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Abstract

Coordination of agent activities is a key problem in multia-
gent systems. Set in a larger decision theoretic context, the
existence of coordination problems leads to difficulty in eval-
uating the utility of a situation. This in turn makes defin-
ing optimal policies for sequential decision processes prob-
lematic. We propose a method for solving sequential multi-
agent decision problems by allowing agents to reason explic-
itly about specific coordination mechanisms. We define an ex-
tension of value iteration in which the system’s state space
is augmented with the state of the coordination mechanism
adopted, allowing agents to reason about the short and long
term prospects for coordination, the long term consequences
of (mis)coordination, and make decisions to engage or avoid
coordination problems based on expected value. We also il-
lustrate the benefits of mechanism generalization.

1 Introduction
The problem of coordination in multiagent systems (MASs)
is of crucial importance in AI and game theory. Given a col-
lection of agents charged with the achievement of various ob-
jectives, often the optimal course of action for one agent de-
pends on that selected by another. If the agents fail to coordi-
nate the outcome could be disastrous. Consider, for instance,
two agents that each want to cross a bridge that can support
the weight of only one of them. If they both start to cross,
the bridge will collapse; coordination requires that they each
“agree” which one of them should go first.

Coordination problems often arise in fully cooperative
MASs, in which each agent shares the same utility function
or common interests. This type of system is appropriate for
modeling a team of agents acting on behalf of a single indi-
vidual (each tries to maximize that individual’s utility). In
the bridge example above, it may be that neither agent cares
whether it crosses first, so long as they both cross and pur-
sue their objectives. In such a setting, coordination problems
generally arise in situations where there is some flexibility
regarding the “roles” into which agents fall. If the abilities
of the agents are such that it makes little difference if agenta1 pursues objective o1 and a2 pursues o2, or vice versa, the
agents run the risk of both pursuing the same objective—with
consequences ranging from simple delay in goal achievement
to more drastic outcomes—unless they coordinate. This is-
sue arises in many team activities ranging from logisticsplan-
ning to robotic soccer.

An obvious way to ensure coordination is to have the
agents’ decision policies constructed by a central controller
(thus defining each agent’s role) and imparted to the agents.
This is often infeasible. Approaches to dealing with “inde-
pendent” decision makers include: (a) the design of conven-
tions or social laws that restrict agents to selecting coordi-
nated actions [9, 15]; (b) allowing communication among
agents before action selection [16]; and (c) the use of learn-
ing methods, whereby agents learn to coordinate through re-
peated interaction [5, 6, 8, 11].

Unfortunately, none of these approaches explicitly con-
siders the impact of coordination problems in the context of
larger sequential decision problems. If the agents run the risk
of miscoordination at a certain state in a decision problem,
how should this impact their policy decisions at other states?
Specifically, what is the long-term (or sequential) value of be-
ing in a state at which coordination is a potential problem?
Such a valuation is needed in order for agents to make ratio-
nal decisions about whether to even put themselves in the po-
sition to face a coordination problem.

Unfortunately, there are no clear-cut definitions of sequen-
tial optimality for multiagent sequential decision processes
in the general case. Most theoretical work on coordina-
tion problems assumes that a simple repeated game is be-
ing played and studies methods for attaining equilibrium in
the stage game. In this paper, we argue that optimal sequen-
tial decision making requires that agents be able to reason
about the specific coordination mechanisms they adopt to
resolve coordination problems. With this ability, they can
make optimal decisions by considering the tradeoffs involv-
ing probability of (eventual) coordination, the consequences
of miscoordination, the benefits of coordination, the alter-
native courses of action available, and so on. We develop
a dynamic programming algorithm for computing optimal
policies that accounts not only for the underlying system
state, but also the state of the coordination mechanism be-
ing adopted. Specifically, we show how the underlying state
space can be expanded minimally and dynamically to ac-
count for specific coordination protocol being used.

With this definition of state value given a coordination
mechanism, one can tackle the problem of defining good co-
ordination mechanisms for specific decision problems that
offer good expected value (we but will make a few remarks



near the end of the paper on this point). Our framework there-
fore provides a useful tool for the design of conventional,
communication and learning protocols [15].

We focus on fully cooperative MASs, assuming that a
common coordination mechanism can be put in place, and
that agents have no reason to deliberate strategically. How-
ever, we expect most of our conclusions to apply mutatis mu-
tandis to more general settings. We introduce Markov deci-
sion processes (MDPs) and multiagent MDPs (MMDPs) in
Section 2. We define coordination problems and discuss sev-
eral coordination mechanisms in Section 3. In Section 4 we
describe the impact of coordination problems on sequential
optimality criteria, show how to expand the state space of the
MMDP to reason about the state of the specific mechanisms
or protocols used by the agents to coordinate, and develop
a version of value iteration that incorporates such consider-
ations. We illustrate the ability of generalization techniques
to enhance the power of coordination protocols in Section 5,
and conclude with some remarks on future research direc-
tions in Section 6.

