The Frame Problem in the
Situation Calculus: A Simple
Solution (Sometimes) and a
Completeness Result for Goal
Regression

Raymond Reiter

Department of Computer Science
Unwversity of Toronto
Toronto, Canada
and
The Canadian Institute for Advanced Research

1 Introduction

Ever since it was first pointed out by McCarthy and Hayes in 1969 [5], the
frame problem has remained an obstacle to the formalization of dynami-
cally changing worlds. Despite many attempts, no completely satisfactory
solution has been obtained. Without presuming to have solved the frame
problem in its full generality, we propose a solution for an interesting spe-
cial case, and explore some of its consequences. Specifically, we have two
objectives in this chapter:

1. To provide an analysis of two recent proposals for dealing with the frame
problem in the situation calculus (Pednault [6], Schubert [9]) and to show
how they can be combined, under a suitable closure assumption that is
appropriate in settings when the effects of all actions on all fluents can
be specified.

2. To show how the axioms arising from the analysis of 1. provide a sys-
tematic treatment of goal regression (Waldinger [10]) for plan synthe-
sis, together with natural conditions under which regression is provably
sound and complete.

Proofs for all results in this chapter may be found in (Reiter [8]).

1

2 Axiomatizing Change

In this section, we describe a class of axioms that characterize the effects of
actions on fluents. We follow this by a survey of two different approaches
to solving the frame problem, namely, the proposals of Pednault [6] and
Schubert [9]. Finally, we provide an axiomatization combining the central
ideas of Pednault and Schubert.

2.1 Effect Axioms

Following Pednault [6], we assume that the effects of actions on fluents are
specified by effect axioms of the following forms:

Positive Effect Axiom for Fluent R wrt Action a

For each action a(x) and fluent R, there is one axiom of the form:

Ta(x,8) Aeh(x,y,s) D R(y,do(a(x), s)).

Here, the variables x,y, and s are implicitly universally quantified.!
The variables of x and y are distinct from one another. The metaformula
7a(X, s) denotes the action preconditions of the action a(x). These are the
prerequisites that must be satisfied in order that action a can be carried out,
and they depend only on a, not on R. The metaformula EE(X, ¥, s) denotes
the fluent preconditions under which action a(x), if performed, leads R to
become true for y in the successor state do(a(x),s)).

Examples

1. The effect on the predicate broken of dropping something:
holding(r,z,s) Ny = x A fragile(y) D broken(y, do(drop(r, z), s)).

Here, arop (7, 2, 8) is holding(r, z, s), the precondition for robot r to drop
object z in state s. & ,_ (r,z,y,s)is y = A fragile(y), the prerequisite
for y becoming broken in that state do(drop(r, z), s) resulting from robot r
dropping z in state s.

2. How picking something up affects the predicate holding:

[(Vz)=holding(r, z, s)] A ~heavy(z) A nezto(r,z,s) A7/ =rAy==z
D holding(r',y, do(pickup(r, z), s)).

In the subsequent development, lower case Roman letters in formulas will denote
variables, and are understood to be implicitly universally quantified whenever no explicit
quantifier is indicated.

Here, mpickup(r, 2, 5) is
[(Vz)—holding(r, z, s)] A —heavy(z) A nexto(r, z,s),
the precondition for robot r to pick up z in state s. 6;Oldmg(r, z, 7'y, s) is
r=rAy=u=z.
Negative Effect Axiom for Fluent R wrt Action a

For each action a(x) and fluent R, there is one axiom of the form:
Ta(X,5) Neg(x,y,5) D ~R(y, do(a(x), s)).

As before, the metaformula m,(x,s) denotes the action preconditions of
the action a. The metaformula ¢ (x,y, s) denotes the fluent preconditions
under which action a(x), if performed, leads R to become false for y in the
successor state do(a(x), s)).

Example
hasglue(r, s) Abroken(z,s) Ay =« D —broken(y, do(repair(r,), s)).

Here, Trepair(r, &,s) is hasglue(r,s) A broken(z,s), the precondition for
robot r to repair object z in state s. e, (7, %,y,5) is y = 2.

2.2 Frame Axioms

As has been long recognized [5], axioms other than effect axioms are re-
quired for formalizing dynamic worlds. These are called frame arioms, and
they specify the action nwvariants of the domain, i.e., those fluents unaf-
fected by the performance of an action.

Examples

Dropping things does not affect an object’s color:
holding(r, z, s) A color(y, ¢, s) D color(y, ¢, do(drop(r, z), s)).
Not breaking things:

holding(r, z, s) A —broken(y, s) A [y # z V = fragile(y)]
D —broken(y, do(drop(r,), s)).

In general, a frame axiom has one of the following syntactic forms:

Positive Frame Axiom for Fluent R wrt Action a

Ta(X,8) A (Z)E(x,y, s) A R(y,s) D R(y,do(a(x),s)).

When a’s action preconditions are satisfied and the prerequisites qu'l(x, v,)
hold, R remains true for y after a is performed.

