How to Progress a Database (and Why)
I. Logical Foundations

Fangzhen Lin and Ray Reiter*
Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4
email: fl@ai.toronto.edu reiter@ai.toronto.edu

Abstract

One way to think about STRIPS is as a map-
ping from databases to databases, in the fol-
lowing sense: Suppose we want to know what
the world would be like if an action, repre-
sented by the STRIPS operator «, were done
in some world, represented by the STRIPS
database Dy. To find out, simply perform
the operator o on Dy (by applying a’s ele-
mentary add and delete revision operators to
Dy). We describe this process as progressing
the database Dy in response to the action «.
In this paper, we consider the general prob-
lem of progressing an initial database in re-
sponse to a given sequence of actions. We
appeal to the situation calculus and an ax-
iomatization of actions which addresses the
frame problem (Reiter [13], Lin and Reiter
[8]). This setting is considerably more gen-
eral than STRIPS. Our results concerning
progression are mixed. The (surprising) bad
news is that, in general, to characterize a pro-
gressed database we must appeal to second
order logic. The good news is that there are
many useful special cases for which we can
compute the progressed database in first or-
der logic; not only that, we can do so effi-
ciently.

1 INTRODUCTION

One way to think about STRIPS is as a mapping from
databases to databases, in the following sense: Sup-
pose we want to know what the world would be like
if an action, represented by the STRIPS operator «,
were done in some world, represented by the STRIPS
database Dg. To find out, simply perform the operator
a on Dy (by applying a’s elementary add and delete
revision operators to Dy). We describe this process as

*Fellow of the

Research

Advanced

Canadian Institute for

progressing the database Dy in response to the action
a (cf. Rosenschein [15] and Pednault [9]). The result-
ing database describes the effects of the action on the
world represented by the initial database.® However,
it may not always be convenient or even possible to
describe the effects of actions as a simple process of
progressing an initial world description. As we shall
see in this paper, once we go beyond STRIPS-like sys-
tems, progression becomes surprisingly complicated.

In this paper, we consider the general problem of pro-
gressing an initial database in response to a given se-
quence of actions. We appeal to the situation calculus
and an axiomatization of actions which addresses the
frame problem (Reiter [13], Lin and Reiter [8]). This
setting is considerably more general than STRIPS.
Our results concerning progression are mixed. The
(surprising) bad news is that, in general, to character-
ize a progressed database we must appeal to second
order logic. The good news is that there are many
useful special cases for which we can compute the pro-
gressed database in first order logic; not only that, we
can do so efficiently.

The need to progress a database arises for us in a
robotics setting. In our approach to controlling a
robot,? we must address the so-called projection prob-
lem: Answer the query Q(do(A, Sp)), where do(A, Sp)
denotes the situation resulting from performing the se-
quence of actions A beginning with the initial situation
So. This can be done using regression (cf. Waldinger
[17], Pednault [10], and Reiter [12]) to reduce the pro-
jection problem to one of entailment from the initial
database, consisting of sentences about the initial sit-
uation Sp. Unfortunately, regression suffers from a
number of drawbacks in this application:

!This is also the way that database practitioners think
about database updates (Abiteboul [1]). In fact, the
STRIPS action and database update paradigms are essen-
tially the same. Accordingly, this paper is as much about
database updates as it is about STRIPS actions and their
generalizations.

2Joint work with Yves Lespérance, Hector Levesque,

Bill Millar and Richard Scherl.

1. After the robot has been functioning for a long
time, the sequence A, consisting of all the actions
it has performed since the initial situation, is ex-
tremely long, and regressing over such a long se-
quence becomes a computational burden.

2. Similarly, after a long while, the world state often
becomes so rearranged that significantly many fi-
nal steps of the regression become entirely unnec-
essary.

3. Most significantly, for robotics, perceptual actions
(Scherl and Levesque [16]) lead to new facts being
added to the database. But such facts are true in
the current situation — the one immediately fol-
lowing the perceptual action — whereas the other
(old) database facts are true in Sp. Reasoning
about databases containing mixed facts — facts
about the current and initial situations — is very
complicated, and we know of no satisfactory way
to do this.

Our way of addressing these problems with regression
is to to periodically progress the robot’s database. In
particular, every perceptual action is accompanied by
a progression of the database, coupled with the addi-
tion of the perceived fact to the resulting database.
We envisage that these database progression compu-
tations can be done off-line, during the time when the
robot is busy performing physical actions, like moving
about.

2 LOGICAL PRELIMINARIES

The language £ of the situation calculus is a many-
sorted first-order one with the sorts state for situa-
tions, action for actions, and object for anything else.
We have the following domain independent predicates
and functions: a unique constant Sy of sort state; a bi-
nary function do(a, s) that denotes the state resulting
from performing the action a in the state s; a binary
predicate Poss(a,s) that expresses the conditions for
the action a to be executable in the state s; and a
binary predicate <: state x state. We shall follow con-
vention, and write < in infix form. By s < s’ we
mean that s’ can be obtained from s by a sequence of
executable actions. As usual, s < s’ will be a short-
hand for s < s’ Vs = s’. We assume a finite num-
ber of state independent predicates which are the ones
with arity object™, n > 0, a finite number of state
independent functions which are the ones with arity
object™ — object, n > 0, and a finite number of fluents
which are predicate symbols of arity object™ X state,
n > 0.

We shall denote by £? the second-order extension of
L. Our foundational axioms for the situation calculus
will be in £? (Lin and Reiter [8]), because we need
induction on situations (Reiter [14]).

We shall frequently need to restrict the situation cal-

culus to a particular situation. For instance, the initial
database is defined to be a finite set of sentences in £
that do not mention any state terms except Sp, and
do not mention Poss and <. For this purpose, for any
state term st, we shall define £;; to be the subset of
L that does not mention any other state terms except
st, does not quantify over state variables, and does not
mention Poss and <. Formally, it is the smallest set
satisfying

1. ¢ € Ly provided ¢ € £ does not mention any
state term.

2. F(ty,...,tn, st) € Ls; provided F is a fluent of the
right arity, and ¢y, ..., ¢,, are terms of the right sort.

3. If p and ¢’ are in Ly, so are =, oV ', o A @',
D¢, p=¢, (Va)p, (F2)p, (Va)p, and (Ja)e,
where x and a are variables of sort object and
action, respectively.

