From Control of the Physical World by Intelligent Systems, Papers from the 1994 AAAI Fall Symposium, B. Kuipers, ed.,

New Orleans, LA, November, 1994.

A Logical Approach to High-Level Robot Programming
— A Progress Report*

Yves Lespérance, Hector J. Levesque, Fangzhen Lin,
Daniel Marcu, Raymond Reiter, and Richard B. Scherl
Department of Computer Science
University of Toronto
Toronto, ON, M5S 1A4 Canada

{lesperan hector,fl,marcu,reiter,scherl } @ai.toronto.edu

Abstract

This paper describes a novel approach to high-level
robot programming based on a highly developed logi-
cal theory of action. The user provides a specification
of the robot’s basic actions (their preconditions and
effects on the environment) as well as of relevant as-
pects of the environment, in an extended version of the
situation calculus. He can then specify robot behav-
iors in terms of these actions in a programming lan-
guage that allows references to world conditions (e.g.
if 3e¢(PoP_cAN(c) A ON_TABLE(c)) then PICK_UP(c)).
The programs can be executed to drive the robot. The
interpreter automatically maintains the world model
required to execute programs based on the specifica-
tion. The theoretical framework includes a solution to
the frame problem and is very general — it handles
dynamic and incompletely known worlds, as well as
perception actions. Given this kind of domain spec-
ification, it is also possible to support more sophis-
ticated reasoning, such as task planning at run-time.
The specification can also be used to prove the robot
control programs correct. A simple mail delivery ap-
plication is used to present the approach. Ongoing
work on implementing the approach and handling out-
standing problems, such as modeling noisy sensors, is
also described.

Introduction and Motivation

Virtually all current research in robotics concerns
basic-level tasks like sensory processing, path planning,
manipulator design and control, reactive agents, arti-
ficial insects, etc. In contrast, our ongoing research
project in cognitive robotics is concerned with the the-
ory and implementation of agents that reason, act
and perceive in changing, incompletely known, unpre-
dictable environments. Such agents must have higher
level cognitive functions that involve reasoning, for ex-
ample, about goals, actions, when to perceive and what

*This research received financial support from the In-
formation Technology Research Center (Ontario, Canada),
the Institute for Robotics and Intelligent Systems
(Canada), and the Natural Science and Engineering Re-
search Council (Canada). Levesque and Reiter are fellows
of the Canadian Institute for Advanced Research.

to look for, the cognitive states of other agents, collabo-
rative task execution, etc. In short, our concern is with
integrating reasoning, perception and action within a
uniform theoretical and implementation framework.

Our objective in this paper is to provide something
of a progress report for this enterprise, and to demon-
strate that, far from being the dead horse that some
robotics researchers claim for logic and symbolic Al,
ours is an extremely fruitful approach to the design
and implementation of autonomous agents. The trick,
on which earlier attempts at using logic for controlling
robots foundered, is to get the technical foundations
right. This paper outlines what we take to be appro-
priate foundations for a theory of action, and what
consequences this has for robotics.

Logic and the Situation Calculus

The situation calculus is enjoying a new respectability
these days, partly because its expressiveness is much
richer than had been commonly believed (Gelfond, Lif-
schitz, & Rabinov 1991; Pinto 1994), partly because it
has been found very useful for precisely characterizing
the strengths and limitations of various general the-
ories of actions (Lifschitz 1987). For both these rea-
sons, we have grounded all our theorizing about cog-
nitive robotics within the situation calculus. As we
shall show in the remainder of this paper, this formal-
ism admits very natural extensions to accommodate
knowledge and perception, descriptions of complex be-
haviors, procedural control, etc. Moreover, it does so
without sacrificing any of the clarity and logical preci-
sion which makes it the language of choice for theoret-
ical analysis.

The Frame Problem

Despite much wishful thinking within the AT commu-
nity, the frame problem will not go away. Our approach
to cognitive robotics relies on a recent solution to this
problem, one with particularly attractive theoretical
and computational properties.

Perception and Knowledge

Perceptual actions — see whether the door is open — are
distinguished from ordinary ones — pick up the block
— in that they influence an agent’s state of knowledge
about the world. This means that the right story about
perception must provide an account of an agent’s epis-
temic state, and how that is affected by perceptual ac-
tions. One of the nicer features of the situation calculus
is that i1t leads quite naturally to an appropriate for-
malization of agent knowledge. Not surprisingly, per-
ception contributes its own peculiarities to the frame
problem. Later in this paper, we describe a suitable
generalization of the earlier solution for ordinary ac-
tions to accommodate perception.

Complex Actions and Robot Control

Our results on the frame problem and the associated
formal accounts of ordinary actions, knowledge and
perceptual actions, apply only to primitive, determin-
istic actions. But the behavioral repertoire of a robot
must include complex actions, for example the action
of clearing off a table, defined as something like “While
there is an object on the table, pick it up, then place
it on the floor”. This action is defined in terms of the
primitive actions “pick up an object” and “put an ob-
ject on the floor”, using iteration and sequence. As we
shall see, it is possible to define complex actions like
this within the situation calculus. The result will be
GOLOG, a novel logic programming language suitable
for declaratively defining complex behaviors, but also
capable of “executing” such actions. GOLOG is our
candidate programming language for high-level robot
control.

Integrating Reasoning, Action and
Perception

By putting together the above results on the frame
problem, perception and knowledge and complex ac-
tions, we obtain a unified theory combining these ele-
ments. We are now well positioned to investigate rela-
tionships that hold among reasoning, action and per-
ception. These include the following kinds of tasks: (i)
Planning to acquire knowledge, e.g. finding out Mary’s
telephone number. (ii) Introspection vs. perception for
acquiring information. (iii) Goal driven perception:
when to perceive, and what to look for.

