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Abstract

We present an algorithm for arc reversal in
Bayesian networks with tree-structured condi-
tional probability tables, and consider some of its
advantages, especially for the simulation of dy-
namic probabilistic networks. In particular, the
method allows one to produce CPTs for nodes in-
volved in the reversal that exploit regularities in
the conditional distributions. We argue that this
approach alleviates some of the overhead asso-
ciated with arc reversal, plays an important role
in evidence integration and can be used to re-
strict sampling of variables in DPNs. We also
provide an algorithm that detects the dynamic ir-
relevance of state variables in forward simula-
tion. This algorithm exploits the structured CPTs
in a reversed network to determine, in a time-
independent fashion, the conditions under which
a variable does or does not need to be sampled.

1 Introduction

Recent investigations have explored the extension of the
types of independence that can be represented in Bayesian
networks (BNs). Specifically, the conditional independence
of variables given a certain context (or instantiation of vari-
ables) has been proposed as a way of making BN specifica-
tion and inference more tractable [8, 15, 2]. This context-
specific independence (CSI) is often represented by the use
of structured representations of the conditional probability
tables (CPTs) for the network. While a variable is directly
dependent on all of its parents, structured CPT representa-
tions, such as decision trees [2] or rules [15], capture the fact
that (direct) dependence on certain parents does not hold
given particular instantiations of others. The development
of algorithms that exploit CSI, and the integration of CSI
with techniques for manipulating BNs and influence dia-
grams, is an important step in enhancing the considerable
modeling and reasoning capabilities offered by BNs.

In this paper, we develop a version of the arc reversal algo-
rithm for networks with tree-structured CPTs. Arc reversal

[16] is an important technique for manipulating BNs, and
our approach demonstrates that structured CPTs can be ex-
ploited considerably. This allows smaller CPTs to be pro-
duced with less computational effort, and produces reversed
networks that retain substantial structure in their CPTs; this
structure can then be exploited in inference. In particu-
lar, the problems associated with increasing the number of
parents a node has—a fact that makes reversal sometimes
problematic—is mitigated by the use of structured CPTS.

We describe the relevance of our approach to stochastic
simulation of dynamic probabilistic networks (DPNs) [5,
11, 10]. DPNs form an important class of BNs for modeling
dynamical systems and sequential decision processes. Be-
cause of their size, exact methods are often rejected in favor
of simulation techniques. In the case of DPNs, arc rever-
sal or evidence integration [7] is extremely important; this
case has been made forcefully [10]. However, even partial
evidence integration can cause a large blowup in the size
of CPTs; hence structured arc reversal can play an impor-
tant role. We also show how the reversed DPNs can exploit
the structured CPTs in simulation through the detection of
irrelevance of variables dynamically. Specifically, we pro-
vide an algorithm that produces a sampling schedule for the
variables within a “slice” of the DPN that ignores variables
that can have no impact on the specific variables of inter-
est. The process is dynamic in that the relevance of a certain
variable to a query can depend on the context fixed by the
earlier instantiation of other variables in a particular simu-
lation trial; the CPTs allow one to identify the appropriate
contexts. The net effect is that all variables throughout the
DPN need not be sampled in every trial. The algorithm it-
self is time-independent, requiring processing of variables
within a single time slice.

In Section 2, we describe CSI and the particular tree-
structured CPTs we exploit in this paper. In Section 3, we
develop the tree-structured arc reversal algorithm (TSAR).
In Section 4, we describe the application of TSAR to the
simulation of DPNs and elaborate on its benefits.
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2 Context-Specific Independence

We assume a finite set U = fX1; : : : ; Xng of discrete
random variables where each variable Xi may take on val-
ues from a finite domain val(X). We use capital letters
(e.g., X;Y; Z) for variable names and lowercase letters
(e.g., x; y; z) to denote specific values taken by those vari-
ables. Sets of variables are denoted by boldface capital let-
ters (e.g., X;Y ;Z), and assignments of values to the vari-
ables in these sets will be denoted by boldface lowercase
letters (e.g., x;y; z). We use val(X) in the obvious way.