We remark here that according to this definition,
(Ya)F(do(a, So)) will be in Lg,(q,5,)- This may seem
odd when we want sentences in L;; to be propositions
about situation st. Fortunately, we shall use Ly only
when st is either a ground term or a simple variable of
sort state.

We shall use £2, to denote the second-order extension
of L¢; by predicate variables of arity object™, n > 0.
So the second-order sentence (Ip)(Va).p(z) = F(z, So)
is in E%D, but (Ip)(Va)(3s).p(z,s) = F(x, Sp) is not,
since the latter quantifies over a predicate variable of
arity object x state. Formally, £, is the smallest set
satisfying

1. Every formula in £y is also in £2,.

2. p(t1,....tn) € L% provided p is a predicate vari-
able of arity object”, n > 0, and ¢, ..., t, are terms
of sort object.

3. If p and ¢ are in L2, s0 are =g, oV ¢', p A ¢/,
D¢, p = ¢, (Ya)p, Fx)p, (Va)p, (Ja)p,
(Vp)e, and (Ip)p, where z and a are variables

of sort object and action, respectively, and p is a
predicate variable of arity object™, n > 0.

3 BASIC ACTION THEORIES

We assume that our action theory D has the following

form (cf. Reiter [13] and Lin and Reiter [8]):
D = Y UD,, UDyy UDyna UDs,,
where

e Y given below, is the set of the foundational ax-
ioms for situations.

e D,, is a set of successor state axioms of the form:3

Poss(a, s) D F(#,do(a,s)) = ®p(Z,a,s),
where F' is a fluent, and ®p(#,a,s) is in L;.

e D,, is a set of action precondition axioms of the
form:

Poss(A(Z),s) = Wa(Z,s),
where A is an action, and U4 (&, s) is in L;.

® Dyna is the set of unique names axioms for ac-
tions: For any two different actions A(#) and
A'(), we have

A(F) # A'(H),
and for any action A(z1,...,2,), we have
Alz1, oy 20) = A(y1, -, Yn) D
1=y AN ANZp =Yn.
e Dg,, the initial database, is a finite set of first-

order sentences in Lg,.

We shall give an example of our action theory in a
moment. First, we briefly explain our foundational
axioms X since they are independent of particular ap-
plications. ¥ contains axioms about the structure of
situations. Formally, X is the following set of axioms:

So # do(a,),

do(ay, s1) = do(ag, s2) D (a1 = as A s1 = s2),

(YP)[P(So) A (Va,5)(P(s) D P(do(a, 5))) D (Vs)P(s)],

—|S<So,

s < do(a,s") = (Poss(a,s') As <).

Notice the similarity between X and Peano Arithmetic.
The first two axioms are unique names assumptions.
They eliminate finite cycles, and merging. The third
axiom is second-order induction. It amounts to the
domain closure axiom which says that every situation
has to be obtained from repeatedly applying do to Sp.*
The last two axioms define < inductively.

¥ is the only place where axioms about the structure
of situations can appear. It is needed only if we want
to show, usually by induction, that a state constraint
of the form (Vs).C(s) is entailed by an action theory.
For the purpose of temporal projection, in particular
progression as we shall see, D has exactly the same
effect as D — X: For any formula ¢(s) in Ls, and any
sequence A of actions,

D = p(do(A, 50))

*In the following, unless otherwise stated, all free vari-
ables in a formula are assumed to be universally quantified
from the outside.

*For a discussion of the use of induction in the situation
calculus, see (Reiter [14]).

iff
Dss UDap UDyna UDs, = p(do(A, Sp)).

This follows directly from the following proposition
which will be used throughout this paper.

Proposition 3.1 Given any model M of Dys UDgp U
Duna UDs,, there is a model M’ of D such thal:

1. M' and M have the same domains for sorts ac-
tion and object, and interpret all state indepen-
dent predicates and functions the same;

2. For any sequence A of actions, any fluent F', and
any variable assignment o:
M' o | F(Z,do(A, Sp))
iuf
M,o |= F(Z,do(A, Sp)).

Example 3.1 An educational database (Reiter [13]).
There are two fluents:

e enrolled(st, course, s): student st is enrolled in
course course in state s.

e grade(st,course, grade,s): the grade of st in

course 1s grade in state s.
There are two state independent predicates:

e prerequ(pre, course): pre is a prerequisite course
for course course.

o better(gradel, grade2): grade gradel is better

than grade grade2.
There are three database transactions:

e register(st, course): register the student st into
course course.

e change(st,course, grade): change the grade of
the student st in course course to grade.

e drop(st,course): drop the student st from course
course.

This setting can be axiomatized as follows.
Dss is the set of following successor state axioms:
Poss(a,s) D
enrolled(st,c,do(a, s)) =
a = register(st,c) V
enrolled(st, ¢, s) A a # drop(st, c),

Poss(a, s) D
grade(st,c, g,do(a, s)) =
a = change(st,c) V
grade(st,c, g,s) A (Vg')a # change(st,c,g’).

Dap is the set of following action precondition axioms:

Poss(register(st,c), s) = (Vpr).prerequ(pr, c¢) D
(3g).grade(st, pr, g, s) A better(g, 50),

Poss(change(st, c,g),s) = True,
Poss(drop(st, c), s) = enrolled(st,c, s).

Ds,, the initial database, can be any finite set of ax-
ioms about the initial state, for example, the following
ones:

John # Sue # C100 # C200 A prerequ(C'100, C'200),
enrolled(Sue, C'100, Sp),
enrolled(John,C100, Sp) V enrolled(John, C200, Sy).

4 FORMAL FOUNDATIONS

Let « Dbe a ground simple action, e.g.
enroll(Sue, C100), and let S, denote the state term
do(a, Sp). A progression Dg_ of Dg, in response to «
should have the following properties:

1. Dg, is a set of sentences about state S, only, i.e.,
in Lg, orin E%Q.

2. For all queries about the future of S,,, D is equiv-
alent (in a suitable formal sense) to

Y UD,y UDyp UDyna UDs,

In other words, Ds_ acts like the new initial database
wrt all possible future evolutions of the theory follow-
ing a.