2 Multiagent MDPs

2.1 Markov Decision Processes

We begin by presenting standard (single-agent) Markov deci-
sion processes (MDPs) and describe their multiagent exten-
sions below (see [3, 13] for further details on MDPs). A fully
observable MDP M = hS;A;Pr; Ri comprises the follow-
ing components. S is a finite set of states of the system be-
ing controlled. The agent has a finite set of actions A with
which to influence the system state. Dynamics are given byPr : S � A � S ! [0; 1]; here Pr(si; a; sj) denotes the
probability that action a, when executed at state si, induces a
transition to sj . R : S ! < is a real-valued, bounded reward
function. The process is fully observable: though agents can-
not predict with certainty the state that will be reached when
an action is taken, they can observe the state precisely once
it is reached.

An agent finding itself in state st at time t must choose an
action at. The expected value of a course of action� depends
on the specific objectives. A finite horizon decision problem
with horizonT measures the value of� as E(PTt=0R(st)j�)
(where expectation is taken w.r.t. Pr). A discounted, infinite
horizon problem measures value as E(P1t=0 �tR(st)j�).
Here 0 � � < 1 is a discount factor that ensures the infi-
nite sum is bounded.

For a finite horizon problem with horizon T , a nonstation-
ary policy� : S�f1; � � � ; Tg ! A associates with each states and stage-to-go t � T an action �(s; t) to be executed at s
with t stages remaining. An optimal nonstationary policy is
one with maximum expected value at each state-stage pair. A
stationary policy � : S ! A for an infinite horizon problem
associates actions �(s) with states alone.

A simple algorithm for constructing optimal policies (in
both the finite and infinite horizon cases) is value iteration
[13]. Define the t-stage-to-go value function V t by setting
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Figure 1: A Simple MMDP with a Coordination Problem.V 0(si) = R(si) and:V t(si) = R(si)+maxa2Af� Xsj2S Pr(si; a; sj)V t�1(sj)g (1)

For a finite horizon problem with horizonT , we set � = 1 (no
discounting) and during these calculations set �(si; t) to the
action a maximizing the right-hand term, terminating the it-
eration at t = T . For infinite horizon problems, the sequence
of value functions V t produced by value iteration converges
to the optimal value function V �. For some finite t, the ac-
tions a that maximize the right-hand side of Equation 1 form
an optimal policy, and V t approximates its value.

2.2 The Multiagent Extension
We now assume that a collection of agents is controlling the
process. The individual actions of agents interact in that the
effect of one agent’s actions may depend on the actions taken
by others. We take the agents to be acting on behalf of some
individual; therefore, each has the same utility or reward
functionR. The system is fully observable to each agent.

We model this formally as a multiagent Markov deci-
sion process (MMDP). MMDPs are much like MDPs with
the exception that actions (and possibly decisions) are “dis-
tributed” among multiple agents. An MMDP M =h�; fAigi2�;S;Pr; Ri consists of five components. The set� is a finite collection of n agents, with each agent i 2 �
having at its disposal a finite set Ai of individual actions. An
element ha1; � � � ; ani of the joint action space, A = �Ai,
represents the concurrent execution of the actions ai by each
agent i. The components S, Pr and R are as in an MDP, ex-
cept that Pr now refers to joint actions ha1; � � � ; ani.

Taking the joint action space to be the set of basic ac-
tions, an MMDP can be viewed as a standard (single-agent)
MDP. Specifically, since there is a single reward function,
the agents do not have competing interests; so any course
of action is equally good (or bad) for all. We define opti-
mal joint policies to be optimal policies over the joint action
space: these can be computed by solving the (standard) MDPhA;S;Pr; Ri using an algorithm like value iteration.

Example An example MMDP is illustrated in Figure 1. The
MMDP consists of two agents a1 and a2, each with two ac-
tions a and b that can be performed at any of the six states.
All transitions are deterministic and are labeled by the joint



actions that induce that transition. The joint action ha; bi
refers to a1 performing a and a2 performing b, and others
similarly (with * referring to any action taken by the cor-
responding agent). At the “source” state s1, a1 alone de-
cides whether the system moves to s2 (using a) or s3 (us-
ing b). At s3, the agents are guaranteed a move to s6 and
a reward of 5 no matter what joint action is executed. Ats2 both agents must choose action a or both must chooseb in order to move to s4 and gain a reward of 10; choosing
opposite actions results in a transition to s5 and a reward
of -10. The set of optimal joint policies are those wherea1 chooses a at s1 (a2 can choose a or b), and a1 and a2
choose either ha; ai or hb; bi at s2.