Cognitive Robotics: How Are We
Different?

Our approach to robotics is unabashedly neat. We be-
lieve that much of the brittleness of current Al systems
derives from a failure to provide a principled, theoret-
ical account of the task to be achieved. Accordingly,

'In this, we follow Kaelbling and Rosenschein (1990);
but they focus on using logic to synthesize reactive agents,
while we look at reasoning at run-time within user-specified
control programs.

we have adopted a firm methodological commitment
in our project: No implementation without a situation
calculus specification. We have surprised even our-
selves with how far we have been able to push this
idea. We now have specifications for various planning
tasks and their associated planning algorithms, theo-
ries for sensor noise and uncertainty, indexicals, agent
ability, STRIPS-like systems, time, etc. GOLOG, our
robot programming language, has a situation calculus
semantics. We have a functioning GOLOG interpreter,
and implementations of a few simple applications (for
the moment, in simulation mode only). Future plans
include trying these ideas out to control a mobile robot.

Outline of the Paper

A running example will be used throughout to illus-
trate our approach. It involves a mobile robot that
is to deliver letters and small parcels within an office
environment. We assume that the robot knows the
general layout of the environment and the locations of
peoples’ offices. It receives requests to pick up items
for delivery, say via electronic mail.

The next section covers the logical foundations of
our approach. Then, we describe the GOLOG pro-
gramming language. After that, we present our mail
delivery example in detail. Then, we discuss issues of
robot architecture and describe our experience so far
in implementing and experimenting with GOLOG. We
conclude by discussing topics for future research.

Logical Foundations

The Situation Calculus and the Frame
Problem

The situation calculus (following the presentation in
(Reiter 1991)) is a first-order language for represent-
ing dynamically changing worlds in which all of the
changes are the result of named actions performed by
some agent. Terms are used to represent states of the
world-i.e. situations. If o is an action and s a situ-
ation, the result of performing « in s is represented
by do(a,s). The constant Sy is used to denote the
initial situation. Relations whose truth values vary
from situation to situation, called fluents, are denoted
by predicate symbols taking a situation term as the
last argument. For example, ROBOT_CARRYING(p, $)
means that the robot is carrying package p in situa-
tion s. Functions whose denotations vary from situa-
tion to situation are called functional fluents. They are
denoted by function symbols with an extra argument
taking a situation term, as in POS(ROBOT, s), i.e., the
robot’s position in situation s.

It is assumed that the axiomatizer has provided for
each action a(Z), an action precondition aziom of the
form given in 1, where 7, (Z, s) is a formula specifying
the preconditions for action a(Z).

Action Precondition Axiom

Poss(a(Z), s) = mo(Z, s) (1)

An action precondition axiom for the action DROP_OFF
is given below.

Poss(DROP_OFF(pkg), s) =
ROBOT_CARRYING(pkg, s) A 9
POS(ROBOT, s) = (2)
POS(IN_BOX(RECIPIENT(pkg)), s)

This says that DROP_OFF is possible whenever the
robot is carrying the package and is positioned at the
recipient’s “in” mailbox.

Furthermore, it is assumed that the axiomatizer has
provided for each fluent F', two general effect axioms
of the form given in 3 and 4.

General Positive Effect Axiom for Fluent F
Poss(a,s) A v#(%,a,s) — F(Z do(a,s)) (3)
General Negative Effect Axiom for Fluent F
Poss(a,s) A vz (Z,a,s) — —F(Z, do(a,s)) 4)

Here 7} (%,a,s) is a formula describing under what
conditions doing the action a in situation s leads the
fluent F'(Z) to become true in the successor situation
do(a, s) and similarly vz (Z, a, s) is a formula describ-
ing the conditions under which performing action a in
situation s results in the fluent F'(Z) becoming false in
situation do(a, s).

For example, 5 is a positive effect axiom for the fluent
ROBOT_CARRYING.

Poss(a, s) A a = PICK_UP(package) 5
— ROBOT_CARRYING (package, do(a, s)) (3)

Sentence 6 is a negative effect axiom for

ROBOT_CARRYING.

Poss(a, s) A a = DROP_OFF(package) (6)
— - ROBOT_CARRYING(package, do(a, s))

Effect axioms provide the “causal laws” for the domain
of application.

Usually, the axiomatizer must also provide frame
azioms that specify when fluents remain unchanged.
The frame problem arises because the number of these
frame axioms in the general case is of the order of
2 x A x F, where A is the number of actions and
F the number of fluents.

The solution of the frame problem (Reiter 1991;
Pednault 1989; Schubert 1990; Haas 1987) rests on
a completeness assumption. This assumption is that
axioms 3 and 4 characterize all the conditions under
which action a can lead to a fluent F(&)’s becom-
ing true (respectively, false) in the successor situation.
Therefore, if action @ is possible and F'(#)’s truth value
changes from false to true as a result of doing a, then
7}'5 (Z, a, s) must be true and similarly for a change from
true to false. Additionally, unigue name axioms are
added for actions and situations.

Reiter (1991) shows how to derive a set of successor
state azxioms of the form given in 7 from the axioms

(positive and negative effect) and the completeness as-
sumption.
Successor State Axiom
Poss(a,s) — [F(#,do(a,s)) = (1)
v (F,a,5) V (F(Z,5) A 75 (T, a,5))]

Similar successor state axioms may be written for func-
tional fluents. A successor state axiom is needed for
each fluent F', and an action precondition axiom is
needed for each action a. Therefore only F + A ax-
ioms are needed.
From 5 and 6 the following successor state axiom for
ROBOT_CARRYING is obtained.
Poss(a, s) —
[ROBOT_CARRYING (package, do(a, s)) =
a = PICK_UP(package) V (8)
ROBOT_CARRYING(package, s) A
a # DROP_OFF(package)]

i.e., the robot is carrying a package if he has just
picked it up or if he was carrying it and did
not drop it off. Now note for example that if
ROBOT_CARRYING(P1, Sp), then it also follows (assum-
ing that Py # Py) that

ROBOT_CARRYING(P1, do(DROP_OFF(P2, Sp)).