To define progression, we first introduce an equivalence
relation over structures. Let M and M’ be structures
(for our language) with the same domains for sorts
action and object. Define M' ~s_ M iff the following
two conditions hold:

1. M’ and M interpret all predicate and function
symbols which do not take any arguments of sort
state identically.

2. M and M' agree on all fluents at S,: For every
predicate fluent F', and every variable assignment

g,

M' o = F(Z,do(a, Sp)) iff M,o = F(Z, do(a, Sp)).

It is clear that ~g_ is an equivalence relation. If
M’ ~g, M, then M’ agrees with M on S, on flu-
ents and state independent predicates and functions,
but is free to vary its interpretation of everything else
on all other states. In particular, they can interpret
Poss and do differently. We have the following simple
lemma.

Lemma 4.1 If M ~g_ M’, then for any formula ¢
in E%a, and any variable assignment o, M, o |= ¢ iff

M ok
So we define

Definition 4.1 A set of sentences Ds, in LT is a
progression of the initial database Dg, 1o Sy (wri D)
ioff for any structure M, M is a model of Dg_ iff there
is a model M' of D such that M ~g_, M'.

Notice that we define the new database only up to logi-
cal equivalence. We allow the new database to contain
second-order sentences because, as we shall see later,
first-order logic is not expressive enough for our pur-
poses.

Proposition 4.1 Let Ds, be a progression of the ini-
tial database to S,. Then
models(D) C models(¥ UDss UDgp UDynga UDs,,).
Proposition 4.2 Let Ds, be a progression of the ini-
tial database to S,. Then for every model M of

Y UDss UDgp UDyna UDs,,
there exists a model M' of D such that:

1. M' and M interpret all state independent predi-
cate and function symbols identically.

2. For every variable assignment o, and every pred-
icate fluent I,

M' o= S, < sAF(Z,s) iff Mo = S, < sAF(Z,s).

Proof: Let M be a model of
Y UDss UDgp UDyna UDs,, .

Since M is a model of Dg_, there is a model M’ of
Y UDss UDgp UDyna UDs,

such that M’ ~g, M. It can be easily seen that M’
satisfies the desired properties. B

From these two propositions, we conclude that D and
Y UDss UDgp UDyna UDs, agree on all states > S,.
So Dg,, really does characterize the result of progress-
ing the initial database in response to the action a.
Furthermore, the following theorem says that the new
database, when it exists, entails the same set of sen-
tences in £3 as D:

Theorem 1 Let Ds, be a progression of the initial
database to S,. For any sentence ¢ € Eia, Ds, E o

iff D E .

Proof: If D = ¢, then by Lemma 4.1, we have

Ds, = ¢. If Ds, E ¢, then D |= ¢ by Proposi-
tion 4.1. W

From this theorem, we see that if Dg_ is a progres-
sion, then it is a strongest post-condition (cf. Pednault
[9], Dijkstra and Scholten [3], and others) of the pre-
condition Dg, wrt the action a. A result by Pednault
[9] shows that Dg_ cannot in general be a finite set
of first-order sentences in L£g,. In the following, we
shall extend this result, and show that Dg_ cannot in
general be a set of first-order sentences in Lg, .

4.1 Progression Is Not Always First-Order
Definable

At first glance, the fact that progression cannot al-
ways be done in first-order logic may seem obvious in
light of Theorem 1, and the fact that D includes a
second-order induction axiom. However, as we men-
tioned in section 3, for the purpose of progression, D is
equivalent to D — X, which is a finite set of first-order
sentences.

We shall construct a basic action theory D and two
structures My and M5 with the following properties:

1. My ED.

2. M; and M, satisfy the exactly same set of sen-
tences in Lg, .

3. There is no model M’ of D such that M’ ~g_, M.

It will then follow from our definition that for D, the
progression of the initial database to S, cannot be in
Lg,. This is possible because for M ~s_ M’ to hold,
M and M’ must be isomorphic with respect to sort
object; but in number theory, there are nonstandard
models that satisfy exactly the same set of first-order
sentences as the standard model, and it is this prop-
erty which we now use to show that progression is not
always first-order definable.

We now proceed to construct a such basic action thery.

Consider the following theory D with a unary fluent
F1, and a binary fluent Fh, one action constant sym-
bol A, one constant symbol 0, and one unary function
symbol succ:

DSD - (0 Duna - @
Dap = {(Vs).Poss(A, s) = True}.

Dss is the following pair of axioms:

Poss(a, s) D [F1(do(a, s)) = (Fz)~Fa(z, s)],

Poss(a, s) D (Va).Fa(z,do(a, s)) =
r = OAFQ(O,S)V
Fay(z,s) A (Jy).x = suce(y) A Fa(y, s) V
—Fy(z,s) AN £ 0N
(Vy)(z = succ(y) D ~Fa(y, s)).

To understand the successor state axioms, think of
the constant symbol 0 as the number 0, and the

unary function succ as the successor function. Fj
simply keeps track of the truth value of Fy in the
previous state, and for Fy(z,do(a,s)) to be true,
either « = 0 and Fy(x,s), or both Fy(z,s) and
Fy(predecessor(z), s) have the same truth values.

Consider a structure M such that:

1. M is a standard model of arithmetic with respect
to sort object. Thus the domain for object in M
is the set of nonnegative numbers, 0 is mapped to
the number 0, and succ is mapped to the successor
function.

2. M [= Fi(do(A, So)) A (Ya).Fa(x, do(A, So)).

Our first observation is that there cannot be a model
M' of D such that M ~g, M'. Suppose otherwise.
Then M’ also satisfies the above two properties 1 and
2. From M' E Dgs, and M’ = Fi(do(A, Sp)), we
have M’ | (Jx)-Fa(x,Sp). Similarly, from M’ =
(Vz).Fa(z,do(A, Sp)), by the successor state axiom for
Fy, we have M’ |= F5(0,S0) A Fa(suce(0),S0) A - --.
Thus M’ = (V&).Fa(x, Sp), a contradiction. Therefore
there is not a model M’ of D such that M ~g_ M’'.

