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Abstract

We illustrate the utility of the situation calculus for representing complex scheduling
tasks by axiomatizing a deadline driven scheduler in the language. The actions arising
in such a scheduler are examples of natural actions, as investigated in the concurrent
situation calculus by Pinto [10], and later by Reiter [13]. Because the deadline driven
scheduler is sequential, we must first suitably modify Reiter’s approach to natural
actions so it applies to the sequential case. Having done this, we then show how
the situation calculus axiomatization of this scheduler yields a very simple simulator in
GOLOG, a situation calculus-based logic programming language for dynamic domains.

1 Introduction

The situation calculus (McCarthy [7]) has long been the formalism of choice in artificial in-
telligence for theoretical investigations of properties of actions, but until very recently, it has
not been taken seriously as a specification or implementation language for practical problems
in dynamic world modeling. One of the few exceptions to this is the situation calculus-based
programming language GOLOG (Levesque et al. [3]), and some of its applications to robotics
(Lespérance et al. [2]) and agent programming (Marcu et al. [6]). The purpose of this pa-
per is to explore the usefulness of the situation calculus for a new class of applications in
dynamic modeling, namely temporal scheduling problems. Such problems differ from those
“traditionally” considered in the literature on the situation calculus; they involve time, and
the actions taken by the scheduler are natural actions (Pinto [10], Reiter [13]), which are
actions that must occur at their predetermined times, provided no earlier actions occur to
prevent them. Specifically, in this paper, we axiomatize the deadline driven scheduler of
Liu and Layland [5] in the situation calculus. Because this scheduler is sequential, we must
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first suitably modify Reiter’s concurrent approach to natural actions so it applies to the
sequential case. Having done this, we show how the situation calculus axiomatization of this
scheduler yields a very simple simulator in GOLOG.

2 An Informal Introduction to the Situation Calculus'

2.1 Intuitive Ontology for the Situation Calculus

The situation calculus (McCarthy [7]) is a first order language (with, as we shall see later,
some second order features) specifically designed for representing dynamically changing
worlds. All changes to the world are the result of named actions. A possible world his-
tory, which is simply a sequence of actions, is represented by a first order term called a
stluation. The constant Sy is used to denote the initial situation, namely that situation in
which no actions have yet occurred. There is a distinguished binary function symbol do;
do(a, s) denotes the successor situation to s resulting from performing the action a. Actions
may be parameterized. For example, put(z,y) might stand for the action of putting object
x on object y, in which case do(put(A, B),s) denotes that situation resulting from placing
A on B when the world is in situation s. Notice that in the situation calculus, actions are
denoted by first order terms, and situations (world histories) are also first order terms. For
example, do(putdown(A), do(walk(L), do(pickup(A), Sy))) is a situation denoting the world
history consisting of the sequence of actions [pickup(A), walk(L), putdown(A)]. Notice that
the sequence of actions in a history, in the order in which they occur, is obtained from a
situation term by reading off the actions from right to left.

Relations whose truth values vary from situation to situation, called relational fluents,
are denoted by predicate symbols taking a situation term as their last argument. For ex-
ample, is_carrying(robot, p, s), meaning that a robot is carrying package p in situation s, is
a relational fluent. Functions whose denotations vary from situation to situation are called
functional fluents. They are denoted by function symbols with an extra argument taking a
situation term, as in pos(robot, s), i.e., the robot’s position in situation s.

2.2 Axiomatizing Actions and their Effects in the Situation Cal-
culus

Actions have preconditions — necessary and sufficient conditions that characterize when the

action is physically possible. For example, in a blocks world, we might have:?

Poss(pickup(z),s) =
[(Vz)=holding(z, s)] A nexto(x,s) A —heavy(z).

World dynamics are specified by effect arioms. These describe the effects of a given
action on the fluents — the causal laws of the domain. For example, a robot dropping a

!This section is borrowed from Levesque et al [3].
?In formulas, free variables are considered to be universally prenex quantified. This convention will be
followed throughout the paper.



fragile object causes it to be broken:
Poss(drop(r,z),s) A fragile(z,s) D broken(x, do(drop(r,x),s)). (1)
Exploding a bomb next to an object causes it to be broken:
Poss(explode(b), s) A nexto(b, x,s) D broken(z, do(explode(b), s)). (2)
A robot repairing an object causes it to be not broken:

Poss(repair(r,z),s) D —broken(z,do(repair(r,x),s)). (3)

2.3 The Frame Problem

As first observed by McCarthy and Hayes [8], axiomatizing a dynamic world requires more
than just action precondition and effect axioms. So-called frame azioms are also necessary.
These specify the action invariants of the domain, namely, those fluents which remain un-
affected by a given action. For example, a robot dropping things does not affect an object’s
color:

Poss(drop(r,z),s) A color(y, c,s) D color(y, ¢,do(drop(r, ), s)).

A frame axiom describing how the fluent broken remains unaffected:

Poss(drop(r,z),s) A ~broken(y,s) A [y # = V = fragile(y, s)]
D —broken(y, do(drop(r, ), s)).

The problem introduced by the need for such frame axioms is that we can expect a vast
number of them. Only relatively few actions will affect a given fluent’s value; all other actions
leave the fluent invariant. For example, an object’s color is not changed by picking things
up, opening a door, going for a walk, electing a new prime minister of Canada, etc. This is
problematic for the axiomatizer — she must think of all these axioms — and it is problematic
for the theorem proving system — it must reason efficiently in the presence of so many frame
axioms.

2.3.1 What Counts as a Solution to the Frame Problem?

Suppose the person responsible for axiomatizing an application domain has specified all of
the causal laws for the world being axiomatized. More precisely, he has succeeded in writing
down all the effect axioms, i.e. for each fluent I’ and each action A which can cause F’s
truth value to change, axioms of the form

Poss(A,s) N R(Z,s) D (0)F(Z,do(A,s)).