Negative Frame Axiom for Fluent R wrt Action a

Tq(X,8) A dg(x,y,5) A—-R(y,s) D ~R(y, do(a(x), 5)).

When a’s action preconditions are satisfied and the prerequisites ¢4 (x,y, s)
hold, R remains false for y after a is performed.

2.3 Frame Axioms: Pednault’s Proposal

In view of the large expected number of frame axioms, together with the
practical problem of having to think of them all, it is natural to ask whether
there is some systematic way of obtaining them from the effect axioms. Ped-
nault [6] provides just such a method, but with a critical proviso. Consider
again the positive and negative effect axioms for a fixed action @ and a fixed
fluent R:

ma(x,8) Aek(x,y,s) D R(y,do(a(x), s)),

Tq(X,8) ANeg(x,y,s) D ~R(y, do(a(x), s)).
Suppose we make the following:

Completeness Assumption for Fluent Preconditions

The fluent precondition 6E(x,y,s) specifies all the conditions under which
action a, if performed, will lead to the truth of R for y in a’s successor
state. Similarly, e, (x,y,s) specifies all the conditions under which action
a, if performed, will lead to the falsity of R for y in a’s successor state.

Now, by the completeness assumption, we can reason as follows: Sup-
pose a’s action preconditions m,(x,s) hold. Suppose further that both
R(y,s) and - R(y,do(a(x),s)) hold. Then R, which was true in state s,
was made false by action a. By the completeness assumption, the only
way R could become false is if €5 (x,y, s) were true. This intuition can be
expressed axiomatically by:

Ta(%x,8) A R(y,s) A= R(y, do(a(x),s)) D ex(x,y,s).
This is logically equivalent to:

Ta(x,8) A R(y,s) A neg(x,y,s) D R(y, do(a(x), s)).
A symmetric argument yields the axiom:

Ta(x,5) A=R(y, s) A —eh(x,y,5) D ~R(y, do(a(x), s)).

These have precisely the syntactic forms of positive and negative frame
axioms and, by virtue of the argument leading to these, they play exactly
the role of frame axioms. We conclude that, provided the completeness
assumption is true, there is a systematic way of obtaining the frame axioms
from the effect axioms.

Notice that the completeness assumption makes no reference to the ac-
tion preconditions m4(x, s) for the action a. These may well fail to charac-
terize all the preconditions of the action a, but this incompleteness would
in no way compromise the intuitive correctness of the above systematic
transformation of the effect axioms to obtain the frame axioms. The plau-
sibility of this transformation relies solely on the assumed completeness of
the fluent preconditions.

Notice also the intimate connection between the completeness assump-
tion and the so-called qualification problem (McCarthy [4]). By assuming
complete information about fluent preconditions, we are effectively assum-
ing no qualifications about these preconditions. Equivalently, if there are
any unstated qualifications, we are taking them to be false. The complete-
ness assumption makes no such claims about possible qualifications for the
action preconditions.

Example
Consider the positive effect axiom for broken wrt drop:
holding(r,z,s) Ny = x A fragile(y) D broken(y, do(drop(r, z), s)).

The completeness assumption for this setting is that the only precondition
for y being broken as a result of dropping z is that y be fragile and the
same as z. If this assumption is accepted, then the negative frame axiom
for the fluent broken wrt the action drop is:
holding(r, z, s) A —broken(y, s) A =[y = z A fragile(y)]
D —broken(y, do(drop(r,), s)).

To obtain the frame axioms in this way for all fluent-action pairs requires
considering a large number of “vacuous” effect axioms. For example, to

obtain a frame axiom for the fluent color wrt action drop, consider the
positive effect axiom for color wrt drop:

holding(r,z,s) A false D color(y, ¢, do(drop(r, z), s)).
From this we obtain the negative frame axiom for color wrt drop:
holding(r, z,s) A =color(y, ¢, s) D —color(y, ¢, do(drop(r, z), s)).

This illustrates two problems with Pednault’s proposal:

e To systematically determine the frame axioms for all fluent-action pairs
from their effect axioms, we must enumerate (or at least consciously con-
sider) all these effect axioms, including the “vacuous” ones. In particular,
we must enumerate all fluent-action pairs for which the action has no
effect on the fluent’s truth value, which really amounts to enumerating
most of the frame axioms directly.

e The number of frame axioms so obtained is 2 x A x F, where A is the
number of actions, and F the number of fluents. Some of these may be
vacuously true (i.e., when the fluent precondition of the corresponding
effect axiom is true), but in general, we are faced with the usual difficulty
associated with the frame problem — too many frame axioms.

Finally, the completeness assumption warrants a bit more attention:
when can it fail? The answer seems to be, roughly speaking: whenever
the effects of an action on a fluent are not completely known. Consider
the effect of pulling the trigger of a (possibly loaded) gun on the fluent
loaded. 1t is indeterminate whether the gun will be loaded after the action
pulltrigger. Thus, both the positive and negative effect axioms for loaded
wrt pulltrigger are “vacuous”:

false D loaded(do(pulltrigger, s)),

false D —loaded(do(pulltrigger, s)).

