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Abstract

Coordination of agent activities is a key problem in multia-
gent systems. Set in a larger decision theoretic context, the
existence of coordination problemsleadsto difficulty in eval-
uating the utility of a situation. This in turn makes defin-
ing optimal policies for sequential decision processes prob-
lematic. We propose a method for solving sequential multi-
agent decision problems by allowing agentsto reason explic-
itly about specific coordination mechanisms. We definean ex-
tension of value iteration in which the system’s state space
is augmented with the state of the coordination mechanism
adopted, allowing agents to reason about the short and long
term prospects for coordination, the long term consequences
of (mis)coordination, and make decisionsto engage or avoid
coordination problems based on expected value. We also il-
lustrate the benefits of mechanism generalization.

1 Introduction

The problem of coordination in multiagent systems (MASs)
isof crucial importancein Al and game theory. Given acol-
lection of agents charged with the achievement of variousob-
jectives, often the optimal course of action for one agent de-
pends on that sel ected by another. If the agentsfail to coordi-
natethe outcome could be disastrous. Consider, for instance,
two agents that each want to cross a bridge that can support
the weight of only one of them. If they both start to cross,
the bridgewill collapse; coordination requiresthat they each
“agree’” which one of them should go first.

Coordination problems often arise in fully cooperative
MASs, in which each agent shares the same utility function
or common interests. Thistype of system is appropriate for
modeling a team of agents acting on behalf of a single indi-
vidua (each tries to maximize that individual’s utility). In
the bridge example above, it may be that neither agent cares
whether it crosses first, so long as they both cross and pur-
suetheir objectives. In such asetting, coordination problems
generaly arise in situations where there is some flexibility
regarding the “roles’ into which agents fall. If the abilities
of the agents are such that it makes little difference if agent
a1 pursuesobjectiveol and a2 pursues o2, or vice versa, the
agentsrun therisk of both pursuing the same obj ective—with
consequences ranging fromsimpledelay ingoa achievement
to more drastic outcomes—unless they coordinate. Thisis-
sue arisesin many team activitiesranging fromlogisticsplan-
ning to robotic soccer.

An obvious way to ensure coordination is to have the
agents decision policies constructed by a central controller
(thus defining each agent’s role) and imparted to the agents.
Thisis often infeasible. Approaches to dealing with “inde-
pendent” decision makersinclude: (a) the design of conven-
tions or social laws that restrict agents to selecting coordi-
nated actions [9, 15]; (b) alowing communication among
agents before action selection [16]; and (c) the use of learn-
ing methods, whereby agents learn to coordinate through re-
peated interaction [5, 6, 8, 11].

Unfortunately, none of these approaches explicitly con-
sidersthe impact of coordination problemsin the context of
larger sequential decision problems. If the agentsruntherisk
of miscoordination at a certain state in a decision problem,
how should thisimpact their policy decisionsat other states?
Specifically, what isthelong-term (or sequential) val ue of be-
ing in a state at which coordination is a potential problem?
Such avauation is needed in order for agentsto make ratio-
nal decisionsabout whether to even put themselvesin the po-
sition to face a coordination problem.

Unfortunately, there are no clear-cut definitionsof sequen-
tial optimality for multiagent sequentia decision processes
in the genera case. Most theoretical work on coordina
tion problems assumes that a ssimple repeated game is be-
ing played and studies methods for attaining equilibriumin
the stage game. In this paper, we argue that optimal sequen-
tial decision making requires that agents be able to reason
about the specific coordination mechanisms they adopt to
resolve coordination problems. With this ability, they can
make optimal decisions by considering the tradeoffs involv-
ing probability of (eventual) coordination, the consequences
of miscoordination, the benefits of coordination, the alter-
native courses of action available, and so on. We develop
a dynamic programming algorithm for computing optimal
policies that accounts not only for the underlying system
state, but also the state of the coordination mechanism be-
ing adopted. Specifically, we show how the underlying state
space can be expanded minimally and dynamicaly to ac-
count for specific coordination protocol being used.

With this definition of state value given a coordination
mechanism, one can tackle the problem of defining good co-
ordination mechanisms for specific decision problems that
offer good expected value (we but will make a few remarks



near theend of the paper on thispoint). Our framework there-
fore provides a useful tool for the design of conventional,
communication and learning protocols[15].

We focus on fully cooperative MASs, assuming that a
common coordination mechanism can be put in place, and
that agents have no reason to deliberate strategically. How-
ever, we expect most of our conclusionsto apply mutatismu-
tandisto more general settings. We introduce Markov deci-
sion processes (MDPs) and multiagent MDPs (MMDPs) in
Section 2. We define coordination problems and discuss sev-
eral coordination mechanisms in Section 3. In Section 4 we
describe the impact of coordination problems on sequential
optimality criteria, show how to expand the state space of the
MMDP to reason about the state of the specific mechanisms
or protocols used by the agents to coordinate, and develop
aversion of value iteration that incorporates such consider-
ations. We illustrate the ability of generalization techniques
to enhance the power of coordination protocolsin Section 5,
and conclude with some remarks on future research direc-
tionsin Section 6.