We now show that there is a model M’ of D such that
for any sentence ¢ in Ls,, M = ¢ iff M’ |E ¢. By
Skolem’s theorem (cf. Kleene [5], page 326), there is
a first-order structure M* such that for any sentence
pin Ls,, M E ¢ iff M* |E ¢, and (M, 0, suce) and
(M*,0, succ) are not isomorphic, i.e., M and M* are
not isomorphic on sort object. In particular, M* |=
Fi(do(A, So)) A (V). Fa(z,do(A, Sp)). Now revise M*

into a structure M’ such that:

1. M' and M* have the same domains for sorts
action and object, and interpret state indepen-
dent predicates and functions the same.

2. M' = (Va, s)Poss(a, s).
3. M' £ £ UDuna UDs,.

4. For the truth values of the fluents on Sg: M’ |=
F1(Sp), and for the truth values of Fy(x,Sp), we
have that for any variable assignment o:

(a) If o(z) is a standard number, i.e., there is a
n > 0 such that M’, o | # = suce™(0), then
M’, o I: FQ(;L‘, So)

(b) If o(2) is a nonstandard number, i.e., there is
no n > 0 such that M’ o(2) | 2 = suec™(0),
then M’ o |= —~Fy(z,Sp). Notice that since
M* and M are not isomorphic on sort object
with respect to Peano arithmetic, there must
be a nonstandard number in the domain of
M*, and thus in the domain of M’.

5. For the truth values of the fluents on do(A4, Sp):
For any fluent F, and any variable assign-
ment o, M' ;o = F(Z,do(A,S)) ifft M*, 0 =
F(Z,do(A, Sp)).

6. Inductively, for any variable assignment o, if
M' o = do(A, Sp) < s,

then the truth values of the fluents on s will be de-
termined according to the successor state axioms
and the truth values of the fluents on do(A, Sp);
if

M' o =Sy < sA=do(A,Sy) < s,
then the truth values of the fluents on s will be de-
termined according to the successor state axioms
and the truth values of the fluents on Sy. This
will define the truth values of the fluents on every
state because M’ = (¥s).Sy < s, which follows
from the fact that M’ |= (Va, s)Poss(a, s).

It is clear that M’ ~g, M*. It follows that M’ and
M satisfy the same set of sentences in Lg,. We now
show that M’ satisfies the successor state axioms. By
the construction of M’, we only need to prove that it
satisfies the successor state axioms instantiated to Sy
and action A, 1.e.

M' = Poss(A, Sy) D [Fi(do(A4, So)) = (Fz)—Fa(z, So)],
and

M' = Poss(A, So) D (Vz).Fa(z,do(A, Sp)) =
r = OAFQ(O,SO) \Y
Fy(z, So) A (Qy).2 = suce(y) A Fa(y, So) V
—|F2(23, So) Nzx ;é 0OA
(Vy)(z = suce(y) D ~Fa(y, So))-
To show the first one, we need to prove that M' |
(32).~Fa(s, Sp). This follows from our construction of
M’ and the existence of nonstandard numbers in the
domain of M’. To show the second one, we need to
prove that
M/ I: (V:C).l’ = 0 A F2(0,So) \
Fy(2, So) A (Jy).x = suce(y) A Fa(y, So) V
_|F2(;t, So) ANz ;é 0OA
(Vy)(z = suce(y) D ~Fa(y, So)).

There are three cases:

1. If 2 = 0, then F5(0, Sp) follows from our construc-
tion.

2. If 2 = succ™(0) for some n > 0, then both
Fy(suce™(0),Sy) and Fa(suce~1(0),Sp) hold.
Thus Fa(z,S0) A (Fy).x = suce(y) A Fa(y, So)
holds;

3. If # is a nonstandard number, then Fs(z,So)
does not hold. Furthermore, for any y such that
z = suce(y), y is also a nonstandard number, so
Fs(y, So) does not hold either. Thus ~Fy(z, Sp) A
z # 0A (Yy)(z = suce(y) D —Fa(y, So)) holds.

Therefore, M’ satisfies the successor state axioms in-
stantiated to Sp and A. So M’ | D;,. This means

that M’ | D, and M’ and M satisfy the same sen-
tences in Lg,. Following the discussion at the begin-
ning of the example, we see that the new database at
Sy for D cannot be captured by a set of first-order
sentences.

4.2 Progression Is Always Second-Order
Definable

We now show that, by appealing to second-order logic,
progression always exists. We shall first introduce
some notation.

Given a finite set D,s of successor state axioms, we
define the instantiation of D, on an action term at and
a state term st, written Dg,[at, st], to be the sentence:

/\ Poss(at, st) D
Fisafluent (vg) F(Z do(at, st)) = ®p(Z, at, st),
where
(Va, s).Poss(a, s) D (VI)[F(Z,do(a, s)) = ®p(Z, a, s)]
1s the successor state axiom for F' in D,;.

Given a formula ¢ in £?, the lifting of ¢ on the state
st, written ¢ 1 st, is the result of replacing every fluent
atom of the form F(¢y,...,t,,st) by a new predicate
variable p(t1, ..., t,) of arity object™. For instance,

enrolled(.John, C200, So)Aenrolled(.John, C'100, Sg) 1 So
is p(John, C200) A p(John, C100).5

Lemma 4.2 The following are some simple properties
of lifting:
1. If ¢ 1s a sentence that does not mention st, then
e lstis .
2. If ¢ is a sentence in L2,, then o | st is a state

independent sentence.

3. If ¢ does not contain quantifiers over states, then
pEelst

Now we can state the main theorem of this section:

Theorem 2 Let Ds_ be the union of Dyna together
with the sentence:

1, o)l N\ ADusla, Sol(Poss/¥a)} 1 So,
p€Ds,

where

1. p1,...,pr are the new predicate variables intro-
duced during the lifting.

Lifting as we have defined it does not generally pre-
serve logical equivalence. For instance, [(Vs).F(s)]T So is
(Vs).F(s), but the logically equivalent [F(So) A (Vs).F(s)]1
So is p A (Vs).F(s). Fortunately, we shall only be lifting
those sentences that do preserve logical equivalence.