Concise representation of a joint distribution P over this
set of variables is one of the aims of Bayesian networks.
A Bayesian network is a directed acyclic graph in which
nodes correspond to these variables and arcs represent di-
rect probabilistic dependence relations among these vari-
ables. Specifically, the structure of a BN encodes the set of
independence assumptions corresponding to the assertion
that each node Xi is independent of its non-descendants in
the graph given its parents �(Xi). These assertions are lo-
cal in that they refer specifically to a node and its parents
in the graph. Additional conditional independence relations
of a more global nature can be determined efficiently using
the graphical criterion of d-separation [13]. To represent
the distribution P , we need only, in addition to the graph,
specify for each variable Xi, a conditional probability ta-
ble (CPT) encoding P (xi j �(Xi)) for each possible value
of the variables in fXi;�(Xi)g. (See [13] for details.)

Apart from the usual strong independence relations en-
coded in BNs, we are often interested in independence be-
tween variables that holds only in certain contexts. LetX ;Y ;Z;C be pairwise disjoint sets of variables. We sayX and Y are contextually independent [2] givenZ and the
context c 2 val(C) ifP (X jZ; c;Y )=P (X jZ; c) whenever P (Y ;Z; c) > 0:
Thus, the independence relation betweenX andY need not
hold for all values val(C).
Local statements of context-specific independence (CSI)
can be detected in the CPTs for a node. For example, con-
sider the CPT for variable A illustrated in Figure 2. WhileP (A) is directly dependent on variables A0; B0; C 0; D0,
given the specific value a0 of A0, A is not dependent
on variables B0; C 0; D0; that is, P (Aja0; B0; C 0; D0) =P (Aja0). The structure inherent in the CPT is exploited in
the decision-tree representation given in the figure (by con-
vention, we take left arcs in trees to be labeled true, and right
arcs false). In this example, the CPT for A is encoded with
5 distinct entries rather than the 16 required by the usual
tabular representation. We note that simple extensions of
d-separation can be used to find global CSI relations [2].

It is suggested in [2] that CPTs can be encoded using appro-
priate compact function representations that make explicit
such local CSI relations. We will focus on decision trees in
this paper. We do not delve further into the details of CSI or
the use of tree-structured CPTs in general (see [2] for fur-
ther details). We do note that tree-structured CPTs and CSI
have been exploited in decision-making [1], knowledge ac-
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Figure 1: General Structure of Arc Reversal (Shachter)

quisition [9] and learning [6]. The integration of CSI with
other well-known BN methods promises to make it even
more pervasive. We now consider one such combination of
tree-structured CPTs with a BN manipulation algorithm.

3 Tree-Structured Arc Reversal

3.1 Arc Reversal with Unstructured CPTs

Arc reversal [16] is a technique for restructuring a BN so
that the arc between two nodes has its directionality re-
versed, while still correctly representing the original distri-
bution. Arc reversal is an important technique for BNs and
influence diagrams, and plays a significant role in the eval-
uation of BNs through stochastic simulation [7, 10], as we
describe in the next section.

The basic arc reversal operation is relatively straightfor-
ward. Consider a network where variable A is a parent ofO. The variables belonging to the set �(A) [ �(O) can
be divided into three classes: X = �(A) n �(O), Y =�(A) \ �(O), and Z = �(O) n �(A) n fAg (see Fig-
ure 1(a)). Suppose we wish to reverse the arc between A
and O. To ensure that the resulting network makes correct
independence assertions, we must add parents to both nodesA and O: in particular, each element of X becomes a par-
ent of O, and each element ofZ becomes a parent of A. A
andO retain their original parents as well (apart from the re-
versal of the arc between them). The structure of resulting
network is illustrated in Figure 1(b). We use the notations�old(A) and�new(A) to refer toA’s parents before and after
reversal, respectively (similarly for O).

The expressions for the new CPT entries are [16]:P (Ojx;y; z) = Xa2val(A)P (Ojy; z; a)P (ajx;y)(1)P (Ajx;y; z; O) = P (OjA;y; z)P (Ajx;y)P (Ojx;y; z) (2)

Note that each term in Equation 1 is in an original CPT, as
are the terms in the numerator of Equation 2, while the de-
nominator is simply an entry in the new CPT for O.