2 Multiagent MDPs
2.1 Markov Decision Processes

We begin by presenting standard (single-agent) Markov deci-
sion processes (MDPs) and describe their multiagent exten-
sionsbelow (see[3, 13] for further detailson MDPs). A fully
observable MDP M = (S, A, Pr, R) comprises the follow-
ing components. S isafinite set of states of the system be-
ing controlled. The agent has a finite set of actions .4 with
which to influence the system state. Dynamics are given by
Pr: § x A x 8 — [0,1]; here Pr(s;, a, s;) denotes the
probability that action a, when executed at state s;, inducesa
transitionto s;. R : S — R isareal-valued, bounded reward
function. The processisfully observable: though agents can-
not predict with certainty the state that will be reached when
an action is taken, they can observe the state precisely once
it isreached.

An agent finding itsdlf in state s* at timet must choose an
action a'. Theexpected value of acourseof action = depends
on the specific objectives. A finite horizon decision problem

with horizon 7" measuresthevalue of = asE(ZtT:0 R(s")|m)
(where expectation is taken w.r.t. Pr). A discounted, infinite
horizon problem measures value as F(> -, 3 R(s")|~).
Here 0 < 5 < 1 isadiscount factor that ensures the infi-
nite sum is bounded.

For afinite horizon problem with horizon 7", anonstation-
arypolicy m : Sx{1,---,T} — A associateswitheach state
s and stage-to-go ¢ < T an action (s, t) to be executed a s
with ¢ stages remaining. An optimal nonstationary policy is
onewith maximum expected value a each state-stagepair. A
stationary policy = : S — A for an infinite horizon problem
associates actions m(s) with states alone.

A simple agorithm for constructing optimal policies (in
both the finite and infinite horizon cases) is value iteration
[13]. Define the ¢-stage-to-go value function V¢ by setting
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Figure1: A Simple MMDP with a Coordination Problem.

VO(s;) = R(s;) and:

VE(si) = R(si) +max{s Y Pr(si,a,5:)V' 7 (55)} (1)
5;€ES

For afinitehorizon problemwithhorizonI", weset 5 = 1 (no
discounting) and during these calculations set 7 (s;, ¢) to the
action a maximizing the right-hand term, terminating the it-
erationat ¢t = T'. For infinite horizon problems, the sequence
of value functions V¢ produced by value iteration converges
to the optimal value function V' *. For some finite ¢, the ac-
tions a that maximize the right-hand side of Equation 1 form
an optimal policy, and V* approximatesits value.

2.2 TheMultiagent Extension

We now assume that a collection of agentsis controlling the
process. The individual actions of agentsinteract in that the
effect of one agent’s actions may depend on the actionstaken
by others. We take the agentsto be acting on behalf of some
individual; therefore, each has the same utility or reward
function R. The system isfully observableto each agent.

We modd this formaly as a multiagent Markov deci-
sion process (MMDP). MMDPs are much like MDPs with
the exception that actions (and possibly decisions) are “dis-
tributed” among multiple agents. An MMDP M =
(o, {Ai}iea, S, Pr, R) consists of five components. The set
a isafinite collection of n agents, with each agent i € o
having at itsdisposal afiniteset A; of individual actions. An
element (a,, - - -, ay) Of thejoint action space, A = xA;,
represents the concurrent execution of the actions «; by each
agent ¢. The components S, Pr and R areasin an MDP, ex-
cept that Pr now referstojoint actions (ay, - - -, ay,).

Taking the joint action space to be the set of basic ac-
tions, an MM DP can be viewed as a standard (single-agent)
MDP. Specificaly, since there is a single reward function,
the agents do not have competing interests; so any course
of action is equally good (or bad) for al. We define opti-
mal joint policiesto be optimal policies over the joint action
space: these can be computed by solving the (standard) MDP
(A, S, Pr, R) using an agorithm like value iteration.

Example Anexample MMDPisillustratedin Figure1. The
MMDP consistsof twoagentsa1 and a2, each withtwo ac-
tionsa and b that can be performed at any of the six states.
All transitionsaredeterministicand arelabeled by thejoint



actions that induce that transition. The joint action (a, b)
refersto al performing a and a2 performing b, and others
similarly (with * referring to any action taken by the cor-
responding agent). At the “source” state s;, a1l aone de-
cides whether the system movesto s, (using a) or ss (Us-
ing b). At s3, the agents are guaranteed a move to ss and
areward of 5 no matter what joint action is executed. At
s2 both agents must choose action a or both must choose
b in order to moveto s, and gain areward of 10; choosing
opposite actions results in a transition to s5 and a reward
of -10. The set of optimal joint policies are those where
al chooses a a s; (a2 can choose a or b), and al and a2
choose either (a, a) or (b, b) &t sa.

