To appear, Proc. Thirteenth Conf. on Uncertainty in Al (UAI-97), Providence, July, 1997

Structured Arc Reversal and Simulation of Dynamic Probabilistic Networ ks

Adrian Y. W. Cheuk and Craig Boutilier
Department of Computer Science
University of British Columbia
Vancouver, BC, CANADA, V6T 174
email: cheuk,cebly@cs.ubc.ca

Abstract

We present an agorithm for arc reversal in
Bayesian networks with tree-structured condi-
tional probability tables, and consider some of its
advantages, especidly for the ssmulation of dy-
namic probabilistic networks. In particular, the
method allows oneto produce CPTsfor nodesin-
volved in thereversa that exploit regularitiesin
the conditiona distributions. We argue that this
approach aleviates some of the overhead asso-
ciated with arc reversal, plays an important role
in evidence integration and can be used to re-
strict sampling of variables in DPNs. We aso
provide an agorithmthat detects the dynamiciir-
relevance of state variables in forward simula
tion. Thisalgorithm exploitsthe structured CPTs
in a reversed network to determine, in a time-
independent fashion, the conditionsunder which
avariable does or does not need to be sampled.

1 Introduction

Recent investigations have explored the extension of the
types of independence that can be represented in Bayesian
networks(BNSs). Specifically, theconditional independence
of variablesgiven a certain context (or instantiation of vari-
ables) has been proposed as away of making BN specifica-
tion and inference more tractable [8, 15, 2]. This context-
specific independence (CSl) is often represented by the use
of structured representations of the conditiona probability
tables (CPTs) for the network. Whilea variable is directly
dependent on all of its parents, structured CPT representa
tions, such asdecisiontrees[2] or rules[15], capturethefact
that (direct) dependence on certain parents does not hold
given particular instantiations of others. The development
of agorithms that exploit CSl, and the integration of CSI
with techniques for manipulating BNs and influence dia-
grams, is an important step in enhancing the considerable
modeling and reasoning capabilities offered by BNs.

In this paper, we develop aversion of thearc reversal ago-
rithm for networkswith tree-structured CPTs. Arc reversal

[16] is an important technique for manipulating BNs, and
our approach demonstrates that structured CPTs can be ex-
ploited considerably. This allows smaler CPTs to be pro-
duced withlesscomputational effort, and producesreversed
networksthat retain substantial structurein their CPTs; this
structure can then be exploited in inference. In particu-
lar, the problems associated with increasing the number of
parents a hode has—a fact that makes reversal sometimes
problematic—is mitigated by the use of structured CPTS.

We describe the relevance of our approach to stochastic
simulation of dynamic probabilistic networks (DPNS) [5,
11, 10]. DPNsforman important class of BNsfor modeling
dynamical systems and sequential decision processes. Be-
cause of their size, exact methods are often rejected in favor
of simulation techniques. In the case of DPNs, arc rever-
sal or evidence integration [7] is extremely important; this
case has been made forcefully [10]. However, even partia
evidence integration can cause a large blowup in the size
of CPTs; hence structured arc reversal can play an impor-
tant role. We a so show how thereversed DPNs can exploit
the structured CPTs in simulation through the detection of
irrelevance of variables dynamically. Specifically, we pro-
videan agorithmthat produces a sampling schedulefor the
variableswithina“dice” of the DPN that ignoresvariables
that can have no impact on the specific variables of inter-
est. Theprocessisdynamicinthat therelevance of acertain
variable to a query can depend on the context fixed by the
earlier instantiation of other variablesin a particular smu-
lation tria; the CPTs alow one to identify the appropriate
contexts. The net effect isthat all variables throughout the
DPN need not be sampled in every tria. The algorithmit-
salf is time-independent, requiring processing of variables
withinasingletimedice.

In Section 2, we describe CSlI and the particular tree-
structured CPTs we exploit in this paper. In Section 3, we
develop thetree-structured arc reversal agorithm (TSAR).
In Section 4, we describe the application of TSAR to the
simulation of DPNs and elaborate on its benefits.

2 Context-Specificlndependence

We assume a finiteset U = {X;,..., X, } of discrete
random variables where each variable X; may take onval-
ues from a finite domain val(X). We use capital letters
(eg., X,Y, 7) for variable names and lowercase letters
(eg., z, y, z) to denote specific values taken by those vari-
ables. Sets of variables are denoted by boldface capital |et-
ters(eg., X,Y, Z), and assignments of valuesto the vari-
ables in these sets will be denoted by boldface lowercase
letters (eg., #, y, z). Weuseval(X) inthe obviousway.

Concise representation of a joint distribution P over this
set of variables is one of the aims of Bayesian networks.
A Bayesian network is a directed acyclic graph in which
nodes correspond to these variables and arcs represent di-
rect probabilistic dependence relations among these vari-
ables. Specifically, the structure of aBN encodes the set of
independence assumptions corresponding to the assertion
that each node X; isindependent of its non-descendantsin
the graph given itsparentsTI(X;). These assertions are lo-
cal in that they refer specifically to a node and its parents
inthegraph. Additiona conditional independencerelations
of amore global nature can be determined efficiently using
the graphical criterion of d-separation [13]. To represent
the distribution P, we need only, in addition to the graph,
specify for each variable X;, a conditional probability ta-
ble (CPT) encoding P (x; | TI(X;)) for each possiblevalue
of thevariablesin { X;, TI(X;)}. (See[13] for details.)

