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Abstract

Collaborative filtering allows the preferences of
multiple users to be pooled in a principled way in
order to make recommendations about products,
services or information unseen by a specific user.
We consider here the problem of online and in-
teractive collaborative filtering: given the current
ratings and recommendations associated with a
user, what queries (new ratings) would most im-
prove the quality of the recommendations made?
This can be cast in a straightforward fashion in
terms ofexpected value of informatipiut the
online computational cost of computing optimal
queries is prohibitive. We show how offline pre-
computation of bounds on value of information,
and of prototypes in query space, can be used to
dramatically reduce the required online computa-
tion. The framework we develop is quite general,
but we derive detailed bounds for the multiple-
cause vector quantization model, and empirically
demonstrate the value of our active approach us-
ing this model.

I ntroduction

way in order to make recommendations. The collabo-
rative filtering approach forms the basis of many recom-
mender systemiBreeseet al., 1998; Konstaret al., 1997;
Nguyen and Haddawy, 1998; Hofmann and Puzicha, 1999;
Goldberget al, 200d, applied to areas as diverse as books,
movies, jokes, and newsgroup articles.

A number of different approaches to collaborative filtering
have been proposed, including correlation analjtsn-
stanet al, 1997, naive Bayes classifielBreeseet al,,
1999, latent class modeldHofmann and Puzicha, 19R9

and PCA[Goldberget al, 2004d. Many of these ap-
proaches construct explicit probabilistic models of the do
main, positing features or clusters of users and/or praguct
and relating user and product features to predicted ratings
In many of these models, reasonable results have been ob-
tained.

It is natural to ask in such settings whether additional rat-
ings provided by a user can increase the quality of recom-
mendations made for that user (or equivalently, increase
the accuracy of our predicted ratings). Specifically, sup-
pose a user has ratédgoroducts, on the basis of which we
make predictions for her ratings of the unrated products.
If we have the opportunity to ask the user for a rating of a
k+ 15t product, we want to know whether: (a) this new rat-
ing can improve our predictions (and ultimately the value
of the recommendation we make); and (b) which prod-
uct offers the greatest expected benefit in this regard. An

Collaborative filtering (CF) has attracted considerable atactive approach to collaborative filtering involves asking
tention over the past decade due to the ease of onlinqueries of this type when the expected benefit outweighs
data accumulation and the pressing need in many applthe cost (e.g., delay, bandwidth, or cognitive burden)-asso
cations to make suggestions or recommendations to usecsated with the query.

about products, services or information. When other USErspnroaches to CF that learn explicit probabilistic models

have viewed (say) a product of interest and offered rat

of the domain facilitate the analysis of this problem: we can

ings of that product, the existing ratings can be used tQyoge it in terms oexpected value of information (EVOI)
predict the rating of a subject who has not seen the prodpyior g asking a query, we have a distribution over the rat-

uct. Specifically, if users with similar “interests” to the

ings of unrated products. We assume some decision crite-

subject (as determined using ratings by the subject opon ysed to make recommendations based on this prior, as
other products) have rated the product in a particular wayye|| a5 a measure of the expected utility of any decision.

we might want to recommend that product to our sub-js ye query the user about an unrated prodpend ob-

ject. In this way,

collaborative filtering allows the pref- 5in 4 ratingr in response, the posterior over ratings will

erences of multiple users to be pooled in a principled



generally lead to a different recommendation with différen independent (offline) fashion, allowing the query with max-
expected utility. Taking expectation of these utilitiedtwi imum EVOI to be computed more effectively online. Em-
respect to possible responses, we obtainntlyepic(i.e.,  pirical results again demonstrate a significant amount of
single-step lookahead) EVOI for quegy The query with  pruning can be obtained in the MCVQ model. We dis-
maximum EVOI is most appropriate, so long as its valuecuss some preliminary ideas pertaining to offline prototyp-
exceeds the cost of the quéryThis model can be espe- ing of queries in Section 5, which further reduces the space
cially useful when dealing with new users, or users whoof queries one needs to consider. We conclude with some
have not yet populated rating space sufficiently. This apsuggestions for refinements to the model and directions for
proach allows maximum benefit to be derived from fewerfuture research.

