R. Reiter. Forget it! In R. Greiner and D. Subramanian, editors, Working
Notes of AAAI Fall Symposium on Relevance, pages 154—159. The American Associa-
tion for Artificial Intelligence, Menlo Park, CA, November 1994.

E. P. Pednault. Toward a Mathematical Theory of Plan Synthesis. PhD thesis, De-
partment of Electrical Engineering, Stanford University, Stanford, CA, 1986.

E. P. Pednault. Synthesizing plans that contain actions with context-dependent effects.
Computational Intelligence, 4:356-372, 1988.

E. P. Pednault. ADL: Exploring the middle ground between STRIPS and the situ-
ation calculus. In Proceedings of the First International Conference on Principles of
Knowledge Representation and Reasoning (KR’89), pages 324-332. Morgan Kaufmann
Publishers, Inc., 1989.

P. Peppas, N. Foo, and M.-A. Williams. On the expressibility of propositions. Logique
et Analyse, pages 251-272, 1992 (Vol 139-140).

R. Reiter. Towards a logical reconstruction of relational database theory. In M. Brodie,
J. Mylopoulos, and J. Schmidt, editors, On Conceptual Modelling: Perspectives from
artificial intelligence, databases and programming languages, pages 191-233. Springer,
New York, 1984.

R. Reiter. The frame problem in the situation calculus: a simple solution (sometimes)
and a completeness result for goal regression. In V. Lifschitz, editor, Artificial Intelli-
gence and Mathematical Theory of Computation: Papers in Honor of John McCarthy,
pages 418-420. Academic Press, San Diego, CA, 1991.

R. Reiter. Proving properties of states in the situation calculus. Artificial Intelligence,

64:337-351, 1993.

R. Reiter. On specifying database updates. Journal of Logic Programming, 25(1):53—
91, 1995.

S. J. Rosenschein. Plan synthesis: A logical perspective. In Proceedings of IJCAI 7,
pages 331-337, 1981.

R. Scherl and H. Levesque. The frame problem and knowledge-producing actions. In
Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-93),
AAAI Press, Menlo Park, CA., 1993.

L. K. Schubert. Monotonic solution to the frame problem in the situation calculus: an
efficient method for worlds with fully specified actions. In H. Kyberg, R. Loui, and
G. Carlson, editors, Knowledge Representation and Defeasible Reasoning, pages 23—67.
Kluwer Academic Press, Boston, MA, 1990.

41

[27] R. Waldinger. Achieving several goals simultaneously. In E. Elcock and D. Michie,
editors, Machine Intelligence, pages 94—136. Ellis Horwood, Edinburgh, Scotland, 1977.

42