The corresponding frame axioms, obtained from these effect axioms under
the completeness assumption, are:

loaded(s) D loaded(do(pulltrigger, s)),

—loaded(s) D —loaded(do(pulltrigger, s)).

The first of these is intuitively false. One way out, at least for this example,
is to refine the effect axioms to make the effects of pulltrigger on loaded
determinate:

containsbullets(n,s) An > 2 D loaded(do(pulltrigger, s)),

containsbullets(n,s) An <1 D —loaded(do(pulltrigger, s)).

It is unlikely that such fixes are possible, in a natural way, for all indeter-
minate action-fluent pairs.

2.4 Frame Axioms: Schubert’s Proposal

Schubert [9], elaborating on a proposal of Haas [3], argues in favor of what
he calls explanation closure axioms for representing the usual frame axioms.
We illustrate Schubert’s approach with an example.

Consider the fluent holding, and suppose that both holding(r, z, s) and
—holding(r, z,do(a, s)) are true. How can we explain the fact that holding
ceases to be true? If we assume that the only way this can happen is if the
robot r put down or dropped z, we can express this with the explanation
closure axiom:

holding(r,z,s) A —~holding(r, z, do(a, s))
D a = putdown(r,z) V a = drop(r, z).

As usual, all variables, including the action variable a, are implicitly uni-
versally quantified. To see how this functions as a frame axiom, rewrite it
in the logically equivalent form:

holding(r, z,s) A a # putdown(r, z) A a # drop(r, z) (1
D holding(r, z,do(a, s)).)

This says that all actions other than putdown and drop leave holding
invariant,? which is the standard form of a frame axiom (actually, a set
of frame axioms, one for each action distinct from putdown and drop).

In general, an ezplanation closure axiom has one of the two forms:

R(x,s) A —R(x,do(a, s)) D agr(x,a,s),

- R(x,s) A R(x,do(a, s)) D Br(x,a,s).

In these, the action variable @ is universally quantified. These say that if
ever the fluent R changes truth value, then ag or fg provides an exhaustive
explanation for that change.

As before, to see how explanation closure axioms function like frame
axioms, rewrite them in the logically equivalent form:

R(x,s) A —agr(x,a,s) D R(x,do(a, s)),

and

=R(x,5) A =PBr(x,a,s) D —R(x,do(a, s)).3

2To accomplish this, we shall require unique names axioms like pickup(r,z) #
drop(r’,z'). We shall explicitly introduce these later.

3Schubert [9] omits the action preconditions for @ in his examples of explanation
closure axioms, as we do here. Nevertheless, they should be present. We shall restore
them in the next section.

These have the same syntactic form as frame axioms with the important
difference that action a is universally quantified. Whereas there would be
2 x A x F frame axioms, there are just 2 x F explanation closure axioms.
This parsimonious representation is achieved by quantifying over actions in
the explanation closure axioms.

Schubert proposes that explanation closure axioms must be provided in-
dependently of the effect axioms. Like the effect axioms, these are domain-
dependent. In particular, Schubert argues that they cannot be obtained
from the effect axioms by any kind of systematic transformation. Thus,
Schubert and Pednault entertain conflicting intuitions about the origins of
frame axioms.

As Schubert observes, his appeal to explanation closure as a substitute
for frame axioms involves an assumption.

The Explanation Closure Assumption

The only way the fluent R’s truth value could have changed from true to
false under action a is if ap were true. This means, in particular, that ap
completely characterizes all those actions a that can lead to this change;
sitmilarly for Bg.

We can see clearly the need for this assumption from the example ex-
planation closure axiom (1). If, in the intended application, there were an
action (say, eat(r,z)) that could lead to r no longer holding z, axiom (1)
would be false.

3 A Simple Solution to the Frame Problem
(Sometimes)

3.1 The Basic Idea: An Example

The basic idea is best illustrated with an example. Suppose there are two
positive effect axioms for the fluent broken:

holding(r,z,s) ANy = x A fragile(y) D broken(y,do(drop(r, z), s)),
bomb(b) A nexto(b,y, s) D broken(y, do(explode(b), s)).
These can be rewritten in the logically equivalent form:

{[holding(r, z,s) Aa = drop(r,z) ANy =z A fragile(y)]
VIbomb(b) A nexto(b, y, s) A a = explode(b)]}
D broken(y, do(a, s)).

This can be represented more compactly by introducing the new predicate
Poss(a, s), meaning that action a is possible in state s:

Poss(a, s) A[(Ir, z)a = drop(r,z) Ay =z A fragile(y)
V(3b)a = explode(b) A nexto(b,y, s)] (2)
D broken(y, do(a, s)),

holding(r,z,s) D Poss(drop(r,z), s),
bomb(b) D Poss(explode(b), s).