product ratings. It is also useful in settings in which we The notion of active collaborative filtering has been sug-
have low confidence in our predicted ratings. In such setyeasteq by Pennock and Horv{200d; but this work does
tings, the benefit of having a user rate several unseen Proa'ot suggest specific techniques for implementing the active
ucts (e.g., by playing a music or movie clip) before makingcomponentin the face of the intensive online computational
arecommendation may outweight the costs. challenges facing any use of EVOI. Our work is also related
Unfortunately, computing (myopic) EVOI exactly is com- to more generic forms of active learning (e[@€phnet al,,
putationally difficult. In principle, we could ask a user 1996), though our focus is on the more specific details of
about any unrated product, and for each possible respon&F and ensuring that online computation is tractable.
(rating), we must generally compute the posterior over the

remaining ratings to determine the new optimal decision2  Collabor ative Filtering

This require€) (M? p) posterior computations, whefd is

the number of products andthe number of ratings. Worse We begin by establishing notation and basic background on
yet, this computation must be performed online, while in-collaborative filtering. We then describe the MCVQ model.
teracting with the user. Since CF is most useful in situation

with large numbers of users and products, this in unlikely2.1 The Collabor ative Filtering Problem

to be feasible except in the most trivial settings. . _ o Co
P g The basic task in collaborative filtering is to predict thi& ut

We consider approaches that allow us to bound the exqy of jtems to the target or active user based on a database
pected changes in these posteriors in a user-independegy ratings from a population of other users. Ratings can
fashion. By constructing such bounds offline (using theye ¢lassified as either explicit or implicit. Explicit ragin
learned model), we can dramatically reduce the numbefafers to a user directly specifying his/her preferencefor

of online posterior computations needed to determine thgem (e.g., GroupLens users rated each Netnews article on
query with maximum EVOI. In addition, we can use prop- 5 scale of one (bad) to five (gookKonstanet al, 1997).
erties of the learned model to construct a small s@irof  mpjicit rating entails interpreting user behavior or sele
totypequeries, further reducing thg _onll_ne cor_nputauonaltions, for example based on browsing data in web applica-
complexity, with only a small sacrifice in decision qual- {jons, purchase history, or other types of information asce

ity. The framework we develop is quite generic, and can bgatterns. We focus here on applications in which the rating
applied to any CF algorithm that produces an explicit prob-yatapase contains explicit ratings.

abilistic model of the domain. However, the details will
depend on the specifics of the model in question. Here w
develop these details for the specific case ofrthatiple-
cause vector quantization (MCV@jodel developed by
Ross and Zemdl2004. However, the development will
be similar for most other common types of probabilistic
models used for CF.

rom a probabilistic perspective, the aim is to estimate the
probability that the active user will assign a particular ra
ing to an as-yet unobserved item. The basic paradigm in CF
is that offline processing on the training set of user ratings
produces model parameter values, which permit the online
estimation of these probabilities based on the set of items
for which the active user has provided ratings. Batches of

The remainder of the paper is organized as follows. In Secyser data can also be used to update the parameter values.
tion 2, we discuss collaborative filtering and the MCVQ

model. Section 3 describes value of information in gen-
eral terms, and spells out the details the specific case of t

MCVQ model. We show empirically that supplementin . ) . . .
Q P y bp g ratings, withr#"*" denoting vector of ratings over this set.

product ratings using myopic EVOI in the MCVQ model o X ; .
descreases loss more quickly than adding random ratingk_.et “Wm.(l) . M\ k"w",(l)' From. this we obtain a poste-
rior distribution for eacly € unkn(i):

Section 4 details a method for bounding the impact a query
can have on the mean rating of a target product in a user- Py(Ri;) = P(Ryj|rkmem) 1)

i

Let P denote the distribution over rating vectors for a
eneric CF model, trained on existing data. ketun(i)
enote the set of products for which ugenas provided

This myopic approximation of EVOI is generalized below. Wherew = [knwn(i)|. In general, we use the subscript
Our focus in this paper is on myopic approaches, however. to denote posterior distributions that take into accouat th



w known ratings of the active user. Note thay; can be
treated as either a discrete or continous variable.