3.2 Arc Reversal with Structured CPTs

Arc reversal often significantly increases the number of par-
ents of the nodes A and O involved. Since CPT size in-
creases exponentiallywith the number of parents, the result-
ing CPTs can become very large and require a prohibitive
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Figure 2: A Slice of a DPN

amount of computation to construct. However, should the
CPTs in the original network exhibit structural regularities,
one would expect the new CPTs to do the same. The key to
preserving structure during arc reversal is to be able to iden-
tify, using only the structure of the original CPTs, the regu-
larities in the new CPT. The net result is a smaller structured
CPT for the nodes involved in the reversal, as well as the
benefit of the computational savings associated with com-
puting fewer (distinct) CPT entries. In addition, inference
algorithms that exploit CSI can be used after reversal if we
are able to retain this structure.1
We now describe a simple tree-structured arc reversal
(TSAR) algorithm for constructing tree-structured CPTs
for nodes involved in arc reversal assuming tree-structured
CPTs for the original network.

We use the network shown in Figure 2 to illustrate the ba-
sic intuitions underlying TSAR.2 We consider the reversal
of the arc betweenA andO, where the tree-structured CPTs
for both variables are shown in the figure. For ease of ex-
position, all variables in the example are boolean.

When reversing the arc from A toO, we have �new(A) = fA0; B0; C 0; D0; B;C;D;Og and�new(O) = fB;C;D;A0; B0; C 0; D0g, as indicated in Fig-
ure 3. Had the CPTs for this network been represented in
an unstructured form, standard arc reversal would produce
a new CPT for A with 28 = 256 entries and a new CPT forO with 27 = 128 entries, and would have required a pro-
portional amount of computation. However, it is clear that
since many of the original CPT entries for the nodes A andO are identical for different assignments to their parents, the
new CPTs must also have many redundancies.

Consider first the new CPT for O. The following local CSI
relations hold between O and its new parents:31We expect these ideas to be applicable to compact CPT rep-
resentations apart from trees.2This network represents a “slice” of a DPN (see next section).3We use sets X;Y ;Z as in Figure 1; in this example,X =fA0;B0; C 0;D0g, Y = ;, and Z = fB;C;Dg.
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Figure 3: DPN after Reversal between A and O� Let y0; z0 be some instantiationof O’s original parents
(i.e., Y 0 � Y , Z 0 � Z), such that O is independent
of A given y0; z0. Then for any instantiation x;y; z
of O’s new parents consistent with y0; z0, we have (by
Equation 1) thatP (Ojx;y; z) = P (Ojy0; z0). For ex-
ample, O is independent of A given d (see Figure 2),
so P (Ojd) remains unchanged for any assignment to�new(O).� Let V be some variable in X = �(A) n �(O). If,
for some instantiationx0;y0 of a subset ofA’s original
parents (i.e., X 0 �X , Y 0 � Y ), A is independent ofV , then for any instantiation of a similar subset of O’s
new parents of the form x0;y0; z, O is independent ofV . For example, the original tree for A indicates thatA and D0 are independent given a0. Since D0 is not an
original parent ofO, the probabilityofO given its new
parents cannot vary with D0 given a0.� Let V be some variable in Z = �(O) n �(A) n fAg
such that, for some instantiation y0; z0 of a subset ofO’s original parents (i.e., Y 0 � Y , Z 0 � Z), O is
independent of V given y0; z0; ai for all values ai ofA. Then for any instantiationof a similar subset ofO’s
new parents of the form x;y0; z0, O remains indepen-
dent of V .

These three observations give rise to a simple algorithm for
construction a CPT-tree for O given its new parents, where
an arc from A to O is being reversed. The algorithm pro-
ceeds as follows:

1. Create a copy of Treeold(O), removing any subtrees that lie
below a node labeled A, resulting in (the initial component
of) Treenew(O). For eachA-node (sayAj) in the tree, record
the subtrees associated with each value a 2 val(A); we de-
note these trees by Treej(a).
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Figure 4: Construction of CPT Tree for O
2. For eachA-node in Treenew(O) (which must be a leaf), Graft

a copy of Treeold(A) onto this location. Reduce the copy of
Treeold(A) by deleting any redundant nodes. We denote by
Treej(A) the copy of Treeold(A) added to location Aj . We
also mark the root of Treej(A).