Similarly, consider the negative effect axiom for broken:

hasglue(r, s) Abroken(z,s) ANy =« D —broken(y, do(repair(r, z), s)).
In exactly the same way, this can be rewritten as:

Poss(a, s) A (Ir,z)a = repair(r,z) Ay =2z D
—broken(y, do(a, s)),

(3)

hasglue(r, s) Abroken(z,s) D Poss(repair(r, z), s).

Notice that, with the exception of the introduction of the predicate Poss,
this transformation is similar to the first stage of Clark’s [1] predicate com-
pletion technique for logic programs.

Now we can appeal to the following completeness assumption:

Aziom (2) characterizes all the conditions under which action a leads
to y being broken.

Then if Poss(a,s), —broken(y, s), broken(y, do(a, s)) are all true, the
truth value of broken must have changed because

(Fr,z)a = drop(r,z) ANy = z A fragile(y)
V(3b)a = explode(b) A nexto(b,y, s)

was true. This intuition can be formalized, after some logical simplification,
by the following explanation closure axiom:

Poss(a, s) A ~broken(y, s) A broken(y,do(a,s)) D
(3r)a = drop(r,y) A fragile(y) V (3b)a = explode(b) A nexto(b,y, s).

Similarly, (3) yields the following explanation closure axiom:

Poss(a, s) Abroken(y, s) A =broken(y,do(a,s)) D (3Ir)a = repair(r,y).

10

3.2 The General Case

The previous example obviously generalizes. We suppose given, for each
fluent R, the following two general effect axioms:

General Positive Effect Axiom for Fluent R

Poss(a,s) A% (a,s) D R(do(a, s)).* (4)

General Negative Effect Axiom for Fluent R
Poss(a,s) Ayg(a,s) D —R(do(a, s)). (5)

These two axioms are systematically obtained from all of the positive (re-
spectively, negative) effect axioms for R by the same process illustrated in
the previous examples.

The predicate Poss must also be defined.

Action Precondition Axioms
For each action A,
ma(s) D Poss(A, s),

where m4(s) is the formula for A’s action preconditions.

We shall make the following:

Completeness Assumption

Azioms (4) and (5), respectively, characterize all the conditions under
which action a can lead to R becoming true (respectively, false) in the suc-
cessor state.

Hence, if action a is possible and R’s truth value changes from false to
true as a result of doing a, then 'yg (@, s) must be true; similarly, if R’s truth
value changes from true to false. This informally stated assumption can be
represented axiomatically by the following:

Explanation Closure Axioms
Poss(a, s) A R(s) A —=R(do(a,s)) D yg(a,s), (6)
Poss(a,s) A =R(s) A R(do(a,s)) D v (a,s). (7)

We shall sometimes appeal to:

4Henceforth, in formulas of this kind, we shall suppress all but the action and state
arguments.

11

Unique Names Axioms for Actions

For distinct action names a and a’,
a(x) £ a'(y).
Identical actions have identical arguments:
a(zy, .ozn) =a(y1, .. ¥n) DZ1=Y1 A . Ay = Yn.

Finally, we shall need:
Unique Names Axioms for States
So # do(a, s),®
do(a,s) = do(d',s') Da=d" Ns =5
The following slightly generalizes a result of Pednault[6]:

Result 1 Let T be a firstr-order theory that entails =3(Poss(a, s) Ay} (a, 5)
Avg(a,s)), where 3 denotes the existential closure of the formula in its
scope. Then T entails that the general effect axioms (4) and (5), together
with the explanation closure axioms (6) and (7), are logically equivalent to:

Poss(a, s) D [R(do(a,s)) = v} (a,s) V R(s) A g (a, s)]. (8)

The requirement that —=3(Poss(a,s) A v} (a,s) A v5(a, s)) be entailed
by the background theory 7' simply guarantees the integrity of the effect
axioms (4) and (5); under these circumstances, it will be impossible for
both R(do(a,s)) and —R(do(a, s)) to be simultaneously derived. Notice
that by the unique names axioms for actions, this condition is satisfied by
the example of Section 3.1.

We call formula (8) the successor state axiom for fluent R. For the
example of Section 3.1, the successor state axiom for broken is:

Poss(a, s) D [broken(y,do(a,s)) =
(3r)a = drop(r,y) A fragile(y) V (3b)a = explode(b) A nexto(b,y,s)
Vbroken(y, s) A —(3r)a = repair(r, y)].

51n the subsequent development, Sy will denote the initial state, and will be the only
state constant allowed in the theory.

12

3.3 Summary

Our proposed solution relies on the completeness assumption of the previous
section for each fluent R. This yields the following axioms:

1. Successor state axioms: for each fluent R,
Poss(a,s) D [R(do(a,s)) = v#(a,s) V R(s) A =y5 (a, s)].

2. For each action A, a single action precondition axiom of the form:

ma(s) D Poss(A,s).