2.2 Probabilistic Models

Original statistical collaborative filtering approachesp
dicted unobserved ratings by weighted linear combinations
of other users’ ratings, with weights derived from the cor-
relation between each user and the active lisenstanet

al., 1997.

Latent factor models have also been applied to this prob-
lem. A simple form of these, a mixture or vector quanti-
zation (VQ) model, assumes that users cluster into classgsigure 1: Graphical model for the MCVQ model. Circles
with common tastes and preferences. In the standard naivgnote random variables and the dashed rectangle shows

Bayes formulation, the ratings of itenjsare conditionally  the plate (i.e., repetitions) over the data (users).
independent, given the class of user

M
P(C; =¢,r1,..ry) = P(C; = ¢) H P(Rij = 1j|C; = ¢) 2.3 Multiple-Cause Vector Quantization
j=1

MCVQ is a new probabilistic model for unsupervised
The parameters of the model—the probabilities of clasdearning which is particularly relevant to CF. The key as-
membershipP?(C; = ¢), and the conditional probabilities sumption is that dimensions of the data can be separated
P(R;; = r;|C; = c)—are estimated offline. Online pro- into several disjoint subsets, owiltiple causeswhich take
cessing simply re-estimates the class membership prebabibn values independently of each other. We also assume
ities based on the observed ratings and uses these to refipach cause is @ector quantizeri.e., a multinomial with

the posterior over ratings of unobserved iteims: a small number of discrete states. Given a set of training
examples, the MCVQ model learns the association of data
Py (Rij) = Z P(R;; = r;|C; = ¢)P(C; = c|efmm) dimensions with causes, as well as the states of each VQ.
c

In the context of CF, the causes could corresportgiiesof
items or products, and the states of a particular type could

. ) . Icorrespond to a useratitudesor rating profiles that a user
[Hofmann and Puzicha, 19B9vhich associates an unob- ¢, adopt towards items of the given type. In a music rat-

served class variable, the aspectvith each observation. ing database, for example, each piece of music could be

Un_l'ke the VQ model, e"_mh observation her.e cpnss_ts Fonsidered as a mixture of types or genres, and a user can
pair, an itemj and a user. The key assumption is that o gescribed as a mixture of attitudes towards each type,
and; are independent, conditioned en where each attitude implies a particular distribution over
o ) o ratings for each piece of that type. In different terms, a
P(i,j) = P(jl2)P(2]i)P(i) particular user can be described ascanposite sketcha
z selection of the attitudes towards each type.

Each aspect implies a distribution over items and ratingsThe notation and basic equations of MCVQ are as follows.
and each user is modeled as a convex combination of agach itemj is one of K types, or VQs:P(T; = k). k €
pects. This model offers more flexibility than the VQ {1,..., K'}. Corresponding to each tygethere arel dif-
model, in that a user can be described by several aspectgrent attitudes that a user can adopt(A4;, = [),l €
since P(z|i) serve as the mixture weights of the aspects{1,.., L}. Distributions over ratings can be estimated given
However, the aspect model is not a proper generative modéhese two quantities!?,, = P(Ri; = r|Tj = k, Ay, = 1),

of input vectors, since is a dummy index referring to the and the posterior over an item’s rating is:

list of users in the training set. This variable has as many

possible values as there are training users so the model Ko
learnsP(z]i) only for those users, and there is no naturalPw (Bij = 1) = Z P(Tj = k) Z P(Aj = Uri™™" )05k
way to examine the probability of some unseen user. k !