2. U, is a sentence in Lg, such that
Poss(a, Sp) = ¥,

is an instance of the the axiom in D,y correspond-
ing to the action of «.

3. Dssla, Sol(Poss/¥,) is the result of replacing
Poss(a, Sy) by Uy in Dygler, Sol.

Then Ds,, s a progression of Ds, 1o Sq wrtD:

Proof: First, it is clear that the sentences in Dg,_ are
in £% .

Let M be a structure. We need to show that M |= Dg_
iff there is a model M’ of D such that M ~g_ M'.

Suppose that there is a model M’ of D such that
M ~g, M'. By Lemma 4.2, D | Dg,_, thus M’ |
Ds,, . Therefore by Lemma 4.1, M = Ds,,.

Now suppose that M |= Dg_. Then there is a variable
assignment o such that

Mo = /\ @ A Dss[a, So](Poss/¥4)TSh.
p€Ds,

Now construct a structure M’ such that

1. M and M’ have the same universe, and interpret
all state independent function and predicate sym-
bols identically.

2. For every fluent F', if F(Z,Sy) is lifted in Dgs, as
p, then
M' o = F(Z,5) iff M, o |= p(Z).

3. M' |z Dy, UD,,.
4. If M' &= —¥,, then for any fluent F', and any
variable assignment o”,

M',o' = F(#,5,) iff M,o' |= F(Z,S4).

It is clear that such a M’ exists. We claim that

M ~s, M'. There are two cases:

1. If M' E =¥, then it follows from our construction
that for any fluent F', and any variable assignment o,
M' o' = F(Z,5,) iff M,o' = F(Z,5,).

2. f M' = ¥, then since M’ |= Dgp, and Dyp =
Poss(a,Sy) = U, therefore M’ |= Poss(a, Sp). But
M’ |= Dss. Thus for any fluent F', and any variable
assignment o’

M' o' |= F(Z,S,) iff M',o' |= ®p(F,a,5), (1)

where ®p 1s as in the successor state axiom for F' in
Dss. Now since M’ = ¥, by our construction of M’,
we have that M, o = ¥, 1S,. But

M, o | Dssler, So](Poss/¥q) T So.

Therefore for any fluent F'; and any variable assign-
ment ¢/ such that o/(p) = o(p) for any predicate vari-
able p,

M,o’' E F(Z,S,) iff M', o' &= ®p(Z,a,S0)1Ss. (2)
But for any variable assignment ¢/ such that ¢/(p) =

o(p) for any predicate variable p, since ®p(Z, o, Sp) is
in Ls,, by our construction of M’,

M,o' |E ®p(Z,a,50)1 S0 iff M', 0" = ®p(Z, @, So),

Therefore from (1) and (2), we see that for any fluent
F', and any variable assignment o’,

M' o' = F(Z,5,) iff M,o" | F(Z,Sa).

It follows then that M ~gs_, M'. By the construction
of M’ and the fact that M | Dyna, we have that
M' = D;s UDgap UDynq. Thus from Proposition 3.1,
there is a model M" of D such that M’ ~g_, M". Then
by the transitivity of ~g_, we have that M ~g_ M".
This concludes the proof that Dg_ as defined is pro-
gressed database. B

It is clear that the theorem still holds when the initial
database Dg, is a finite set of second-order sentences in
E?,;O. Therefore, at least in principle, the theorem can
be repeatedly applied to progress the initial database
in response to a sequence of actions.

The new database Dgs_ as defined in the theorem can
be unwieldy. However, it can often be simplified by
using the unique names axioms in Dyp,, as we shall
see in the following example.

Example 4.1 Consider our educational database.
The instantiation of the successor state axioms on
drop(Sue, C100) and So, Dss[drop(Sue, C100), Sp), is
the conjunction of the following two sentences, where
a = drop(Sue, C'100) and S, = do(«, Sp):
Poss(a, Sp) D enrolled(st, ¢, Sy) =
a = register(st,c) V
enrolled(st, ¢, So) AN a # drop(st, c),

Poss(a, Sp) D grade(st, e, g,54) =
« = change(st,c) V
grade(st,c,g,5) A (Vg')a # change(st,c, g').

By unique names axioms, these two sentences can be
simplified to

Poss(a, Sp) D enrolled(st, ¢, So) =
enrolled(st, ¢, So) A (Sue # stV C100 # ¢),

Poss(a, Sp) D grade(st,c,g,Sq) = grade(st,c, g, s).

By Dap;
Poss(a, Sy) = enrolled(Sue, C'100, Sp).

Thus Dss[e, So](Poss/¥,) is the conjunction of the
following two sentences:

enrolled(Sue, C100, Sg) D enrolled(st, ¢, Sy) =
enrolled(st, ¢, So) A (Sue # st vV C100 # ¢),

enrolled(Sue, C100, Sg) D
grade(st,c,g,Sq) = grade(st,c,g,s).
Thus (Elpl’pQ)[/\gaeDso @ A Dsse, So](Poss/U4)] T So
is
(3p1,p2).John # Sue # C100 # C200 A
p1(John, C100) V p1(John, C200) A
p1(Sue, C100) A prerequ(C'100,C200) A
p1(Sue, C100) D enrolled(st, ¢, So) =
p1(st,c) A (Sue # st v C100 # ¢) A
p1(Sue, C100) D grade(st, e, g,54) =
pa(st,c, g).
This is equivalent to
John # Sue # C'100 # C200 A
prerequ(C'100, C200) A
(3p1,p2).p1(John, C100) V p1(John, C200) A
p1(Sue, C100) A
enrolled(st,c,Sy) =
p1(st,c) A (Sue # st vV C100 # ¢) A
grade(st,c,g,Sq) = pa(st,c,g),
which is equivalent to
John # Sue # C100 # C200 A
prerequ(C'100,C200) A
(3p1)-p1(John, C100) V p1(John, C200) A
p1(Sue, C100) A
enrolled(st,c,Sy) =
p1(st,e) A (Sue # st vV C100 # ¢),
which is equivalent to

John # Sue # C'100 # C200 A
prerequ(C'100, C'200) A
enrolled(John, C'100, S,) V
enrolled(John, C200, S,) A
—enrolled(Sue, C100, Sy) A
(3p1).enrolled(st, ¢, So) = p1(st, ¢).