Here, R is a first order formula specifying the contextual conditions under which the action
A will have its specified effect on F'.

A solution to the frame problem is a systematic procedure for generating, from these
effect axioms, all the frame axioms. If possible, we also want a parsimonious representation
for these frame axioms (because in their simplest form, there are too many of them).
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2.4 A Simple Solution to the Frame Problem

By appealing to earlier ideas of Haas [1], Schubert [14] and Pednault [9], Reiter [11] proposes
a simple solution to the frame problem, which we illustrate with an example. Suppose that
(1), (2), and (3) are all the effect axioms for the fluent broken, i.e. they describe all the
ways that an action can change the truth value of broken. We can rewrite (1) and (2) in the
logically equivalent form:

Poss(a,s) A [(Ir){a = drop(r,z) A fragile(z,s)}
V(3b){a = explode(b) N nexto(b, z,s)}] (4)
D broken(z,do(a,s)).

Similarly, consider the negative effect axiom (3) for broken; this can be rewritten as:
Poss(a,s) A (3r)a = repair(r,z) D —broken(z,do(a, s)). (5)

In general, we can assume that the eflect axioms for a fluent F' have been written in the
forms:

Poss(a,s) A v (Z,a,8) D F(Z,do(a,s)), (6)
Poss(a,s) N vz (Z,a,s) DO —F(Z, do(a,s)). (7)

Here v} (7, a, s) is a formula describing under what conditions doing the action a in situation
s leads the fluent F' to become true in the successor situation do(a, s); similarly vz (%, a, s)
describes the conditions under which performing a in s results in F' becoming false in the
next situation. The solution to the frame problem of [11] rests on a completeness assumption,
which is that the causal axioms (6) and (7) characterize all the conditions under which action
a can lead to a fluent F'(¥) becoming true (respectively, false) in the successor situation. In
other words, axioms (6) and (7) describe all the causal laws affecting the truth values of the
fluent F. Therefore, if action a is possible and F(Z)’s truth value changes from false to true
as a result of doing a, then 41 (7, a,s) must be true and similarly for a change from true to
false. Reiter [11] shows how to derive a successor state aziom of the following form from the
causal axioms (6) and (7) and the completeness assumption.

Successor State Axiom
Poss(a,s) D [F(Z,do(a,s)) =~vE(ZF,a,s) V (F(Z,3) A ~vi(Z,a,3))]

This single axiom embodies a solution to the frame problem. Notice that this axiom univer-
sally quantifies over actions a. In fact, this is one way in which a parsimonious solution to
the frame problem is obtained.
Applying this to our example about breaking things, we obtain the following successor
state axiom:
Poss(a,s) D [broken(z,do(a,s)) =

(3r){a = drop(r,z) A fragile(z,s)} Vv

(3b){a = explode(b) A nexto(b,z,s)} V

broken(z,s) A =(3r)a = repair(r, z)].

It is important to note that the above solution to the frame problem presupposes that
there are no state constraints, as for example in the blocks world constraint: (Vs).on(z,y,s) D
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—on(y, z,s). Such constraints sometimes implicitly contain effect axioms (so-called indirect
effects), in which case the above completeness assumption will not be true. The assump-
tion that there are no state constraints in the axiomatization of the domain will be made
throughout this paper. In [4], the approach discussed in this section is extended to deal with
state constraints, by compiling their effects into the successor state axioms.

3 Formal Preliminaries

3.1 The Language of the Situation Calculus

The language L of the situation calculus is many-sorted, second-order, with equality. We
assume the following sorts: situation for situations, action for actions, and object for every-
thing else. We also assume the following domain independent predicates and functions:

o A constant Sy of sort situation denoting the initial situation.

e A binary function do - do(a, s) denotes the situation resulting from performing action
a in situation s.

e A binary predicate Poss - Poss(a,s) means that action a is possible (executable) in
situation s.

e A binary predicate < over situations. We shall follow convention, and write < in infix
form. By s < s’ we mean that s’ can be obtained from s by a sequence of executable
actions. As usual, s < s’ will be a shorthand for s < s’V s = g'.

We assume a finite number of relational fluents, which are predicate symbols of arity object™ x
situation, n > 0, and are domain dependent. Similarly, we assume a finite number of
functional fluents, which are function symbols of arity object”™ x situation — object. Finally,
we need a finite number of function symbols of arity object™ — action, n > 0, for actions,
and a finite number of function symbols of arity object™ — object, n > 0.

3.2 Axiomatizing the Situation Calculus

We shall need the following foundational axioms (Lin and Reiter [4], Reiter [12]) for the
situation calculus:

So # do(a, s), (8)

do(ay,s1) = do(az, s2) D (a1 = az A s1 = s2), (9)
(VP)[P(S0) A (Ya,s)(P(s) D P(do(a,s))) D (Vs)P(s)], (10)
-5 < Sy, (11)

s < do(a,s') = (Poss(a,s') N s < s). (12)

Intuitively, the first two axioms are unique names assumptions. They stipulate that two
situations are identical iff they consist of identical sequences of actions. The third axiom



is second order induction. It amounts to the domain closure axiom that every situation is
obtained from the initial one by repeatedly applying the function do.® The last two axioms
define < inductively.

Notice the similarity between these axioms and the Peano foundational axioms for number
theory. However, unlike Peano arithmetic which has a unique successor function, we have a
class of successor functions here represented by the function do.

3.3 Extending the Situation Calculus to Include Time

Time plays no role in the situation calculus as described above in Section 2. Actions occur
in sequence, but there is no way to express that a particular action occurs at a given time in
such a sequence, nor are any properties of the time line captured in the foundational axioms
of Section 3.2. Accordingly, we begin by expanding the situation calculus ontology beyond
that of Section 3.1, to include the following additional sorts, function and predicate symbols
for the purposes of adding a temporal component to the situation calculus:

1. As before, there is a sort action of actions. We now view all actions as instantaneous,
and actions will take a parameter (in the last argument position) denoting the time
of the action’s occurrence. So, start_meeting(person,t) might be the instantaneous
action of person starting a meeting at time £. In this paper, we do not need to treat
actions with durations. For a description of how to do this using instantaneous actions,
see Pinto [10].