Note that unobserved items are treated as missing-at4tando ) . )
In many cases this assumption is not true, as the fact thaean i This posterior computation uses the model parameters
is unobserved can be te|||ng However, we make this S|mp|yy that are estimated offline from the Iarge rat|ngs database:
assumption for all models considered in this paper, eveagho (T = k), 0%k andP(A;; = I). The only online com-
each can be elaborated to handle this additional informatio putation in the model entails updating the attitude distrib



. . . i vQ2 vQ6
tions as more item ratings are observed: The Shawshank Redemption 5.5 (5) The Godfather 5.8 (6)
Taxi Driver 5_.3 (6) Pulp Fiction 5.7 (5)
P (A” _ l) = P(A” _ l|r£cnwn) Dead. Man VYaIklngS.l () Get Shorty 5-.2 )
Billy Madison 3.2 (-) Sound of Music 2.9 (2)
— — 7/ o =19 Clerks 3.0 (4) Lawrence of Arabia 2.6 (3)
@ H [Z P(Th k ) Z P(A“" ! )ghk'l' Forrest Gump 2.7 (2) Mary Poppins 2.4 (1)
h€knwn (i) k' £k 14 Sling Blade 5.4 (5) Mary Poppins 5.3 (5)
OneFlew ... Cuckoo’'sNest 5.3 (6) TheWrong Trousers 5.2 (6)
+ P(Th = k')elr.f/él}P(Azk = l) Dr. Strangelove5.2 (5) Willy Wonka 5.0 (6)
i L. The Beverly Hillbillies 2.0 (-) Married to the Mob (3.3) 4
wherea is a normahzmg constart. Canadian Bacon 1.9 (4) Pulp Fiction 3.2 (2)
Mrs. Doubtfire 1.7 (-) GoodFellas 2.9 (2)

A variational EM algorithm is used to learn the model pa- _ _
rameters, and infer hidden variables (attitude distring) ~ Figure 2: The MCVQ representation of two test users in

given observations. Details of learning and inferenceén th the EachMovie dataset. The 3 most conspicuously high-
model can be found ifRoss and Zemel, 2002 rated (bold) and low-rated movies by the most active states

An example application of MCVQ to CF involves the Each- (dom"?a”t att|tude_s) of 2 of Fhe_ 12 VQs are shown, yvhere
conspicuousness is the deviation from the mean rating for

Movie dataset; this is the target database for the experiy given movie. Each state’s predictiofis,, can be com-

ments described in this paper. The dataset contains ratings . 7
Pap AUNG3red to the test user's true ratings (in parentheses); the

on a scale from 1 to 6, of a set of 1649 movies, by 74,42 , o A

. . . model’s prediction is a convex combination of state pre-
users. We divide the full dataset into two subsets: The,. . AR .. o
. . . dictions. Note the intuitive decomposition of movies into
main subset includes users who rated at least 75 movies

and movies rated by at least 126 users, leaving a total o§epa_rate VQS.’ and tha’g different states within a VQ may
1003 movies and 5831 users. Thmrse subset includes predict very different rating patterns for the same movies.
the rest of the users. We train the model onrtiegn sub-

set, and test it on both. We further split theain dataset 31 \valueof Information

randomly into 1000 users in a test set, leaving 4831 users

in the training set. We ran MCVQ with 12 VQs and 4 com- Most models of CF produce an explicit probabilistic model

ponents per VQ on this dataseAn example of the results, 0f the domain, giving rise to distributions over ratings dor
after 15 iterations of EM, is shown in Fig. 2. specific user-product pair based on attributes of the user