The value function determined by solving the MMDP for
theoptimal joint policy istheoptimal joint valuefunctionand
isdenoted V. Inthe exampleabove, an infinitehorizon prob-
lem with adiscount rate of 0.9 has V' (s1) = 29.9, whilefor
afinite horizon problem, V*(s; ) isgiven by 10| Z£L |.

MMDPs, while a natural extension of MDPs to cooper-
ative multiagent settings, can aso be viewed as a type of
stochastic game as formulated by Shapley [14]. Stochastic
games were originally formulated for zero-sum games only
(and as we will see, the zero-sum assumption alleviates cer-
tain difficulties), whereas we focus on the (equally special)
case of cooperative games.

3 Coordination Problems and Coordination
M echanisms

The example MM DP above has an obviousoptimal joint pol-
icy. Unfortunately, if agents «1 and a2 make their decisions
independently, this policy may not be implementable. There
are two optimal joint action choices a s»: (a, a) and (b, b).
If, say, a1 decides to implement theformer and a2 the latter,
the resulting joint action {a, b) isfar from optimal. Thisisa
classic coordination problem: thereis more than one optimal
joint action from which to choose, but the optimal choices
of at least two agents are mutually dependent (we define this
formally below). Notice that the uncertainty about how the
agents will “play s»” makes al’sdecision a s; rather diffi-
cult: without having a good prediction of the expected value
a s9, agent al is unable to determine the relative values of
performing a or b a s; (moreinthisin Section 4).

In the absence of a central controller that selects asingle
joint policy to be provided to each agent, ensuring coordi-
nated action choice among independent decision makers re-
quires some coordination mechanism. Such amechanismre-
stricts an agent’s choi ces among the potentially individually
optimal actions, perhaps based on the agent’shistory. We de-
scribe some of these below, including learning, conventional
and communi cation techniques.

In the remainder of this section, we focus on repeated
games, returning to general MMDPs in the next section. An
identical-interest repeated game can be viewed asan MMDP
with only one state—joint actions are played at that state re-
peatedly. Animmediate reward R(«) isassociated with each
jointaction. Our aimisto havetheindividua actions sel ected
by each agent constitute an optimal joint action. Formally, a

stage game (G comprises action sets A; for each agent ¢, joint
action space A, and reward function R. The stage game is
played repeatedly.

Definition Joint action a € .A isoptimal in stage game G if
R(a) > R(d’)fordl «’ € A. Actiona; € A; ispoten-
tially individually optimal (PIO) for agent i if some opti-
mal joint action contains a;. We denote by PIO; the set of
such actions for agent .

Definition Stagegame G = (o, {A; }ico, R) induces a co-
ordination problem (CP) iff there exist actions a; € PIO;,
1 <i < n,suchthat (ay, - -, a,) isnot optimal.

Intuitively, a CP arisesif thereisa chance that each agent se-
lectsaPlO-action, yet theresulting joint action issuboptimal .

CPsinrepeated games can often be“reduced” by eliminat-
ing certain PlO-actions due to considerations such as domi-
nance, risk (e.g., see the notions of risk-dominance and trac-
ing used by Harsanyi and Selten to select equilibria[7]), or
focusing on certain PIO-actions due to certain asymmetries.
Thesereductions, if embodied in protocolscommonly known
by al agents, can limit choices making the CP “smaller”
(thus potentially more easily solved), and sometimes result
inasingle“obvious’ action for each agent. We do not con-
sider such reductions here, but these can easily be incorpo-
rated into the model presented bel ow.

A coordination mechanismis a protocol by which agents
restrict their attention to a subset of their PIO-actionsina CP.
A mechanism has astate, which summarizes rel evant aspects
of the agent’shistory and adecision rulefor selecting actions
as afunction of the mechanism state. While such rules often
select actions (perhaps randomly) from among PlO-actions,
there are circumstances where non-PlO-actions may be se-
lected (e.g., if the conseguences of uncoordinated action are
severe). Mechanisms may guarantee immediate coordina-
tion, eventua coordination, or provide no such assurances.
To illustrate, we list some simple (and commonly used) co-
ordination methods below. In Section 4, we will focus pri-
marily on randomization techniqueswithlearning. However,
communi cation and conventional methods can be understood
within the framework developed below as well.

Randomization with Learning Thisisalearning mecha
nism requiring that agents select a PlO-action randomly un-
til coordination is achieved (i.e., an optimal joint action is
selected by the group). At that point, the agents play that
optimal joint action forever. We assume that actions are se-
lected according to a uniform distribution.! The mechanism
has k + 1 states, where & is the number of optimal joint ac-
tions: k states each denote coordination on one of the opti-
mal actions, and one denotes lack of coordination. The state
changesfrom the uncoordinated stateto acoordinated state as
soon as an optimal action isplayed. Thisrequiresthat agents
be able to observe actions or action outcomes.

We can modd this protocol as a finite-state machine
(FSM). The FSM for the CP at s, inFigure lisillustratedin

!In this and other mechanisms, reduction methods can be used
to reduce the number of actions considered by each agent.
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Figure 2: A simple FSM for the randomization mechanism:
solid arrows denote state transitions, labeled by inputs (ob-
served joint actions); dashed arrows indicate outputs (action
choices).