3. Unique names axioms for actions and for states.

Ignoring the unique names axioms (whose effects can be compiled), this
axiomatization requires F 4.4 axioms in total, compared with the 2 x A x F
explicit frame axioms that would otherwise be required. There is also a
significant improvement in space complexity of our axiomatization over one
appealing to explicit frame axioms. More precisely, it is easy to see that the
space complexity is decreased by a factor of A, roughly the same decrease
in complexity as is obtained by the simple axiom-counting argument above.

The conciseness and perspicuity of this axiomatization relies on two
things: quantification over actions via the transformations of Section 3.1,
and the Generalized Completeness Assumption.

4 Plan Synthesis

The standard formal account of plan synthesis views this as a theorem-
proving problem. A plan to achieve a certain goal G(s) is obtained as a
side effect of a proof of (3s)G(s) from premises axiomatizing the domain of
application and conditions holding in the initial state Sy (Green [2]). Any
binding for the variable s as a result of such a proof is a successful plan.
Here, G(s) is any first-order formula with the single free variable s.

4.1 Executable Plans and Ghost States in the Situa-
tion Calculus

The above theorem-proving account of plan synthesis has a flaw; it is pos-
sible to obtain non-ezrecutable plans this way. To see why, consider an
axiomatization F of a blocks world domain for which

F E onfloor(B, do(drop(B), Sg)).

13

Then trivially, do(drop(B), Sp) is a plan to get B onto the floor; but this
plan need not be executable, i.e., the action precondition of drop, namely,
holding(B, Sy), need not be entailed by F. Under these circumstances,
do(drop(B), So) is a ghost state of F; it is not reachable from Sy by any
executable sequence of actions. Notice that this is a feature of the situation
calculus, not of our proposed solution to the frame problem. To circumvent
this problem of non-executable plans, we propose to modify the theorem to
be proved in the process of plan synthesis. Define a new predicate exz(s) as
follows:

ex(s) = s =Sy V (Ja,s’)s = do(a,s’) A Poss(a,s') Aex(s'). 9)

Intuitively, ez(s) states that s is an executable plan, i.e., it is composed
of a sequence of plan steps, each of whose action preconditions is true in
the previous state. We reformulate the problem of synthesizing a plan to
achieve a goal GG as the task of establishing that

F E (3s)G(s) Aex(s).

Any plan so obtained is guaranteed to be executable.

4.2 Plan Synthesis by Goal Regression

“In solving a problem of this sort, the grand thing is to be able to reason
backward.”

Sherlock Holmes, A Study in Scarlet

This section provides foundations for a systematic, backward-reasoning-
style proof theory for plan synthesis, usually called goal regression (Waldin-
ger [10]). The approach substantially generalizes some ideas of Pednault
[6], who considers goal regression within the setting defined by his solution
to the frame problem.

Our objective is a method for establishing that

F E (3s)G(s) A ex(s)

whenever F is a suitable axiomatization of a dynamic world. To do so we
must be more precise than we have been about the first-order language of
our axiomatization. Let £ be a sorted first-order language with two disjoint
sorts for actions and states, and suppose these sorts are disjoint from any
other sorts of the language. Assume £ has the following vocabulary:

e Variables: Infinitely many of each sort.

14

e Function symbols of sort state: There are just two of these — the constant
So and the binary function symbol do, which takes arguments of sort
action and state, respectively.

e Function symbols of sort action: Finitely many.

e Other function symbols: Infinitely many of sort other than action and
state for each arity, none of which take an argument of sort state.

e Predicate symbols:

1. A distinguished binary predicate symbol Poss taking arguments of
sort action and state, respectively.

2. A distinguished unary predicate symbol ez taking argument of sort
state.

3. A distinguished equality symbol =.

4. Finitely many predicate symbols, distinct from the predicate sym-
bols Poss and ez, each of which takes, among its arguments, exactly
one of sort state; these are the fluents. Notice that the predicates
Poss and ez, which do take an argument of sort state, are not
fluents.

5. Infinitely many predicate symbols of each arity, none of which take
arguments of sort state.

e Logical constants and punctuation: As usual.

Notice that £ does not allow state-dependent functions like employer-
of(z,s), or Canadian-prime-minister(s).

The predicate symbols of £ other than Poss and ez are called domain
predicate symbols. The intention is that these will denote domain-specific
relations like holding, nexto, etc. The two non-domain predicate symbols
Poss and ez are included to facilitate our axiomatization of change, as in
Section 3.2.

Definition: The Simple Formulas

Let s be a variable of £ of sort state. The formulas of £ that are simple
wrt s are defined to be the smallest set such that:

1. F(f,s) and F(f, Sp) are simple wrt s when F is a fluent and are terms.®

An equality atom mentioning no state variable at all, or mentioning
only the state variable s, is simple wrt s. Any other atom with predicate
symbol other than Poss or ez is simple wrt s.

8For notational convenience, we assume that the last argument of a fluent is always
the (only) argument of sort state.