MCVQ resembles the aspect model in that a given use?nd product in question. The MCVQ mod_el desc_nb_ed
can be represented by a multitude of hidden factors, bu?bove’ for example, can be seen as _pro_dugmg a distribu-
it is a proper generative model, in that a novel user’s ratin%o.n over types for each product, a distribution over user
vectors can be generated by sampling from the distributio ttitudes toyvards product_s of each type,- gnd a dlstr|bgt|on
over types for each item, and sampling from the attitude$VE" thg ratings of prodqgtby useri conditioned on their
over each type, and then sampling from the combined ratr_espectlve types and attitudes.
ing distribution. Also note that an MCVQ model with a For simplicity, we assume that the system can make recom-
single type or VQ is equivalent to the standard VQ modelmendations only for a single product, and that the utility of
described above. The representational scheme in MCV@ny recommendation is given by its actual ratin@hus
is powerful due to its combinatorial nature: while the stan-the recommendation with highest expected utility is that
dard VQ containingV components can represent at mostproduct with highest mean rating. We define traue of
N items, if we divide theV into j N/j-component VQs, Pu(Ri;) tobe
MCVQ can represent™/7 items.
V(Py) = max( ) Zr -Py(Rij =)

(3

jEunkn

3 Myopic EVOI in Collaborative Filtering

We first review the basics of value of information in a If we ask useri to rate producy € unkn(i) and obtain
generic CF context, and then derive the details of EVOIr€Sponser,, our new posterior over ratings B, with
computations in the MCVQ model, demonstrating that ac-value defined as:

tively generated queries (data points) with high EVOI pro-

vide better results than randomly generated queries. V(Py) = jeqmﬁ%\{q} Z r- Pyt (Rij =)

3In order to reduce the number of parameters in the model,
ratings are treated as continuous variables, so eachisiitgpe ~ The (myopic) expected value of informatioassociated
k has a meam;;; and variancerf,c, in its rating predictions for  with queryq is the expecte@mprovemenin decision qual-
item j. These are converted into multinomial distributions over ity one obtains after asking
ratings through binning and normalization.

*We use this same trained MCVQ model throughout the paper. _ - Tgy\y
The model performance varies somewhat for different nusmber BVOI(g, Pu) = ) (Pu(Rig = r) V(Pu")) = V(Pu) (2)
VQs and components per VQ, but this variationis notthe eéntr
focus of this paper. SOther decision criteria can be used.

Tq
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The myopic EVOI approach to active collaborative filter-
ing requires that we ask that query whose EVOI is maxi-
mal, as long as it is positive, or above some “query cost”
threshold.

It is important to note that this myopic approximation to
true expected value of information can be led astray. For
instance, if two queries could lead to a dramatic shiftin our
ratings prediction for a user, but neither query individial
has any effect, myopic EVOI will be unable to discover
this potentially valuable pair of queries. Solutions tcsthi ‘ RSSO e
problem include using multistage lookahead, or more accu- Number of observed Lser ratings
rately, modeling the entire interactive process as a sequen
tial decision problem. We leave the study of these morerigure 3: The total improvement in model loss (difference
computationally demanding approaches to future work.  between actual and predicted utility) for MCVQ for vary-
_ ing number of observed ratings of test users. For each test
3.2 EVOI intheMCVQ Model user, the maximum improvementis 5 (ratings range from 1-
. . . , . . 6), and the total improvement sums the improvement across
The computations involved in computing myopic EVOI in o
. the set of 1000 test users. Each datapoint is an average of
the MCVQ model are reasonably straightforward. We de-, . :
. . . . 5 test runs for each test user, with a random selection of
velop these in this section, but emphasize that the appl'f)bserved ratinas on each run
cation of EVOI to other CF models would proceed in an 9 '
analogous fashion. We assumé products,K types (or

VQs), L user attitudes toward products of a specific typeand randomly select the items to be observed for each test
(or components), and rating sgt, ..., p}. We assume a yser, holding out ratings of other items by this user. We
trained MCVQ model with parameters?(T; = k), for  then compute the model loss for those observations by sub-
j < Mk < K;P(Ay = 1), fork < K1 < L;and  tracting the user’s true rating of the model’s highest ranke
P(Rij = r|Tj = k, Ay = 1) = 0, forj < M,k < held-out item (predicted utility) from the user’s rating of
K,l < L,r < p. Note that the parametef$,, are inde-  ner highest-ranked held-out item (highest utility). Weleva
pendent of the user and thatk;; is independent ofl;; uate thechangein model loss due to a queryby observ-
givenT; = k, for anyk’ # k. ing the rating of iteny, updating the model, and comparing
Expected value of information can be computed in the fashthe loss of the prior and posterior model (where the poste-

ion described above in the MCVQ model. The specifics ofijor model loss is defined over the reduced set of held-out

the MCVQ model dictate only how to update ratings dis-: : :
tributionngiven a response t)(/) a query.p Assume g USer'temS)' We compare the change in model loss using the

has provided responsg to queryq. We then compute the query with maximum EVOI with that obtained using ran-