The value function determined by solving the MMDP for
the optimal joint policy is the optimal joint value function and
is denoted eV . In the example above, an infinite horizon prob-
lem with a discount rate of 0:9 has eV (s1) = 29:9, while for
a finite horizon problem, eV t(s1) is given by 10b t+13 c.

MMDPs, while a natural extension of MDPs to cooper-
ative multiagent settings, can also be viewed as a type of
stochastic game as formulated by Shapley [14]. Stochastic
games were originally formulated for zero-sum games only
(and as we will see, the zero-sum assumption alleviates cer-
tain difficulties), whereas we focus on the (equally special)
case of cooperative games.

3 Coordination Problems and Coordination
Mechanisms

The example MMDP above has an obvious optimal joint pol-
icy. Unfortunately, if agents a1 and a2 make their decisions
independently, this policy may not be implementable. There
are two optimal joint action choices at s2: ha; ai and hb; bi.
If, say, a1 decides to implement the former and a2 the latter,
the resulting joint action ha; bi is far from optimal. This is a
classic coordination problem: there is more than one optimal
joint action from which to choose, but the optimal choices
of at least two agents are mutually dependent (we define this
formally below). Notice that the uncertainty about how the
agents will “play s2” makes a1’s decision at s1 rather diffi-
cult: without having a good prediction of the expected value
at s2, agent a1 is unable to determine the relative values of
performing a or b at s1 (more in this in Section 4).

In the absence of a central controller that selects a single
joint policy to be provided to each agent, ensuring coordi-
nated action choice among independent decision makers re-
quires some coordination mechanism. Such a mechanism re-
stricts an agent’s choices among the potentially individually
optimal actions, perhaps based on the agent’s history. We de-
scribe some of these below, including learning, conventional
and communication techniques.

In the remainder of this section, we focus on repeated
games, returning to general MMDPs in the next section. An
identical-interest repeated game can be viewed as an MMDP
with only one state—joint actions are played at that state re-
peatedly. An immediate reward R(a) is associated with each
joint action. Our aim is to have the individualactions selected
by each agent constitute an optimal joint action. Formally, a

stage gameG comprises action sets Ai for each agent i, joint
action space A, and reward function R. The stage game is
played repeatedly.

Definition Joint action a 2 A is optimal in stage game G ifR(a) � R(a0) for all a0 2 A. Action ai 2 Ai is poten-
tially individually optimal (PIO) for agent i if some opti-
mal joint action contains ai. We denote by PIOi the set of
such actions for agent i.

Definition Stage game G = h�; fAigi2�; Ri induces a co-
ordination problem (CP) iff there exist actions ai 2 PIOi,1 � i � n, such that ha1; � � � ; ani is not optimal.

Intuitively, a CP arises if there is a chance that each agent se-
lects a PIO-action, yet the resulting joint action is suboptimal.

CPs in repeated games can often be “reduced” by eliminat-
ing certain PIO-actions due to considerations such as domi-
nance, risk (e.g., see the notions of risk-dominance and trac-
ing used by Harsanyi and Selten to select equilibria [7]), or
focusing on certain PIO-actions due to certain asymmetries.
These reductions, if embodied in protocols commonly known
by all agents, can limit choices making the CP “smaller”
(thus potentially more easily solved), and sometimes result
in a single “obvious” action for each agent. We do not con-
sider such reductions here, but these can easily be incorpo-
rated into the model presented below.

A coordination mechanism is a protocol by which agents
restrict their attention to a subset of their PIO-actions in a CP.
A mechanism has a state, which summarizes relevant aspects
of the agent’s history and a decision rule for selecting actions
as a function of the mechanism state. While such rules often
select actions (perhaps randomly) from among PIO-actions,
there are circumstances where non-PIO-actions may be se-
lected (e.g., if the consequences of uncoordinated action are
severe). Mechanisms may guarantee immediate coordina-
tion, eventual coordination, or provide no such assurances.
To illustrate, we list some simple (and commonly used) co-
ordination methods below. In Section 4, we will focus pri-
marily on randomization techniques with learning. However,
communication and conventional methods can be understood
within the framework developed below as well.

Randomization with Learning This is a learning mecha-
nism requiring that agents select a PIO-action randomly un-
til coordination is achieved (i.e., an optimal joint action is
selected by the group). At that point, the agents play that
optimal joint action forever. We assume that actions are se-
lected according to a uniform distribution.1 The mechanism
has k + 1 states, where k is the number of optimal joint ac-
tions: k states each denote coordination on one of the opti-
mal actions, and one denotes lack of coordination. The state
changes from the uncoordinatedstate to a coordinated state as
soon as an optimal action is played. This requires that agents
be able to observe actions or action outcomes.

We can model this protocol as a finite-state machine
(FSM). The FSM for the CP at s2 in Figure 1 is illustrated in1In this and other mechanisms, reduction methods can be used
to reduce the number of actions considered by each agent.
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Figure 2: A simple FSM for the randomization mechanism:
solid arrows denote state transitions, labeled by inputs (ob-
served joint actions); dashed arrows indicate outputs (action
choices).