Figure 2. When the agents are uncoordinated (state [/), they
each choose action a and b randomly. If the observed joint
action is not coordinated, the remain in state I/; but if they
coordinate, they move to the appropriate state (A or B) and
stay there (executing the corresponding action).

For many problems, we can view the mechanism as having
only two states: coordinated (C) and uncoordinated (I7). If
C', we simply require that the agent memorize the action on
which the group coordinated. For the purposes of comput-
ing expected val ue bel ow, we often need only distinguishbe-
tween C'and U states (without regard to the actual action cho-
sen). We note that randomization works quite well if there
isasmall group of agents with few actions to choose from;
but as these sets grow larger, the probability of transitioning
from U to C gets exponentially smaller. Randomization en-
sures eventual coordination, at arate dictated by the number
of agents and number of choices available to them.

Fictitious play (FP) is a related learning technique com-
monly studied in game theory [4, 6] where each agent ¢ ob-
servestheactionsplayed in the past by other agentsand plays
abest response giventheempirical distributionobserved. We
refer to [6] for details, but note that the state of the mecha-
nism consists of “counts’ of the PlO-actions played by other
agents; thus FP has an infinite number of states. For fully
cooperative games, FP converges to an optimal joint action
if attentionisrestricted to PlO-actions and agents randomize
over tied best responses[2, 12].2 It also has the property that
once acoordinated action is played, it is played forever. Un-
like randomi zation, FP tendsto lead to faster coordination as
the number of agents and actionsincrease [2].

L exicographic Conventions Conventions or socia laws
(e.g., drivingon theright-hand sideof theroad) are often used
to ensure coordination [9, 15]. Lexicographic conventions
can be applied to virtually any CP. Given some commonly-
known total ordering of both agents and individual actions,
the set of optimal actionscan betotally ordered in several dif-
ferent ways. Lexicographic conventions ensure immediate
coordination, but can have substantial overhead duetothere-
guirement that each agent have knowledge of these orderings

2Hence, it might best be described as a learning technique with
randomization, rather than arandomizationtechniquewith learning.

of both agents and actions. This may be reasonablein afixed
setting, but may be harder to ensure over avariety of decision
problems (e.g., involving different collections of agents). In
contrast, thelearning model s described above can be viewed
as “meta-protocols’ that can be embodied in an agent once
and applied across multipledecision problems.

Communication Finaly, a natural means of ensuring co-
ordination is through some form of communication. For ex-
ample, one agent may convey itsintention to perform a spe-
cific PIO-action to another, allowing the other agent to se-
lect a matching PIO-action. There are a number of well-
known difficulties with devising communication and negoti-
ation protocols, involvingissues as varied as synchronization
and noisy channels. We do not delve into such issues here.
We assume that some agreed upon negotiation protocol isin
place. Redligtically, we must assume that communication has
some cost, some risk of failure or misinterpretation, and de-
lays the achievement of goals. As such, we model commu-
nication as actions in an MMDP which have effects not on
the underlying system state, but on the “mental state” of the
agents involved. Rather abstractly, we can say that the state
of acommuni cative coordination mechanism for anagent i is
its estimate of the “mental state” of other agents. For exam-
ple, after negotiation, agent a1 may believe that «2 is com-
mitted to performing action . The “mental state’ of other
agents will generally only be partialy observable, and the
state of the mechanism will be estimated by each agent.

4 Dynamic Programming with Coordination
41 Sequential Optimality and State Value

CPs arise at specific states of the MMDP, but must be con-
sidered in the context of the sequential decision problemasa
whole. Itisnot hard to see that CPsliketheone a s» in Fig-
ure 1 makethejoint valuefunction misleading. For example,
Vl(ss) = 10 and V'(s3) = 5, suggesting that a1 should
takeaction a a s; with 2 stages-to-go. But V! (s5) assumes
that the agents will select an optimal, coordinated joint ac-
tionat s». Asdiscussed above, thispolicy may not beimple-

mentable. Generally, the optimal joint value function 1 will
overestimate the value of states at which coordinationis re-
quired, and thus overestimate the value of actions and states
that lead to them.

A more realistic estimate V! () of this value would ac-
count for the means available for coordination. For instance,
if alexicographic convention were in place, the agents are
assured of optimal action choice, whereas if they randomly
choose PIO-actions, they have a 50% chance of acting opti-
mally (with value 10) and a 50% chance of miscoordinating
(withvalue-10). Under the randomization protocol, we have
V1(s2) = 0and V1(s3) = 5, making theoptimal decision at
s1, with two stages to go, “opting out of the CP:” «1 should
choose action & and move to ss.