2. A sort time ranging over the reals.

3. We need a function symbol time: time(a) denotes the time of the action a. So, we will
have axioms like time(start_meeting(person,t)) = t.

4. We need a function symbol start: start(s) denotes the start time of the situation s.

5. Finally, there are predicate symbols natural, legal and Intp, to be described later.

3.4 Foundational Axioms for the Sequential, Temporal Situation
Calculus

We now augment the foundational axioms (8) - (12) for the atemporal situation calculus by
three new axioms for accommodating time. The time of an action occurrence is the value
of that action’s temporal argument. So, for each action function A(Z, 1) of our situation
calculus language, we need an axiom:

time( A(Z,1)) = 1. (13)
The start time of a situation is determined by:

start(do(a,s)) = time(a). (14)

3For a detailed discussion of the use of induction in the situation calculus, see (Reiter [12]).



We require the following global constraint:
Poss(a,s) D start(s) < start(do(a, s)). (15)
Axioms (8) - (15) are the foundational axioms for the sequential temporal situation cal-
culus.
3.5 Action Precondition Axioms

As in Section 2.2, we shall require action precondition axioms, but we must take into account
that the global constraint (15) is a qualification constraint that “compiles” (see Lin and Reiter
[4]) into assertions about Poss of the form:

Poss(A(Z,1),s) D start(s) <,

for each action A. In view of the results in Lin and Reiter [4] on the qualification problem,
this means that in the temporal situation calculus, action precondition axioms will all have
the form:

Poss(A(Z,1),s) = start(s) <t AN ®(Z,t,s). (16)
Here, ®(Z,1,s) is any first order formula with free variables among Z,¢ and s whose only

term of sort situation is s.

3.6 Axiomatizing an Application Domain in the Situation Cal-
culus

In general, a particular domain of application will be specified by the union of the following
sets of axioms:

1. Action precondition axioms, one for each primitive action.
2. Successor state axioms, one for each fluent.

3. Unique names axioms for the primitive actions. These specify that distinct names for
actions denote distinct actions. See Section 5.2 below for an example.

4. Axioms describing the initial situation — what is true initially, before any actions have
occurred. This is any finite set of sentences which mention only the situation term Sy,
or which are situation independent.

5. The domain independent foundational axioms for the situation calculus.



4 Natural Actions*

Our focus in this paper is on natural exogenous actions (Pinto [10]), namely those which occur
in response to known laws of physics, like a ball bouncing at times determined by Newtonian
equations of motion. These laws of physics will be embodied in the action precondition
axioms, in the style of Pinto’s PhD thesis [10], but in a somewhat more natural form:

Poss(bounce(t),s) =t > start(s) Nis_falling(s) A
height(s) + vel(s)[t — start(s)] — 1/2g[t — start(s)]* = 0.

Here, height(s) and wvel(s) are the height and velocity, respectively, of the ball at the start
of situation s.

Notice that the truth of Poss(bounce(t),s) does not mean that the bounce action must
occur in situation s, or even that the bounce action must eventually occur. Tt simply means
that the bounce is physically possible at time ¢ in situation s; a catch action occurring before
t should prevent the bounce action.

We introduce a predicate symbol natural, with which the axiomatizer can declare suitable
actions to be natural, as, for example, natural(bounce(t)).

4.1 Natural Actions and Legal Situations

In the space of all possible situations, we want to single out the legal situations, i.e. those
which respect the property of natural actions that they must occur at their predicted times,
provided no earlier actions (natural or agent initiated) prevent them from occurring. We
capture these legal situations with the following definition:

legal(s) = So < s A
(Ya,d',s").natural(a’) A Poss(a’,s") Ndo(a,s’) < s D (17)
time(a) < time(a’).

In other words, the legal situations s are those with the property that every action a in
the sequence of actions s is possible (Sy < s), and no possible natural action @’ can have
its occurrence time precede that of a (otherwise, a’ should have occurred in the sequence s
instead of a, because natural actions must occur at their predicted times when possible).
The following provides a more intuitive, inductive characterization of the legal situations.

Lemma 1 The foundational axioms imply thatl the definition (17) is equivalent to the con-
jJunction of the following lwo sentences:

legal(So).
legal(do(a,s)) = legal(s) A Poss(a,s) A
(Va').natural(a’) A Poss(a’,s) D time(a) < time(d’).

4This section is an adaptation, to the temporal sequential situation calculus, of the treatment of natural
actions of (Reiter [13] for the concurrent situation calculus.



Proof:

=

Straightforward.

=

Use the induction axiom (10), with the definition (17) as induction hypothesis.

a
4.2 Least Natural Time Points
The following definition plays a central role in theorizing about natural actions:
Intp(s,t) = (Ja)[natural(a) A Poss(a,s) A time(a) = 1] A (18)

(Va')[natural(a’) A Poss(a’,s) D time(a’) > t].

Intuitively, the least natural time point is the earliest time during situation s at which a
natural action can occur.

Remark 1 (18) entails the following:
Intp(s,t) Allntp(s,t') Dt =1

So, when it exists, the least natural time point is unique. The least natural time point need
not exist, for example, when (Va).natural(a) = (3z,t)a = B(z,t), where x ranges over the
nonzero natural numbers, and Poss(B(x,t),s) =t = start(s) + 1/x.

The following is an easy consequence of Lemma 1 and the definition (18) of Intp.

Lemma 2 Qur situation calculus axioms entail the following:
natural(a) A legal(do(a, s)) D Intp(s, time(a)).