—— EVOI
e Random

=

o

o
T
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o
T
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o
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Improvement in model loss
N
S

(=]

o

posterior for anyj € unkn(i) \ ¢: dom querie$.
Fig. 3 shows that selecting the held-out item to query (or
Pt = P(Rij = r|Rig = rq,r{""") observe) based on EVOI leads to significantly greater im-
= Z P(T; = k) Za;klpw(Aik =1|Ri, = 1) provements in model loss than a random selection strategy,
k<K I<L particularly for small values ofs. This dependence om
_ Z P(T; = k) Zg;kla[z (P(T, = ¥) conforms with the @ntu_ition thgt the value of information
e <1 2k should decrease with increasing knowledge of the user, as

the posterior over ratings stabilizes. In fact, we couldaise
threshold on EVOI as a form of “query cost”, so that if the
maximum EVOI value does not exceed the threshold, the
Given these posterior calculations we can compute EVOSYystem would not query the user. Instead, it would make a
of any query using Eq. 2 above. recommendation to the user. We note that these results in-
volve testing users drawn from tmeain data set. Results
using thespar se user set are qualitatively similar.

Y Pu(Aiw =1)0,0,} + P(Ty = k)6, Pu(Auk = 1)

<L

We evaluate the efficacy of this approach empirically by ex
amining the change imodel losfor the MCVQ model as
we update ratings based on responses to queries. Model ] ]

loss is defined as the difference between the users ad Bounding Mean Rating Change

tual utility (rating) for the best item we could have recom- ) _

mended and the actual utility for the item recommended byl € Straightforward computation of the EVOI of a query
the model. The model recommendation is the item with? In the MCVQ model require€)(pM) posterior com-

highest mean rating (i.e., the itepredictedto be best). In ®Queries are restricted to held-out items, since these are th
this experiment, we fixo, the number of observed ratings, only queries for which can can obtain actual “responses.”



putations. Since each unrated product is a potentiahrg min; H;;. The expression is maximized by assign-
query, determining the query with maximum EVOI re- ing positive probability inP(A;;) to only I and to either
quiresO(pM?) posterior calculations. Since this processl,—in which case the change if(4;;, = 1) is maximally
must be engaged online, while interacting with the usernegative—ot,,—in which case the change iR(A4;, = 1)

this approach to active collaborative filtering is unlikédy  is maximally positive. Thus, this reduces to two distinct
be feasible. one-dimensional optimization problems (one for the max-

Fortunately, we can reduce the number of posterior calculMum increase and one for the maximum decrease). The
lations by bounding the impact a specific rating associate@Ximum decrease iff(A;;) = [/ can be found by maxi-
with productg can have on the mean rating of prodgict Mizing the following expression w.rp. = P(A, = 1):

We do this in a user independent fashion, allowing the com- F+H
putation of these bounds offline (e.g., at the same time a

new model is being learned with a new batch of data). As F+pH; + (1 -p)H,

before, we assume a learned MCVQ model. We proceed iggting the derivative to zero, we obtain a positive sohutio
several stages.

p—p (4)

at
We first bound the difference in the posterior probability of
a ratingPL" (R” = ’I") = P(R” = T|Riq = ,rq7r£cmun) _ H + F — \/FH[ + F2 + FH[E + HlmHl 5
given response, to queryq and the priorP,,(R;; = r). p= H, — H, ®)
We have
Pl(Rij = 1) — Pu(Ri; = 1) Analogous expressions exist for the maximum increase.