Finally, we have a first-order representation for Dg_,
which is Dy, together with the following sentences:

John # Sue # C'100 # C200,
prerequ(C'100, C'200),

enrolled(John, C100, S,) V enrolled(John, C200, S,),

—enrolled(Sue, C'100, S,).

To summarize, we have shown that in general, progres-
sion is definable only in second-order logic. However,
there are some interesting special cases for which pro-
gression can be done in first-order logic. We shall give
two such special cases.

5 PROGRESSION WITH
RELATIVELY COMPLETE
INITIAL DATABASES

We say Dg, is relatively complete (wrt state indepen-
dent propositions) if it is a set of state independent
sentences together with a set of sentences, one for each
fluent F', of the form:

(VZ).F(Z,50) = p(2),

where IIp(Z) is a state independent formula whose free
variables are among &. Clearly, for relatively complete
Ds,, if it is complete about the state independent sen-
tences: For any state independent sentence 1II,

either Dg, E1I or Dg, |= 11,

then it is also complete about Sp: For any sentence ¢
in Lg,,
either Dg, = ¢ or Dg, = —p.

Theorem 3 Let D be an action theory with a rela-
tively complete initial database Dg,, and let o be a
ground action term such that D = Poss(a, So). Then
the following set:

Duna U{p | ¢ € Ds, is state independent} U
{(VZ).F (¥, do(c, Sp)) = @p(Z, o, Sp)[So] |
F is a fluent}

1s a progression of Dg, 1o Sy, where

1. ®p(Z, a, So) is as in the successor state axiom for
F in D,,;

2. ®p(Z, o, S0)[So] is the result of replacing, in
Sp (&, a,Sy), every occurrence of F’(t_:SO) by
Hf-/(t_), where g s as in the correspond-
ing aziom for F' in Dg,, and this replacement

is performed for every fluent F' mentioned in
@F(f,a,SO).

Proof: Denote the set of the sentences of the theorem
by §. Clearly, § is a set of first-order sentences in Lg_ .
It is easy to see that S = Dg,_ . Conversely, it is clear
that D = 8. Thus by Theorem 1, Dg, = S. B

Clearly, the progressed database at S, as given by the
theorem 1s also relatively complete. Thus the theo-
rem can be repeatedly applied to progress a relatively
complete initial database in response to a sequence
of executable actions. Notice that the new database

will include Dy, and the state independent axioms
in Dg,; therefore we can use these axioms to simplify
CI)F(f, o, SO)[SO]

Example 5.1 Consider again our ed-
ucational database example. Suppose now that the
initial database Dg, consists of the following axioms:

John # Sue # C'100 # C200,
better(70,50),
prerequ(C'100, C200),

enrolled(st, ¢, Sy) =
(st = John A c = C100) V (st = Sue A ¢ = C200),

grade(st,c,g,So) =
st = Sue Ae = C100A g = T70.

Clearly Ds, is relatively complete, and D |
Poss(a, Sy), where o = drop(John, C'100). From the
axiom for enrolled in Dg,, we see that Mepronea(st, c)
is the formula:

(st = John A ¢ = C100) V (st = Sue A ¢ = C200).

Now from the successor state axiom for enrolled in
Example 3.1, we see that ®cpronea(st, ¢, a, s), the con-
dition under which enrolled(st, ¢, do(a, s)) will be true,
1s the formula:

a = register(st,c)V(enrolled(st, ¢, s)Aa # drop(st, c)).
Therefore ®.pronica(st, ¢, o, So)[So] is the formula:
drop(John, C100) = register(st,c)V
{[(st = John A ¢ = C100) V (st = Sue A ¢ = C200)]A
drop(John, C'100) # drop(st,c))}.

By the unique names axioms in Dynq, this can be sim-
plified to

(st = John A c = C100) V (st = Sue A c = C200)A
(John # st v C'100 # ¢).

By the unique names axioms in Dg,, this can be fur-
ther simplified to

st = Sue A e = C200.

Therefore we obtain the following axiom about

do(a, Sp):
enrolled(st, ¢, do(w, Sp)) = st = Sue A ¢ = C200.

Similarly, we have:

grade(st,c, g, do(a, Sg)) = st = SueAc = C100Ag = 70.

Therefore a progression to do(drop(.John, C'100), Sp) is
Duna together with the following sentences:

John # Sue # C'100 # C200,
better(70,50),
prerequ(C'100, C200),
enrolled(st, ¢, do(a, Sp)) = st = Sue A ¢ = C200,

grade(st, c,g,do(a, Sg)) = st = Sue Ae = C100 A g = 70.

6 PROGRESSION IN THE
CONTEXT FREE CASE

In this section we consider progression wrt context-
free action theories. A successor state axiom for F' is
context free iff it has the form:

Poss(a, s) D F(#,do(a,s)) =
(Fid)(a = Ay (&, @D) AE)V -V
(30)(a = Ap(Em, B) A Epy) V
F(Z,5) A=(3F)(a = By(X1, B) A Emy1) A A
—~(3)(@ = Bn(Xn, ™) A Emgn),

where é; and i; denote sequences of all, or just some
(including none) of the #, the A’s and B’s are ac-
tions, and E1, ..., B4y are propositional formulas con-
structed from equality literals over the domain objects,
i.e., they are quantifier free, and do not mention terms
of sort state and action. The successor state axioms
in our educational database are all context free. So
are the following successor state axioms:

Poss(a, s) D holding(z,do(a, s)) = a = pickup(z) V
holding(z,s) Aa # drop(z) A ~(Ju)a = put(z, u).

Poss(a, s) D on(z,y,do(a, s)) = a = move(z,y) V
on(z,y,s) A —(3z)(a = move(x,z) Az £ y).

The following successor state axiom is not context-free:

Poss(a, s) D dead(z,do(a, s)) =
(Fy).a = explode_bomb_at(y) A close(xz,y,s) V
dead(z, s).