Figure 2. When the agents are uncoordinated (state U ), they
each choose action a and b randomly. If the observed joint
action is not coordinated, the remain in state U ; but if they
coordinate, they move to the appropriate state (A or B) and
stay there (executing the corresponding action).

For many problems, we can view the mechanism as having
only two states: coordinated (C) and uncoordinated (U ). IfC, we simply require that the agent memorize the action on
which the group coordinated. For the purposes of comput-
ing expected value below, we often need only distinguishbe-
tweenC andU states (without regard to the actual action cho-
sen). We note that randomization works quite well if there
is a small group of agents with few actions to choose from;
but as these sets grow larger, the probability of transitioning
from U to C gets exponentially smaller. Randomization en-
sures eventual coordination, at a rate dictated by the number
of agents and number of choices available to them.

Fictitious play (FP) is a related learning technique com-
monly studied in game theory [4, 6] where each agent i ob-
serves the actions played in the past by other agents and plays
a best response given the empirical distributionobserved. We
refer to [6] for details, but note that the state of the mecha-
nism consists of “counts” of the PIO-actions played by other
agents; thus FP has an infinite number of states. For fully
cooperative games, FP converges to an optimal joint action
if attention is restricted to PIO-actions and agents randomize
over tied best responses [2, 12].2 It also has the property that
once a coordinated action is played, it is played forever. Un-
like randomization, FP tends to lead to faster coordination as
the number of agents and actions increase [2].

Lexicographic Conventions Conventions or social laws
(e.g., drivingon the right-handside of the road) are often used
to ensure coordination [9, 15]. Lexicographic conventions
can be applied to virtually any CP. Given some commonly-
known total ordering of both agents and individual actions,
the set of optimal actions can be totally ordered in several dif-
ferent ways. Lexicographic conventions ensure immediate
coordination, but can have substantial overhead due to the re-
quirement that each agent have knowledge of these orderings2Hence, it might best be described as a learning technique with
randomization, rather than a randomization technique with learning.

of both agents and actions. This may be reasonable in a fixed
setting, but may be harder to ensure over a variety of decision
problems (e.g., involving different collections of agents). In
contrast, the learning models described above can be viewed
as “meta-protocols” that can be embodied in an agent once
and applied across multiple decision problems.

Communication Finally, a natural means of ensuring co-
ordination is through some form of communication. For ex-
ample, one agent may convey its intention to perform a spe-
cific PIO-action to another, allowing the other agent to se-
lect a matching PIO-action. There are a number of well-
known difficulties with devising communication and negoti-
ation protocols, involving issues as varied as synchronization
and noisy channels. We do not delve into such issues here.
We assume that some agreed upon negotiation protocol is in
place. Realistically, we must assume that communication has
some cost, some risk of failure or misinterpretation, and de-
lays the achievement of goals. As such, we model commu-
nication as actions in an MMDP which have effects not on
the underlying system state, but on the “mental state” of the
agents involved. Rather abstractly, we can say that the state
of a communicative coordination mechanism for an agent i is
its estimate of the “mental state” of other agents. For exam-
ple, after negotiation, agent a1 may believe that a2 is com-
mitted to performing action b. The “mental state” of other
agents will generally only be partially observable, and the
state of the mechanism will be estimated by each agent.

4 Dynamic Programming with Coordination
4.1 Sequential Optimality and State Value
CPs arise at specific states of the MMDP, but must be con-
sidered in the context of the sequential decision problem as a
whole. It is not hard to see that CPs like the one at s2 in Fig-
ure 1 make the joint value function misleading. For example,eV 1(s2) = 10 and eV 1(s3) = 5, suggesting that a1 should
take action a at s1 with 2 stages-to-go. But eV 1(s2) assumes
that the agents will select an optimal, coordinated joint ac-
tion at s2. As discussed above, this policy may not be imple-
mentable. Generally, the optimal joint value function eV will
overestimate the value of states at which coordination is re-
quired, and thus overestimate the value of actions and states
that lead to them.

A more realistic estimate V 1(s2) of this value would ac-
count for the means available for coordination. For instance,
if a lexicographic convention were in place, the agents are
assured of optimal action choice, whereas if they randomly
choose PIO-actions, they have a 50% chance of acting opti-
mally (with value 10) and a 50% chance of miscoordinating
(with value -10). Under the randomization protocol, we haveV 1(s2) = 0 and V 1(s3) = 5, making the optimal decision ats1, with two stages to go, “opting out of the CP:” a1 should
choose action b and move to s3.