. ) We can thus sef\})* to be the maximum (in absolute
=Y P(T;=k) Y [Pu'(Aix = 1) = Pu(Aix = Dl6juc  value) of the expressions for maximum increase and de-

k<K It crease
< Z P(T; = k) Z AL O The AZ?’ can in turn be used to derive bounds on the in-
k<K I<L fluence of a query response on the mean rating of a target
) ar; . S
where A is a bound on the termPL? (A = 1) — productj. LetV;"* denote the posterior mean Bf; given

Pu(Au = 1)| for any useri. Notice that, as the MCVQ response, to queryg, andV its prior mean. We can ob-
AU L o tain a rough bounad\?"* on|V*"* — V;| by noting that
model suggests, the impact of a query rating on our pre- 9 J J il by 9
dictions for a uset is solely mediated by its impact on the
user's attitude vector. VT = Vil <D DO P(T = k) Y A 65
A bound can be derived by assuming a “worst case” distri- ! t :
b?ﬂ?” over us;a_r attltutcri]est, onet thatdmatX|r‘[{1_|zethJleh|mpact—rhis bound is too crude to be useful, since it assumes that
ofthe query rating on the farget productrating. YWe have 5 of the mass associated with different ratingshifts in
w (Aik = 1) — Py(Aix = e same direction in response to the query.
P (A l)— P,(A 1) th d t to th
. (F+H)P,(Aiy, =1) We can derive a much tighter bound by explicitly model-
- ‘sz(F + H )Py (A = 1) ing the prior of R;; and finding a worst-case distribution
(F + H) P(R;;) that maximizes/"™* — V;.” This can be accom-
=55, Ho P (A =) LM =1 = Pu(4ie = DI plished with a very compact linear program. We use vari-
e ' 3) ablespi,....p, denoting the prio(R;;) of each rating

— Pu(Au =)

r < p;qi,.-.,q, denoting the posterior ovét;;; anddy,
whereF andH, are defined as follows: for each type-attitude pak, [, denoting the actual change
in P(A;x = 1) in response to the query. We impose stan-
F=Y PT,=FK)> Pu(Aw =101, dard simplex contraints on the variabjgsandg,. We also
Kk <t impose the bounds Ay < dx; < Ag;. Finally, we relate
Hy = P(T, = k)8’ the change in attitude distributions to the change in rating
! 4 akl! distributions by imposing the following equality constrai

The user-dependent terms in this expression are the elfor €achr < p:

ments of the distribution® (A, ) for eachk’. A “worst )

case user” requires us to set these distributions to maxi- =P = ZP(TJ’ =k) 29“5“

mize expression (3). We first note thAt depends only t :

the free variables®(A; = I), k' # k, and can be min-  Maximizing the objective functiol”, - (¢, — p,) subject
imized independently of the distributiaR(4;x). Clearly  to these constraints bounds the change in mean rating. So

minimizing £" will maximize expression (3) for any setting we setA"™ to the objective value obtained by solving this

of P(A;), and can be accomplished by settiBg( A = LP.

I3,) = 1for i}, = argminy 0;%,1,. — o _ .
A o Itisn’t hard to show that the maximal increase in mean rating

We are left to set the distributiof’(A;;) to maximize s identical in absolute terms to the maximal decrease, éharec

expression (3). Let;, = argmax; Hy and H;, = concern ourselves only with the maximal increase.



The LP for each\ ™ is very compact, withi . + 2 vari-
ables, an®2K L + 5p + 2 constraints. We do note that
this bound can also be produced using a simple iterative
algorithm with complexityO (K Lp) (we omit details). In
practice, however, it appears that the direct LP formutatio
can be solved very effectively.

