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Abstract

Suppose that HY P is a set of hypotheses which we cur-
rently entertain about some state of affairs represented
by a propositional sentence X. In a diagnostic setting,
HY P might consist of all the diagnoses of some device
whose description is given by X, although our analysis
is not restricted to diagnosis. Our concern is with tests
— how they can be designed, and what conclusions can
be drawn about the hypotheses in HY P as a result of
performing tests. Specifically, we define the concept of
a test and the concept of the outcome of a test. We
characterize those tests whose outcomes refute or con-
firm an hypothesis, and discriminate between compet-
ing hypotheses. These characterizations are in terms of
the prime implicates of X3, and hence are implementable
using assumption-based truth maintenance systems. In
addition, we characterize the impact of a test outcome
on consistency-based and abductive hypothesis spaces.
Finally, we provide a characterization of differential di-
agnosis for consistency-based and abductive reasoning.

Introduction

In the AT literature on hypothetical reasoning there are
relatively few results on the design of tests for discrim-
inating a space of hypotheses, or on the conclusions
one may draw from the outcome of a test. There are
exceptions of course, particularly in the area of diagno-
sis. Among these are de Kleer and Williams [de Kleer
and Williams, 1987] who provide a probabilistic anal-
ysis to decide what measurement to take next. The
DART system of Genesereth [Genesereth, 1984] was ca-
pable of proposing circuit inputs and observations to be
made in order to confirm or refute a possible diagnosis.
TraumAID [Webber et al., 1990] is a system for treat-
ing trauma patients which does sophisticated planning
to design diagnostic tests and treatment. But by and
large, there has been no systematic study of the design
and role of tests in hypothetical reasoning. This paper
is a first step in this direction.

Our concern in this paper is how tests provide infor-
mation about the current space of hypotheses. Specif-
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ically, we define the concept of a test and the con-
cept of the outcome of a test. We characterize those
tests whose outcomes refute or confirm an hypothesis,
and discriminate between competing hypotheses. These
characterizations are in terms of prime implicates, and
hence are implementable using assumption-based truth
maintenance systems. Further, we provide results on
the impact of tests within two specific hypothetical rea-
soning paradigms: consistency-based reasoning and ab-
duction. Finally, we provide results on differential di-
agnosis for consistency-based and abductive reasoning.
The results of this paper are relevant to a number of hy-
pothetical reasoning tasks including diagnosis and ac-
tive vision.

Preliminaries

We assume a fixed propositional language throughout.
Y will be a fixed sentence of the language, and will
serve as the relevant background knowledge describing
the system under analysis. For example, in the case of
circuits, ¥ might describe the individual circuit compo-
nents, their normal input/output behaviour, their fault
models, the topology of their interconnections, and the
legal combinations of circuit inputs (e.g. [de Kleer and
Williams, 1987], [Reiter, 1987]). We also assume a fixed
set HY P of hypotheses. In the case where Y. describes
a circuit, HY P might be the set of diagnoses which we
currently hold for this device. How we arrived at the set
HY P will be largely irrelevant for our purposes. HY P
could be a set of abductive hypotheses [Poole, 1989], or
the result of a consistency-based diagnostic procedure
[de Kleer et al., to appear], or any other conceivable
form of hypothesis generation. Our one assumption
about H € HY P is that H be a conjunction of literals
of the propositional language.

Tests

Informally, the notion of a test provides for certain ini-
tial conditions which may be established by the tester,
together with the specification of an observation whose
outcome determines what the test conclusions are to be.
For example, in circuit diagnosis the initial conditions
of a test might be the provision of certain fixed circuit
inputs, and the observation might be the resulting value



of a circuit output, or the value of an internal probe.
In the medical setting, the initial conditions might in-
volve performing a laboratory procedure like a blood
test, and the observation might be the white cell count.
In an active vision setting, the initial conditions might
involve changing the camera angle or moving objects in
the scene, and the observation might be some aspect
of the corresponding image. We provide for a formal
definition of a test by distinguishing a subset of liter-
als of our propositional language, called the achievable
literals. These will specify the initial conditions for a
test. In addition, we require a distinguished subset of
the propositional symbols of our language called the
observables. These will specify the observations to be
made as part of a test.