3. For eachAj:
(a) Merge the trees fTreej(a) : a 2 val(A)g, recording the
valuesP (Oja) for each a 2 val(A) at the leaves; denote the
result by Treej(OjA).
(b) Graft a copy of Treej(OjA) to each leaf of Treej(A).
(c) For each copy so added, compute the value of Equa-
tion 1 using the terms P (Oja) recorded at the leaves of
Treej(OjA) and the P (a) terms recorded at the leaf of
Treej(A) to which the copy was grafted.

We elaborate on the details by referring to the running ex-
ample. Step 1 requires that we duplicate all of Treeold(O)
except for subtrees that lie under any node labeled with vari-
ableA. This is shown in Figure 4(a), where the asterisk de-
notes the location where the removal of the A subtrees oc-
curred (these are recorded below). Any complete branch of
that remains denotes a context in which O is independent
of A, and thus independent of all other new parents: the
probability at the leaf node is unchanged. In Figure 4(a),
we see that no computation is needed to determine P (Ojd),P (Ojdbc) or P (Ojdbc) in the new CPT.

Step 2 involves the replacement of any subtree whose root is
labeled with variableA by Treeold(A). This is necessary be-
cause Pnew(O) depends on the probabilityofA given its old
parents. This is illustrated in Figure 4(b) where Treeold(A)
is “grafted” to Treeold(O) where node A was located.4 At
each of the leaf nodes (circled in the example), we now haveP (A) given its old parents recorded. While not applica-
ble in our example, Step 2 performs tree reduction as well,
removing any redundant nodes that may have been added.
If, for example, D were a parent of A, all occurrences
of D would be removed from Treeold(A) before grafting,
since the value of D is fixed to d earlier in the tree (from
Treeold(O)). Any node labeled D would be replaced by the
appropriate d subtree. This can play a substantial role if A
and O share parents (they share none in our example). Fi-
nally, the diagram shows that the root of this grafted tree is
marked with an asterisk. This notes the fact that P (O) at4In general, this takes place at every occurrence of node A.

the leaves of this subtree may in fact be different from their
values in Treeold(O), while any leaf that does not lie below
a marked node is such that P (O) is identical to its value in
Treeold(O). Such marks are used below in the construction
of Treenew(A), as described later.

Step 3 of the algorithm requires that the subtrees cor-
responding to each value of A that were removed from
Treeold(O) at that point now be grafted onto each leaf of
Treeold(A) that was just added. More precisely, for each
such node A that was replaced in Treeold(O), we merge
each of its subtrees.5 The leaves of this merged tree dictateP (Oja) for each a 2 val(A) (given the other relevant par-
ents). The merged tree is then grafted onto the leaves of the
relevant copy of Treeold(A). At the leaf of any “copy” of the
merged tree, we compute the value of Equation 1, with the
required terms readily available. Figure 4(c) illustrates this
process. For the (single) copy of Treeold(A) that has been
added, we merge the subtrees a and a subtrees that were re-
moved from Treeold(O) at that point: since the a subtree is
empty, the merged tree is simply the a subtree. We record
both P (Oja) and P (Oja) at each leaf node of the merged
tree. This tree is then copied to each of the five leaf nodes
whereP (a) is recorded; and the required conditioningcom-
putation takes place for each resulting leaf node.

The CSI reflected in the resulting Treenew(O) is sound:

Theorem 1 Let c be some context determined by a branch
of Treenew(O) instantiating variablesC � �new(O). ThenO is contextually independent of �new(O) nC given c.

The computational and space savings can be considerable
when constructing the new CPT forO in tree form. As men-
tioned, the use of tabular CPTs would produce a new CPT
forOwith 128 entries and require 128 calculations of Equa-
tion 1. In this example, much of the tree structure of the
original CPTs is preserved in Treenew(O): it requires only
13 distinct CPT entries and only 10 calculations of Equa-
tion 1 (since 3 of the entries are retained from Treeold(O)).
We now turn our attention to the construction of Treenew(A)
via Equation 2. Again, certain CSI relations hold:� Let x0;y0; z0 be some partial instantiation of O’s new