This discussion has assumed that there are no
ramifications, i.e., sentences contributing indirect ef-
fects of actions. An example of such a sentence 1is
Vs(ON(z,y,s) — ~ON(y, z,s)). The assumption that
there are no state constraints in the axiomatization of
the domain will be made throughout this paper. In
(Lin & Reiter 1994c), the approach discussed in this
section is extended to work with state constraints by
compiling the effects of the state constraints into the
successor state axioms.

Perceptual Actions and Knowledge

To model the effects of perceptual actions, we must
come up with a suitable formalization of knowledge.
The approach we take is to adapt the standard
possible-world model of knowledge to the situation cal-
culus, as first done by Moore (1980). Informally, we
think of there being a binary accessibility relation over
situations, where a situation s’ is understood as be-
ing accessible from a situation s if as far as the agent
knows in situation s, he might be in situation s’. So
something is known in s if it is true in every s’ acces-
sible from s, and conversely something is not known if
it is false in some accessible situation.

To treat knowledge as a fluent, we introduce a binary
relation K(s',s), read as “s’ is accessible from s” and
treat it the same way we would any other fluent. In
other words, from the point of view of the situation
calculus, the last argument to K is the official situation
argument (expressing what is known in situation s),
and the first argument is just an auxiliary like the p in
ROBOT_CARRYING(p, s).2

?Note that using this convention means that the argu-
ments to K are reversed from their normal modal logic use.

We can now introduce the notation Knows(P,s)
(read as P is known in situation s) as an abbreviation
for a formula that uses K. For example

def

Knows(ORDERED _SHIPMENT (package,)

Vs'(K(s',s) — ORDERED_SHIPMENT (package, s’)).

Note that this notation supplies the appropriate situ-
ation argument to the fluent on expansion (and other
conventions are certainly possible). For the case of
equality literals the convention is to supply the situ-
ation argument to each non-variable argument of the
equality predicate. For example:
Knows(NUMBER(BILL) = NUMBER(Mary), s) =
Vs'(K(s',s) —
NUMBER(Bill, s') = NUMBER(MARY, s')).

This notation can be generalized inductively to ar-
bitrary formulas so that, for example
JzKnows(Jy[NEXTO(2,y) A “BROKEN(Yy)],) def
JaVs' (K(s',s) —
Jy[NEXTO(Z,y,s") A "BROKEN(y, s')]).

Turning now to knowledge-producing actions, there
are two sorts of actions to consider: actions whose ef-
fect is to make known the truth value of some formula,
and actions to make known the value of some term.
In the first case, we might imagine a SENSEp action
for a fluent P, such that after doing a SENSEp, the
truth value of P is known. We introduce the nota-
tion Kwhether(P, s) as an abbreviation for a formula
indicating that the truth value of a fluent P is known.

Kwhether(P, s) def Knows(P, s) V Knows(—P, s),

It will follow from our specification in the next sec-
tion that Kwhether(P, do(SENSEp, s)). In the second
case, we might imagine an action READ, for a term
7, such that after doing a READ,, the denotation of
7 is known. For this case, we introduce the notation
Kref(r, s) defined as follows:

Kref(r, s) def JzKnows(T = 2, 5)
where © does not appear in T.

It will follow from the specification developed in the
next section that Kref(r, do(READ;, s)). For simplic-
ity, we assume that each type of knowledge-producing
action is associated with a characteristic fluent or term
in this way.

Solving the Frame Problem for
Knowledge-Producing Actions

The approach being developed here rests on the spec-
ification of a successor state axiom for the K relation.
For all situations do(a, s), the K relation will be com-
pletely determined by the K relation at s and the ac-
tion a.

For non-knowledge-producing actions, such as
DROP _OFF(p), the specification (based on Moore (1980;
1985)) is as follows:

Poss(DROP_OFF(p), s) —
[K(s",do(DROP_OFF(p), s)) = (9)
3s' (K(s',s) A (s"” = do(DROP_OFF(p), s')))]

The idea here is that as far as the agent at world
s knows, he could be in any of the worlds s’
such that K(s',s). At do(DROP_OFF(p),s) as far as
the agent knows, he can be in any of the worlds
do(DROP_OFF(p), s’) for any s’ such that K(s',s). So
the only change in knowledge that occurs in moving
from s to do(DROP_OFF(p),s) is the knowledge that
the action DROP_OFF has been performed.

Now consider the simple case of a knowledge-
producing action SENSEp that determines whether
or not the fluent P is true (following Moore (1980;
1985)). In this case, we have:

Po0ss(SENSEp, s) —
[K(s",do(SENSEp, s)) = (10)
3s' (K(s',s) A (8" = do(SENSEPp, 5))
A (P(s) = P(s))]

Again, as far as the agent at world s knows, he
could be in any of the worlds s’ such that K(s,s).
At do(sENSEp, s) as far as the agent knows, he can
be in any of the worlds do(sENsEp,s’) for all s
such that K(s',s) and P(s) = P(s’). The idea
here is that in moving from s to do(SENSEp,s),
the agent not only knows that the action SENSEp
has been performed (as above), but also the truth
value of the predicate P. Observe that the succes-
sor state axiom for P guarantees that P is true at
do(SENSEp, s) iff P is true at s, and similarly for s
and do(SENSEp, s’'). Therefore, P has the same truth
value in all worlds s such that K(s”,do(SENSEp, s)),
and so Kwhether(P, do(SENSEp, s)) is true.