Definition 1 (Test) A test is a pair (A, o) where A is
a conjunction of achievable literals and o is an observ-

able.

A test specifies some initial condition A which the
tester establishes, and an observation o whose truth
value the tester is to determine.

Definition 2 (Outcome of a test) The oulcome of
a test (A, 0) is one of 0, —o.

In other words, as a result of performing the test
(4, 0) in the physical world, the truth value of o is ob-
served. If o is observed to be true, the outcome of the
test is o, otherwise —o.

Definition 3 (Confirmation, Refutation) The
outcome a of the test (A, 0) confirms H € HYP iff
Y ANANH is satisfiable, and XA A = H D «. « refules
H iff S ANANH is satisfiable, and AN A= H D —a.

At first, the requirement in this definition that 3 A
A A H be satisfiable might seem odd. However, not
all conjunctions A of achievable literals will be legal
initial conditions, for example simultaneously making
a digital circuit input 0 and 1. Since ¥ will encode
constraints determining the legal initial conditions, we
require that X A A be satisfiable. Moreover, hypothe-
sis H could conceivably further constrain the possible
initial conditions A permitted in a test. For example,
the hypothesis that radioactivity has escaped within a
reactor would prevent a test in which humans enter the
reactor chamber. In such a case, ¥ would include a
formula of the form radioactivity D —enter-chamber so
that X A enter-chamber A radioactivity would be unsat-
isfiable; in which case the very idea of a confirming or
refuting outcome of such a test would be meaningless.

In general, a confirming outcome for H provides no
deterministic information about H; we can neither ac-
cept nor reject H on the strength of the test outcome.!
A refuting outcome for H, however, allows us to reject
H as a possible hypothesis.

Definition 4 (Prime Implicate) A prime implicate
of a propositional formula ¥ is a clause C' such that

1Of course, H’s probability may well increase as a result
of a confirming outcome.

Y E C, and for no proper subclause C' of C' does ¥ |E
C/

Theorem 1 The outcome v of test (A, o) confirms (re-
futes) H € HY P iff

1. There is a prime implicate of . of the form —A' Vv
“H'Va (nA'V-H'V-a) where A’ is a subconjunct
of A and H' is a subconjunct of H, and

2. No prime implicate of X2 subsumes ~AV —H.

Proof: Suppose a confirms H. Then by definition,
YAA E H D «. Hence there is a prime implicate
of ¥ of the form -4’ Vv -H'V («) where A’ and H'
are subconjuncts of A and H respectively, and where
the notation («) indicates that the literal o may or
may not be present in the clause. We prove that « is
indeed present in the clause, in which case the desired
result will be established. If in fact « is not present,
then —=A’ vV =H’ is a prime implicate of X, i.e. X A
A’ A H' is unsatisfiable, in which case sois XA AA H,
contradicting the assumption that a confirms H. To see
that 2. must be true, assume on the contrary that some
prime implicate of ¥ subsumes —A V = H. This means
that XA AA H is unsatisfiable, which is impossible since
« confirms H.

To prove the converse, suppose =A’V—H'V«a is a prime
implicate of ¥. Then XAA" | H' D «, whence XAA |
H D «. Since condition 2. means that X A A A H is
satisfiable, i1t follows that « confirms H.

A similar argument establishes the theorem in the case
of refutations.

Discriminating Tests

In this section we characterize those tests (A, 0) which
are guaranteed to discriminate an hypothesis space
HY P, i.e. which will refute at least one hypothesis
in HY P.

Definition 5 (Discriminating Tests) A test (A,0)
1s a discriminating test for the hypothesis space HY P
ff XA AN H is satisfiable for all H € HY P and there
evists H;, H; € HY P such that the outcome o of test
(A, o) refutes either H; or H;, no matter what that out-
come might be.

In the case of uniformly distributed hypotheses, we
would ideally like a discriminating test to refute half
of the hypotheses in the hypothesis space, regardless of
the test outcome. By definition, it must refute at least
one hypothesis in the hypothesis space.

Definition 6 (Minimal Discriminating Tests)

A discriminating test (A,0) for the hypothesis space
HY P is minimal iff for no proper subconjunct A’ of
A is (A7, 0) a discriminating test for HY P.