Given any action terms Al(ﬂ) and AQ({;), by the
unique names axioms, the equality Al(ﬂ) = A, (fg) is
either equivalent to false or, when A; and A, are the
same, equivalent to #; = #5.° Thus, given any action
term A(t_), the instantiation of a context-free successor
state axiom on A(t_) is equivalent to

Poss(A(t),s) D
F(Z,do(A(t),s)) = [Ep V (F(Z,s) AN—FE.p)),
where Ep and E_p are propositional formulas con-

structed from equality literals over the domain objects.
This is logically equivalent to

Poss(A(t),s) D
[EpV (F(Z,s) A\0E.p)] D
F(Z,do(A(1), 5)), (3)

67 = 7 is an abbreviation for z1 = y1 A -+ A zp = yn.
Notice that when both # and § are the empty sequence,
Z = ¥ is logically equivalent to true. It is equivalent to

false when ¥ and § have different length.

Poss(A(t),s) D
[Er A(-F(Z,s)V E.p)] D
—F(Z,do(A(?), 5)). (4)

For instance, by the above successor state axiom for
holding, we have

Poss(drop(x), s) D holding(y, do(drop(z), s)) =
holding(y,s) Ny # =.

Here Eporaing is false, and E po1ging is @ = y.

Now assume that:

1. Dg, is a set of state independent sentences, and
sentences of the form

EDiF(Il,...,In,So), (5)

where E is a propositional formula constructed
from equality literals over the domain objects. For
example,

ontable(z, Sp),

z # A D —ontable(z, Sy),
r=AAy=BD on(x,y,So),
are all of this form.

2. Dg, is coherent in the sense that for every fluent
F, whenever (VZ).Ey D F(Z,5p) and (VZ).Ey D
—F(%,Sp) are in Dg,, then

{¢|p € Dg, is state independent } = (VZ).~(E1AE)).

This means that Dg, cannot use axioms of the
form (5) to encode state independent sentences:
For any state independent sentence ¢, Ds, E ¢
iff

{¢ | ¢ € Dg, is state independent} = ¢.

3. D, is a set of context-free successor state axioms.
4. « is a ground action term, say A(t_)
5. a is possible initially: D |= Poss(a, Sp).

For example, our educational database in Example 3.1
with the following initial database:

Sue # John # C'100 # C200 # 50,
st = Sue A ¢ = C'100 D enrolled(st, ¢, Sp),
st = Sue A ¢ = C'200 D —enrolled(st, ¢, Sp),
st = Sue Ac = C100A g =50 D grade(st, e, g, So),
satisfies the above conditions for &« = drop(Sue, C'100).
To compute Ds,_, use Theorem 1 to construct a set S,

initially empty, of sentences as follows:

1. If ¢ € Ds, is state independent, then ¢ € S.

2. For any fluent F', by (3) and (4), the coher-
ence assumption, and the assumption that D
Poss(a, Sp), add to 8§ the sentences

Ep D F(Z,do(a, Sp)),
E.p D -F(Z do(a, So)).
3. For any fluent F, if (VZ).E D F(&,Sp) is in

Ds,, then, by (3) and the assumption that D =
Poss(a, Sp), add to S the sentence

EAN-E.p D F(# do(a, Sp)).

4. For any fluent F, if (VZ).E D —F(Z, Sp) is in
Dg,, then, by (4) and the assumption that D |=
Poss(a, Sp), add to S the sentence

-Ep ANE D -F(Z,do(a, Sp)).

For example, consider again our educational database
with the above initial database, and

« = drop(Sue, C'100),
we have

Poss(a, s) D enrolled(st, ¢, do(a, s)) =
enrolled(st, e, s) A (st = Sue A e = C'100),

Poss(a, s) D grade(st,c, g,do(a, s)) =
grade(st,c, g, s).

Thus Eepronea is False, Eocnroiiea 18
st = Sue A ¢ = C100,

and Egraqe and E_grqq. are both False. Then the
above procedure will give us the following set S:

John # Sue # C100 # C200 #£ 50,
(st = Sue A ¢ = C100) D —enrolled(st, ¢, Sy),
(st = Sue A ¢ = C200) D —enrolled(st, ¢, Sy),
st = Sue Ac = C100A g =50 D grade(st, ¢, g,Sqa).

As we show in the following theorem, together with
Duna, this is a progression of Dg, to Sa,

Theorem 4 Under the afore-mentioned assumptions,
SUDuyna 15 a progression of Dg, 1o S,.

Proof: Tt is clear that D = 8 UDyna, and S is a set
of sentences in Lg,. Therefore by Theorem 1, Ds, |=
SUDyna- To prove the converse, we show that for any
model M of SUDy,q, there is a model M’ of D such
that M ~g_, M’. Suppose now that M is a model of
SUDyna. We construct M’ as follows:

1. M’ and M have the same domains for sorts action
and object, and interpret all state independent
predicates and functions the same.

2. For each fluent F', M’ interprets it on Sy as fol-
lows:

(a) For every variable assignment o, if (VZ).F D
F(%,Sp) is in Ds,, and M,0c = FE (thus
M' o = E as well), then M’ , o = F(&, Sp).

(b) Similarly, for every variable assignment, if
(VZ¥).E D ~F(¥ Sp)isin Dg,, and M,0c = F
(thus M',o = FE as well), then M' o |
- F(Z, Sp).

(c) For every variable assignment o, if F(Z,Sg)
has not been assigned a truth value by one of
the above two steps, then M’ , o = F(&, Sp)
ifft M,o = F(&,do(a, Sp)).

Notice that by the coherence assumption for Dg,,
our construction is well-defined.

3. M’ interprets Poss according to Dg,, and inter-
prets the truth values of the fluents on reachable
states according to Dys,.

4. M’ E X.. This can be done according to Proposi-
tion 3.1.

Clearly M’ |=D. We show now that M ~g_, M'. For
any fluent F', suppose the successor state axiom for it
is

Poss(a, s) D F(#,do(a, s)) = Ep V (F(Z,8) N—E.p).

Given a variable assignment o, suppose M' o |
F(Z, do(a, Sp)). Since D |= Poss(a, Sp), by the above

successor state axiom, there are two cases:

1. M',o | Ep. This implies M, o = Er. Now since
Erp D F(#,do(a, Sp)) € 8, and M is a model of
S, thus M, o = F(&,do(a, Sp)) as well.