In the case of a READ, action that makes the deno-
tation of the term 7 known, P(s) = P(s’) is replaced
by 7(s) = 7(s’). Therefore, 7 has the same denotation
in all worlds s such that K(s”,do(READ;, s)), and so
Kref(r, do(READ,, s)) is true.

In general, there may be many knowledge-producing
actions. Associated with each knowledge-producing
action «; is a formula ¢;(s, s’). In the case of a SENSE
type of action, the formula is of the form Fi(s) =
F;(s"), where Fj is a fluent. In the case of a READ type
of action, the formula is of the form (7 (s) = 7 (s")),
where 7; is a situation-dependent term. Assume that
there are n knowledge-producing actions aq,...,a,
and therefore n associated formulas ¢1,...,¢,. The
form of the successor state axiom for K is then as fol-
lows:

Successor State Axiom for K

Vs, " (K(s",do(a,s)) =
[3s' (K(s',8) A (8" =do(a,s")) A
(a= 1) — p1) A

((a=an) — ¢a))])

The relation K at a particular situation do(a, s) is com-
pletely determined by the relation at s and the action
a.

Complex Actions and GOLOG

Actions in the situation calculus are primitive and de-
terminate. They are like primitive computer instruc-
tions (e.g. assignment). We need complex actions for
the same reason we need programs.

Complex actions could be treated as first class enti-
ties, but since the tests that appear in forms like if ¢
then §; else é5 involve formulas, this means that we
must reify fluents and formulas. Moreover, it is neces-
sary to axiomatize the correspondence between these
reified formulas and the actual situation calculus for-
mulas. This results in a much more complex theory.

Instead we treat complex action expressions as ab-
breviations for expressions in the situation calculus log-
ical language. They may thus be thought of as macros
that expand into the genuine logical expressions. This
is done by defining a predicate Do as in Do(§, s, s")
where § is a complex action expression. Do(8, s, s")
is intended to mean that the agent’s doing action 6 in
state s leads to a (not necessarily unique) state s’. The
inductive definition of Do includes the following cases:

e Do(a,s,s") def Poss(a,s) As' = do(a,s) — simple
actions

e Do([b1;62],5,5") def 3s"(Do(61, s, 8")ANDo(é2,5",s"))

— Ssequences

e Do([61]62],s,8") ef Do(61,s,8") V Do(8s,s,8") —

nondeterministic choice of actions

e Do(Ilz(8),s,s") def 3, Do($, s,s') — nondeterminis-
tic choice of parameters

Other cases handle tests (¢7), conditionals (if ¢ then
81 else é2), loops (while ¢ do 6 and for z : ¢(2) do
8), and recursive procedures.

This set of complex action expressions forms a pro-
gramming language that we call GOLOG (alGOl in
LOGic), which is suitable for high-level programming
of robots and software agents, as well as discrete event
simulation. GOLOG differs from ordinary program-
ming languages in that:

e it has a situation calculus semantics;

e its complex actions decompose into primitives that
in most cases refer to actions in the external world;

e executing a complex action may involve arbi-
trary first-order reasoning (e.g., executing while
Jp ROBOT_CARRYING(p) do DROP_OFF(p), requires
inferring whether 3p ROBOT_CARRYING(p) in the
current state) — the interpreter for this program-
ming language is a theorem prover.

GOLOG is designed as a compromise between clas-
sical planning and detailed programming. It is a high-
level nondeterministic language in which one can ex-
press schematic plans. These schemas give advice to
a robot about how to achieve certain effects; without
necessarily specifying in detail how to perform this ac-
tion. The details are to be figured out by the theorem
prover when the program is executed.

An Example

To use GOLOG to program the robot to accomplish
the mail delivery task, we first need to come up with
a specification of the application domain at some ap-
propriate level of abstraction. Suppose we take the
following as primitives actions:

GO_To(position),

PICK _UP(package),

DROP _OFF (package), and
SENSE_REQUESTS.

The GOLOG system will essentially treat these as ex-
ternal procedures. Obviously, one should choose ac-
tions that can be implemented on the robot’s architec-
ture. We model states of the robot and environment
using the following fluents:

ORDERED _SHIPMENT(package, s),
ROBOT_CARRYING(package, s), and
Pos(object, s).

We specify the preconditions of the PICK_UP action
with the following axiom:

Poss(PICK_UP(package), s) =
ORDERED _SHIPMENT (package, s) A (11)
POS(ROBOT, s) =
POS(OUT_BOX(SHIPPER(package)), s)

Thus, PICK_UP is possible when someone has ordered
the package to be shipped and the robot is positioned
at the shipper’s out-box. The precondition axiom for
DROP_OFF was given earlier (2). The actions Go_To
and SENSE_REQUESTS are assumed to be always possi-
ble.