parents (i.e., X 0 � X , Y 0 � Y , Z 0 � Z), such thatO is independent of its remaining new parents givenx0;y0; z0, and A is independent of its remaining orig-
inal parents (i.e., those in X [ Y ) given x0;y0. ThenA is independent of its remaining new parents givenx0;y0; z0 and O (by Equation 2). In our example, A
is independent of its other parents given a0 while O is
independent of (other) new parents given dba0c. Thus,A is independent ofB0, C 0 and D0 given dba0c and O.� Let x0;y0; z0 be some partial instantiation of O’s new
parents such that P (Ojx0;y0; z0) = P (Ojy0; z0); that5Merging simply requires creating a tree whose branches make

the distinction contained in each subtree. We do this by ordering
the trees, and grafting each tree in order onto the leaves of the tree
resulting from merging its predecessor, removing redundantnodes
as appropriate.
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Figure 5: Construction of CPT Tree for A
is,O is independent ofA given y0; z0. Then, by Equa-
tion 2, P (Ajx0;y0; z0; O) = P (Ajx0;y0). For ex-
ample, d renders O independent of its parents in both
Treeold(O) and Treenew(O); in particular,O is indepen-
dent of A. Thus, any instantiation of A’s old parents
that fixes P (A) (e.g., a0) determines P (A) given its
new parents. In our example P (Aja0d) = P (Aja0)
and A is independent of other new parents given a0d.

These two observations give rise to a simple algorithm for
constructing a CPT-tree for A given its new parents, where
an arc from A to O is being reversed.

1. Create a copy of Treeold(A).
2. For each leaf l of Treeold(A):

(a) Graft a copy of Treenew(O) to the leaf, and reduce the tree
by removing redundant nodes (record the distribution Pl(A)
labeling the leaf l).
(b) Collapse any subtree of the reduced Treenew(O) which
is not marked as altered into a single leaf node; denote this
reduced, collapsed tree Treel(O).
(c) Label each unmarked leaf of Treel(O) with Pl(A).
(d) Add a node O to each leaf lo in the marked subtrees of
Treel(O) (and record the distribution Plo(O) labeling leaflo).
(e) For each new leaf under the O-nodes, compute the value
of Equation 2 using the terms Pl(A),Plo(O), and the valuesP (Oj�old(O)) determined from Treeold(O).

We elaborate on the details by referring to the running ex-
ample. Step 1 requires that we duplicate all of Treeold(A)
and keep track of the distribution labeling each leaf. This
is shown in Figure 5(a). Step 2 involves a number of
substeps. First, a copy of Treenew(O) is grafted to each
leaf of Treeold(A) and reduced as shown in Figure 5(b). It

also shows how the left subtree under each B node is col-
lapsed by removal of the C node (the circled leaves), and
how each “unmarked” leaf inherits P (A) from Treeold(A):
since P (O) is identical at unmarked leaves given �new(O)
or �old(O), these terms in Equation 2 cancel (thus P (A)
need not be computed). Finally, Figure 5(c) shows the ad-
dition of the node for new parent O at marked leaf, and the
values of P (A) computed according to Equation 2.

Again, the resulting Treenew(A) is sound:

Theorem 2 Let c be a context determined by a branch of
Treenew(A) instantiating variablesC � �new(A). Then A
is contextually independent of �new(A) nC given c.

Once again we note that this algorithm preserves a consid-
erable amount of structure in this example. Using unstruc-
tured CPTs, the new CPT for A would require 28 = 256
entries and the same number of evaluations of Equation 2.
Exploitation of tree-structured CPTs allows the new CPT
for A to be expressed with only 30 distinct entries, and re-
quires that Equation 2 be evaluated only 20 times (i.e., at
the leaves of marked subtrees).6
4 TSAR in the Simulation of DPNs

Dynamic probabilistic networks (DPNs) are a particular
form of BN used to model temporally-extended systems
[5, 11, 10]. Intuitively, we imagine a number of state vari-
ables whose values vary over time, allowing the network to
be organized in “slices” consisting of a set of variables at
a particular point in time. The system dynamics are often
taken to be Markovian and stationary: the causal influences
for any variable at time tmust be drawn from the set of vari-
ables at time t � 1 or time t, and this relation holds for all
times t. Thus the DPN can be represented schematically in
a very compact fashion by simply representing the relation
between two consecutive generic slices at time t and t + 1
(together with priors for root nodes at time 1).