Unfortunately, pursuing this line of reasoning (assuming a
randomization mechanism for coordination) will lead the a1
to always choose b at s1, no matter how many stages remain.
If we categorically assert that V 1(s2) = 0, we must have
that V t(s3) > V t(s2) for any stage t � 1. This ignores the



fact that the coordination mechanism in question does not re-
quire the agents to randomize at each interaction: once they
have coordinated at s2, they can choose the same (optimal)
joint action at all future encounters at s2. Clearly, the V 1(s2)
depends on the state of the coordination mechanism. If the
agents have coordinated in the past, then V 1(s2) = 10, since
they are assured coordination at this final stage; otherwiseV 1(s2) = 0. By the same token, V t(s2) depends on the state
of the mechanism for arbitrary t � 1, as does the value of
other states.

The optimal value function V is not a function of the sys-
tem state alone, but also depends on the state of the mecha-
nism. By expanding the state space of the original MMDP
to account for this, we recover the usual value function def-
inition. In this example, we define the expanded MMDP to
have states of the form hs; ci, where s is some system state
and c is the state of the randomization mechanism. We useC and U to refer to coordinated and uncoordinated states of
the mechanism, respectively (withC standing for eitherA orB in the FSM of Figure 2). Transitions induced by actions
are clear: each action causes a system state transition as in
the MMDP, while the coordination state changes from U toC only if the agents choose action ha; ai or hb; bi at s2 (and
never reverts to U ). The coordination protocol also restricts
the policies the agents are allowed to use at s2. If they find
themselves at (expanded) state hs2; U i, they must random-
ize over actions a and b. As such, the transition probabilities
can be computed easily: hs2; U i moves to both hs4; Ci andhs5; U i with probability 0:5.3

The expanded MMDP can be viewed a combination of the
original MMDP and the partially specified controller shown
in Figure 2. The state space of the expanded MMDP is given
by the cross-product of the MMDP and FSM state spaces,
while the FSM restricts the choices that can be made when the
agents are at state s2 (for each state A, B or U of the FSM).
Generally speaking, the protocol restricts action choices at
the state where the CP arose, while optimal choices should
be made at all other states. Notice that these choices are op-
timal subject to the constraints imposed by the protocol (or
finite-state controller).

With this expanded state space, we can trace value iteration
on our running example to illustrate how the agents reason
about sequential optimality in a way that accounts for the CP
and the coordination mechanism. We assume a finite horizon
problem without discounting.

Example For all stages t > 0, obviously V ths2; Ci >V ths3; Ci; so if the agents are in a state of coordination,a1
should choose actiona at s1 and “opt in” to the CP by mov-
ing to s2. Matters are more complex if the agents are unco-
ordinated. For all stages t < 8, V ths2; U i < V ths3; U i.
So with 8 or fewer stages remaining, a1 should choose to
“opt out” (choose b) at hs1; U i. For all stages t > 10, how-
ever, V ths2; U i > V ths3; U i (e.g., V 11hs2; U i = 22:5
while V 11hs3; U i = 20.)4 Thus, a1 should “opt in” to the3More precisely, hs2; Ui transitions to states hs4;Ai and hs4;Bi

with probability 0:25 each.4The valuesV ths2; Ui andV ths3; Ui are equal for 8 � t � 10.

CP at hs1; U i if there are 12 or more stages remaining.

This example shows how knowledge of the state of the co-
ordination mechanism allows the agents to make informed
judgments about the (long term) benefits of coordination,
the costs of miscoordination, and the odds of (immediate or
eventual) coordination. Because of the cost of miscoordina-
tion (and its 50% chance of occurrence), the agents avoid s2
with fewer than eight stages to go. The safe course of action
is deemed correct. However, with eight or more stages re-
maining, they move from hs1; U i to hs2; U i: the 50% chance
of coordination not only provides the agents with a 50%
chance at the reward of 10, but also with a 50% chance at least
two more passes through s4. The long term benefits of coor-
dination (with a sufficient horizon) make the risk worthwhile
when compared to the safe alternative.

It is important to note that the state of the coordination
mechanism must be taken into account at each (system) state
of the MMDP. For instance, though the state of the mecha-
nism can have no influence on what the agents do at state s3
(there is only one “choice”), it is relevant to determining the
value of being at state s3.

In general, reasoning with coordination mechanisms al-
lows one to account for the factors mentioned above. Natu-
rally, the tradeoffs involving long term consequences depend
on the decision problem horizon or discount factor. The key
factor allowing computation of value in this case is an un-
derstanding of the coordination mechanism used to (stochas-
tically) select joint actions in the presence of multiple equi-
libria, and the ability to associate a value with any state of
the MMDP (given the state of the mechanism). Shapley’s
stochastic games [14] provide a related sequential multiagent
decision model with a a well-defined value for game states.
This value, however, is a consequence of the zero-sum as-
sumption, which removes the reliance of state value on the
selection of a (stage game) equilibrium. In particular, it does
not apply to fully cooperative settings where CPs arise.