Apart from the usua strong independence relations en-
coded in BNs, we are often interested in independence be-
tween variables that holds only in certain contexts. Let
X.,Y, Z,C beparwisedigoint sets of variables. We say
X andY are contextuallyindependent [2] given Z and the
context ¢ € val(C) if

P(X1|Z,¢,Y)=P(X|Z,c)whenever P(Y, Z,c) > 0.

Thus, theindependencerel ation between X and Y need not
hold for al vauesval(C').

Local statements of context-specific independence (CS)
can be detected in the CPTs for anode. For example, con-
sider the CPT for variable A illustrated in Figure 2. While
P(A) is directly dependent on variables A’, B', C', I/,
given the specific value o’ of A’, A is not dependent
on variables B', ", D'; that is, P(Ald, B, C', D) =
P(Ala’). The structure inherent in the CPT is exploited in
the decision-tree representation given in the figure (by con-
vention, wetakeleft arcsintreesto belabel ed true, and right
arcsfase). Inthisexample, the CPT for A isencoded with
5 digtinct entries rather than the 16 required by the usual
tabular representation. We note that simple extensions of
d-separation can be used to find global CSI relations|[2].

Itissuggestedin [2] that CPTs can be encoded using appro-
priate compact function representations that make explicit
such local CSl relations. We will focus on decision treesin
thispaper. We do not delvefurther into thedetailsof CSI or
the use of tree-structured CPTs in generd (see [2] for fur-
ther details). We do notethat tree-structured CPTs and CSI
have been exploited in decision-making [1], knowledge ac-

To appear, Proc. Thirteenth Conf. on Uncertainty in Al (UAI-97), Providence, July, 1997

D3ty ks
(@ (b)
Figure 1: Genera Structure of Arc Reversal (Shachter)

quisition [9] and learning [6]. The integration of CSI with
other well-known BN methods promises to make it even
more pervasive. We now consider one such combination of
tree-structured CPTs with a BN manipulation algorithm.

3 Tree-Structured Arc Reversal
3.1 ArcReversal with Unstructured CPTs

Arc reversal [16] is a technique for restructuring a BN so
that the arc between two nodes has its directiondlity re-
versed, while still correctly representing the original distri-
bution. Arc reversal isan important techniquefor BNs and
influence diagrams, and plays a significant rolein the eval-
uation of BNs through stochastic simulation [7, 10], as we
describe in the next section.

The basic arc reversal operation is relatively straightfor-
ward. Consider a network where variable A is a parent of
0. The variables belonging to the set TI(4) U II(O) can
be divided into three classes: X = II(4) \ II(0), Y =
I(A) NTI(0), and Z = TI(O) \ TI(A) \ {A} (see Fig-
ure 1(a)). Suppose we wish to reverse the arc between A
and O. To ensure that the resulting network makes correct
independence assertions, we must add parentsto both nodes
A and O: in particular, each element of X becomes a par-
ent of O, and each element of Z becomes aparent of A. A
and O retaintheir original parentsaswell (apart fromthere-
versal of the arc between them). The structure of resulting
network isillustrated in Figure 1(b). We use the notations
Toig(A) and TTnew(A) torefer to A’sparentsbeforeand after
reversal, respectively (similarly for O).

The expressions for the new CPT entriesare [16]:

POlx,y,z) = Z P(Oly, z,a)P(ale, y(1)
a€val(A)
P(O|A,y,z)P(Alx,y)
P(A 2

Note that each term in Equation 1isin an origina CPT, as
are the termsin the numerator of Equation 2, while the de-
nominator issimply an entry inthe new CPT for O.

3.2 Arc Reversal with Structured CPTs

Arcreversal often significantly increases the number of par-
ents of the nodes A and O involved. Since CPT size in-
creases exponentialy withthe number of parents, theresult-
ing CPTs can become very large and require a prohibitive

@3- < 09 D
@ @ N .7 Tr;‘e(A) .1
® oo
® (? o %
® @ 015 0.10.1 /c\
@ 015 01

Tree(O)

Figure2: A Sliceof aDPN

amount of computation to construct. However, should the
CPTsinthe original network exhibit structura regularities,
onewould expect the new CPTsto do the same. Thekey to
preserving structureduring arc reversal isto beabletoiden-
tify, using only the structure of the original CPTs, theregu-
laritiesinthenew CPT. Thenet resultisasmaller structured
CPT for the nodes involved in the reversal, as well as the
benefit of the computational savings associated with com-
puting fewer (distinct) CPT entries. In addition, inference
algorithmsthat exploit CSI can be used after reversal if we
are able to retain this structure.!

We now describe a simple tree-structured arc reversal
(TSAR) dgorithm for constructing tree-structured CPTs
for nodesinvolvedin arc reversal assuming tree-structured
CPTsfor the original network.