In the case of a domain closure assumption on natural actions, we can give an explicit
formula for Intp(s,t). So, suppose we have the following domain closure axiom:

natural(a) = (37,t)a = Ay (Z,4) V-~V (32, t)a = A,(Z,1), (19)
together with the associated declarations (13):

time(A(2,1)) =1,
: (20)

time(A,(Z,1)) = 1.

Lemma 3 (18), (19) and (20) entail the following:

Intp(s,t) = [(IZF)Poss(A1(Z,t),s)V - (Elz)Poss( w(Z,1),8)] A
(VZ,t")[Poss(As(Z,1'),s) D t' >N AN (VZ ) [Poss(An(Z,1),8) DU > .



4.3 The Natural World Condition

This is the sentence:
(Va)natural(a). (NWC)
The Natural World Condition restricts the domain of discourse to natural actions only.

Theorem 1 Our situation calculus axioms entail the following:
NWC D [legal(do(a, s)) = legal(s) A Poss(a,s) A Intp(s,time(a))].

Proof:

=

Assume NWC, and, for fixed a and s, that legal(do(a,s)). By Lemma 1, we conclude that
legal(s) A Poss(a, s), so it remains to prove that Intp(s,time(a)). This follows from NWC
and Lemma 2.

=

Assume NWC, and, for fixed a and s, that legal(s) A Poss(a,s) A Intp(s,time(a)). We
must prove that legal(do(a,s)), which, by Lemma 1, is equivalent to proving legal(s) A
Poss(a,s) A (Va').natural(a’) A Poss(a’,s) D time(a) < time(a’). Since legal(s) A Poss(a, s)
by hypothesis, we must prove (Va').natural(a’) A Poss(a’,s) D time(a) < time(a’). This
follows from the assumption Intp(s,time(a)) and the definition of Intp.

O

This theorem characterizes the legal situations in the case that all actions are natural; the
next legal situations are obtained by extending the current one by any possible action whose
time of occurrence is the least natural time point of the current situation. It is this theorem
that provides the foundations for our formal account of a deadline driven scheduler, and
of its implementation. We do so by axiomatizing the scheduler’s actions in the situation
calculus, and by treating all these actions as natural. In that way, the possible schedules
become the same as the legal situations, for which Theorem 1 provides a characterization.
We now turn to this scheduler.

5 A Deadline Driven Scheduler

5.1 Informal Description

A typical example of a scheduling algorithm for real time systems is the deadline driven
scheduler of Liu and Layland [5], first proposed in 1973. It supposes that we are given a
finite number of tasks, all time-sharing a single processor. Each task p; requires a certain
amount of processor time C; for its completion, and has a deadline T; > C; for its completion.
This completion deadline is understood as follows: Assuming that everything starts out at
time 0, then task p; must occupy, in total, C; time units of the processor, and must terminate
this execution before T;. At time T, it again is eligible to occupy a total of C; time units
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on the processor, and it must terminate this execution before time 2 x T;. Etc. So each
task p; must periodically (with period T;) consume a total of C; time units on the processor,
and must do so before time n; x T;, where n; is the current period for p;. While a task p is
running on the processor (and is therefore consuming a portion of its running time '), it
may become preempted by a highest priority task p’. When this happens, p is suspended
from its execution, and p’ is given a chance to run on the processor. If, at some later time
(at which perhaps a third task p” is occupying the processor), p’s priority becomes highest
again, then it will resume the execution from which it was preempted by p’. These priorities
are dynamically determined as follows: A task, whether it is running on the processor or not,
has a highest priority at time ¢ if it still needs running time on the processor for its current
period, and its completion deadline (which will be of the form n* T for some positive integer
n) is earlier than that of all the other tasks still needing time on the processor at time ¢.
To better understand the behavior of the scheduler, consider the following diagram:

ready
resurr
execute SUSpended
dead
execu
termin suspend
running

Figure 1: Scheduling Activities

Assume there are four states for each task: dead, ready, suspended and running. Initially
all tasks are in their ready states. Among all the tasks in the ready or suspended state, the
scheduler chooses the most urgent (according to the dynamic priority assignment described
above) to execute, changing that task’s state to running. During the execution of task p,
if another task p’ becomes most urgent, then p’ preempts p. In other words, the scheduler
suspends the execution of p, and lets p’ execute on the processor. The state of p changes
from running to suspended, and that of p’ from ready or suspended to running. When a
task finishes its execution for its current period (by consuming its required processor time
C for this period), it is put into a dead state by the action terminate. To put such a dead
task into its ready state when its next period arrives, the scheduler performs the action
resurrect.

The requirement for this scheduling problem is that each task should obtain enough
processor time to finish its execution before its deadline. Obviously, there are situations in
which the scheduler won’t be able to meet this scheduling requirement for all its tasks, for
example, when two tasks have the same deadline of 2, and request the same execution time
of 2.

[5] established a necessary and sufficient condition for the deadline driven scheduler to
meet its requirement when it serves multiple periodic tasks, i.e. when the task is to be
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executed repeatedly, and the requests for execution are made at regular periodic intervals,
as described above.
Example 1 Suppose there are two periodic tasks p; and p,, with request periods Ty = 3
time units and 7, = 12 | and running times C; = 2 and Cy = 4.

Figure 2 is the execution diagram for these two periodic tasks according to this deadline
driven strategy.

0 1 2 3 4 5 6 7 8 9 10 11 12
- N T B
T1=3,C1=2
P H E BN
T2=12,C2=4

Figure 2: Execution Diagram of Example 1

1. Initially, p; and py are both in a ready state.

2. At time 0, py is selected to run since p; is currently more urgent than p, (p;’s current
deadline is 3, and py’s is 12). This corresponds to the following scheduler action at
time 0: execute(p;,0).