4.2 Value Iteration with State Expansion
Value iteration can be revised to construct an optimal value
function and policy based on any given coordination mecha-
nism. A straightforward version is specified in Figure 3. We
discuss several optimizations below.

A list CP of state-game CPs and associated mechanisms
is kept as they are discovered. A CP exists if the set of op-
timal joint actions at a state/stage pair (the Q-values in step
3(a)i) induces a CP in the sense defined earlier. Notice that
CPs are defined using the value function V t, not immediate
reward. We assume that each CP is associated with a state
and the collection of actions involved in the optimal joint ac-
tions. Any state si with a CP will have the availability of ac-
tions involved in the CP restricted by the state of the mech-
anism. The set PA(si) is the set of actions permitted at si
given the mechanism state—this may include randomization
actions as well (if si has no CP, this set is justA); and agents
can only use permitted actions (step 3(a)i). If a CP is discov-
ered among the maximizing (permitted) actions at si, a new
mechanismC is introduced and the state is split and replaced
by all pairs of states hsi; ci (where c is some state of C).



1. Let V 0(s) = R(s) for all s 2 S.

2. Set t = 0; S1 = S0 = S; CP = ;.

3. While t < T do:

(a) For each si 2 St+1
i. For each a 2 PA(si), computeQt+1(si; a) = R(si) + fPsj2St Pr(si; a; sj)V t(sj )g

ii. Let Optt+1(si) be the set of actions with max Q-value
iii. If Optt+1(si) induces a new CP at si, introduce mechanismC: (a) addC to

CP; (b) replace si in St+1 with states hsi ; ci, where c ranges over states ofC; (c) RecomputeQt+1(hsi; ci; a) for each new state (according to rules
of C); (d) return to step ii. to check for new CPs.

iv. Let V t+1(si) = maxa Qt+1(si; a) and �t+1(si) be any maximizing
action (if si was split, do this for all hsi ; ci).

(b) t = t + 1;St+1 = S �CP .

Figure 3: Value Iteration with State Expansion

To illustrate, suppose the value function V t induces the
following choices at si: a b ca 10 0 0b 0 10 0c 0 0 7
If randomization is used to coordinate on a=b, expected value
is 5 (and the mechanism requires agents to randomize over
their PIO-actions). In contrast, the Q-value of hc; ci is better
than that of attempting to coordinate, thus the value of si is
defined as 7 if the agents are uncoordinated (and 10 if they
are coordinated). Notice that new CPs may be introduced at
the same state and the process can be iterated.5 In this prob-
lem, each state s is split into three states: hs; Ai (agents have
coordinated on joint action ha; ai at si), hs; Bi (coordinated
on hb; bi), and hs; U i (have not coordinated w.r.t. a and b).

If a mechanism has been introduced for the same state and
actions at an earlier stage, a new mechanism is not generated.
Value (and policy choice) is defined by comparing the value
of actions not involved in the CP and the value of behaving
according to the rules of the mechanism (step 3(a)iv). At the
next iteration all states are split according all mechanisms in-
troduced, since this may be required to predict the value of
reaching state si. If multiple CPs exist, each underlying sys-
tem state is expanded many times in this (naive) algorithm.

Implicit in this discussion is that assumption that the tran-
sitions induced by a coordination protocol over the expanded
state space are well defined: this will generally involve ex-
tending the underlying system dynamics by rules involving
mechanism state evolution. The mechanism designer must
provide such rules (as discussed in Section 3.2).

An important optimization is to have the algorithm only
expand states with mechanisms whose state is required to
predict value. This can be effected rather easily. If system
state si transitions to state sj , and sj has been split inSt to in-
volve some mechanism in CP, si must be split in state St+1.
But if si moves only to states that are unaffected by some (or
all) CPs, si need not be split using the state of those CPs. This5However, the splitting must eventually terminate.
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Figure 4: A More Complex Coordination Problem.

allows one to only refer to the state of a mechanism when it
is necessary for predicting value: the state space need not be
split uniformly.

Other optimizations of the algorithm are possible. For ex-
ample, one can “cluster” together states of the coordination
mechanism together that provide for the same optimal action
and value at a given state. For instance, though FP has an infi-
nite number of distinct states, for any finite number of stages-
to-go, only a finite number of distinction are relevant (much
like state abstraction methods used in MDPs and reinforce-
ment learning [1, 3]). Finally, we note that modeling com-
muncation protocols requires introducingcommunication ac-
tions, in addition to the state-splitting mechanism above.

4.3 Examples
We describe the results of applying the algorithm to several
small test problems in this section. We focus here on the use
of the simple randomization mechanism described above.