We use the network shown in Figure 2 to illustrate the ba-
sic intuitions underlying TSAR.? We consider the reversal
of thearc between A and O, wherethetree-structured CPTs
for both variables are shown in the figure. For ease of ex-
position, al variablesin the example are boolean.

When reversing the arc from A to
O, we have llnew(A) = {4, B, C', D', B,C, D, 0} and
Mhen(0) = {B,C, D, A", B',C", D'}, asindicated in Fig-
ure 3. Had the CPTs for this network been represented in
an unstructured form, standard arc reversal would produce
anew CPT for A with 2% = 256 entries and anew CPT for
O with 27 = 128 entries, and would have required a pro-
portional amount of computation. However, it is clear that
since many of the original CPT entriesfor the nodes A and
O areidentical for different assignmentsto their parents, the
new CPTs must also have many redundancies.

Consider first the new CPT for O. Thefollowingloca CSl
relations hold between O and itsnew parents:®

'We expect these ideas to be applicable to compact CPT rep-
resentations apart from trees.

2This network representsa*“slice” of aDPN (see next section).

*We use sets X, Y, Z asin Figure 1; in this example, X =
{A",B',C", D'}, Y =0,and Z = {B,C, D}.

To appear, Proc. Thirteenth Conf. on Uncertainty in Al (UAI-97), Providence, July, 1997

105 1 c B’

C Cc C C
AN ANANA
115 1 140 1 11 1 145 1

NewTree(A)

D D
S T
; B 2 B 8 B 1 B
o o P P P P
/N /\ 7 c 2 c 8 c 1 c
0094572495 .009 729 PN PN PN N

AN AN AAKANA

NewTree(O)

0080555755 .007 .567 .0028.1548 .002 .162 .0088.6408 .008 .648 .0014501305.001 .081

Figure3: DPN after Reversal between A and O

e Lety/, 2’ besomeinstantiationof O’sorigina parents
(ie,Y' CY,Z C Z),suchthat O isindependent
of A giveny’, 2. Then for any instantiation x, y, =
of O’snew parents consistent withy’, z’, we have (by
Equationl) that P(O|x,y, z) = P(O|y’, ='). Forex-
ample, O isindependent of A given d (see Figure 2),
s0 P(O|d) remains unchanged for any assignment to
Hne\N(O).

e Let V besomevariablein X = TI(4) \ II(0). If,
for someinstantiation’, v’ of asubset of A’soriginal
parents (i.e, X' C X,Y’ C Y), A isindependent of
V/, then for any instantiation of asimilar subset of O’s
new parents of theform#’, ', z, O isindependent of
V. For example, the original tree for A indicates that
Aand D' areindependent given «’. Since D’ isnot an
original parent of O, the probability of O givenitsnew
parents cannot vary with D’ given a’.

e Let V besomevariablein Z = II(0) \ II(A4) \ {A}
such that, for some instantiation y’, z’ of a subset of
O’sorigina parents (i.e, Y CY,Z' C Z),0is
independent of V' given v/, 2/, a; for al vaues a; of
A. Thenfor any instantiationof asimilar subset of O’s
new parents of theform, v/, 2/, O remainsindepen-
dent of V.

These three observations giveriseto asimpleagorithmfor
construction a CPT-treefor O givenitsnew parents, where
an arc from A to O isbeing reversed. The agorithm pro-
ceeds as follows:

1. Create a copy of Treeyg(O), removing any subtreesthat lie
below a node labeled A, resulting in (the initial component
of) Treenew(O). For each A-node(say A;) inthetree, record
the subtrees associated with each value « € val(A); we de-
note these trees by Tree; (a).

D D b
PN i PN . . PN .
015 B
N\ * T
c [A c A
AN AN /\ — T
015 01 1501 0% O 5 o1 S o
e S~ AN
77777 c c B8 105 1 c B
AN O SWas N
015 01 01 07 0208 0L c c c c
i
Tree*(~a) Tree*(a); /\ /\ /\ /\
77777777777777777 15 1 240 1 11 1 145 1
(@ (b) ©

Figure4: Construction of CPT Treefor O

2. For each A-nodein Treenew(O) (Which must bealesaf), Graft
acopy of Treey4(A) onto thislocation. Reducethe copy of
Treeyg(A) by deleting any redundant nodes. We denote by
Tree; (A) the copy of Treeyg(A) added to location A;. We
also mark the root of Tree; (A).

3. Foreach A;:
(@) Mergethetrees {Tree;(a) : a € val(A)}, recording the
values P(O|a) for eacha € val(A) at theleaves, denotethe
result by Tree; (0| A).
(b) Graft acopy of Tree; (O| A) to each leaf of Treg;(A).
(c) For each copy so added, compute the value of Equa-
tion 1 using the terms P(O|a) recorded at the leaves of
Tree;(O|A) and the P(a) terms recorded at the leaf of
Tree; (A) to which the copy was grafted.

We elaborate on the details by referring to the running ex-
ample. Step 1 requires that we duplicate all of Treeyq(O)
except for subtreesthat lieunder any nodelabeled with vari-
able A. Thisisshownin Figure4(a), wherethe asterisk de-
notes the location where the removal of the A subtrees oc-
curred (these are recorded below). Any compl ete branch of
that remains denotes a context in which O is independent
of A, and thus independent of all other new parents: the
probability at the leaf node is unchanged. In Figure 4(a),
we see that no computation is needed to determine P (O|d),

P(O]dbc) or P(O|dbe) inthe new CPT.