The successor state axiom for the functional fluent
POS goes as follows:

Poss(a, s) — [Pos(z, do(a, s)) = pds =
(z = ROBOT V ROBOT_CARRYING(Z, 5))
A a = Go_To(pds)
V POs(z,s) = pos A (12)
((z # ROBOT A "ROBOT_CARRYING(Z, 5))
V Vpds'a # co_To(pds’))]

i.e., objects’ positions are unaffected by all actions
other than Go_To(pds), which results in the robot’s
being at pos with everything it is carrying. The succes-
sor state axiom for ROBOT_CARRYING was given earlier
(8). For the knowledge fluent K, we have:

Poss(a,s) — [K(s",do(a,s)) =
As' (K(s',s) A " =do(a,s') A
(¢ = SENSE_REQUESTS — (13)
Vp(ORDERED _SHIPMENT(p, §) =
ORDERED _SHIPMENT(p, s'))))]

i.e., SENSE_REQUESTS results in the robot knowing
what shipments have been ordered and the other ac-
tions have no effects on the robot’s knowledge other
than its knowing that they have been performed.
Which shipments are on order in a situation depends
not only on the robot’s actions but on what shipment
requests have been made (by other agents). The robot
will find out about shipment orders by sensing rather
than reasoning, so we do not need to provide a suc-
cessor state axiom for the fluent ORDERED _SHIPMENT.
Nevertheless, we include the following axiom:

Poss(a, s) —
[ORDERED _SHIPMENT (package, s) A
a # PICK_UP(package) —

ORDERED _SHIPMENT(package, do(a, s))]

(14)

This allows the robot to avoid resensing whether a
shipment that has not been picked up is still on or-
der. Our current implementation handles such speci-
fications. A completely general treatment of domains
with multiple agents and exogenous events is currently
under development.

Finally, we need a specification of the domain’s ini-
tial state, for example:

POS(ROBOT, Sp) = (5,4, 90°)
ORDERED _SHIPMENT(PACKAGE 1, .S))
SHIPPER(PACKAGE]) = YVES
RECIPIENT(PACKAGE]) = DANIEL (15)
POS(OUT_BOX(YVES), Sp) = (2,3,0)
POS(IN_BOX(DANIEL), Sp) = (9,5, 0)
ete.
Now that we have an axiomatization of the domain,
we can write GOLOG programs to control the robot
in terms of the primitives specified above, for example:

proc GRAB_ALL_LETTERS_FOR(r)
SENSE_REQUESTS;

for p : ORDERED_SHIPMENT(p) A RECIPIENT(p) = r do

GO_TO(POS(OUT_BOX(SHIPPER(p)))); PICK_UP(p)
end

proc SERVE(r)
GRAB_ALL_LETTERS_FOR(r);

if 3p(ROBOT_CARRYING(p) A RECIPIENT(p) = r) then

GO_TO(POS(IN_BOX(7)));
for p : ROBOT_CARRYING(p) ARECIPIENT(p) = r
do DROP_OFF(p)
end

proc CONTROTL_1
SENSE_REQUESTS;
while 3p ORDERED_SHIPMENT(p) do
II 7 [Ip(ORDERED _SHIPMENT(p) A
RECIPIENT(p) = r)?; SERVE(7)];
SENSE_REQUESTS
end

proc CONTROTL_2
SENSE_REQUESTS;
while 3p ORDERED_SHIPMENT(p) do
1T p [ORDERED _SHIPMENT(p)7;
GO_TO(POS(OUT_BOX(SHIPPER(D))));
PICK_UP(p);
GO_TO(POS(IN_BOX(RECIPIENT(p))));
DROP_OFF(p)];
SENSE_REQUESTS
end

Note the use of nondeterminism in all of the proce-
dures. cONTROL_1 and CONTROL_2 are simple exam-
ples of top-level procedures one might use to control
this event-driven robot.

In the above example, we assumed that going to a
given position was a primitive action. In most appli-
cations, the robot will not have complete knowledge of
its environment and will occasionally run into obsta-
cles it does not know about. Let us sketch how one
could use GOLOG to write a program to get the robot
around obstacles. Primitive actions that have a finer
granularity than above would be used, for example:

SENSE_POS — sense the current position

SENSE_PATH(from_pos,to_pos) — run a path planner
to find a path

FOLLOW _PATH(path) — follow path stopping when an
obstacle is encountered

ADD_OBSTACLE(pds) — update the robot’s map to in-
clude an obstacle

Using these primitives, a simple procedure to get the
robot around obstacles can be defined as follows:

proc GO_To(pds)

SENSE_POS;

SENSE_PATH(POS(ROBOT), pos);

I path[PATH_FROM _TO(path, POS(ROBOT), pds)?;

FOLLOW _PATH(path)];
SENSE_POS;
if POS(ROBOT) # pds then
ADD_OBSTACLE(POS(ROBOT)); GO_TO(pds)

end

This would obviously have to be extended to handle
cases where no path exists or the robot gets stuck, etc.
In the conclusion section, we discuss the problems of
noisy sensors and inaccurate effectors.

Architectural Issues
A central objective of our project is to ex-
plore the space of possible formalisms/design meth-
ods/architectures between high-level AT approaches to

1 USER)

Axioms for
actions and

GOLOG programs

the initial state
\ 4 y map updates
HIGH-LEVEL MAP
CONTROLLER map data
(written in GOLOG)
----------------------- map data
Y
GOLOG -
int t target positions
mterpreter > Path
. A A - path to target Planner
collision
avoidance -
parameters
+ *status reports
motion. . . .| ..
commands
Y y . . -sensor data
Low-level
controller
J
actions perception
4

(WORLD)

Figure 1: Proposed Architecture

reasoning about action, perception, and knowledge,
and the usual robot programming methods. Let us de-
scribe one proposal for a robot architecture that arose
out of our current efforts to implement a robot mail
delivery application. This should not be viewed as a
final answer to questions of robot architecture; differ-
ent applications will require different solutions. The
overall robot architecture is illustrated in figure 1. A
high-level controller programmed in GOLOG drives
the whole architecture. The user supplies the action
precondition and effects axioms, the specification of
the initial state, and the GOLOG program to control
the robot; the GOLOG interpreter executes this pro-
gram using the axioms to maintain the world model.
The high-level controller does not drive the platform
directly, but through a low-level reactive controller
that performs whatever reflex actions are needed in
the application, in our case, collision avoidance. This
frees the high-level controller from having to respond
in real-time to exceptional conditions. The high-level
controller maintains a map of the environment and
queries a separate path planning module to find out
how to get to target positions. It then sends the paths
to the low-level controller for execution. It also adjusts
the parameters of the collision avoidance circuits and

monitors the platform status as reported by the low-
level controller. The high-level controller is responsible
for getting the platform around obstacles. This might
involve examining the available sensor data and per-
haps performing additional sensing, determining the
nature of the obstacle, updating the map (temporar-
ily or permanently), reinvoking the path planner, and
sending the new path to the low-level controller for ex-
ecution. Diagnosing the type of obstacle encountered
could be handled by the controller itself or by a spe-
cialized module.