Testing a finite horizon version of the problem in Figure 1
shows that a single CP exists (at state s2). The state space is
eventually expanded so that each state is split into two (re-
ferring to coordination or lack of it at s2). The optimal de-
cision at hs1; U i is to “opt out” with fewer than eight stages
to go and “opt in” with eight or more stages remaining. The
infinite horizon version of this problem gives rise to station-
ary policies. When the discount rate � = 0:9 (or higher), a1
“opts in” at hs1; U i; but for � = 0:85 (or lower), a1 “opts
out” and avoids the CP—because of discounting, the delay
in expected payoff of coordination ensures that “opting in”
is not worth the cost. With � = 0:9, the value of opting in is
17.14 and opting out is 16.54 (assuming the agents act opti-
mally thereafter), while with � = 0:85, the value of opting
in is 8.62 and opting out is 9.36 (within tolerance 0.001).

A more complex example is illustrated in Figure 4. Two
agents have independent tasks. Agent a1 moves box b1 anda2 moves b2 to the goal state repeatedly. Once a box is
dropped at the goal, a reward is received and a new box ap-
pears in the original location (so the problem is a continuous,
infinite horizon MMDP). While the objectives are indepen-
dent, both agents are rewarded with the same constant reward
whenever either of their boxes is delivered. The optimal poli-
cies are not independent however. The dark shaded region
at the bottom is “risky:” if both agents are in the region, a
large (variable) penalty is given. They must coordinate their
moves to ensure that no more than one agent is in the risky



region at any time. The agents’ actions are stochastic: they
can move in any (feasible) compass direction but with proba-
bility 0:1 they fail to move (they can also stay in place inten-
tionally). Complicating the problem is the fact that the light
shaded region is “sticky:” the agents’ moves are more prone
to failure (with varying probability). If stickiness is low, the
optimal policy is for both agents to traverse the top of the grid
repeatedly. But if stickiness is relatively high (or the problem
is heavily discounted, making speedy delivery more impor-
tant), one or both agents will want to traverse the risky area,
in which case coordination is needed. The problem has 900
nominal states (though a number of these are not reachable)
and 25 joint actions.

We give a brief summary of the results in this domain with
the following specific parameter settings: a reward of 5 is
given for each box delivered; a penalty of -20 is given when-
ever both agents are in the risky area; stickiness (the prob-
ability of not moving) is 0:7 in the sticky region; and � =0:95. With these settings, the optimal joint policy (roughly)
requires that one agent move across the top of the grid and
one move across the bottom.6 Generally, if an agent is closer
to the top it will move across the top; but if both agents are
close (and equally close) to the bottom, they must coordinate
(since either could move to the top).

CPs arise at eight states of the MMDP. Thus there are eight
coordination mechanisms needed to solve this problem, ex-
panding the state space by a factor of 256 (no distinctions
need be made among coordinated choices, so each mecha-
nism has only two states). We focus on two MMDP states
where CPs arise and their interaction: s4;4 = hh1; h2; 4; 4i,
where both agents are located at grid cell 4 each holding
boxes, and s6;6 = hh1; h2; 6; 6i, which is similar, but with
both agents at location 6. The optimal joint policy at s4;4 re-
quires one agent to move up (to traverse the sticky region)
and the other to move down (to traverse the risky region) on
the way to the goal. The optimal policy at s6;6 is similar:
one agent should move up, the other right. The optimal joint
value function has eV (s4;4) = 11:54 and eV (s6;6) = 11:83.

If the agents have coordinated at all other states where CPs
arise, we have the followingoptimal values for the four states
of the expanded MMDP corresponding to each of s4;4 ands6;6 (here we use u4 to denote that the agents have not coor-
dinated at s4;4, and c4 to denote that they have coordinated ats4;4; similarly for s6;6):u4u6 u4c6 c4u6 c4c6s4;4 10.4419 11.3405 11.5356 11.5356s6;6 7.1866 11.8339 7.3983 11.8340

In both states (s4;4 or s6;6), if the agents are uncoordinated,
the optimal policy requires them to randomize, regardless of
the state of the other coordination mechanism. Notice that
the values for most of the expanded states where the agents
are uncoordinated are less than the corresponding values for
the optimal joint policy (which is identical to the expected
values at the states where c4c6 holds), as expected. The one6If the penalty is negligible or if the stickiness is even higher, the
agents will both tend to move across the bottom, perhaps with one
waiting for the other. If the stickiness is negligible, then both agents
will traverse the top of the grid.

exception is at s4;4: when c4 holds, expected value is iden-
tical whether or not c6 holds, since the optimal policy will
never take the agents from s4;4 to s6;6. In contrast, whenu4 holds, the status of c6 has a dramatic impact on expected
value: if the agents are uncoordinated at s4;4 they will ran-
domize and with probability0:25 both choose to move down
(hence to s6;6). Their state of coordination at s6;6 is thus im-
portant to predicting expected value. Being uncoordinated
at s6;6 has very low value, since randomization has a good
chance of moving both agents to the risky area—the risk is
worthwhile, however, so randomization is the optimal choice
at s6;6.7 Also when the agents are coordinated at s6;6, the sta-
tus of c4 has a rather small effect on value. Because coordi-
nation at s6;6 ensures that one agent takes the “sticky” route
to the goal region, the agents get “out of synch” and the odds
of them both reaching the pickup location (cell 4) at the same
time (within a reasonable time frame) is quite small. Hence,
whether or not the agents are coordinated at s4;4 has little im-
pact on expected value at s6;6.