Step 2 involvesthereplacement of any subtreewhoserootis
labeled with variable A by Treegq(A). Thisisnecessary be-
cause Prew(O) depends on the probability of A givenitsold
parents. Thisisillustrated in Figure 4(b) where Treegq(A)
is“grafted” to Treeyq(O) where node A was located.* At
each of theleaf nodes(circledintheexample), wenow have
P(A) given its old parents recorded. While not applica
blein our example, Step 2 performs tree reduction as well,
removing any redundant nodes that may have been added.
If, for example, D were a parent of A, al occurrences
of D would be removed from Treeyq(A) before grafting,
since the value of D isfixed to d earlier in the tree (from
Treeyq(0)). Any nodelabeled D would be replaced by the
appropriate d subtree. This can play a substantia roleif A
and O share parents (they share nonein our example). Fi-
nally, the diagram shows that the root of thisgrafted treeis
marked with an asterisk. This notesthe fact that P(O) at

*In general, this takes place at every occurrence of node A.

To appear, Proc. Thirteenth Conf. on Uncertainty in Al (UAI-97), Providence, July, 1997

the leaves of thissubtree may in fact be different from their
valuesin Treeyg(O), whileany leaf that does not lie below
amarked nodeis such that P(O) isidentical toitsvaluein
Treeyq(O). Such marks are used below in the construction
of Treenew(A4), as described later.

Step 3 of the algorithm requires that the subtrees cor-
responding to each value of A that were removed from
Treeyq(O) at that point now be grafted onto each leaf of
Treeqq(A) that was just added. More precisely, for each
such node A that was replaced in Treeyq(0), we merge
each of itssubtrees.” The leaves of thismerged tree dictate
P(O|a) for each a € val(A) (given the other relevant par-
ents). The merged treeisthen grafted onto the leaves of the
relevant copy of Treeyq(A). Atthelesf of any “copy” of the
merged tree, we compute the value of Equation 1, with the
required terms readily available. Figure 4(c) illustratesthis
process. For the (single) copy of Treeyq(A) that has been
added, we merge the subtrees « and @ subtreesthat were re-
moved from Treeg4(O) at that point: sincethe a subtreeis
empty, the merged tree is simply the @ subtree. We record
both P(O|a) and P(O|a) at each leaf node of the merged
tree. Thistreeisthen copied to each of the five leaf nodes
where P (a) isrecorded; and therequired conditioningcom-
putation takes place for each resulting leaf node.

The CSl reflected in the resulting Treeney(O) is sound:

Theorem 1 Let ¢ be some context determined by a branch
of Treenew(O) instantiating variables C' C Tlen(O). Then
O is contextually independent of ITney(0) \ C given c.

The computationa and space savings can be considerable
when constructing thenew CPT for O intreeform. Asmen-
tioned, the use of tabular CPTs would produce a new CPT
for O with 128 entries and require 128 cal cul ations of Equa-
tion 1. In this example, much of the tree structure of the
original CPTs is preserved in Treenew(O): it requires only
13 digtinct CPT entries and only 10 calculations of Equa-
tion 1 (since 3 of the entries are retained from Treeyq(O)).

\We now turn our attention to the construction of Treenew(A)
viaEquation 2. Again, certain CSI relations hold:

o Letx', ¢y, 2" besomepartid instantiation of O’s new
paents(i.e, X' C X,Y' C Y, Z' C Z), such that
O is independent of its remaining new parents given
',y 2z, and A isindependent of itsremaining orig-
ina parents (i.e., thosein X UY') givenz’, y'. Then
A is independent of its remaining new parents given
' y', 2z’ and O (by Equation 2). In our example, A
isindependent of its other parents given o’ while O is
independent of (other) new parents given dba’c. Thus,

Aisindependent of B’, C’ and D’ givendba’c and O.

o Letx', ¢/, 2" besomepartid instantiation of O’s new
parentssuch that P(O|x',y', z') = P(Oly’, z’); that

5Merging simply requires creating atree whose branchesmake
the distinction contained in each subtree. We do this by ordering
thetrees, and grafting each tree in order onto the leaves of the tree
resulting from merging its predecessor, removing redundant nodes
as appropriate.

y A
A o o
2N A\ —
09 D s B c B
f/\, . N PN
c B 9 ¢ D D D D

PN /\
9 B c B
T — T~ —— T
9 c D D D D
L e o~ o~
o/\o 7 B 2 B 8 B 1 B
== = = P = =
/N /\ 7 c” 2 c* 8 c 1 c”
0094572495 009 729 N N N N\

A A A AN A A A

0080555755 .007 .567 .0028.1548 .002 .162 .0088.6408 .008 .648 .0014501305.001 .

©

Figure5: Construction of CPT Treefor A

is, O isindependent of A giveny’, z’. Then, by Equa-
tion 2, P(Ala',y',=z',0) = P(Alx',y'). For ex-
ample, d renders O independent of its parents in both
Treeyq(0) and Treenew(O); inparticular, O isindepen-
dent of A. Thus, any instantiation of A’s old parents
that fixes P(A) (e.g., a’) determines P(A) given its
new parents. In our example P(A|a'd) = P(A|a’)
and A isindependent of other new parents given a’d.