15

2. If S; and S5 are simple wrt s, so are =Sy, S; A Sy, S1V Sy, S1 D 9o,
51 = Sg.

3. If S is simple wrt s, so are (Jx)S and (V)S whenever z is a variable not
of sort state.

In short, the simple formulas wrt s are those that mention only domain
predicate symbols, whose fluents do not mention the function symbol do,
which do not quantify over variables of sort state, and which have at most
one free variable s of sort state.

Recall that Poss was a predicate symbol introduced to provide a uni-
form representation for successor state axioms, and that the preconditions
for specific actions were defined by action precondition axioms (Section

3.2).

Definition: Action Precondition Axiom

An action precondition axiom is a formula of the form:
(Ve1, -, 20, 8)[lTa D Poss(A(zy,- -, 2p),s)],

where A is an n-ary action function of £, and Il 4 is a formula of £ that is
simple wrt s and whose free variables are among z1, - -, &y, s.

Notation

Suppose F C L contains an action precondition axiom for each action
function of £, say, the following n axioms:

(V.i;, S)[HA1 D POSS(Al(f):S)]a

(VZ,8)[Ta, D Poss(An(7),s)].
Then Dx(a,s) denotes the formula:
(Fd)a= A1(B) ATl4, V-V (FD)a = Ap (D) ATl,4, .
Recall the central role of successor state axioms in our approach to the
frame problem (Section 3.2).
Definition: Successor State Axiom

A successor state axiom for an (n + 1)-ary fluent F of £ is a sentence of £
of the form:

(Va, s)(VYz1,...,2,)Poss(a,s) D F(z1,...,2,,do(a,s)) = Dp, (10)

16

where, for notational convenience, we assume that F’s last argument is
of sort state, and where ®p is a simple formula wrt s, all of whose free
variables are among a, s, z1, ..., Z,.

Notice that we do not assume that successor state axioms have the exact
syntactic form (8) of Section 3.2. The discussion of Section 3 was meant to
motivate one way that successor state axioms of the form (10) might arise,
but nothing in the development that follows depends on the approach of
Section 3.2.

Definition: A Regression Operator

Let © C £ contain one successor state axiom for each distinct fluent of the
language £. The regression operator Re when applied to a formula of £ is
defined recursively as follows:

1. When A is a non-fluent atom, including equality atoms, and atoms with
predicate symbol Poss or ex, or when A is a fluent atom whose state
argument is a state variable, or the state constant Sy,

RelA] = A.
2. When I is a fluent whose successor state axiom in © is
(Va, s)(Vz1,...,2,)Poss(a,s) D F(z1,...,2,,do(a,s)) = Dp,

then
Reo [F(tl, coytn, dO(a’ 0‘))] — CI)F|J:1"“’£"’G’S.

t1,...,tn, 00,0

3. Whenever W is a formula,
Re[-W] = -Re[W],
Ro[(Vv)W] = (Vv)Re [W],
Ro[(Fv)W] = (Fv)Re [W].

4. Whenever W, and W5 are formulas,
Ro (Wi A W] = Re[W1] A Re[Wa],
Ro[W1V W3] =Re[W1]VRe[Wa],
[Wl D Wz] Ro[W1] D Re[Ws],
Ro[W1 = Ws] = Re[Wi1] = Re [W2].

Re[G] is simply that formula obtained from G by substituting suitable
instances of ®p in F’s successor axiom for each occurrence in GG of a fluent
atom of the form F(t1,...,t,,do(a,0)).

The idea behind the regression operator Rg is to reduce the depth of
nesting of the function symbol do in the fluents of G by substituting suitable
instances of ®p from (10) for each occurrence of a fluent atom of G of the
form F(t1,...,tn,do(c,c)). Since ®p is simple wrt s, the effect of this

17

substitution is to replace each such F' by a formula whose fluents mention
only the state term o, and this reduces the depth of nesting by one.

We say that a formula of £ is s-universal iff in its prenex normal form
every variable of sort state is universally quantified.

Definition: The Formulas T';(s)

Let G(s) € £ have the state variable s as its only free variable. Suppose
F C L contains a successor state axiom for each fluent of £ and an action
precondition axiom for each action function of £. Define

FZ(S) = (Elai)R]:[Fi_l(do(ai, 8))] /\D]:(ai, S) 1=1,2,---

The following is the principal result of this section.

Theorem 1 (Regression Theorem) Suppose F C L contains the ez-
ecutability ariom (9), unique names arioms for states, a successor state
axiom for each fluent of L, and an action precondition axiom for each ac-
tion function of L. Suppose further that the remaining axioms of F are
s-universal and mention only domain predicate symbols. Finally, suppose
that G(s) € L is simple wrt s, and that the state variable s is the only free
variable of G(s). Then

1.
F E (3s)G(s) A ex(s)
iff for some n,
F~ ETo(So) V- VI,a(So),

where F~ is F without the executability axiom.

2. For everyn, To(So) V-V T,(So) mentions only domain predicate sym-
bols.

3. For every n, Sy is the only state term mentioned by the fluent atoms of

To(So) V -+ V T (So).