Randomization is an important aspect of this problem. If
the agents were to choose from among their PIO actions inde-
pendently, but deterministically, without reasoning about the
consequences of miscoordination, they can end up in cycles
that never reach the goal state.

5 Generalization of Coordination Decisions
One difficulty with the algorithm above is the potential for
uninhibited state expansion, and the corresponding compu-
tational cost. In the simple experimental domain with two
agents collecting boxes in a grid world, eight CPs occurred
across the 900 problem states, requiring the state space to be
increased by a factor of 256 (to 230,400 states). Fortunately,
in many circumstances we can introduce a single coordina-
tionmechanism to deal with multiple, related CPs. In the grid
problem, for example, once the agents coordinate at a state by
one agent moving up and the other down, they can maintain
these “roles” at other states exhibiting similar CPs.

We do not propose a method for constructing such gen-
eralizations automatically—this could use, say, generaliza-
tion techniques from reinforcement learning [1]—but we il-
lustrate potential benefits with the simple example shown in
Figure 5. It is similar to the MMDP in Figure 1 except that
miscoordination at s2 has a larger penalty, and an analogous
“low cost” CP has been added. If a single mechanism is used
for both CPs (at s2 and s7), once coordination is attained
at s7, it is automatic at s2. As in the original MMDP, with
fewer than 12 stages-to-go, the optimal action at hs1; U i is
to “opt out” and take the sure reward 5. With 12 or more
stages remaining, the optimal action at hs1; U i is ha; ai: the
agents move to the low risk CP and try to coordinate there.
Never do the agents move to s2 in an uncoordinated state.
Even though there is no immediate benefit to moving to s7, it
gives the agents an opportunity to “train,” or learn to coordi-
nate with minimal risk. Once they coordinate, they immedi-
ately exploit this learned protocol and choose ha; bi at hs1; Ci
(thereby moving to hs2; Ci). Reasoning about the long term7Though with higher penalties, it is not.
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Figure 5: An MMDP with Similar Coordination Problems

prospects of coordination and its costs, the agents realize that
risk-free training is worthwhile.

If we retain the original penalty of -10 at s5, this reasoning
fails: there is essentially less risk involved in training at the
high stakes CP, so the agents will never move to s7 to train.

The infinite horizon problem is similar. With a discount
rate of 0:95, the optimal policy requires the agents to move tos7 until they coordinate, at which point they repeatedly move
to s2. Interestingly, adding the “training states” increases the
expected reward accrued by the agents. Without the training
states, V (hs1; U i) = 46:68 since the agents accept the risk
of getting several -20 rewards to ensure coordination. With
the training states, they can learn to coordinate without the
severe penalties, and V (hs1; U i) = 49:57.

6 Concluding Remarks
We have introduced a novel method of defining value func-
tions (and consequently, optimal policies) for multiagent de-
cision problems that accounts for specific means of coordina-
tion. We also defined a value iteration algorithm for comput-
ing optimal policies that recognizes and reasons about CPs.

Further experimentation is needed with other coordination
mechanisms and their impact on policy value. We have de-
scribed experiments in this paper using randomization, and
have begun to investigate communication methods, and hope
to explore other models like FP. We intend to introduce eco-
nomic models (such as auctions) so that agents may integrate
reasoning about their activity in markets into their decision
processes. We must explore automated generalization meth-
ods further; it has the potential to substantially reduce the re-
quired number of mechanisms, alleviate computational diffi-
culties, and increase objective policy value.

We would also like address the problem of designing ro-
bust, computationally effective and value-increasing coordi-
nation protocols in the framework. In a certain sense, such
an undertaking can be viewed as one of designing social laws
[15]. It is also related to the issues faced in the design of pro-
tocols for distributed systems and the distributed control of
discrete-event systems [10]. But rather than designing proto-
cols for specific situations, metaprotocols that increase value

over a wide variety of CPs would be the target. The frame-
work developed here can also help decide whether sophisti-
cated protocols are worthwhile. For instance, a lexicographic
protocol induces immediate coordination with a measurable
(in our model) increase in expected value over (say) a ran-
domization method. This increase can then be used to de-
cide whether the overhead of incorporating a lexicographic
convention (e.g., ensuring agents have common orderings)
is worthwhile. Similar remarks can be applied to the design
of agents (e.g., is communicative ability worthwile given the
class of decision problems they will face).
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