Minimal discriminating tests preclude unnecessary
initial conditions, for example unnecessary circuit in-
puts, laboratory tests, etc. Only those conditions nec-
essary for producing the test outcome are invoked.



Theorem 2

1. Suppose ¥ has at least two prime implicates of the
form —A'"V—=H'V o and =A" VvV =H" V =0 where

(a) H' and H" are subconjuncts of H; and H; respec-
tively, for some H;, H; € HY P, and

(b) No prime implicate of ¥ subsumes ~A'V—-A"V-H,
for all H € HY P.

Then (A’ A A" 0) is a discriminating test for the hy-
pothesis space HY P.

2. Moreover, every minimal discriminating test can be

obtained this way, i.e. if (A ,0) is a minimal dis-

criminating test for the hypothesis space HY P, then

Y. has at least two prime tmplicates of the form
—-A'V-=H'V +o0 and =A" vV -H" V Fo where
(a) A=A NAY,
(b) H' and H" are subconjuncts of H; and H; respec-
tively, H;, H; € HY P, and
(¢) No prime implicate of ¥ subsumes AV —H for all
He HYP.

Proof:

1. We prove the result in the case that o is the outcome
of (A,0). A symmetrical proof applies when the out-
come is —o. Since =A’V—H'Vois a prime implicate of
Y, we have XAA' |= H' D o. Thus SAA'AA" = H; D
o. Similarly, ¥ A A’ A A” = H; D —o. Finally, since
no prime implicate of ¥ subsumes = A’V A"V = H
for all H € HY P then ¥ A A’ A A” A H is satisfiable
for all H € HY P. Hence o confirms H; and refutes
Hj, so that (A’ A A”,0) is a discriminating test for
the hypothesis space HY P.

2. Suppose (A,0) is a minimal discriminating test for
the hypothesis space HY P. Without loss of general-
ity, assume that o is the outcome of (A, 0), and that
o confirms H; and refutes H;. Then by Theorem 1,
Y} has two prime implicates of the form —=A’V—-H'Vo
and =A” V—=H" V =0, where A’ and A" are subcon-
juncts of A, and H' and H" are subconjuncts of H;
and H; respectively; moreover, no prime implicate of
3 subsumes —A V —H for all H € HY P. Hence, by
part 1. of this theorem, (A’ A A”,0) is a discriminat-
ing test for the hypothesis space HY P. Since A’ A A"
is a subconjunct of A, and since (A4,0) is a minimal
discriminating test for the hypothesis space HY P,
A=A NA".

An interesting special case of Theorem 2 arises when
there are no initial conditions, i.e. when a simple system
observation is to be made, without establishing initial
conditions for the test. This is the case A = true.

Corollary 1 Suppose that X A H s satisfiable for all
H € HYP. ? Then (true,o) is a discriminating test

2Notice that this will be the normal case. No one would
entertain an hypothesis which is inconsistent with the back-
ground theory X.

(and hence a minimal discriminating test) for the hy-
pothesis space HY P iff ¥ has at least two prime im-
plicates of the form —H' V Zo and —H" V Fo where
H' and H" are subconjuncts of H; and H; respectively,
H;, Hj € HYP.

In [Sattar and Goebel, 1989], Sattar and Goebel pro-
vide a mechanism within the Theorist system [Poole
et al., 1987] for recognizing so-called crucial literals
which provides a basis for performing discriminating
tests without initial conditions. The above corollary
is an abstract characterization of their method, with o
playing the role of their crucial literal. More prelim-
inary work on crucial literals for discriminating com-
peting hypotheses can be found in [Seki and Takeuchi,
1985] and [Shapiro, 1981]. Genesereth’s work on the
DART system [Genesereth, 1984] is also similar is spirit.
DART was capable of designing tests by a process
(called residue resolution) very like the generation of
prime implicates. The above results can be viewed as
a systematic exploration of some of the ideas embodied
in the DART program.

Relevant Tests

In many instances we will not have discriminating tests.
Our concern here is characterizing relevant tests; those
tests (A, o) which have the potential to discriminate an
hypothesis space HY P but which cannot be guaranteed
to do so. Given a particular outcome «, relevant tests
will refute a subset of the hypotheses in the hypothesis
space HY P, but may not refute any hypotheses if we
do not observe «. Since we have no guarantee a priori
of the outcome of a test, these tests are not guaranteed
to discriminate an hypothesis space. In the section on
tests for hypothetical reasoning we will show that rel-
evant tests are guaranteed to discriminate a space of
abductive hypotheses.