4.3 Soundness and Completeness of Goal Regression

The motivation underlying the Regression Theorem is that by successively
applying the regression operator to the goal statement G(s), we can obtain
an equivalent expression, I'g(Sp)V- - -VI,(Sp), that mentions only the initial
state instead of the state variable s, and that this regressed expression will
be entailed by those axioms of F other than the successor state and action

18

precondition axioms. The intuition is that the successor state and action
precondition axioms will have done their job through their contribution
to the regression; they should have no further role to play in proving the
formula I'g(Sp) V -+ V IT'y(Sp). Unfortunately, this intuition is false.

Example

Suppose F contains unique names axioms for states together with the fol-
lowing two successor state axioms and single action precondition axiom:

Poss(a, s) D P(do(a,s)) = D(s),

Poss(a, s) D Q(do(a, s)) = E(s),
true D Poss(A,s).
Suppose F also contains an initial state axiom F/(Sp), and a general axiom
Q(s) D P(s). Consider the goal (Is)P(s) A exz(s). Then T'q(So) V I'1(So) is
(after some slight simplification) P(Sp) V D(Sp), and F |= P(So) V D(So);
but
E(So), Q(s) D P(s) = P(So) V D(So).

So it appears that, even after regressing a goal formula, the successor
state and action precondition axioms cannot be discarded. This observation
leads to the natural question: under what conditions can these axioms be

discarded without sacrificing the completeness of goal regression? In other
words, under what conditions will

F E (3s)G(s) A ex(s)

iff for some n, To(So) V- -+ V Ty (So) is entailed by F without the successor
state and action precondition axioms? The rest of this section is devoted
to answering this question.

Definition: The s-Admissible Sentences

A sentence is s-admissible iff 1t mentions no state variable at all, or it is of
the form (Vs)W (s) where s is a state variable, and W (s) is simple wrt s.

The s-admissible sentences are meant to define a sizable class of general
facts that can serve as domain-specific background knowledge.

Examples

Unique names axioms for actions are s-admissible. So are:
holding(R, B, Sp),

(Vs,r, z)holding(r, z, s) D —ontable(z, s),

19

(Vs)(3x)ontable(xz, So) A color(z, Red, s),
(Vs,a)s # So A s # do(a, So) A P(s) D Q(s),

The following are not s-admissible:
(Vs, z)ontable(z, s) D (Vs')color(z, Red, s'),

(3s)ontable(B, s),
(Vs)(VYa,r)holding(r, z, do(pickup(r, z), s)) D color(z, Red, s),
(Fz)ontable(x, So) A (Vs)s # So D —ontable(z, s).

Definition: Closure under Regression

Suppose F C L contains a successor state axiom for each fluent of £, and
an action precondition axiom for each action function of £. Suppose § is
a set of s-admissible sentences of £. Then § is closed under regression wrt

F iff whenever (Vs)W(s) € S,
S = (Vs,a)Dx(a, s) D Rx[W(do(a, s))].

Theorem 2 (Soundness and Completeness of Regression)
Suppose
F ={ex-az} U Fss U Fgp U Fyns UFys C L,

where ex-az is the executability ariom, Fys is a set of successor state arioms,
one for each fluent of L, Fap ts a set of action precondition arioms, one for
each action function of L, Fyns is the set of unique names axioms for states,
and Fys is a set of s-admissible sentences that is closed under regression
wrt F. Suppose that G(s) € L has as its only free variable the state variable
s, and that G(s) is simple wrt s. Then

F E (3s)G(s) A ex(s)

off for some n

]:uns U}-Vs IZ 1_‘O(SO) V- \/Fn(So)

To see what the requirement that Fy, be closed under regression means,
consider a sentence (Vs)W(s) € Fy;s. Regardless of whether or not Fy; is
closed under regression wrt F, it is possible to prove

F E (Vs,a)Dx(a,s) D Re[W(do(a, s))].

This new sentence is s-admissible. If Fy; is indeed closed under regression,
it entails this sentence. In other words, Fys; completely captures all of

20

the s-admissible facts about the domain embodied in the larger theory F.
This natural requirement is sufficient to guarantee the completeness of goal
regression for plan synthesis.

Theorem 2 also provides an important relative consistency result.

Corollary 1 (Consistency) Suppose F satisfies the conditions of Theo-
rem 2. Then F is satisfiable iff Funs U Fys 18

5 Discussion

We have proposed a solution to the frame problem in the situation calculus
for the special case of worlds for which the effects of all actions on all flu-
ents are determined. The resulting axiomatization has a very simple form
permiting an analysis of goal regression for plan synthesis. For such axiom-
atizations, we have proved the soundness and completeness of regression,
as well as a relative consistency theorem. The ideas of this chapter can be
extended in several ways:

1. Composite actions are sequences of primitive actions. For any such com-
posite action, we wish to determine the action precondition and successor
state axioms for each fluent. Tt turns out (Reiter [8]) that these axioms
can be characterized in terms of the regression operator, which also pro-
vides a means for computing them. It is also possible to prove various
properties of composite actions, e.g., equivalence, impossibility, etc.