3. At time 2, p; is terminated, and then p; was chosen to run. This corresponds to the
sequence of scheduler actions: terminate(p,2), execute(ps,2).

4. At time 3, p; gets ready again, and since p; hasn’t yet finished its execution, and p,
is still currently more urgent than p, (pi’s current deadline is 6, and py’s is 12), py
preempts py. This corresponds to the following actions:
resurrect(py, 3), suspend(pz, 3), execute(py, 3).

5. At time 5, p; terminates again, so the execution of p, is resumed:
terminate(py, 5), execute(ps,5).

6. At time 6, as at time 3, p; gets ready again, and preempts py:
resurrect(p, 6), suspend(py, 6), execute(ps, 6).

7. At time 8, similar to time 5, p; terminates and the execution of p; resumes again:
terminate(p, 8), execute(ps, 8).

8. At time 9, p gets ready again, but this time it is not currently more urgent than p, (p;’s
current deadline is 12, the same as that of p;). So p, won’t be preempted; it continues
running untill it is terminated. The only action that takes place is: resurrect(p;,9).
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9. At time 10, p; terminates, and p; is selected to run: terminate(ps, 10), execute(p, 10).
10. Finally, at time 12, p, gets ready again, but p; will continue running: resurrect(pz, 12).

11. The entire schedule will now repeat periodically.

Notice that p; does not continuously occupy the processor for the amount of run time it
requests; it has been preempted twice by p; until it at last achieves 4 time units of run time
before its first request period.

In this example, there is no processor idle time. In other words, the processor is always
busy with executing tasks. But this is not always true; our second example does allow
processor idle time.

Example 2 We have three periodic tasks py, p; and ps, with request periods Ty = 4, Ty, = 6,
T5 = 12 and running times of Cy =2, Cy =1, U5 = 2.

Figure 3 shows the execution diagram for this example.

- I

T1=4,Cl=2

P2 [ ] [ ]
T2=6,C2=1

P3: - -
T3=12,C3=2

Figure 3: Execution Diagram of Example 2
Notice that in this diagram there will be processor idle time from time 10 to 12.
The following theorem provides necessary and sufficient conditions for the scheduling al-

gorithm to meet the requirement that every task completes its running time before the end
of its current period:

Theorem (Liu/Layland [5]) For a given set of m tasks, the deadline driven scheduling
algorithm is feasible if and only if ,

(C1)T1) 4+ (Co/Ty) 4 oo 4 (Co ) To) < 1

where C; is the run time of task 1, and T; is ils request period.

T;, C; are reasonably assumed to be integers (say multiples of machine cycles).

5.2 Axiomatization in the Situation Calculus

Actions
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e resurrect(p,t): At time ¢, resurrect process p from its dead state to a ready state.

e suspend(p,t): At time ¢, suspend process p from its running state on the processor to
a suspended state.

o cxecute(p,t): At time {, execute process p on the processor, putting it into its running
state.

o terminate(p,t): At time [, terminate the execution of process p on the processor,
putting it into its dead state.

Functions and Fluents

e T'(p), a positive integer, denotes the period of process p.
e C(p), a positive integer, denotes the running time of process p.

o TotExTime(p,s) denotes the total amount of time, up to the beginning of situation
s, that process p has been in a running state.

o dead(p,s): In situation s, process p is in a dead state, meaning that it is not waiting
to be served by the processor.

e ready(p,s): In situation s, process p is ready and is waiting to be served by the pro-
CEssOT.

e suspended(p,s): In situation s, process p is suspended, and is waiting for the processor
to resume its execution of p.

e running(p,s): In situation s, process p is running on the processor.

In addition to the foundational axioms for the temporal, sequential situation calculus (Sec-
tions 3.2 and 3.4), we have the following scheduler specific axioms:

Miscellaneous Axioms
o (Vp)T(p)>C(p) >0

e There are finitely many (n) processes, denoted by Pi,..., P,, and these are all the
processes: (Vp).p=P, V..Vp=P,.

Unique Names Axioms for Actions
o resurrect(p,t) # suspend(p’,t')
o resurrect(p,t) # execute(p', 1)
o resurrect(p,t) # terminate(p’,1')

o suspend(p,t) # execute(p', 1)
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e suspend(p,t) # terminate(p,1')

o crecule(p,t) # terminate(p’,t')

o resurrect(p,t) = resurrect(p’,t') Dp=p' At =1

o suspend(p,t) = suspend(p/,t') Dp=p ANt =1

o cxecute(p,t) = execute(p/,t') Dp=p ANt =1

e terminate(p,t) = terminate(p',t') Dp=p ANt =1
The Natural World Condition

(Va)natural(a)

Domain Closure for Actions

(Va)(3p,t)[a = resurrect(p,t) V a = suspend(p,t) V a = execute(p,t) V a = terminate(p,t)]

Abbreviation 1 NextResurrectTime(p, s) = ([start(s)/T(p)| +1)*T(p)
Abbreviation 2

MoreUrgent(p,p', s) = [ready(p, s) V suspended(p, s) V running(p, s)] A
NextResurrectTime(p,s) < Next ResurrectTime(p', s).