Unfortunately, pursuing thisline of reasoning (assuming a
randomization mechanism for coordination) will lead the a1
toawayschooseb at s;, no matter how many stages remain.
If we categorically assert that V!(s,) = 0, we must have
that V*(s3) > V*(s2) for any staget > 1. Thisignoresthe



fact that the coordination mechanism in question does not re-
quire the agents to randomize at each interaction: once they
have coordinated at s», they can choose the same (optimal)
jointactionat al futureencountersat s-. Clearly, the V! (sz)
depends on the state of the coordination mechanism. If the
agents have coordinated inthe past, then V1 (s») = 10, since
they are assured coordination at this final stage; otherwise
V1(s2) = 0. By thesametoken, V! (s, ) depends onthe state
of the mechanism for arbitrary t > 1, as does the value of
other states.

The optimal value function V' is not a function of the sys-
tem state alone, but aso depends on the state of the mecha
nism. By expanding the state space of the original MMDP
to account for this, we recover the usual value function def-
inition. In this example, we define the expanded MMDP to
have states of the form (s, ¢), where s is some system state
and c¢ is the state of the randomization mechanism. We use
C and U to refer to coordinated and uncoordinated states of
the mechanism, respectively (with C' standing for either A or
B inthe FSM of Figure 2). Transitionsinduced by actions
are clear: each action causes a system state transition as in
the MMDP, while the coordination state changes from U/ to
C' only if the agents choose action {a, a) or (b, b} at s, (and
never revertsto U). The coordination protocol also restricts
the policies the agents are alowed to use at s-. If they find
themselves at (expanded) state (s2, U}, they must random-
ize over actions a and b. Assuch, thetransition probabilities
can be computed easily: (s,, Uy movesto both (s4, C') and
(s5, U) with probability 0.5.3

The expanded MM DP can be viewed a combination of the
origina MMDP and the partially specified controller shown
in Figure 2. The state space of the expanded MMDP isgiven
by the cross-product of the MMDP and FSM state spaces,
whiletheFSM restrictsthe choi cesthat can be made whenthe
agents are at state s, (for each state A, B or U of the FSM).
Generdly speaking, the protocol restricts action choices at
the state where the CP arose, while optimal choices should
be made at al other states. Notice that these choices are op-
timal subject to the constraints imposed by the protocol (or
finite-state controller).

With thisexpanded state space, we can tracevaueiteration
on our running example to illustrate how the agents reason
about sequentia optimality in away that accounts for the CP
and the coordination mechanism. We assume afinite horizon
problem without discounting.

Example For al stagest > 0, obviously V(ss,C) >
V¥{(s3, C); s0if theagentsarein astate of coordination, a1
should chooseactiona at s; and “optin” to the CP by mov-
ingto s». Mattersare more complex if the agents are unco-
ordinated. For al stages¢ < 8, Vi{s,,U) < Vi(s3,U).
So with 8 or fewer stages remaining, a1 should choose to
“optout” (chooseb) a (s1, U). For all stagest > 10, how-
ever, Vi(sy, U) > Vs, U) (9., Vi{sy,U) = 225
while V11 (s3, U) = 20.)* Thus, a1 should“opt in” to the

®Moreprecisely, (s2, U) transitionsto states (s4, A) and (s4, B)
with probability 0.25 each.
*ThevaluesV " (s,, U) and V' (s3, U} areequal for 8 < ¢ < 10.

CPat (s1, U} if there are 12 or more stages remaining.

Thisexampl e shows how knowledge of the state of the co-
ordination mechanism allows the agents to make informed
judgments about the (long term) benefits of coordination,
the costs of miscoordination, and the odds of (immediate or
eventual) coordination. Because of the cost of miscoordina
tion (and its 50% chance of occurrence), the agents avoid s,
with fewer than eight stagesto go. The safe course of action
is deemed correct. However, with eight or more stages re-
maining, they movefrom (s, U') to {s», U’): the 50% chance
of coordination not only provides the agents with a 50%
chanceat thereward of 10, but al sowitha50% chance at | east
two more passes through s4. The long term benefits of coor-
dination (with asufficient horizon) make therisk worthwhile
when compared to the safe dternative.

It is important to note that the state of the coordination
mechani sm must be taken into account at each (system) state
of the MMDP. For instance, though the state of the mecha-
nism can have no influence on what the agents do at state ss
(thereisonly one “choice’), itisrelevant to determining the
value of being at state ss.

In general, reasoning with coordination mechanisms al-
lows one to account for the factors mentioned above. Natu-
rally, the tradeoffsinvolving long term consequences depend
on the decision problem horizon or discount factor. The key
factor allowing computation of value in this case is an un-
derstanding of the coordination mechanism used to (stochas-
tically) select joint actions in the presence of multiple equi-
libria, and the ability to associate a value with any state of
the MMDP (given the state of the mechanism). Shapley’s
stochastic games[14] providearel ated sequentia multiagent
decision model with a awell-defined value for game states.
This value, however, is a consequence of the zero-sum as-
sumption, which removes the reliance of state value on the
selection of a(stage game) equilibrium. In particular, it does
not apply to fully cooperative settingswhere CPs arise.

4.2 Valuelteration with State Expansion

Value iteration can be revised to construct an optimal value
functionand policy based on any given coordination mecha-
nism. A straightforward versionis specified in Figure 3. We
discuss several optimizations bel ow.