These two observations give rise to a simple agorithm for
congtructing a CPT-treefor A given its new parents, where
an arc from A to O isbeing reversed.

1. Create acopy of Tregyq(A).

2. For eachleaf I of Tregyq(A):
(8) Graft acopy of Treenew(O) totheleaf, and reducethetree
by removing redundant nodes (record the distribution P;(A)
labeling the leaf 7).
(b) Collapse any subtree of the reduced Treenew(O) which
is not marked as altered into a single leaf node; denote this
reduced, collapsed tree Treg (O).
(c) Label each unmarked leaf of Tree (O) with P;(A).
(d) Add a node O to each leaf o in the marked subtrees of
Tree (O) (and record the distribution P;.(O) labeling leaf
lo).
(e) For each new leaf under the O-nodes, compute the value
of Equation 2 usingtheterms P;(A), P1,(O), andthe values
P(O|11g4(0O)) determined from Treeyg(O).

We elaborate on the details by referring to the running ex-
ample. Step 1 requires that we duplicate al of Treeyq(A)
and keep track of the distribution labeling each leaf. This
is shown in Figure 5(8). Step 2 involves a number of
substeps. First, a copy of Treenen(O) is grafted to each
leaf of Treegq(A) and reduced as shown in Figure 5(b). It

To appear, Proc. Thirteenth Conf. on Uncertainty in Al (UAI-97), Providence, July, 1997

also shows how the | eft subtree under each B node is col-
lapsed by removal of the C' node (the circled leaves), and
how each “unmarked” leaf inherits P(A) from Treeyq(A):
since P(O) isidentical a unmarked leaves given ITnew(O)
or TToid(Q0), these terms in Equation 2 cancel (thus P(A)
need not be computed). Finally, Figure 5(c) shows the ad-
dition of the node for new parent O a marked leaf, and the
values of P(A) computed according to Equation 2.

Again, the resulting Treenay(A) is sound:

Theorem 2 Let ¢ be a context determined by a branch of
Treenen(A4) instantiating variables C C TIpey(A). Then A
is contextual ly independent of TTnen(A) \ C given c.

Once again we note that this algorithm preserves a consid-
erable amount of structure in this example. Using unstruc-
tured CPTs, the new CPT for A would require 2% = 256
entries and the same number of evaluations of Equation 2.
Exploitation of tree-structured CPTs alows the new CPT
for A to be expressed with only 30 distinct entries, and re-
quires that Equation 2 be evaluated only 20 times (i.e., at
the leaves of marked subtrees).’

4 TSAR in the Simulation of DPNs

Dynamic probabilistic networks (DPNs) are a particular
form of BN used to model temporally-extended systems
[5, 11, 10]. Intuitively, we imagine a number of state vari-
ableswhose values vary over time, allowing the network to
be organized in “dices’ consisting of a set of variables at
a particular point in time. The system dynamics are often
taken to be Markovian and stationary: the causal influences
for any variableat timet must be drawn fromthe set of vari-
ablesat timet — 1 or timet, and thisrelation holds for all
times¢. Thusthe DPN can be represented schematically in
avery compact fashion by simply representing the relation
between two consecutive generic dicesat timet¢ and ¢ + 1
(together with priorsfor root nodes at time 1).

DPNSs can be used to model dynamica systems generaly,
and specifically can be applied to time series models [11],
control problems such as robot or vehicle monitoring and
control [12, 10], planning [5] and sequentia decision prob-
lems[18, 1]. We often distinguishcertain variableswithina
particular slice as state variabl es, and others as sensor vari-
ables. It isgeneraly only sensor variables that are observ-
able and provide evidence of the system’s trgjectory. This
isillustrated schematically in Figure6 (following[10]). We
notethat the set of stateand sensor variablesneed not bedis-
joint, and that state variables could include decision vari-
ables whose values are set by the controller (possibly de-
pending on the values of previous state variables). Figure2
(used earlier) illustratesa DPN with anumber of state vari-
ables (A through F) and a single sensor variable (O). Our
convention is that node A’ denotes variable A; (A at time
t) and node A denotes A; 1.

5\We note that these 30 entries are, in fact, not all distinct. But
the tree-representation imposes certain redundanciesthat could be
overcome using other function representations.