Definition 7 (Relevant Tests) A test (A,0) is a rel-
evant test for the hypothesis space HY P iff CANANH
1s satisfiable for all H € HY P and the outcome a of
test (A, o) either confirms a subset of the hypotheses in
HY P or refutes a subset.

Note, by definition, that every discriminating test is
a relevant test. Informally, a relevant test is one that
produces a particular outcome when certain hypothe-
ses drawn from HY P are true, but does not produce
that outcome when other hypotheses drawn from HY P
are true. Consider a simple medical diagnosis problem
where we suspect that a patient is suffering from ei-
ther mumps, measles, chicken pox or the flu. Both
the hypothesis that the patient has measles and the
hypothesis that the patient has chicken pox, infer the
observation of red spots. However, neither the hypoth-
esis that the patient has mumps or the hypothesis that
the patient has the flu infer anything about the exis-
tence or lack of existence of red spots. As a result, the
outcome of a test to observe red spots will only provide
discriminatory information if we observe red spots to be



false. In such a case we can refute both the chicken pox
and the measles. However, if we observe red spots to be
true, we are unable to reject any of the four hypotheses.

Definition 8 (Minimal Relevant Tests)

A relevant test (A, o) for the hypothesis space HY P is
minimal iff for no proper subconjunct A" of A is (A4',0)
a relevant test for HY P.

Again, minimal relevant tests preclude unnecessary
initial conditions.

Theorem 3

1. Suppose ¥ has at least one prime implicate of the
form =AYV —H'V o, where H' is a subconjunct of
some H; € HY P. Further suppose there exists H; €
HY P such that X2 has no prime implicate of the form
- A"V =H" Vo, where A" and H" are subconjuncts
of A and Hj, respectively. Finally, suppose no prime
implicate of ¥ subsumes "AV —H forall HE HY P.
Then (A, 0) is a relevant test for the hypothesis space
HYP.

2. Moreover, every minimal relevant test can be obtained
this way, i.e. if (A, o) is a minimal relevant test for
the hypothesis space HY P, then ¥ has a prime tm-
plicate of the form =AV —H'V o where,

(a) there exists Hy € HY P such that there is no prime
implicate of the form =A'V —=H" Vo, H" and A’
are subconjuncts of H; and A respectively; and

(b) no prime implicate of ¥ subsumes AV —H for all
HeHYP.

Proof:

1. We prove the result in the case that o is the outcome
of (A,0). A symmetrical proof applies when the out-
come is —o. Since =A V —=H’V o is a prime implicate
of ¥, we have X A A E H' D o. Furthermore, since
no prime implicate of ¥ subsumes = A V = H;, then
Y. A AN H; is satisfiable. Hence, if the outcome « of
test (A, o) is o, then « confirms H; € HY P. Since
- A’V =H" V 0 is not a prime implicate of X, there
is some H; € HY P for which TAA ¥ H' Do. «
does not confirm H;. Finally since no prime impli-
cate of ¥ subsumes —AV —H for all H € HY P, then
Y AN AA H is satisfiable for all H € HY P. Thus the
test (A, o) is a relevant test for the hypothesis space
HYP.

2. Suppose (A, 0) is a minimal relevant test for the hy-
pothesis space HY P. Without loss of generality, as-
sume that o is the outcome of (4, 0), and that o con-
firms H; and does not confirm H;. Then by Theorem
1, ¥ has a prime implicate of the form =AV —=H'V o,
where H' is a subconjunct of H; € HY P, and no
prime implicate of ¥ subsumes = AV —H;. Moreover,
for some H; € HY P, ¥ does not have a prime im-
plicate of the form —=A’V—H" V o, where A’ and H"
are subconjuncts of A and H; respectively. Finally
since no prime implicate of ¥ subsumes —AV —H for
all H € HY P, then ¥ A A A H is satisfiable for all

H € HY P. Hence, by part 1. of this theorem, (A, 0)
is a relevant test for the hypothesis space HY P.