A list CP of state-game CPs and associated mechanisms
iskept as they are discovered. A CP existsif the set of op-
timal joint actions at a state/stage pair (the Q-valuesin step
3(a)i) induces a CP in the sense defined earlier. Notice that
CPs are defined using the value function 1%, not immediate
reward. We assume that each CP is associated with a state
and the collection of actionsinvolved inthe optimal joint ac-
tions. Any state s; witha CP will have the availability of ac-
tionsinvolved in the CP restricted by the state of the mech-
anism. The set PA(s;) is the set of actions permitted at s;
given the mechanism state—thismay include randomization
actionsaswell (if s; hasno CP, thisset isjust .A); and agents
can only use permitted actions (step 3(a)i). If aCPisdiscov-
ered among the maximizing (permitted) actions at s;, a new
mechanism C' isintroduced and the state is split and replaced
by all pairs of states (s;, ¢) (where ¢ is some state of ).



1. LetVD(s) = R(s)fordls € S.
2. Sett = 0;81 =&° =8;CP = 0.
3. Whilet < T do:
(@) Foreachs, € St1!
i. Foreacha € PA(s;), compute
141 _ . tig .
Q (sua)—R(sl)‘l'{zsjest Pr(sqs,a,s;)V(s;)}
ii. LetOpt'*!(s,;) bethe set of actionswith max Q-value
iii. 1fOpt!*1(s;) inducesanew CPat s, introducemechanism C': (a) add C to
CP; (b) replace s ; in S+ with states (s ;, ¢), where c rangesover states of
C; (c) Recompute Q“ T (s, ¢}, a) for each new state (according to rules
of C); (d) returnto step ii. to check for new CPs.

iv. Let Viti(s;) = max, Q'T*(s;,a) and 7!t (s;) beany maximizing
action (if s; was split, do thisfor all (s, ¢}).

(b) t=t+1;8t =85 x CP.

Figure 3: Vaue Iteration with State Expansion

To illustrate, suppose the value function V* induces the
following choices at s;:

| a b c
a | 10 0 0
b 0 10 0
c 0 0 7

If randomi zationisused to coordinateon a /b, expected value
is5 (and the mechanism requires agents to randomize over
their PIO-actions). In contrast, the Q-value of (¢, ¢) isbetter
than that of attempting to coordinate, thus the value of s; is
defined as 7 if the agents are uncoordinated (and 10 if they
are coordinated). Notice that new CPs may be introduced at
the same state and the process can beiterated.® In this prob-
lem, each state s issplitinto three states: (s, A) (agents have
coordinated on joint action {a, a) & s;), (s, B) (coordinated
on (b, b)), and (s, U') (have not coordinated w.r.t. « and b).

If amechanism has been introduced for the same state and
actionsat an earlier stage, anew mechanism isnot generated.
Value (and policy choice) is defined by comparing the value
of actions not involved in the CP and the value of behaving
according to therules of the mechanism (step 3(a)iv). At the
next iterationall statesare split according al mechanismsin-
troduced, since this may be required to predict the value of
reaching state s;. If multiple CPs exist, each underlying sys-
tem state is expanded many timesin this (naive) algorithm.

Implicit in thisdiscussion isthat assumption that the tran-
sitionsinduced by a coordination protocol over the expanded
state space are well defined: thiswill generaly involve ex-
tending the underlying system dynamics by rules involving
mechanism state evolution. The mechanism designer must
provide such rules (as discussed in Section 3.2).

An important optimization is to have the algorithm only
expand states with mechanisms whose state is required to
predict value. This can be effected rather easily. If system
state s; transitionstostate s;, and s; hasbeen splitinS* toin-
volve some mechanism in CP, s; must be splitin state S7+1.
But if s; moves only to states that are unaffected by some (or
all) CPs, s; need not besplit usingthestate of those CPs. This

5However, the splitting must eventually terminate.

Figure4: A More Complex Coordination Problem.

allows one to only refer to the state of a mechanism when it
isnecessary for predicting value: the state space need not be
split uniformly.

Other optimizations of the agorithm are possible. For ex-
ample, one can “cluster” together states of the coordination
mechani sm together that providefor the same optimal action
andvalueat agiven state. For instance, though FPhasan infi-
nite number of distinct states, for any finite number of stages-
to-go, only afinite number of distinction are relevant (much
like state abstraction methods used in MDPs and reinforce-
ment learning [1, 3]). Finaly, we note that modeling com-
muncation protocol srequiresintroducing communi cation ac-
tions, in addition to the state-splitting mechanism above.

4.3 Examples

We describe the results of applying the algorithm to several
small test problems in this section. We focus here on the use
of the simple randomization mechanism described above.