2. Mo =-Ep ANF(Z S0)AN—E p. From M’ o |=
F(Z,Sp), by our construction, either M,o |
F(Z,do(a, Sp)), or there is a sentence E D
F(Z,Sp) in Dg, such that M,o = E. Suppose
it is the latter. Then by our construction of §,
it contains F A ~E.p D F(¥, do(e, Sp)). Thus
M,o = F(Z,do(a, Sp)) as well.

Similarly, if M',o | —F(&,do(a, Sp)), then M, o |
- F(Z,do(a, Sp)) as well. Therefore M ~g, M'. R

We have some remarks:

1. The new database § has the same form as Dg,,
so this process can be iterated.

2. The generation of § is very fast, and the size of §
is bounded by the sum of the size of Dgs, and the
twice the number of fluents.

3. The E’s in context free successor state axioms can
be any state independent formulas. Thus a lim-
ited context dependency can be handled.

We emphasize that the results of this section depend
on the fact that the initial database has a certain spe-
cific form. In fact, a result by Pednault [9] shows that

for context-free actions and arbitrary Dg,, progression
is not always guaranteed to yield finite first-order the-
ories.

SUMMARY

. We have argued the need for progressing a

database.

. We have defined a formal notion of progression,

and showed that in general, to capture it we need
second-order logic.

. We have studied two special cases for which pro-

gression is first order definable, and which can be
done efficiently.

. Although we don’t discuss them here, there are

other cases for which progression can be done in
first order logic. One such case concerns actions
with finitary effects, i.e. for any fluent, the action
changes the truth values of the fluent at only a
finite number of instances.

. The complexity of progression depends on both

the form of the initial database, and the form of
the action theory. A relatively complete initial
database can be progressed efficiently wrt any suc-
cessor state axioms. On the other hand, even for
context free successor state axioms, progression is
not guaranteed to yield finite first-order theories.

. In a companion paper (Lin and Reiter [7]) we ex-

plore the consequences of our results on progres-
sion for the semantics of STRIPS-like systems.
Ever since STRIPS was first introduced (Fikes
and Nilsson [4]), its logical semantics has been
problematic. There have been many proposals in
the literature (e.g. Lifschitz [6], Pednault [11],
Bacchus and Yang [2]). These all have in common
a reliance on meta-theoretic operations on logical
theories in order to capture the add and delete
lists of STRIPS operators, but it has never been
clear exactly what these operations correspond to
declaratively, especially when they are applied to
logically incomplete theories. In the companion to
this paper, we provide a semantics for STRIPS-
like systems in terms of basic theories of actions
in the situation calculus. On our view, STRIPS
is a mechanism for computing the progression of
an initial situation calculus database under the
effects of an action. We illustrate this idea by
specifying two different versions of STRIPS in the
situation calculus as well as a generalization of
STRIPS that appeals to relational database the-
ory.

Acknowledgements

For their generous advice and feedback, we wish to
thank the other members of the University of Toronto
Cognitive Robotics Group: Yves Lespérance, Hec-
tor Levesque, Bill Millar, Daniel Marcu, and Richard
Scherl. This research was funded by the Government
of Canada National Sciences and Engineering Research
Council, and the Institute for Robotics and Intelligent
Systems.

References

[1] S. Abiteboul. Updates, a new frontier. In Sec-
ond International Conference on Database The-
ory, pages 1-18. Springer, 1988.

[2] F. Bacchus and Q. Yang. Downward refinement
and the efficiency of hierarchical problem solving.
Artificial Intelligence. To appear.

[3] E. W. Dijkstra and C. S. Scholten. Predicate Cal-
culus and Program Semantics. Springer-Verlag,

New York, 1990.
[4] R. E. Fikes and N. J. Nilsson. STRIPS: A new

approach to theorem proving in problem solving.

Artificial Intelligence, 2:189-208, 1971.

[5] S. C. Kleene. Mathematical Logic. John Wiley &
Sons, Inc., 1967.

[6] V. Lifschitz. On the semantics of STRIPS. In
Reasoning about Actions and Plans: Proceedings
of the 1986 Workshop, pages 1-9. Morgan Kauff-
mann Publishers, Inc., 1986. June 30-July 2,
Timberline, Oregon.

[7] F. Lin and R. Reiter. How to progress a database
IT: The STRIPS connection. 1994. Submitted.

[8] F. Lin and R. Reiter. State constraints revisited.
Journal of Logic and Computation Special Issue
on Actions and Processes, 1994. To appear.

[9] E. P. Pednault. Toward ¢ Mathematical Theory of
Plan Synthesis. PhD thesis, Department of Elec-
trical Engineering, Stanford University, Stanford,

CA, 1986.

[10] E. P. Pednault. Synthesizing plans that contain
actions with context-dependent effects. Compu-
tational Intelligence, 4:356-372, 1988.

[11] E. P. Pednault. ADL: Exploring the middle
ground between STRIPS and the situation cal-
culus. In Proceedings of the First International
Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’89), pages 324-332.
Morgan Kaufmann Publishers, Inc., 1989.

[12] R. Reiter. The frame problem in the situation cal-
culus: a simple solution (sometimes) and a com-
pleteness result for goal regression. In V. Lifschitz,
editor, Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John

McCarthy, pages 418-420. Academic Press, San
Diego, CA, 1991.

[13] R. Reiter. On specifying database updates. Tech-
nical report, Department of Computer Science,

University of Toronto, 1992. KRR-TR-92-3.

[14] R. Reiter. Proving properties of states in the situ-
ation calculus. Artificial Intelligence, 64:337-351,
1993.

[15] S. J. Rosenschein. Plan synthesis: A logical per-
spective. In Proceedings of IJCAT 7, pages 331—
337, 1981.

[16] R. Scherl and H. Levesque. The frame problem
and knowledge-producing actions. In Proceedings
of the Eleventh National Conference on Artificial
Intelligence (AAAI-93), 1993.

[17] R. Waldinger. Achieving several goals simultane-
ously. In E. Elcock and D. Michie, editors, Ma-
chine Intelligence, pages 94-136. Ellis Horwood,
Edinburgh, Scotland, 1977.