Why Prime Implicates?

The characterizing theorems of the previous section are
in terms of the prime implicates PI(X) of ¥. Thus
Theorem 1 informs us how to “read oft”, from PI(X),
all hypotheses confirmed or refuted by the outcome of
a given test. Alternatively, Theorem 1 informs us how
to determine all tests whose outcomes can confirm or
refute a given hypothesis. Similarly, Theorem 2 can be
used to determine all pairs (H;, H;) (or more) of hy-
potheses for which a given test (4, o) is guaranteed to
be a discriminating test. Theorem 2 can also be used to
determine all minimal discriminating tests for a given
pair (H;, H;) (or more) of hypotheses. Finally, The-
orem 3 tells us how to detect minimal relevant tests
for a space of hypotheses by examining PI(X). It ad-
ditionally indicates which hypotheses could potentially
be confirmed or refuted by a given test (A, o). Provided
PI(X) has already been computed, all these tasks are
straightforward and computationally attractive. Alas,
as is well known, computing PI(X) is computation-
ally intractable ([Bylander et al., 1989], [Selman and
Levesque, 1990]), and not only because there may be
exponentially many prime implicates. As it happens,
the principal task of an assumption-based truth main-
tenance system is the computation of certain prime im-
plicates of a background theory ¥ [Reiter and de Kleer,
1987]. Despite the high complexity associated with the
computation of prime implicates, ATMSs are very fre-
quently used as implementation tools in abductive and
diagnostic reasoning systems. Therefore, in those cases
where an ATMS is providing the underlying reasoning
service, the results on the design of tests of the previous
section are especially relevant. In effect, the ATMS will
have already performed all of the preliminary work —
namely the calculation of the prime implicates — nec-
essary for applying the results of the previous section.
We obtain the benefits of this analysis of tests as a side
effect of the ATMS calculations when achievable literals
are encoded as assumptions.

ATMS assumptions encode the distinguished literals
from which hypotheses are generated. Achievable lit-
erals may be encoded as additional assumptions. An
observable o is a datum of an ATMS node. The label
of the node representing o contains the set of environ-
ments in which o is true. Thus (4,0) is a test for H
if one of the environments in the label of o contains
the set of literals from which A’, H' (subconjuncts of A
and H) are generated. A test (A, o) discriminates two
hypotheses H; and H, if nodes for 0 and —o exist such
that (4,0) is a test for H; and (A, —o) is an test for
H,. Tests may be selected by inspecting the labels of
the nodes of observable data.



Tests for Hypothetical Reasoning

In the previous sections we characterized the notion of
a test and demonstrated how it might be realized in
an implementation such as the ATMS. In what follows
we examine the role of tests within the context of two
specific hypothetical reasoning paradigms: consistency-
based reasoning and abduction [de Kleer et al., to
appear]. In particular, we show that the discrimina-
tory power of a test outcome is contingent upon the
hypothetical reasoning paradigm.

To this end, we must assume a distinguished finite
subset H = {h1, ..., h,} of propositional symbols which
will function as the primitive hypotheses. Let conj(H)
be the set of all conjunctions of the form Iy A --- A,
where [; is a literal and h; is the propositional symbol
mentioned by l;. For example, if H = {hy, hs}, then
COH_](H) = {hl A hg,hl A _|h2, _|h1 A hz, _|h1 A _|h2}.
Each hypothesis commits to the truth or falsity of ev-
ery primitive hypothesis in H. conj(H) is analogous to
the expressions [/\cecp AB(e)] A[A.ec, ~AB(c)] in [de

Kleer et al., to appear] from which diagnoses are to be
drawn.

Although the propositions in this section are defined
in terms of the hypothesis space conj(H), the results
are also true for minimal and kernel, abductive and
consistency-based hypothesis spaces.

Definition 9 (Consistency-based Hypotheses) A
consistency-based hypothesis for X and outcome « of the
test (A,0) is any H € conj(H) such that EAANHA«
s satisfiable.

This definition follows from [de Kleer et al, to
appear].
Proposition 1 (Consistency-based Tests)
The outcome o of a relevant test (A, 0) discriminates a
space of consistency-based hypotheses HY P iff the out-
come refutes some hypotheses in HY P.