DPNs can be used to model dynamical systems generally,
and specifically can be applied to time series models [11],
control problems such as robot or vehicle monitoring and
control [12, 10], planning [5] and sequential decision prob-
lems [18, 1]. We often distinguishcertain variables within a
particular slice as state variables, and others as sensor vari-
ables. It is generally only sensor variables that are observ-
able and provide evidence of the system’s trajectory. This
is illustrated schematically in Figure 6 (following [10]). We
note that the set of state and sensor variables need not be dis-
joint, and that state variables could include decision vari-
ables whose values are set by the controller (possibly de-
pending on the values of previous state variables). Figure 2
(used earlier) illustrates a DPN with a number of state vari-
ables (A through F ) and a single sensor variable (O). Our
convention is that node A0 denotes variable At (A at timet) and node A denotes At+1.6We note that these 30 entries are, in fact, not all distinct. But
the tree-representation imposes certain redundancies that could be
overcome using other function representations.
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Figure 6: Schematic Representation of a DPN

A common task in DPNs is projection or forecasting, that
is, determining, at time t, the distribution over some subset
of future variables (i.e., state variables at times later than t)
given a set of observations at some points in the past (i.e.,
evidence at sensor variables at certain points prior to time t).
For example, one might want to compute the expected value
of a particular policy for some k steps into the future given
observations of past behavior of the system. Because of the
size of DPNs, exact solutionof a DPN is impractical in most
settings. Therefore simulation models are often preferred.
However, traditional methods such as likelihood weighting
[17, 7] will be extremely unsuitable in DPNs exhibiting the
schematic structure of Figure 6. Because they are sinks in
the network, the sensor variables (which provide the only
evidence) are unable to influence the course of the simula-
tion. As demonstrated convincingly by Kanazawa, Koller
and Russell [10], straightforward simulation will often “get
off track” very quickly, leading to trials with negligible (or
zero) weight. They suggest the use of (partial) evidence in-
tegration in order to keep the simulation close to reality. In-
tuitively, arcs from state variables to sensors within time t
are reversed so that observed evidence will strongly influ-
ence the sampled state at time t. The reversal is only partial,
however, since sensor variables in the reversed network will
generally have as parents state variables from slice t� 1.7
Unfortunately, evidence integration can be expensive. In-
deed, Fung and Chang [7] suggest that, while evidence
integration can help convergence of simulation methods
tremendously, the computational cost of arc reversal may
prove to be a practical obstacle to its applicability. Fortu-
nately, in DPNs, evidence integration benefits from the uni-
form nature of the network: the reversal needs to be com-
puted at one slice only, and can then be applied across all
slices. Thus, one substantial burden is overcome. Yet com-
plete “within slice” integration of sensor variables can still
be rather costly. Consider the network in Figure 2. Com-
plete reversal of arcs into sensor variable O (within a sin-
gle slice only) results in the extremely connected network
illustrated in Figure 7. Variables A, B, C, D and O have
CPTs of sizes 256, 128, 64, 128 and 64, respectively. Fur-
thermore, O (which is involved in four reversals) has inter-
mediate CPTs of sizes 128, 64 and 32. Arc reversal requires
explicit computation of each of these 864 entries. In larger
networks, with tens or hundreds of state variables, this can
prove a major impediment to evidence integration.7We take as accepted the crucial role of evidence integration
in the convergence of simulation involving DPNs. Our experi-
ments with networks of this type (both with tree-structured CPTs
and without) confirm this impression.
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This suggests that tree-structured arc reversal can play an
important role in the simulation of DPNs. The computa-
tional burden of evidence integration as well as the size of
the resulting CPTs can be considerably lessened by the use
of TSAR. For instance, if the CPTs of the remaining nodes
in our example DPN are as shown in Figure 8, the sizes of
the trees in the reversed network for A, B, C, D and O are
30, 33, 23, 72 and 36, respectively, while O’s intermediate
trees have sizes 13, 11 and 15. Of the total 233 CPT en-
tries represented, only 210 required explicit computation.
Our experiments with other similar DPNs suggest that this
savings is commonplace. This seems especially true in the
evaluation of policies, where actions or decisions play a
predominant role. As argued in [3], the representation of
action effects often admits a considerable amount of CSI.