Testing afinite horizon version of the problemin Figure 1
showsthat asingle CP exists (at state s;). The state space is
eventually expanded so that each state is split into two (re-
ferring to coordination or lack of it at s;). The optimal de-
cisionat (s, ) isto “opt out” with fewer than eight stages
togo and “opt in” with eight or more stages remaining. The
infinite horizon version of this problem gives riseto station-
ary policies. When the discount rate 5 = 0.9 (or higher), a1
“optsin” at (s1,U); but for 3 = 0.85 (or lower), al “opts
out” and avoids the CP—because of discounting, the delay
in expected payoff of coordination ensures that “opting in”
isnot worth the cost. With 5 = 0.9, thevaueof optinginis
17.14 and opting out is 16.54 (assuming the agents act opti-
mally thereafter), whilewith 5 = 0.85, the value of opting
inis8.62 and opting out is 9.36 (within tolerance 0.001).

A more complex example isillustrated in Figure 4. Two
agents have independent tasks. Agent a1 moves box 41 and
a2 moves b2 to the goa state repeatedly. Once a box is
dropped at the goal, areward is received and a new box ap-
pearsintheorigina location (so the problemisacontinuous,
infinite horizon MMDP). While the objectives are indepen-
dent, both agents are rewarded with the same constant reward
whenever either of their boxesisdelivered. The optimal poli-
cies are not independent however. The dark shaded region
at the bottom is “risky:” if both agents are in the region, a
large (variable) penalty isgiven. They must coordinatetheir
moves to ensure that no more than one agent is in therisky



region at any time. The agents actions are stochastic: they
can moveinany (feasible) compass direction but with proba-
bility 0.1 they fail to move (they can also stay in placeinten-
tionally). Complicating the problemis the fact that the light
shaded regionis“sticky:” the agents moves are more prone
to failure (with varying probability). If stickinessislow, the
optimal policy isfor both agentsto traversethetop of thegrid
repeatedly. But if stickinessisrelatively high (or theproblem
is heavily discounted, making speedy delivery more impor-
tant), one or both agents will want to traverse therisky area,
in which case coordination is needed. The problem has 900
nominal states (though a number of these are not reachable)
and 25 joint actions.

We giveabrief summary of the resultsin thisdomain with
the following specific parameter settings: a reward of 5 is
given for each box delivered; a pendty of -20 isgiven when-
ever both agents are in the risky area; stickiness (the prob-
ability of not moving) is 0.7 in the sticky region; and 5 =
0.95. With these settings, the optimal joint policy (roughly)
requires that one agent move across the top of the grid and
one move across the bottom.® Generally, if an agent iscloser
to the top it will move across the top; but if both agents are
close (and equally close) to the bottom, they must coordinate
(since either could move to the top).

CPsarise at eight states of the MMDP. Thusthere are eight
coordination mechanisms needed to solve this problem, ex-
panding the state space by a factor of 256 (no distinctions
need be made among coordinated choices, so each mecha-
nism has only two states). We focus on two MMDP states
where CPs arise and their interaction: s; 4 = (h1, h2,4,4),
where both agents are located at grid cell 4 each holding
boxes, and ss s = (hl, h2,6,6), which issimilar, but with
both agents at location 6. The optimal joint policy at s4 4 re-
quires one agent to move up (to traverse the sticky region)
and the other to move down (to traverse the risky region) on
the way to the goal. The optimal policy &t ss ¢ iS Similar:
one agent should move up, the other right. The optimal joint
valuefunctionhas V' (s4 4) = 11.54 and V(s 6) = 11.83.

If the aﬂents have coordinated at all other stateswhere CPs
arise, we havethefollowingoptimal valuesfor thefour states
of the expanded MMDP corresponding to each of s4 4 and

s6,6 (nere we use u4 to denote that the agents have not coor-
dinated at 54 4, and ¢4 to denotethat they have coordinated at
s4,4; Smilarly for sg ¢):

U4 Us U4Cq CqUp C4Cq
sa,q | 104419 11.3405 115356 11.5356
see | 71866 11.8339 7.3983 11.8340

In both states (s4 4 OF 56 ¢), if the agents are uncoordinated,
the optimal policy reguiresthem to randomize, regardless of
the state of the other coordination mechanism. Notice that
the values for most of the expanded states where the agents
are uncoordinated are less than the corresponding values for
the optimal joint policy (which isidentica to the expected
values at the states where c4¢¢ holds), as expected. The one

51f the penalty is negligible or if the stickinessis even higher, the
agents will both tend to move across the bottom, perhaps with one
waiting for the other. If the stickinessis negligible, then both agents
will traverse the top of the grid.

exceptionis at s4 4: When c4 holds, expected value is iden-
tical whether or not ¢4 holds, since the optimal policy will
never take the agents from s, 4 t0 s¢ 6. In contrast, when
u4 holds, the status of ¢¢ has a dramatic impact on expected
value: if the agents are uncoordinated at s4 4 they will ran-
domize and with probability 0.25 both choose to move down
(henceto sg ). Their state of coordination &t s¢ ¢ isthusim-
portant to predicting expected value. Being uncoordinated
a s¢ ¢ has very low value, since randomization has a good
chance of moving both agents to the risky area—the risk is
worthwhile, however, so randomizationisthe optimal choice
at s6 6 .” Also when the agents are coordinated at s6,6, thesta
tus of ¢4 has arather small effect on value. Because coordi-
nation &t s¢ ¢ ensures that one agent takes the “ sticky” route
tothe goal region, the agents get “ out of synch” and the odds
of them both reaching the pickup location (cell 4) at the same
time (within a reasonable time frame) is quite small. Hence,
whether or not the agents are coordinated at s, 4 haslittleim-
pact on expected value ét s¢ 6.