As a consequence, a relevant test is not guaranteed
to discriminate a consistency-based hypothesis space.

Definition 10 (Abductive Hypotheses) An
abductive hypothesis for ¥ and outcome « of the test
(A,0) is any H € conj(H) such that CAAANH E «a
and X AN A N H is satisfiable.

This definition follows from [de Kleer et al, to
appear]. The outcome of a relevant test has a sub-
stantially different impact on a space of abductive hy-
potheses as illustrated by the following example.

Example Let X be the sentence (hy D a) A (hy D b),
and suppose that the hypotheses are drawn from the
vocabulary {h1, ho}. Finally, suppose the initial space
of hypotheses — say as a result of the observation #rue
—is
{h1 A hy, hqy A —=ha, —hy A hy,—hy A —hg}.

After explaining the outcome a of the test (true, a), the
set of abductive hypotheses HY P is

{h1 A ha, hy A —=hy.}

But the outcome a refutes none of the original abduc-
tive hypotheses.

Abduction demands that ¥ A H | «. Hence, by
definition, hypotheses that confirm « are abductive hy-
potheses. However, all other hypotheses that are consis-
tent with ¥ but for which XA H }£ «, are not abductive
hypotheses. Thus, a test outcome that does not con-
firm an hypothesis, whether it explicitly refutes it or
not, causes that hypothesis to be rejected.

Proposition 2 (Abductive Tests) The ouicome «
of a relevant test (A, o) is guaranteed to discriminate
the space of abductive hypotheses HY P .

Propositions 1 and 2 demonstrate that by exploit-
ing the fact that abductive hypotheses must ezplain
test outcomes rather than just be consistent with those
outcomes, we may discriminate abductive hypothesis
spaces with any relevant test, regardless of its outcome.
Thus, in an abductive setting, relevant tests and dis-
criminating tests are equally desirable. The strategy for
selection of tests to discriminate a space of hypotheses
is impacted accordingly.

Example (continued) Following the outcome a of
test (true,a), the abductive hypothesis space HY P
was: {hl A hg, h1 A _|h2}.

Assume we now perform the test (true,b) and ob-
serve the outcome —b. Since the outcome —b refutes hs,
we would expect to reject the hypothesis Ay A hy. How-
ever, with the above definition of abductive hypothe-
ses, we will also reject the hypothesis h; A =hs because

Y A hy A —=hy [ b,

This illustrates an interesting point regarding the be-
haviour of abduction which is relevant to testing in par-
ticular and to abduction in general. Abductive rea-
soning requires that every observation which we might
wish to explain be encoded explicitly in . Unexpected
or irrelevant observations (such as for example, that a
patient being diagnosed has curly red hair) will cause
all abductive hypotheses to be rejected because none
of them can explain the observation. This seemingly
undesirable behaviour is avoided in a testing environ-
ment because the only observations provided to the sys-
tem are those that ¥ generates as test observations. In
other abductive reasoning environments, such rejected
hypotheses might be tagged as partial explanations, but
this can complicate the comparison of final hypotheses.
This behaviour has ramifications for negative observa-
tions which, unless explicitly encoded, will also cause
the rejection of hypotheses. Characterizing abduction
as generalized stable models and implementing nega-
tion as failure [Preist and Eshghi, 1992] is a solution to
this problem.

Differential Diagnosis

To this point, discussion has been limited to the ex-
ecution of a single test and its impact on a space of



hypotheses. Our objective here is to characterize dif-
ferential diagnosis (DD) for consistency-based and ab-
ductive hypothesis spaces. Differential diagnosis is one
of several sequential diagnosis or sequential hypotheti-
cal reasoning strategies.

The intuitive notion of differential diagnosis as de-
scribed by Ledley and Lusted [Ledley and Lusted, 1959]
is this: Given a set of potential diagnoses, a sequence
of tests may be performed to iteratively reject diag-
noses without the need for subsequent diagnosis gener-
ation steps. Following each test, the resulting set of
hypotheses contains all and only the hypotheses to be
entertained in further hypothetical reasoning.

The Differential Diagnosis Principle (DDP)
Given HY P, X, (A, 0) and « as above, the differential
diagnosis principle is that

{H € HY P | « does not eliminate H}
the set of hypotheses for X A AA « is a subset of HY P.