With this procedure in place, we can compute the set of
termsA;’.T for each producf, query (producty, and query
response (rating). While this computation is significant,
again we emphasize that it is performed offline given a sta- ‘ ‘ ‘ ‘ ‘ ‘

ble learned model, and is user-independent. These terms Number of observed Leer ratings

can be used to prune the number of posterior computations

needed to compute the query with maximum EVOL. et Figure 4: The proportion of unobserved items for which
be the product with highest mean rating for usefFor a  posterior distributions need not be computed is plotted for
specific query;, we can forego the computation of the pos- varying number of observed ratings of test users. As before,
terior P, (R;; = r|R;; = r,) (for each possible response each datapoint an average of 5 test runs for each test user,

r,) if our bounds preclude the possibility of the mean of with a random selection of observed ratings on each run.
R;; becoming higher than that dt;;-. More precisely, if
we have
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Proportion of potential targets pruned

5 Prototype Queries

The bounds in the previous section restrict the number of

posterior computations over target products for each query
Vj» — Z P,(Riy = r)A‘]?f >V + Z P,(Riq = r)A;’.T rating pair to those that could possibly become optimad; thi

r r reduces th€(pM?) problem toO(pM N), whereN < M
) ©6)  isthe expected number of targets for which posteriors must

then we need not compute the posterior o¥&f when  pe computed. This depends on the degree of pruning pos-
computing EVOI ofg. As we will see, this can offer a gjpje for a specific problem, but as we've sedhappears
significant degree of pruning. to be considerably less thad in practice.

We empirically evaluate the amount of pruning obtained by\ye might also attempt to reduce the number of queries we
this approach using a procedure similar to the experimenieed to consider: consideriy < M queries reduces on-
presented in the previous section. We use the same traingde posterior computations 0(pQN). In this section we
MCVQ model as above. We obseneratings of a given  describe a simple method for offline construction of a set of
test useri, and update the attitude distributions and POS-() prototype querieswith the property that the EVOI of any
terior overr“"*" (), the ratings of unobserved items. For querym € M is within some bound of some prototype
each poss;tgle query |terq11§1nd targey € unkn(i), W&  queryq € Q. By restricting attention to queries i), we
computeA;”, as well asA ;. for eachg. For each movie reqyce online complexity further, but guaranteeptimal

j we can then apply Eq. 6 to determine if that movie can-qyerying behavior.

not possibly obtain a higher rating than the modef's Curren‘ntuitively the difference in the impact of two potential

top-rated movie after query. The number of movies sat- : . :
P queny: queriesq and ¢’ can be characterized by the difference

isfying this inequality describes the degree of pruning in. 4T .
posterior computations. in the type distributions of each query, and the difference

) ) ) in their rating parameters. For any product (i.e., poténtia
Elgure 4 plots the pruning of po_tentlal targets as a propor: uery)q, definev, to be a vector of lengtik Ly with ele-
tion, calculated based on the ratio of number of unobserve&entspr(Tq = k)07, For two querieg and¢’, the fun-
movies not satisfying Eg. 6 to potential target$ { w —1).  damental distinction betweerandg’ can be characterized
The figure shows a large degree of pruning at the earlyy the 1., -distanced(q, ¢') = |jv, — vy|l1 between these
stages of (simulated) interaction with the user, but idyfair \ectors.

substantial throughout the interaction period. This iegpli L .

that many items go not have the poter?tial of ever sﬁass-[h? key fact to notice is that the difference ij; and
ing the estimated utility of the model's top-ranked item, &y, (for any &,1,r) is bounded by a continuous func-
and substantial computational savings can be obtained B§on f of d(q,¢'); that is, ifd(g,¢') < e, then|A}; —
identifying these based on computations that can occur priA},"| < f(e,k,1,r). We currently have some fairly crude
marily offline. Again, while we show results only for users bounds that are independent of all terms exegpis well
from themain subset, results from thgparse subset are as a somewhat more reasonable approximafignr) =
qualitatively similar. 12¢/P(r), whereP(r) is the probability of receiving re-



sponse- under query;. From this, we can bound the dif- are considering extending the myopic approach to examine
ference between the ternis;” andAj." for each targej multistage lookahead, and offline policy construction.

with the samef (¢). Finally, we obtain a bound on the dif-
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