Apart from the potential savings it provides during network
restructuring, another advantage offered by TSAR is the
ability to determine irrelevant variables dynamically. Irrel-
evance can be viewed at the network level. For instance, in
the DPN above, we may be interested in the distribution of
variable At. Given such a specific query, a simulation trial
need not sample Ft�1 since this cannot impact At. The ir-
relevance of Ft�1 to At is dictated by the structure of the
DPN. Indeed, Fung and Chang [7] propose irrelevance of
this type as a means of speeding simulation, though they
caution that the overhead involved may offset any savings.88See also [14] for a discussion of this type of relevance.
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We focus on a specific problem: assume a DPN has been
given and that a certain subset of state variables has been
designated as immediately relevant. The simulation is de-
signed to sample these variables over time; the fact that
other variables are being sampled is subsidiary to this aim.9
In our example, imagine that A is the variable of interest.
What we wish to determine is the set of variables that must
be sampled in each slice to ensure we can accurately deter-
mine the conditional probability of A at any future time.

We would hope that “schematic” detection of irrelevance
could alleviate overhead difficulties (i.e., the detection of ir-
relevance by processing a single slice in a manner that ap-
plies across all time points). But, clearly, if we need to sam-
pleA at each slice, we cannot ignoreF : whileFt�1 doesn’t
impactAt, it does influenceAt+1 through its impact onDt.
The influence of certain variables often “bleeds through”
to many or all other variables over time, making network-
level irrelevance unhelpful. Fortunately, the tree-structured
CPTs suggest that some variables may be irrelevant to oth-
ers under certain conditions, even if they are not irrelevant
at all times. So, while Ft�1 might be required in order to
sampleDt (which itself impactsAt+1, the variable of inter-
est), the tree forD shows thatFt�1 has no impact ifEt�1 is
true. This suggests that one should sampleE at a particular
time slice first; and if it E turns out to be true, one should
not sample F at that slice. Some care is required of course,
since F may influence other variables of relevance through
a different causal chain.

Our goal is a simple algorithm for constructing a condi-
tional sample schedule for the variables within a time slice
in which a variable is not sampled if it provably has no influ-
ence on any variable of interest at any future point in time.
An example of constraints on such sample schedule might
be: “Generate values forE;D;C before F . If ed or edc, do
not sample F .” Our algorithm proceeds in four phases.

We first identify (unconditionally) relevant variables, those
variables that can influence the future value of some vari-
able of interest; in our example, all variables are relevant
since all influence A (the variable of interest) over time.
This can easily be detected using the topological structure
of the network. For our purposes, we now treat the set of
unconditionally relevant variables as potentially relevant to
the future values of immediately relevant variables.

Second, we construct a sample graph for each relevant
variable. This structure describes the dependence of each
variable on other variables within the same or previous
slice. Essentially, these are directed acyclic graphs gener-
ated from the CPTs for the variables in question, and are
similar to binary decision diagrams (BDDs) [4]. The sam-
ple graphs for the seven variables are shown in Figure 9.
For example, the graph for variableO dictates that, in order
to sample it: we need the value ofE0; if e0, we need F , oth-
erwise we proceed to D; once we sample F (if necessary)9For instance, in policy evaluation, one may wish simply to
sample and sum value nodes at each slice, with no “direct” interest
in other state variables being expressed.
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Figure 9: Sample Graphs for all Variables

we proceed to D and so on.10
The key third phase of the algorithm requires that we de-
termine the conditions under which a (unconditionally rel-
evant) variable is conditionally irrelevant. To begin, we
order variables so that the variables first in the ordering
have sample graphs (or CPTs) that depend only on previ-
ous variables, and that variables later in the ordering de-
pend only on variables in the same time slice that lie ear-
lier in this ordering. (A suitable ordering for this example
is O;D;B;E; F;C;A.) Then for each variable, we deter-
mine the conditions under which it is required by uncondi-
tionally relevant variables in the next slice (i.e., when must
it be known in order to determine the distribution for that
variable). Using the ordering of variables suggested, we ap-
ply the variable in question to each sample graph, determin-
ing the set of minimal initial segments of paths (or contexts)
in the graph that have no completion leading to the variable
in question.