Notice that the new background theory is X A A A «,
reflecting the new background knowledge resulting from
the performance of the test.

The correctness of DDP, and further, the criteria by
which « rejects hypotheses depend crucially on the na-
ture of the initial hypothesis set HY P. For example,
DDP does not apply when HY P is taken to be the set of
minimal or kernel diagnoses, whether consistency-based
or abductive, as defined in [de Kleer et al., to appear].
In both these cases, test outcomes do not simply result
in the pruning of the hypothesis space, but may require
the generation of new hypotheses.

In what follows, we characterize differential diagno-
sis for consistency-based hypotheses and for abductive
hypotheses [de Kleer et al, to appear]. Furthermore,
we show that the results for the space of abductive
hypotheses also hold for consistency-based hypotheses
when we restrict X to a closed simple causal theory.

Theorem 4 (Consistency-based DD) Suppose

HY P is the set of all consistency-based hypotheses for

Y, and let « be the outcome of the test (true,o0). Then
NEWHYP ={H € HY P | « does not refute H}

is the set of consistency-based hypotheses for T A a. 3

Proof: Let H € conj(H). We must prove that H €
NEWHYP iff ¥ Aa A H is satisfiable. Suppose H €
NEWHY P. Then « does not refute H, which is to say,
Y £ H D -a,ie X AaA H is satisfiable, so that H is
a consistency-based hypothesis for ¥ A a. Conversely,
suppose X A a A H is satisfiable. Then X (£ H D —a,
i.e. a does not refute H. Moreover, ¥ A H is satisfiable,
so that H € HYP. Hence H e NEWHYP.

Theorem 5 (Abductive DD) Suppose HY P is the
set of all abductive hypotheses for X, and let « be the
outcome of the test (true,0). Then

?Notice that the theorem is stated only for simple tests
of the form (true, o), not for (A, o) for arbitrary initial con-
ditions A. The general case is somewhat problematic; we
shall discuss it in the next section.

NEWHYP ={H € HYP | « confirms H}
1s the set of abductive hypotheses for X A «.

Proof: Let H € conj(H). We must prove that H €
NEWHYP iff ¥ A H is satisfiable and ¥ A H | a.
Suppose H € NEWHY P. Then « confirms H, which
is to say, X | H D a, i.e. ¥ A H is satisfiable and ¥ A
H | «, so that H is an abductive hypothesis for T A .
Conversely, suppose XA H is satisfiable and TAH | a.
Then X = H D «,i.e. aconfirms H. Moreover, EAH is
satisfiable, so that H € HY P. Hence H e NEWHY P.

In the following section we see that by restricting the
form of X, we can acquire the same result as Theorem
6.2 for consistency-based hypotheses.

Consistency-based DD of Causal Theories

Poole [Poole, 1988] and Konolige [Konolige, to appear]
have studied consistency-based and abductive diagno-
sis for what Konolige refers to as simple causal theories.
They have shown that the minimal abductive diagnoses
for a simple causal theory are identical to the minimal
consistency-based diagnoses for the Clark completion
[Clark, 1978] of a simple causal theory. In keeping with
the spirit of that work, we characterize differential di-
agnosis for closed simple causal theories, which we show
to be equivalent to abductive differential diagnosis.

Definition 11 (Simple Causal Theory) Let £ be a
propositional language. A simple causal theory is a tu-

ple (C, E,X) where
1. C, a set of atomic sentences of L, is the set of causes.

2. E, a set of atomic sentences of L, is the set of effects
we might observe and whose causes we seek.

3. X, a set of sentences of L, is the domain theory, con-
taining information about the relation between causes
and effects. The sentences of 2 have the form C D e
where e € E and C is a conjunction of literals whose
propositional symbols are causes.

This definition follows from [Konolige, to appear].

Definition 12 (Closed Simple Causal Theory)

Let (C,E,X) be a simple causal theory over a propo-
sitional language with ¥ a set of nonatomic definite
clauses whose directed graph is acyclic. Then we define
¥*, the closed simple causal theory, to be ¥ augmented

by the Clark completion [Clark, 1978] of ¥.

The above definition follows from Theorem 1 in
[Konolige, to appear).