Abbreviation 3 RequestedExTime(p, s) i ([start(s)/T(p)| + 1)« C(p)

Abbreviation 4 RemainingFExTime(p, s) S RequestedExTime(p,s)— Tot ExTime(p, s)

Abbreviation 5 CompletionTime(p, s) = start(s) + RemainingExTime(p, s)

Action Precondition Axioms

Poss(resurrect(p,t),s) = dead(p, s) A

[t = NextResurrectTime(p,s)V 1 = start(s) A \_%J = ﬁ]

Poss(suspend(p,t),s) = running(p,s) A (3p")MoreUrgent(p', p,s) At = start(s)

Poss(execute(p,t),s) = (ready(p, s) V suspended(p, s))
A=(Ip YMoreUrgent(p',p,s) A =(3p')running(p’, s) ANt = start(s)

Poss(terminate(p,t),s) = running(p,s) At = CompletionTime(p, s)

Successor State Axioms

Poss(a,s) D [TotExTime(p,do(a,s)) =
if running(p,s) then TotExTime(p,s)+ time(a) — start(s)
else Tot ExTime(p, s)]
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Poss(a,s) D [ready(p,do(a,s)) =
(3t)a = resurrect(p,t) V ready(p, s) A =(3t)a = execute(p,t)]

Poss(a,s) D [suspended(p, do(a, s)) =
(3t)a = suspend(p,t) V suspended(p, s) A —(3t)a = execute(p,t)]

Poss(a,s) D [running(p, do(a,s)) = (It)a = execute(p,t) V
running(p, s) A =(3t)[a = terminate(p,t) V a = suspend(p,t)]]

Poss(a,s) D [dead(p,do(a,s)) =
(3t)a = terminate(p,t)V dead(p, s) A =(It)a = resurrect(p,t)]

Initial Situation

ready(p, So), —dead(p, So), —suspended(p, So),
—running(p, So), TotExTime(p, Sy) = 0.

Because we have domain closure on actions, Lemma 3 gives us the following characteri-
zation of the least natural time points:

B Poss(resurrect(p,t),s)V Poss(suspend(p,t), s
intp(s,t) = (3p) ( \/Pos(s(execute((p,t)),s))\/ Poss((terminafe(p,)t),)s) )
Poss(resurrect(p,t'),s) Dt' > 1)\
Poss(suspend(p,t'),s) D t' > 1)\
Poss(execute(p,t'),s) D' > t)A
Poss(terminate(p,t'),s) D t' > 1)

(
A (Vp,t') E
(

5.3 What 1s a Schedule?

Intuitively, a schedule of length n is a sequence of n ground actions chosen from the sched-
uler’s action repertoire resurrect(p,t), suspend(p,t), ..., with the property that each action
of the sequence is among the earliest actions which can occur at their predetermined times,
according to their precondition axioms, i.e. each action in the schedule occurs at the least
natural time point of its situation. In other words, the finite schedules are precisely the legal
situations, as defined in Section 4.1.5

6 The Scheduler: An Implementation in GOLOG

6.1 GOLOG

GOLOG (Levesque et al [3]) is a situation calculus-based logic programming language for
defining complex actions using a repertoire of user specified primitive actions. GOLOG
provides the usual kinds of programming language control structures (sequence, iteration,

5Strictly speaking, the question of what counts as a schedule is more subtle than we have let on here.
It is by no means obvious that a given legal situation, which is a finite sequence of actions, can always be
extended to a longer schedule. This property is necessary, because the deadline driven scheduler computes
forever. In fact, this can be done, and we have a proof of this, but the proof is not entirely trivial.
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conditionals, recursive procedures) as well as three flavours of nondeterministic choice. Here
we briefly describe the GOLOG control structures. For a precise description of their seman-
tics, see [3].

1. Sequence: a; 3. Do action «, followed by action (3.

2. Test actions: p? Test the truth value of expression p in the current situation.

3. While loops: while p do o endWhile.
4. Conditionals: if p then o else (3.
5. Nondeterministic choice of actions: o | 3. Do a or do 3.

6. Nondeterministic choice of arguments: (m x)a. Nondeterministically pick a value for
x, and for that value of z, do the action a.

7. Nondelerministic repetilion: o. Do « a nondeterministic number of times.
8. Procedures, including recursion.

The semantics of a GOLOG program is defined (see [3]) by macro-expansion, using a
ternary relation Do. Do(program,s,s’) is an abbreviation for a situation calculus formula
whose intuitive meaning is that s’ is one of the situations reached by evaluating the GOLOG
program, beginning in situation s. This means that to execute program, one must prove,
using the situation calculus axiomatization of some background domain, the situation cal-
culus formula (3s)Do(program, Sy, s). Any binding for s obtained by a constructive proof
of this sentence is an execution trace, in terms of the primitive actions, of the program.

6.2 GOLOG Description of the Scheduler

The primitive actions of a GOLOG program must be axiomatized in the situation calculus
using successor state and action precondition axioms, just as we have done for the deadline
driven scheduler. Accordingly, it is natural to implement the scheduler in GOLOG; the
result is a simulator for the scheduler, as we now describe. Recall that we have identified the
finite schedules with the legal situations. The following GOLOG program computes exactly
the legal situations of length n:

proc schedule(n)
n =07 (7 )[lntp()?; (7 p)[resurrect(p,t) | terminate(p,t) | execute(p,t) |
suspend(p,t)]]; schedule(n — 1)
endProc

schedule is a recursive procedure which simulates the first n actions of the deadline driven
scheduler. Tt would be “called”, for some given n, say n = 100, by constructing a proof
of the sentence (3s)Do(schedule(100), Sy, s), using as premises the axioms for the situation
calculus, and the axioms of Section 5.2 above. Any binding for s obtained from this proof
will be a legal situation, and hence a schedule.
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In defining the procedure schedule, we are appealing to Theorem 1, which characterizes
the legal situations when all actions are natural (as they are for the scheduler). Specifically,
when n > 0, schedule first determines the least natural time point of the current situation:
(m t)[Intp(t)?;---. It then nondeterministically determines a primitive action whose action
preconditions allow it to execute at this least natural time point:

(7 p)[resurrect(p,t) | terminate(p,t) | execute(p,t) | suspend(p,t)].
Then it calls itself recursively to determine the next primitive action to perform, etc.

Notice that test conditions (e.g. [ntp(t)? in the above) in GOLOG programs suppress
their situation arguments. These situation arguments are restored during evaluation of the
program; the restored value of this argument is the current situation, i.e. the situation
that the simulated system would be in, at the point at which the test condition is being
evaluated.® This is the standard account of test conditions in conventional programming
languages; test conditions are always evaluated relative to the machine state at the time of
the evaluation.