GOLOG’s nondeterminism presents some difficul-
ties for an architecture that is intended to oper-
ate in the real world as opposed to simulation. In
the absence of sensing acts, one can first completely
macroexpand the GOLOG program into a sequence
of basic actions that takes the initial state into a
final state, and then execute that sequence of ac-
tions. Technically, this amounts to attempting to prove
Azioms |= JsDo(program, Sg, s) and, if one is suc-
cessful, using answer extraction to obtain a binding
s = do(ay, . ..do(as,do(ay, Sp)) ...), and then execut-
ing the sequence aq,...,a,. With sensing though, this
is no longer generally possible because tests may de-
pend on information previously sensed; to be able to

evaluate the test, one must have actually performed the
sensing. One possibility would be to expand the pro-
gram until a sensing action is encountered, and at that
point, execute the expanded actions; afterwards, the
knowledge base would be updated with the information
acquired through sensing and the whole interpretation
process would start over. This appears to have two
problems: first, since under this interpretation regime,
sensing actions affect control flow in complex ways, it
is hard to understand what a program does and hard
to reason about the conditions under which it is cor-
rect; secondly, the expansion may get arbitrarily large
before any action is actually performed, which leads to
implementation problems. Instead, we adopt the fol-
lowing approach: in interpreting a non-deterministic
action, GOLOG arbitrarily picks an alternative and
tries to expand it until it reaches a primitive action; if
this process fails because a test turns out false, then
another alternative is tried; when a primitive action
is successfully reached, GOLOG commits to the alter-
native and starts executing it. Essentially, GOLOG is
expanding and executing actions one at a time, with a
little bit of lookahead with respect to tests. This seems
to retain the most useful aspects of non-determinism
for the type of applications envisioned, especially the
ability to leave it up to the interpreter to find an ob-
ject that satisfies a description and perform some ac-
tions upon it. This interpretation regime can be imple-
mented efficiently; the behavior generated by programs
is easily understood and is straightforward to specify
and prove correct.

GOLOG maintains a world model for the user. To
evaluate the tests that the program contains, it must
keep track of the effects of previous actions on world
conditions, as well as revise its world model to incorpo-
rate the information acquired through sensing. In pre-
vious work (Reiter 1991; Scherl & Levesque 1993), we
have proposed a method for reasoning about whether
a condition holds after a sequence of actions. It uses
a form of regression to reduce the given query to one
involving only the initial state; the resulting query can
then be handled with an ordinary atemporal theorem
proving method. The approach is more efficient than
plain theorem proving and is very general — it han-
dles incompletely known initial states as well as actions
with context-dependent effects. It has been proven
sound and complete. Regression can also be used to
incorporate the information acquired through sensing
into the world model: the information acquired is re-
gressed until it refers only to the initial state and the
result is added to the theory of the initial state.

One problem with the regression approach is that
its cost increases with the number of actions per-
formed. It is clear that in general, we need to
roll the agent’s knowledge forward in time as ac-
tions are performed. But as Lin and Reiter (1994a;
1994b) have shown, the progression of a knowledge
base (KB) need not be first-order representable. They

do however identify a useful special case where the pro-
gression of a KB is first-order representable and eas-
ily computable: KB’s where the state dependent sen-
tences consist of ground literals only and where the
actions have no context-dependent effects. Note that
the closed world assumption is not made, so the agent’s
knowledge may be incomplete.

Another problem with the regression approach is
that it does not handle exogenous actions; in such
cases, the interpreter does not know what sequence
of actions has occurred. Our current implementation
handles some of these cases by doing sensing when re-
gression cannot be performed (for instance, the fluent
ORDERED_SHIPMENT in the mail delivery example).
As mentioned earlier, we are working on a general ac-
count of exogenous actions.

Clearly, we should progress the KB whenever it is
possible to do so and use regression as a fall back
method. Work is under way to generalize the pro-
gression method. In some cases, it may be possible
to partition the KB and handle some fluents by regres-
sion and some by progression. One could also have
the agent strive to reduce its KB to the form required
for progression by performing appropriate sensing acts.
Finally, in some cases it may be necessary to be content
with an efficiently computable approximation to the
progression (i.e., something weaker than the strongest
postcondition of the KB for the action).

Our vision for the GOLOG architecture involves the
performance of a limited amount of task-level plan-
ning at run time. The user would provide a sketchy
plan and GOLOG would fill out the details, the out-
put of the planner being a complete GOLOG program.
We are working on planning methods that are appro-
priate for agents operating with incomplete knowledge.
Lespérance (1994) generalizes regression planning tech-
niques to synthesize plans that include sensing acts and
conditionals. Work is also under way to extend classi-
cal planners, both linear and nonlinear, to include con-
trol information (Lin 1994). Our experience has been
that the flexibility of the situation calculus is very use-
ful for doing this. Task planning could be triggered by
an explicit call in the user’s program to plan to achieve
a goal. It could also arise when the interpreter notices
that it does not know whether a condition tested by
the program holds (in which case, the planner must
find a way to achieve a knowledge goal). The plan-
ner could also be invoked upon the interpreter noticing
that something has gone awry in the execution of the
program, such as a precondition failing to hold; for this
to work, the user would have to provide information to
GOLOG as to what goal his program is intended to
achieve. We have yet to decide exactly how the re-
sponsibility for the program executing successfully, in-
cluding execution monitoring, exception handling, etc.,
should be split between the user and interpreter.