-

v v

oo o)

@

Figure 6: Schematic Representation of a DPN

A common task in DPNs is projection or forecasting, that
is, determining, at timet, the distribution over some subset
of futurevariables (i.e., state variables at times | ater than ¢)
given a set of observations at some pointsin the past (i.e.,
evidence at sensor variablesat certain pointsprior totimet).
For exampl e, one might want to computethe expected value
of aparticular policy for some k stepsinto the future given
observations of past behavior of the system. Because of the
sizeof DPNs, exact solutionof aDPN isimpractical inmost
settings. Therefore simulation models are often preferred.
However, traditional methods such as likelihood weighting
[17, 7] will be extremely unsuitablein DPNs exhibitingthe
schematic structure of Figure 6. Because they are sinksin
the network, the sensor variables (which provide the only
evidence) are unable to influence the course of the simula
tion. As demonstrated convincingly by Kanazawa, Koller
and Russall [10], straightforward simulationwill often “ get
off track” very quickly, leading to trials with negligible (or
zero) weight. They suggest the use of (partial) evidencein-
tegrationin order to keep the simulation closeto redity. In-
tuitively, arcs from state variables to sensors withintime ¢
are reversed so that observed evidence will strongly influ-
encethesampled stateat timet. Thereversa isonly partial,
however, since sensor variablesin thereversed network will
generally have as parents state variables from slicet — 1.7

Unfortunately, evidence integration can be expensive. In-
deed, Fung and Chang [7] suggest that, while evidence
integration can help convergence of simulation methods
tremendoudly, the computationa cost of arc reversal may
prove to be a practica obstacle to its applicability. Fortu-
nately, in DPNs, evidence integration benefits from the uni-
form nature of the network: the reversal needs to be com-
puted at one slice only, and can then be applied across all
slices. Thus, one substantial burden isovercome. Yet com-
plete “within slice” integration of sensor variables can still
be rather costly. Consider the network in Figure 2. Com-
plete reversal of arcsinto sensor variable O (withina sin-
gle dice only) resultsin the extremely connected network
illustrated in Figure 7. Variables A, B, C, D and O have
CPTs of sizes 256, 128, 64, 128 and 64, respectively. Fur-
thermore, O (whichisinvolvedin four reversals) hasinter-
mediate CPTs of sizes 128, 64 and 32. Arcreversal requires
explicit computation of each of these 864 entries. In larger
networks, with tens or hundreds of state variables, thiscan
prove a major impediment to evidence integration.

"We take as accepted the crucial role of evidence integration
in the convergence of simulation involving DPNs. Our experi-
ments with networks of this type (both with tree-structured CPTs
and without) confirm thisimpression.

To appear, Proc. Thirteenth Conf. on Uncertainty in Al (UAI-97), Providence, July, 1997

Figure7: Reversa of O and al “In-Slice” Parents

=

VN
o e 06 D
— T PN
B’ A B F D’ 02 C E
PN PN /\, PN PN PN
10 00 o1 c 08 /C\ 02 D 10 09 o1 F 01 10
PN AN
0.1/\0.9 10 00 o2 o0 01 02
Tree(B) Tree(C) Tree(D) Tree(E) Tree(F)

Figure 8: CPTsfor Remaining Variables

This suggests that tree-structured arc reversal can play an
important role in the simulation of DPNs. The computa-
tional burden of evidence integration as well as the size of
the resulting CPTs can be considerably lessened by the use
of TSAR. For instance, if the CPTs of the remaining nodes
in our example DPN are as shown in Figure 8, the sizes of
thetreesin thereversed network for A, B, C', D and O are
30, 33, 23, 72 and 36, respectively, while O’ sintermediate
trees have sizes 13, 11 and 15. Of the total 233 CPT en-
tries represented, only 210 required explicit computation.
Our experiments with other similar DPNs suggest that this
savingsis commonplace. This seems especially truein the
evaluation of policies, where actions or decisions play a
predominant role. As argued in [3], the representation of
action effects often admits a considerable amount of CSl.

Apart from the potential savingsit provides during network
restructuring, another advantage offered by TSAR is the
ability to determineirrelevant variables dynamically. Irrel-
evance can beviewed at the network level. For instance, in
the DPN above, we may be interested in the distribution of
variable A;. Given such a specific query, asimulation trial
need not sample F;_; since this cannot impact A,. Their-
relevance of F;_; to A, is dictated by the structure of the
DPN. Indeed, Fung and Chang [7] propose irrel evance of
this type as a means of speeding simulation, though they
caution that the overhead involved may offset any savings.®

8See also [14] for adiscussion of this type of relevance.

We focus on a specific problem: assume a DPN has been
given and that a certain subset of state variables has been
designated as immediately relevant. The simulation is de-
signed to sample these variables over time; the fact that
other variables are being sampled issubsidiary tothisaim.?
In our example, imagine that A is the variable of interest.
What we wish to determineis the set of variablesthat must
be sampled in each dlice to ensure we can accurately deter-
mine the conditional probability of A at any future time.

We would hope that “schematic” detection of irrelevance
could aleviateoverhead difficulties(i.e., thedetection of ir-
relevance by processing a single dice in a manner that ap-
pliesacrossal timepoints). But, clearly, if weneed to sam-
ple A a each dlice, we cannotignore F': while F; _; doesn’t
impact A;, it doesinfluence A, throughitsimpact on D;.
The influence of certain variables often “bleeds through”
to many or all other variables over time, making network-
level irrelevance unhelpful. Fortunately, the tree-structured
CPTs suggest that some variables may beirrelevant to oth-
ersunder certain conditions, even if they are not irrelevant
at all times. So, while F;_; might be required in order to
sample D, (whichitself impacts A; 11, thevariableof inter-
est), thetreefor D showsthat F;_; hasnoimpactif £;_; is
true. Thissuggeststhat one should sample E at a particular
time dicefirst; and if it £ turns out to be true, one should
not sample F' at that slice. Some care isrequired of course,
since F' may influence other variables of relevance through
adifferent causal chain.