Randomization is an important aspect of this problem. If
the agentswereto choose fromamong their PO actionsinde-
pendently, but deterministically, without reasoning about the
consequences of miscoordination, they can end up in cycles
that never reach the goa state.

5 Generalization of Coordination Decisions

One difficulty with the algorithm above is the potentia for
uninhibited state expansion, and the corresponding compu-
tational cost. In the ssimple experimental domain with two
agents collecting boxes in a grid world, eight CPs occurred
across the 900 problem states, requiring the state space to be
increased by afactor of 256 (to 230,400 states). Fortunately,
in many circumstances we can introduce a single coordina-
tionmechanism todea withmultiple, related CPs. Inthegrid
problem, for example, oncethe agentscoordinate at astate by
one agent moving up and the other down, they can maintain
these“roles’ at other states exhibiting similar CPs.

We do not propose a method for constructing such gen-
eralizations automatically—this could use, say, generaiza-
tion techniques from reinforcement learning [ 1]—but we il-
lustrate potential benefits with the simple example shown in
Figure5. It issimilar to the MMDP in Figure 1 except that
miscoordination at s, hasalarger penalty, and an analogous
“low cost” CP has been added. If asinglemechanismisused
for both CPs (at s» and s7), once coordination is attained
a s7, itisautomatic a s,. Asintheorigina MMDP, with
fewer than 12 stages-to-go, the optimal action at (s1, U} is
to “opt out” and take the sure reward 5. With 12 or more
stages remaining, the optimal action a (s1,U) is{a, a): the
agents move to the low risk CP and try to coordinate there.
Never do the agents move to s, in an uncoordinated state.
Even though there isno immediate benefit to movingto sz, it
givesthe agents an opportunity to “train,” or learn to coordi-
nate with minimal risk. Once they coordinate, they immedi-
ately exploit thislearned protocol and choose(a, b) at (s, C')
(thereby moving to (s, C')). Reasoning about the long term

"Though with higher penalties, it is not.



Figure5: An MMDP with Similar Coordination Problems

prospects of coordinationand its costs, the agentsrealize that
risk-free training is worthwhile.

If weretain the origina penalty of -10at s5, thisreasoning
falls: thereisessentialy lessrisk involved in training at the
high stakes CP, so the agentswill never moveto s7 totrain.

The infinite horizon problem is similar. With a discount
rate of (.95, theoptimal policy requirestheagentsto moveto
s7 until they coordinate, at which point they repeatedly move
to s. Interestingly, adding the “training states’ increases the
expected reward accrued by the agents. Without thetraining
states, V((s1,U)) = 46.68 since the agents accept the risk
of getting severa -20 rewards to ensure coordination. With
the training states, they can learn to coordinate without the
severe pendlties, and V' ({s1, U)) = 49.57.

6 Concluding Remarks

We have introduced a novel method of defining value func-
tions (and consequently, optimal policies) for multiagent de-
cision problemsthat accountsfor specific means of coordina-
tion. We also defined a valueiteration algorithm for comput-
ing optimal policiesthat recognizes and reasons about CPs.

Further experimentation isneeded with other coordination
mechanisms and their impact on policy value. We have de-
scribed experiments in this paper using randomization, and
have begunto investigate communi cation methods, and hope
to explore other modelslike FP. We intend to introduce eco-
nomic model s (such as auctions) so that agents may integrate
reasoning about their activity in markets into their decision
processes. We must explore automated generalization meth-
odsfurther; it hasthe potentid to substantially reducethere-
quired number of mechanisms, alleviate computational diffi-
culties, and increase objective policy value.

We would aso like address the problem of designing ro-
bust, computationally effective and value-increasing coordi-
nation protocols in the framework. In a certain sense, such
an undertaking can be viewed as oneof designingsocial laws
[15]. Itisaso related to theissuesfaced inthe design of pro-
tocols for distributed systems and the distributed control of
discrete-event systems[10]. But rather than designing proto-
colsfor specific situations, metaprotocol sthat increase value

over awide variety of CPswould be the target. The frame-
work developed here can also help decide whether sophisti-
cated protocolsareworthwhile. For instance, alexicographic
protocol induces immediate coordination with a measurable
(in our model) increase in expected value over (say) a ran-
domization method. This increase can then be used to de-
cide whether the overhead of incorporating a lexicographic
convention (e.g., ensuring agents have common orderings)
isworthwhile. Similar remarks can be applied to the design
of agents (e.g., iscommunicative ability worthwilegiven the
class of decision problemsthey will face).
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