Implementation and Experimentation

A prototype GOLOG interpreter has been imple-
mented in Prolog and various applications have been
developed to test our ideas and explore architectural
issues. So far all of our experiments have been run in
simulation mode. The first involved a simple controller
for an elevator. Various treatments of sensing were
investigated. Our other experiments have involved a
mail delivery application along the lines of the example
presented. In one case, we interfaced the GOLOG sys-
tem with the Truckworld simulator (Nguyen, Hanks,
& Thomas 1994). A Truckworld domain model and
GOLOG domain axiomatization were developed, and
various GOLOG control programs for the robot were
written.

More recently, we have been working on a more re-
alistic version of the same application. The GOLOG
system has been interfaced to software developed
for the ARK robotics project (Jenkin et al. 1993;
Robinson & Jenkin 1994). The ARK software includes
a path planner, map maintenance facilities, a graphi-
cal user interface, and versions of a low-level reactive
controller of the type described in the previous sec-
tion for simulation, as well as for operation on plat-
forms such as the ARK-1 (based on a Cybermotion
K2A), RWI B12, and Nomad. The SENSE_PATH, FOL-
LOW _PATH, and ADD_OBSTACLE actions mentioned in
the example correspond to operations available in the
ARK software. Such operations can now be invoked
directly from GOLOG. Current work focuses on de-
veloping a simple but realistic sensor configuration for
the simulated robot, refining the domain axiomatiza-
tion and programming an interesting range of behav-
iors for the application in GOLOG, as well as extending
the current GOLOG interpreter with functions such as
knowledge base progression and automated handling
of queries by sensing and/or reasoning. We intend to
progress to non-simulated experiments on some of the
platforms mentioned above in the near future.

In addition to these robotics applications, we are also
investigating the use of GOLOG to program software
agents. These are autonomous entities that operate
in large software environments such as computer net-
works and operating systems and assist the user by
performing various tasks (Etzioni 1993). Sample tasks
include monitoring bulletin boards for interesting in-
formation and compressing files that have not been ac-
cessed for some time.

Conclusion

If one looks at the history of computer programming,
it is quite clear that early forms of programming were
based directly on features of the underlying hardware.
This is perhaps not too surprising, as the earliest pro-
grammers were either electrical engineers, or were sim-
ply forced to learn quite a bit about the (failure-prone)
machinery they had to work with. In many ways, robot
programming today is in a similar state. It remains

very tightly coupled to robotic hardware, and to a large
extent, is attempted only by individuals who are con-
versant with the hardware.

In this paper, we have argued for a very different
form of robot programming, based on a formal theory
of action and knowledge. In the long run, we expect
that this approach to robot programming will enjoy
much the same sort of advantages as those derived
from high-level computer languages. Ultimately, we
feel that it should be possible to fully control a robot
with minimal attention to the details of sensors and
effectors. This is certainly not the case today.

On the other hand, apart from the unreliability
and other deficiencies in the hardware platforms them-
selves, there are a number of difficult conceptual issues
that need to be resolved in our framework before it
becomes practical. Among them, we have:

sensor noise: The current theory of knowledge allows
us to model a sensor which acquires some value, for
example the distance to the wall, to within a certain
tolerance, say £20%. However, we cannot model the
fact that it might be much more likely that the value
is in the range 10-11 meters than in the range 11—
12 meters, say. To model this, we need to extend
the model of knowledge to incorporate (subjective)
probabilities. It does appear, however, that the sort
of techniques considered in (Bacchus et al. 1993)
are readily applicable. The same applies to effector
inaccuracy.

multiple agents, concurrency, and exogenous

actions: Our logical framework was first developed
for single agent domains. We still need to devise
a true account of exogenous actions performed by
others. One of the many issues this raises is con-
currency: how do we solve the frame problem for
concurrent actions, when the effect of two actions
done in parallel need not be predictable in general
from their individual effects? Another issue raised
is modeling the mental life of the other agents: how
does the state of knowledge of one agent, for exam-
ple, change as the result of an action performed by
another?

temporal reasoning and natural events: Related
to the issue of exogenous action is that of natural
events. We would like to be able to model situations
where change of some sort is taking place unrelated
to the direct action of agents, for example, a situ-
ation where water is flowing into a bathtub. This
requires allowing for situations that are more like
time intervals than time points, and for actions that
start and end the interval (Pinto 1994).

exception handling: The form of programming we
have been considering so far is most naturally viewed
as directed towards some goal or goals. But dur-
ing program execution, various exceptional situa-
tions might arise which also require handling. For
example, we may want to have a robot slow down

whenever a collision is imminent, or ring a warning
bell when approaching a blind corner. We would like
to develop ways of integrating this type of bottom-up
processing with normal top-down execution within

GOLOG.

robot-centered representations: The true primi-
tive actions available on robots are typically robot-
centered: more like “advance n centimeters” than
“go to absolute location I,” or like “grasp the object
ahead” rather than “pick up object z.” While both
sorts of actions are representable in the situation
calculus, the details of the relations between them
need to be worked out (see (Lespérance & Levesque

1994)).

ability: Once we consider complex actions which in-
clude non-determinism and conditions whose truth
values need to be determined perceptually, we also
need to be concerned with whether the agent will
have enough knowledge to execute the program,
whether he will be able to make whatever choices
are necessary (Levesque et al. 1994).