Our godl is a simple algorithm for constructing a condi-
tional sample schedule for the variableswithinatime dlice
inwhichavariableisnot sampled if it provably hasnoinflu-
ence on any variable of interest at any future point in time.
An example of constraints on such sample schedule might
be: “Generate valuesfor £, D, C before F. If ed or edc, do
not sample F.” Our agorithm proceeds in four phases.

Wefirst identify (unconditionally) relevant variables, those
variables that can influence the future value of some vari-
able of interest; in our example, al variables are relevant
since all influence A (the variable of interest) over time.
This can easily be detected using the topological structure
of the network. For our purposes, we now treat the set of
unconditionally relevant variables as potentially relevant to
the future values of immediately relevant variables.

Second, we construct a sample graph for each relevant
variable. This structure describes the dependence of each
variable on other variables within the same or previous
dice. Essentidly, these are directed acyclic graphs gener-
ated from the CPTs for the variables in question, and are
similar to binary decision diagrams (BDDs) [4]. The sam-
ple graphs for the seven variables are shown in Figure 9.
For example, the graphfor variable O dictatesthat, in order
tosampleit: weneed thevalueof £’; if €', weneed I, oth-
erwise we proceed to D; once we sample ' (if necessary)

?For instance, in policy evaluation, one may wish simply to
sampleand sum value nodesat each slice, with no “ direct” interest
in other state variables being expressed.

To appear, Proc. Thirteenth Conf. on Uncertainty in Al (UAI-97), Providence, July, 1997

D B A N I F D F
S T AN J ~ J
D D C D D
¢;/ AN | o o/:’ g /\F g
D A M P B B
~ A S =
~ T ® Sy ¢
c } { [c
| o o o
° o
SG(A) SG(B) SG(C) SG(D) SG(E) SG(F) SG(0)

Figure 9: Sample Graphsfor al Variables

we proceed to D and so on.!?

The key third phase of the agorithm requires that we de-
termine the conditions under which a (unconditionaly rel-
evant) variable is conditionally irrelevant. To begin, we
order variables so that the variables first in the ordering
have sample graphs (or CPTs) that depend only on previ-
ous variables, and that variables later in the ordering de-
pend only on variables in the same time dice that lie ear-
lier in this ordering. (A suitable ordering for this example
isO, D, B, E,F,C,A) Then for each variable, we deter-
mine the conditions under which it isrequired by uncondi-
tionally relevant variablesin the next dlice (i.e., when must
it be known in order to determine the distribution for that
variable). Usingtheordering of variables suggested, we ap-
ply thevariablein questionto each samplegraph, determin-
ing the set of minimal initial segments of paths (or contexts)
inthe graph that have no completion leading to thevariable
in question.

To illustrate, we consider the conditions under which the
value of I a one dice is not required to accurately sam-
ple other variables at the next (or any future) timedice. We
apply I' to each sample graph, in turn, using our variable
ordering. applying F' to the graph for O, we see that con-
dition isthe only onethat guarantees F’svaueisnot re-
quired to sample O. If we apply /' to the graph for D, we
see again that € isthe only such condition. If we then pro-
cess the graph for B, we see that F' does not occur, but B
depends on the current value of D; since we have aready
processed D’s graph, at that point we can insert the dis-
covered conditionfor D (i.e, €) at that point in our search
through B’s graph (thus, the ordering of variables playsan
important role). Notethat if several distinct pathsbypass F,
the condition generated isdigunctive: in applying F' to £’
samplegraph, we seethat F isirrelevantto £ if evedVede.
Wenotethat I isirrelevant when e for al other variables. 't

1ntuitively, such a graph can be constructed by joining com-
mon subtrees (ignoring leaf values) in the CPT, and collapsing
true/false branches from a variables that lead to similar subtrees.
This graph can easily be built while the tree is being constructed
during arc reversal (if the nodeis part of areversed arc). Thecom-
plexity of identifying common subtrees should not be a limiting
factor in this setting. But we should point out that the ideas below
can be applied using the trees themselves. Collapsing trees into
graphs simply aids the process somewhat.

'\We note that finding all paths and other operations on sam-

Once we have determined the conditions under which ' is
irrelevant for al variables, their conjunction fixes the con-
ditionsunder which F' isnot needed to determine any value
at thenext dice: inthiscase, we obtained Vv ede. We note
that variables other than 7' in our example can be ignored
under any conditions.

The conditions so obtained for I suggest that one should
sample variableswithin any given slice such that /' issam-

pled after 7, D and ¢, and only when e or edc obtains.
Of course, the conditionsobtai ned for other variables might
impose other contraints on the ordering. Phase 4 of the al-
gorithminvolvesconstruction of asample schedul ethat sat-
isfiesasmany constraintsaspossible. Inthisexample, since
no other variables are irrelevant under any conditions, we
simply use thisschedule. One could imagine, however, that
one might want to sample F' before £ because of their im-
pact on athird variable. In such acase one could not satisfy
both the requirement to sample ' before £ and therequire-
ment to sample £ before F'. Inthiscase, an arbitrary choice
could be made, or some heuristic could be used (e.g., if we
had some estimate of the steady state probabilitiesthat sug-
gested e was unlikely, wewould know that skipping 7' was
also unlikely, inwhich case, we might decideto opt for con-
ditionally sampling E based on F' rather than vice versa).