Theorem 6 (Consistency-based DD of X*)
Suppose that (C,E,X) is a simple causal theory, that
HY P s the set of all consistency-based hypotheses for
¥, and that « is the outcome of the test (true, o), where
o€ E. Then

NEWHYP ={H € HYP | « confirms H}
1s the set of consistency-based hypotheses for ¥* A «.

Proof: Let H € conj(H). We must prove that
H e NEWHYP iff ¥* A a A H is satisfiable. Sup-
pose H € NEWHY P. Then « confirms H,so X* A H



is satisfiable and ¥* A H |= . Hence ¥* A H A« is
satisfiable, so that H is a consistency-based hypothesis
for ¥* A a. Conversely, suppose ¥* A H A « is satisfi-
able. Then ¥* £ H D —a. We prove that ¥* | H D «
or ¥* = H D -, from which the result will follow.
To that end, notice that in view of the fact that ¥*
is the Clark completion of X, ¥* = o = B where B
is a sentence, all of whose propositional atoms are in
H. Since H € conj(H), every atom mentioned by B
is mentioned by H, so that = H D Bor E H D —B.
Hence ¥* = H D aor £* = H D —a.

The restriction to a closed simple causal theory is lim-
iting. Konolige [Konolige, to appear] discusses the con-
ditions under which closure axioms may be consistently
added to a theory. A significant benefit of closure ax-
ioms is that they enable explanations of test outcomes
to be generated deductively.

The results of Theorems 4, 5 and 6 may be applied
to strategies for the selection of tests. For example,
in order to isolate a unique hypothesis from a space
of consistency-based hypotheses, differential diagnosis
must select a sequence of tests to refute all of the hy-
potheses but one. By contrast, a unique abductive hy-
pothesis may be isolated either by selecting a sequence
of tests to refute all other hypotheses, or simply by
selecting one or more tests which uniquely confirm a
hypothesis. In the case where the hypotheses are not
equally likely, this is a particularly attractive test selec-
tion strategy.

Discussion

As noted above, the differential diagnosis theorems were
proven for tests of the form (¢rue, o). Differential diag-
nosis for arbitrary tests (A, o) is more difficult to char-
acterize because the realization of initial conditions A
could have side effects in the world which would change
the truth value of previous observations. For example,
if we execute a test to biopsy a tumor and A involves
removal of the tumor, then a side effect will be that the
tumor is no longer present, which would contradict any
previous observation relating the existence and location
of the tumor.

In order to characterize differential diagnosis for ar-
bitrary tests (A, o), time must be taken into account
to index test conditions and observations, and to rea-
son about them accordingly. Although the characteri-
zation of testing provided in this paper is sufficient for
many hypothetical reasoning tasks, other tasks require
a more sophisticated formalism where we characterize
test conditions as actions in situation calculus with
preconditions and postconditions. (Provan and Poole
[Provan and Poole, 1991]) and (Webber et al. [Webber
et al., 1990]) have emphasized the importance of includ-
ing treatment in the diagnostic process; treatments may
be similarly encoded as actions. In fact, some treat-
ments (such as replacing the battery in an electronic
device) play a dual role as treatment and test.

Test selection traditionally involves utility measures
such as time, cost, and information gain (e.g. deKleer
and Williams [de Kleer and Williams, 1987]). Planning
also plays a role in test design [Webber et al., 1990].
There are at least two distinct objectives of planning in
the diagnostic setting. One is to achieve some state of
the world, as for example planning a suitable sequence
of steps in order to insert a measuring probe in some
device, or more globally planning a sequence of tests
and treatments to ascertain and eradicate undesirable
system behaviour. The other objective is to achieve a
suitable state of knowledge, for example taking a per-
son’s temperature in order to know whether she has a
fever, or more globally, planning a sequence of tests and
treatments to reach a state of knowledge where only
one hypothesis remains or where a particular hypothe-
sis has been eliminated. These two planning objectives
are quite different. Both may be modeled in the situa-
tion calculus [McCarthy and Hayes, 1969], but the lat-
ter requires formalization in an epistemic logic, along
the lines of [Moore, 1985]. We are currently investigat-
ing the extension of the propositional logic formalism
of this paper to a situation calculus planning formalism
for these and other related problems in hypothetical
reasoning.
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