The topic of having the robot perform some run-time
planning was also mentioned in the section on architec-
tural issues. As far as we can tell, none of these pose
insurmountable problems, and all of them admit to in-
cremental solutions. In fact, we already have partial
solutions for many of them. How all of these will be
integrated in a full working robotic system, however,
still remains to be seen.

Acknowledgements

The initial version of the mail delivery application and
the interface between GOLOG and Truckworld were
implemented by Bill Millar. We have had many use-
ful discussions with participants in the ARK project,
especially Michael Jenkin and Piotr Jasiobedzki.

References

Bacchus, F.; Grove, A. J.; Halpern, J. Y.; and Koller,
D. 1993. Statistical foundations for default reason-
ing. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence, 563-563.
Chambéry, France: Morgan Kaufmann Publishing.

Etzioni, O. 1993. Intelligence without robots: A reply
to Brooks. AT Magazine 14(4):7-13.

Gelfond, M.; Lifschitz, V.; and Rabinov, A. 1991.
What are the limitations of the situation calculus? In
Working Notes, AAAI Spring Symposium on Logical
Formalization of Commonsense Reasoning, 59—69.

Haas, A. R. 1987. The case for domain-specific frame
axioms. In Brown, F., ed., The Frame Problem in
Artificial Intelligence: Proceedings of the 1987 Work-
shop, 343-348. Lawrence, KA: Morgan Kaufmann
Publishing.

Jenkin, M.; Milios, E.; Jasiobedzki, P.; Bains, N.; and
Tran, K. 1993. Global navigation for ARK. In Pro-

10

ceedings of the 1993 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2165-2171.

Kaelbling, L. P., and Rosenschein, S. J. 1990. Ac-
tion and planning in embedded agents. Robotics and
Autonomous Systems 6:35-48.

Lespérance, Y., and Levesque, H. J. 1994. Indexical
knowledge and robot action — a logical account. To
appear in Artificial Intelligence.

Lespérance, Y. 1994. An approach to the synthe-
sis of plans with perception acts and conditionals.
In Gagné, D., ed., Working Notes of the Canadian
Workshop on Distributed Artificial Intelligence.

Levesque, H. J.; Lespérance, Y.; Lin, F.; and Scherl,
R. B. 1994. Knowledge, action, and ability in the
situation calculus. In preparation.

Lifschitz, V. 1987. On the semantics of strips. In
Georgeff, M. P., and Lansky, A. L., eds., Reasoning
about Actions and Plans, 1-9. Los Altos, CA: Morgan
Kaufmann Publishing.

Lin, F., and Reiter, R. 1994a. How to progress a
database (and why) 1. logical foundations. In Doyle,
J.; Sandewall, E.; and Torasso, P., eds., Principles of
Knowledge Representation and Reasoning: Proceed-
ings of the Fourth International Conference, 425-436.
Bonn, Germany: Morgan Kaufmann Publishing.

Lin, F., and Reiter, R. 1994b. How to progress a
database II: The STRIPS connection. Technical re-
port, Department of Computer Science, University of
Toronto. To appear.

Lin, F., and Reiter, R. 1994c. State constraints re-
visited. To appear in the Journal of Logic and Com-
putation, Special Issue on Action and Processes.

Lin, F. 1994. On goal ordering in planning: Formal-
izing control information in the situation calculus. In
preparation.

Moore, R. C. 1980. Reasoning about knowledge and
action. Technical Report 191, AT Center, SRI Inter-
national, Menlo Park, CA.

Moore, R. C. 1985. A formal theory of knowledge and
action. In Hobbs, J. R., and Moore, R. C., eds., For-
mal Theories of the Common Sense World. Norwood,

NJ: Ablex Publishing. 319-358.

Nguyen, D.; Hanks, S.; and Thomas, C. 1994. The
Truckworld manual. Technical report, Department
of Computer Science and Engineering, University of
Washington. Forthcoming.

Pednault, E. P. D. 1989. ADL: Exploring the mid-
dle ground between strips and the situation calculus.
In Brachman, R.; Levesque, H.; and Reiter, R., eds.,
Proceedings of the First International Conference on
Principles of Knowledge Representation and Reason-
ing, 324-332. Toronto, ON: Morgan Kaufmann Pub-
lishing.

Pinto, J. A. 1994. Temporal Reasoning in the Sit-
uation Calculus. Ph.D. Dissertation, Department of

Computer Science, University of Toronto, Toronto,

ON. Available as technical report KRR-TR-94-1.

Reiter, R. 1991. The frame problem in the situation
calculus: A simple solution (sometimes) and a com-
pleteness result for goal regression. In Lifschitz, V.,
ed., Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy.
San Diego, CA: Academic Press. 359-380.

Robinson, M., and Jenkin, M. 1994. Reactive low
level control of the ARK. In Proceedings, Vision In-
terface '94, 41-47.

Scherl, R. B., and Levesque, H. J. 1993. The frame
problem and knowledge-producing actions. In Pro-
ceedings of the Fleventh National Conference on Ar-
tificial Intelligence, 689-695. Washington, DC: AAAI
Press/The MIT Press.

Schubert, L. 1990. Monotonic solution to the frame
problem in the situation calculus: An efficient method
for worlds with fully specified actions. In Kyberg, H.;
Loui, R.; and Carlson, G., eds., Knowledge Represen-
tation and Defeasible Reasoning. Boston, MA: Kluwer
Academic Press. 23-67.

11