6.3 A GOLOG Interpreter

We appeal to a Quintus Prolog implementation of a GOLOG interpreter, which we present
in full (Figure 4) in the event that the reader wishes to experiment with it”. The do predicate
here takes 3 arguments: a GOLOG action expression, and terms standing for the initial and
final situations. Normally, a query will be of the form do(e,s0,S), so that an answer will be
a binding for the final situation S. In this implementation, a legal GOLOG action expression
e is one of the following:

o [er, ...,e,], sequence.

e 7(p), where p is a condition (see below).

e ¢, # ey, nondeterministic choice of e; or e,.
o if(p,er,ey), conditional.

e star(e), nondeterministic repetition.

e while(p,e), iteration.

e pi(v,e), nondeterministic assignment, where v is an atom (standing for a GOLOG
variable) and e is a GOLOG action expression that uses v.

e a, where a is the name of a user-declared primitive action or defined procedure (see

below).

A condition p in the above is either a fluent or an expression of the form and(p,,p;),
or(p1,p2), neg(p), or some(v,p), where v is an atom and p is a condition using v. In eval-
uating these conditions, the interpreter uses negation as failure to handle neg, and consults
the user-supplied holds predicate to determine which fluents are true.

6See [3] for the formal semantics of test conditions.
"This interpreter, and indeed much of the material for this section, is taken from Levesque et al [3]. The
reader who wishes a better understanding of GOLOG is advised to consult this reference.

18



Figure 4: A Golog interpreter in Prolog

:— op(950, xfy, [#]). /# Nondeterministic action choice.*/

do([],S,S). /* This clause and the next are for sequences */
do([E|L],S,S1) :- do(E,S,S2), do(L,S2,S1).

do(?7(P),s,S) :- holds(P,S).

do(E1 # E2,S,51) :- do(E1,S,S1) : do(E2,S,S1).

do(if (P,E1,E2),S,S1) :- do([?(P),E1] # [?(neg(P)),E2],S,S1).
do(star(E),S,S1) :- do([] # [E,star(E)],S,S1).

do(while(P,E),S,S1):- do([star([?(P),E]),?(neg(P))],S,S1).
do(pi(V,E),S,S1) :- sub(V,_,E,E1), do(E1,S,S1).

do(E,S,S1) :- proc(E,E1), do(E1,S,S1).

do(E,S,do(E,S)) :- primitive_action(E), poss(E,S).

/* sub(Name,New,Terml,Term2): Term2 is Terml with Name replaced by New. */

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.

sub(X1,X2,T1,T2) :- \+ var(T1), T1

sub(X1,X2,T1,T2) :- \+ T1 = X1, T1
T2 =..[F|L2].

sub_list(X1,X2,[]1,[1).

sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

X1, T2 = X2.
..[FIL1], sub_list(X1,X2,L1,L2),

holds(and(P1,P2),S) :- holds(P1,S), holds(P2,S).
holds(or(P1,P2),S) :- holds(P1,S); holds(P2,S).
holds(neg(P),S) :- \+ holds(P,S). /#* Negation by failure */
holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

In this implementation, a GOLOG application (like the scheduler, below) is expected to
have the following parts:

1. a collection of clauses of the form primitive action(act), declaring each primitive
action.

2. a collection of clauses of the form proc(name,body) declaring each defined procedure
(which can be recursive). The body here can be any legal GOLOG action expression.

3. a collection of clauses which together define the predicate poss(act,situation) over
every primitive action and situation.

4. a collection of clauses which together define the predicate holds(fluent,situation)
over every fluent and situation. Normally, this is done in two parts:
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(a) a collection of clauses which are situation independent, or which mention only the
initial situation s0. These serve to describe the initial world situation.
(b) a collection of clauses defining holds (fluent,do(act, situation)) for every fluent.

For each fluent, this amounts to writing its successor state axiom.

6.4 Simulation of the Deadline Driven Scheduler in GOLOG

The following clauses provide the GOLOG description of the previously specified deadline
driven scheduler:.

/* Primitive control actions */
primitive_action(resurrect(p(N),T)).
primitive_action(suspend(p(N),T)).
primitive_action(execute(p(N),T)).
primitive_action(terminate(p(N),T)).

/* Preconditions for Primitive Actions */

poss(resurrect (p(N),T),S) :-holds(dead(p(N)),S),
(nextresurrecttime(p(N),S,T);start(S,T),t(p(N),Tn), T mod Tn =:= 0).

poss(suspend(p(N),T),S) :- holds(running(p(N)),S),
holds(moreurgent (p(J) ,p(N)),S), start(S,T).

poss(execute(p(N),T),S) :- holds(or(ready(p(N)),suspended(p(N))),S),

\+ holds(some(j1,moreurgent(p(j1),p(N))),S),

\+ holds(some(ji,running(p(j1))),S), start(S,T).
poss(terminate(p(N),T),S) :- holds(running(p(N)),S),completiontime(p(N),S,T).
/* Successor state axioms for primitive actions. */
holds(totextime(Time,p(N)), do(E,S)) :- (holds(running(p(N)),S),

holds(totextime(T1,p(N)),S),time(E,T2),start(S,T3),

Time is T14T2-T3);holds(totextime(Time,p(N)),S).

holds(ready(p(N)), do(E,S)) :- E=resurrect(p(N),_);
holds(ready(p(N)),S), \+ E=execute(p(N),_).

holds(suspended(p(N)), do(E,S)) :- E=suspend(p(N),_);
holds(suspended(p(N)),S), \+ E=execute(p(N),_).
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holds(running(p(N)), do(E,S)) :- E=execute(p(N),_);
holds(running(p(N)),S), \+ E=terminate(p(N),_), \+ E=suspend(p(N),_).

holds(dead(p(N)), do(E,S)) :- E=terminate(p(N),_);
holds(dead(p(N)),S), \+ E=resurrect(p(N),_).