2. In the theory of databases, the evolution of a database is determined
by transactions, whose purpose is to update the database with new in-
formation. For example, in an educational database, there might be a
transaction specifically designed to change a student’s grade. This would
normally be a procedure which, when invoked on a specific student and
grade, first checks that the database satisfies certain preconditions (e.g.,
that there is a record for the student, and that the new grade differs from
the old), and if so, records the new grade. Any attempt to formalize the
effects of transactions immediately encounters the frame problem. Thus,
in the example, it would be necessary to state that the grade-changing
transaction does not affect a teacher’s salary. In this setting, the sit-
uation calculus provides an ideal vehicle for representing states of the
database; transactions then correspond exactly to actions. Since for
databases (unlike the “real” world) the effects of all transactions on all
database relations will be known, the assumptions underlying our solu-
tion to the frame problem are justified. It follows that the axiomatization
of this chapter provides a specification for database updates, and that

21

Theorem 2 yields a sound and complete query evaluation mechanism for
databases after arbitrary updates. A companion paper (Reiter [7]) will
describe in greater detail how the formalism described here characterizes
update transactions in databases.

Acknowledgments

Many people helped out on this one. My thanks to Leo Bertossi, Charles
Elkan, Joe Halpern, Hector Levesque, Vladimir Lifschitz, Wiktor Marek,
Alberto Mendelzon, John Mylopoulos, Javier Pinto, and Len Schubert for
comments and suggestions in connection with these ideas.

Afterword

Writing this chapter for John McCarthy’s festschrift was particularly re-
warding for me because its subject draws on some of his earliest and most
fundamental research in AI. The very idea of using logic as a knowledge
representation language, and the situation calculus itself, stem from John’s
1959 “Programs with Common Sense.” This was among the first papers
in the field, and it remains the most influential of those early papers. The
frame problem also has a long (for AI) history. If AT can be said to have
a classic problem in the way that, say, Hilbert’s tenth problem was for
mathematics, then the frame problem is it. We really should be calling
it McCarthy’s (first?) problem, since it is so strongly associated with his
name. Like all good open problems, it is subtle, challenging, and it has
led to significant new technical and conceptual developments in the field.
Indeed, it was one of the most important motivating factors in the devel-
opment of nonmonotonic reasoning, including John’s own circumscription
theory. So on this occasion I am especially gratified that my contribution
to John’s festschrift can be seen as a continuation of the research tradition
that began with his 1959 paper, and that it addresses a problem that has
informed much of his distinguished career.

Someone once asked John — I forget the circumstances — when AT will
achieve its goals. His answer was “sometime between four and four hundred
years.” However accurate this prediction might be, one thing is certain:
without John’s contributions to the field, we would have a much longer
wait.

Bibliography

[1] K.L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors,

22

[7]

[8]

[9]

Logic and Data Bases, pages 292-322. Plenum Press, New York, 1978.

C. C. Green. Theorem Proving by Resolution as a Basis for Question-
Answering Systems. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 183-205. American Elsevier, New York, 1969.

A. R. Haas. The Case for Domain-Specific Frame Axioms. In F. M.
Brown, editor, The frame problem in artificial intelligence. Proceedings
of the 1987 workshop, pages 343-348, Los Altos, California. Morgan
Kaufmann Publishers, Inc., San Mateo, California, 1987.

J. McCarthy. Epistemological Problems of Artificial Intelligence. In
Proceedings of the Fifth International Joint Conference on Artificial
Intelligence, pages 1038-1044, Cambridge, MA, 1977.

J. McCarthy and P. Hayes. Some Philosophical Problems from the
Standpoint of Artificial Intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence 4, pages 463-502. Edinburgh University
Press, Edinburgh, Scotland, 1969.

E.P.D. Pednault. ADL: Exploring the Middle Ground between
STRIPS and the Situation Calculus. In R.J. Brachman, H. Levesque,
and R. Reiter, editors, Proceedings of the First International Con-
ference on Principles of Knowledge Representation and Reasoning
(KR’89), pages 324-332. Morgan Kaufmann Publishers, Inc., San Ma-
teo, California, 1989.

R. Reiter. On Database Updates. Technical report, Department of
Computer Science, University of Toronto, in preparation.

R. Reiter. A Simple Solution to the Frame Problem (Sometimes).
Technical report, Department of Computer Science, University of
Toronto, in preparation.

L.K. Schubert. Monotonic Solution of the Frame Problem in the Sit-
uation Calculus: an Efficient Method for Worlds with Fully Specified
Actions. In H.E. Kyberg, R.P. Loui, and G.N. Carlson, editors, Knowl-
edge Representation and Defeasible Reasoning, pages 23-67. Kluwer
Academic Press, Boston, Mass., 1990.

R. Waldinger. Achieving Several Goals Simultaneously. In E. Elcock
and D. Michie, editors, Machine Intelligence 8, pages 94-136. Ellis
Horwood, Edinburgh, Scotland, 1977.