Our running example was not designed to ensure a lot of
conditiona irrelevance, but it does offer the ability to not
sample one variable (in each slice) under some conditions.
For instance, a simple experiment using A as the immedi-
ately relevant variable showsthat 7' needsto be sampled in
only about a third of the slices: using 20 randomly gener-
ated observation sets (of 20 observations each) for our net-
work stretched over 100 time dlices, we saw that /# was
sampled an average of 35 times out of the possible 100
times per run (the resultswere averaged over 1000 runs per
evidence set). While not a large savingsin thiscase (it is
only one variable), the savings is proportiona to the hori-
zon of interest. For larger networks with substantial hori-
zons, onemight generally expect considerabl e savingsfrom
irrelevance processing. Thelonger thehorizon, thelesssig-
nificant is the overhead involved in the (single dice) pro-
cessing required. Furthermore, we expect that in large net-
works, afew key contexts (rather than variables) may shield
variables of interest from large parts of the network.

5 Concluding Remarks

We have described an agorithm for tree-structured arc re-
versal and demonstrated its potential significance for the
simulation of DPNs. Advantages include the reduction in
(space and computational) overhead for reversal, and the

ple graphs can use some of the efficient procedures designed for
BDD manipulation [4]. Furthermore, this process can be termi-
nated early if we ever find that the irrelevant condition for a vari-
ablewith respect to any graphisfalse, or if the conjunction of con-
ditions for any (incremental) subset of the graphsis inconsistent:
the variable must then be sampled no matter what. For instance,
when processing variable F (or D, A, C') on the graph for O, we
see that it must always be sampled, in which case application to
other graphsis pointless.

To appear, Proc. Thirteenth Conf. on Uncertainty in Al (UAI-97), Providence, July, 1997

ability to exploit the structured nature of the resulting re-
versed DPNs, especialy in dynamic irrelevance detection.
There are a number of questions that remain to be ad-
dressed. These include vaidation of the potentia gains of-
fered by TSAR and its use in simulation in redigtic net-
works, and the application of these ideas to other forms of
structured BNs. The existence of benchmark DPNs would
aid this study. We are aso investigating the potential of
these ideas in the evaluation of policies for Markov deci-
SioN processes.

Acknowledgements: This research was supported by
NSERC Research Grant OGP0121843.

References

[1] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting
structure in policy construction. 1JCAI-95, pp.1104-1111,
Montreal.

[2] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specific independence in Bayesian networks. UAI-
96, pp.115-123, Portland, OR.

[3] C. Boutilier and M. Goldszmidt. The frame problem and
Bayesian network action representations. Proc. 11th Cana-
dian Conf. on Al, pp.69-83, Toronto, 1996.

[4] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Comp., C-35(8):677—691, 1986.

[5] T.DeanandK.Kanazawa. A model for reasoning about per-
sistence and causation. Comp. Intel., 5(3):142—-150, 1989.

[6] N. Friedman and M. Goldszmidt. Learning Bayesian net-
works with local structure. UAI-96, pp.252—262, Portland,
OR.

[7] R. Fungand K. Chang. Weighing and integrating evidence
for stochastic simulation in bayesian networks. UAI-89,
pp-209-219, Windsor.

[8] D. Geiger and D. Heckerman. Advancesin probabilistic rea-
soning. UAI-91, pp.118-126, Los Angeles.

[9] S. GlesnerandD. Koller. Constructing flexible dynamic be-
lief networksfrom first-order probabilistic knowledgebases.
ECSQARU 95, pp.217-226.

[10] K. Kanazawa, D. Koller, and S. Russell. Stochastic simula-
tion algorithms for dynamic probabilistic networks. 1JCAI-
95, pp.346-351, Montreal.

[11] U. Kjaerulff. A computational scheme for reasoning in dy-
namic probabilistic networks. UAI-92, pp.121-129, Stan-
ford.

[12] A.E. Nicholson and J. M. Brady. Sensor validation using
dynamic belief networks. UAI-92, pp.207-214, Stanford.

[13] J. Pearl. Probabilistic Reasoningin Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, 1988.

[14] K. Pohand E. Horvitz. A graph-theoretic analysis of infor-
mation value. UAI-96, pp.427-435, Portland, OR.

[15] D. Poole. Probabilistic Horn abduction and Bayesian net-
works. Artif. Intel., 64(1):81-129, 1993.

[16] R. D. Shachter. Evaluating influence diagrams. Op. Res.,
33(6):871-882, 1986.

[17] R. D. Shachter and M. A. Peot. Simulation approaches to
general probabilistic inference in belief networks. UAI-89,
pp.-221-231, Windsor.

[18] J. A. Tatman and R. D. Shachter. Dynamic programming
and influence diagrams. |EEE Trans. Sys., Man and Cyber.,
20(2):365-379, 1990.