To illustrate, we consider the conditions under which the
value of F at one slice is not required to accurately sam-
ple other variables at the next (or any future) time slice. We
apply F to each sample graph, in turn, using our variable
ordering. applying F to the graph for O, we see that con-
dition e is the only one that guarantees F ’s value is not re-
quired to sample O. If we apply F to the graph for D, we
see again that e is the only such condition. If we then pro-
cess the graph for B, we see that F does not occur, but B
depends on the current value of D; since we have already
processed D’s graph, at that point we can insert the dis-
covered condition for D (i.e., e) at that point in our search
through B’s graph (thus, the ordering of variables plays an
important role). Note that if several distinct paths bypassF ,
the condition generated is disjunctive: in applying F to E’
sample graph, we see thatF is irrelevant toE if e_ed_edc.
We note thatF is irrelevant when e for all other variables.1110Intuitively, such a graph can be constructed by joining com-
mon subtrees (ignoring leaf values) in the CPT, and collapsing
true/false branches from a variables that lead to similar subtrees.
This graph can easily be built while the tree is being constructed
during arc reversal (if the node is part of a reversed arc). The com-
plexity of identifying common subtrees should not be a limiting
factor in this setting. But we should point out that the ideas below
can be applied using the trees themselves. Collapsing trees into
graphs simply aids the process somewhat.11We note that finding all paths and other operations on sam-
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Once we have determined the conditions under which F is
irrelevant for all variables, their conjunction fixes the con-
ditions under which F is not needed to determine any value
at the next slice: in this case, we obtain ed _ edc. We note
that variables other than F in our example can be ignored
under any conditions.

The conditions so obtained for F suggest that one should
sample variables within any given slice such that F is sam-
pled after E, D and C, and only when e or edc obtains.
Of course, the conditions obtained for other variables might
impose other contraints on the ordering. Phase 4 of the al-
gorithm involves construction of a sample schedule that sat-
isfies as many constraints as possible. In this example, since
no other variables are irrelevant under any conditions, we
simply use this schedule. One could imagine, however, that
one might want to sample F before E because of their im-
pact on a third variable. In such a case one could not satisfy
both the requirement to sample F beforeE and the require-
ment to sampleE beforeF . In this case, an arbitrary choice
could be made, or some heuristic could be used (e.g., if we
had some estimate of the steady state probabilities that sug-
gested e was unlikely, we would know that skipping F was
also unlikely, in which case, we might decide to opt for con-
ditionally sampling E based on F rather than vice versa).

Our running example was not designed to ensure a lot of
conditional irrelevance, but it does offer the ability to not
sample one variable (in each slice) under some conditions.
For instance, a simple experiment using A as the immedi-
ately relevant variable shows that F needs to be sampled in
only about a third of the slices: using 20 randomly gener-
ated observation sets (of 20 observations each) for our net-
work stretched over 100 time slices, we saw that F was
sampled an average of 35 times out of the possible 100
times per run (the results were averaged over 1000 runs per
evidence set). While not a large savings in this case (it is
only one variable), the savings is proportional to the hori-
zon of interest. For larger networks with substantial hori-
zons, one might generally expect considerable savings from
irrelevance processing. The longer the horizon, the less sig-
nificant is the overhead involved in the (single slice) pro-
cessing required. Furthermore, we expect that in large net-
works, a few key contexts (rather than variables) may shield
variables of interest from large parts of the network.

5 Concluding Remarks

We have described an algorithm for tree-structured arc re-
versal and demonstrated its potential significance for the
simulation of DPNs. Advantages include the reduction in
(space and computational) overhead for reversal, and the

ple graphs can use some of the efficient procedures designed for
BDD manipulation [4]. Furthermore, this process can be termi-
nated early if we ever find that the irrelevant condition for a vari-
able with respect to any graph is false, or if the conjunction of con-
ditions for any (incremental) subset of the graphs is inconsistent:
the variable must then be sampled no matter what. For instance,
when processing variable E (or D;A;C) on the graph for O, we
see that it must always be sampled, in which case application to
other graphs is pointless.

ability to exploit the structured nature of the resulting re-
versed DPNs, especially in dynamic irrelevance detection.
There are a number of questions that remain to be ad-
dressed. These include validation of the potential gains of-
fered by TSAR and its use in simulation in realistic net-
works, and the application of these ideas to other forms of
structured BNs. The existence of benchmark DPNs would
aid this study. We are also investigating the potential of
these ideas in the evaluation of policies for Markov deci-
sion processes.
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