/* Definitions */

holds(moreurgent (p(N1),p(N2)),S) :-
holds(or(ready(p(N1)),or(running(p(N1)) ,suspended(p(N1)))),S),
nextresurrecttime(p(N1),S,T1) ,nextresurrecttime(p(N2),S,T2),T1<T2.

holds(1lntp(T),S):-
(poss(resurrect(p(_),T),S) ;poss(suspend(p(_),T),S);
poss(execute(p(_),T),S) ;poss(terminate(p(_),T),S)),
\+ (poss(resurrect(p(_),T1),S), T1 < T),
\+ (poss(suspend(p(_),T1),8), T1 < T),
\+ (poss(execute(p(_),T1),3),T1 < T),
\+ (poss(terminate(p(_),T1),S),T1 < T).

completiontime(p(N),S,T):- remainingextime(p(N),S,T1),start(S,T2), T is T1+T2.
remainingextime(p(N),S,T):-
holds(totextime(Time,p(N)),S), t(p(N),Ti), c(p(N),Ci),

start(S,T1), T is (integer(T1/Ti)+1)*Ci-Time.

nextresurrecttime(p(N),S,T) :- start(S,T1), t(p(N),Tn),
T is (integer(T1/Tn)+1)*Tn.

holds(X=Y,S) :- X=:=Y.

start(s0,0).
start(do(E,S),T):-time(E,T).

time(resurrect(_,T),T).
time(execute(_,T),T).
time(suspend(_,T),T).
time(terminate(_,T),T).

/* The GOLOG scheduling procedure. schedule(N) simulates the first N
gPp
primitive actions of the scheduler. */

proc(schedule(N), [?(N=0)#[pi(t, [?(Intp(t)),pi(3,
resurrect (p(i),t)#terminate(p(i),t)#execute(p(i),t)#suspend(p(i),t))]),
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schedule(N-1)]11).

Now we define the periodic tasks of the first example in Section 5.1 and the initial
situation.

------------------------- Begin example l--=====-----------oooooooooo—oomoe
/* Definition of the request period of each task */

t(p(1),3).
t(p(2),12).

/* Definition of the run time of each task. */

c(p(1),2).
c(p(2),4).

/* Initial situation */

holds(ready(p(1)),s0).
holds(ready(p(2)),s0).
holds(totextime(0,p(1)),s0).
holds(totextime(0,p(2)),s0).

Next, we provide a query to the interpreter for example 1, and the result of its execution.
| ?- do(schedule(17),s0,S).

S = do(resurrect(p(2),12) ,do(execute(p(1),10),do(terminate(p(2),10),
do(resurrect(p(1),9),do(execute(p(2),8),do(terminate(p(1),8),
do(execute(p(1),6) ,do(suspend(p(2),6) ,do(resurrect(p(1),6),
do(execute(p(2),5) ,do(terminate(p(1),5),do(execute(p(1),3),
do(suspend(p(2),3) ,do(resurrect(p(1),3),do(execute(p(2),2),
do(terminate(p(1),2),do(execute(p(1),0),s0)))))))))))))))))

This output corresponds to the schedule of Example 1 of Section 5.1.
The periodic tasks of the second example in Section 5.1 and the initial situation are as
follows:

/* Definition of the request period of each task */
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t(p(1),4).
t(p(2),6).
t(p(3),12).

/* Definition of the run time of each task. */

c(p(1),2).
c(p(2),1).
c(p(3),2).

/* Initial situation */

holds(ready(p(1)),s0).
holds(ready(p(2)),s0).
holds(ready(p(3)),s0).
holds(totextime(0,p(1)),s0).
holds(totextime(0,p(2)),s0).
holds(totextime(0,p(3)),s0).

We also show a query for this example and its execution result, which corresponds to the
execution diagram of Section 5.1.

| ?- do(schedule(20),s0,9).

S = do(resurrect(p(2),12),do(resurrect(p(3),12),do(resurrect(p(1),12),
do(terminate(p(1),10) ,do(execute(p(1),8),do(terminate(p(3),8),
do(resurrect(p(1),8),do(execute(p(3),7),do(terminate(p(2),7),
do(execute(p(2),6) ,do(terminate(p(1),6),do(resurrect(p(2),6),
do(execute(p(1),4) ,do(suspend(p(3),4) ,do(resurrect(p(1),4),
do(execute(p(3),3) ,do(terminate(p(2),3),do(execute(p(2),2),
do(terminate(p(1),2),do(execute(p(1),0),s0))))))))))))))))))))

7 Discussion

We have found that the situation calculus, augmented with a temporal component, is well
suited for representing the above complex deadline driven scheduling task. An added benefit
of formalizing such tasks in the situation calculus is that one can prove properties of them.
While we do not include it in this paper — it is a very long and complicated proof — we have
constructed a proof of the Liu/Layland Theorem of Section 5.1 from the axioms of Section
5.2. This is not the first such axiomatic proof of this result; using the duration calculus — a
propositional temporal logic — Zheng and Zhou [15] have also provided such a proof.

The advantage of the situation calculus in such real time settings, apart from its greater
generality — it is first order — is that it provides the foundations for GOLOG, and hence
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the task specification leads simply, and naturally to a GOLOG implementation. This is
a major advantage for the purposes of the Cognitive Robotics Project at the University
of Toronto, whose long term goal is to use GOLOG for high level control of dynamical
systems, including robotic behaviors [2]. Since real time control is an essential component of
such modeling tasks, the incorporation of schedulers into the systems’ GOLOG behavioral
descriptions is essential, and we are encouraged in this by our experience with the above
deadline driven scheduler.
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