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Abstract

We propose, and axiomatize, an extended version of the situation calculus [10] for temporal
reasoning in a logic programming framework. This extended language provides for a linear
temporal structure, which may be viewed as a path of actual event occurrences within the tree
of possible situations of the “classical” situation calculus. The extended language provides for
events to occur and fluents to hold at specific points in time. As a result, it is possible to
establish a close correspondence between this extended situation calculus and other linear time
formalisms which have been proposed in opposition to the situation calculus.

In particular, we argue that the functionality of the event calculus [6] is subsumed by the ex-
tended situation calculus. We present a logic program for temporal reasoning which is provably
sound for our axiomatization, relative to the Clark completion semantics of the program. Our
logic programming approach has the advantage of being grounded in a pure (without negation
as failure) first order axiomatization suitable for reasoning about events and their occurrences.
Moreover, efficient algorithms can be obtained for a suitable class of temporal reasoning prob-
lems, following the ideas of Kowalski [5].
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1 Introduction and Motivation.

The situation calculus was originally introduced by McCarthy and Hayes [9] as a first order language
appropriate for reasoning about actions. The basic ontology of the situation calculus consists of
sttuations, which correspond to snapshots of the universe at an instant of time, and actions or
events, which change the world from one state to another. It is a sorted language with sorts for
situations and actions, and it has a distinguished function do (or result) that, given a situation
s and an action a, denotes the situation resulting from doing @ in s. The situation calculus has
been criticized on the grounds that it is not general enough to deal with problems in the real world.
However, a recent surge of interest in the situation calculus has shown that most of the criticisms are
unjustified. For example, Gelfond, Lifschitz and Rabinov [4] show that by extending the language to
deal with a generalized notion of action one can represent concurrency, non-instantaneous actions,

conditional actions, etc. Lin and Shoham [7] show how to incorporate concurrent actions and
discuss the notion of independence among actions. Levesque, Lin and Reiter! propose an extension

*Fellow of the Canadian Institute for Advanced Research.
'Forthcoming.



to the situation calculus in which complex actions can be built from primitive ones, providing
Algol-like programming constructs as complex actions.

In this paper we consider Kowalski’s [5] criticisms of the situation calculus for temporal rea-
soning. Kowalski claims several disadvantages for the situation calculus for representing event
occurrences, specifically:

1. High computational cost of the frame axioms.
2. Events need to be totally ordered.

3. Information must be assimilated in chronological order.

In this paper, we argue that these disadvantages are not intrinsic to the situation calculus. We show
that it is possible to deal with partially ordered events and that the language does not force us to
assimilate knowledge in chronological order. Moreover, we argue that the same algorithm proposed
by Kowalski for the event calculus can be used in a reasoning system based on the situation calculus.

The rest of the paper is organized as follows: In section 2, we analyze the event calculus and
show that some ontological choices made in [6] have unintended consequences, making it difficult
to interpret the calculus as a declarative theory. In section 3, we and show how, with a simple
extension to the original situation calculus language, it is possible to express event occurrences
and time. In section 4, we describe a logic program for reasoning about time and events based
on the declarative specification of section 3; this we do for a class of problems for which complete
information may be assumed. Under these circumstances, we prove that the program is sound with
respect to its Clark completion semantics. Finally, in section 5, we present our conclusions and
discuss extensions of the present research.

2 The Event Calculus Revisited.

The calculus of events was proposed as a general temporal logic framework. It was originally
presented as a logic program [6], in which negation as failure plays an essential role. We have found
it very difficult to ascribe a semantics to the calculus of events. In this section we point out some
of the difficulties we have encountered with this proposal as a formal theory of time.

These difficulties arise from the use of equality, the use of negation as failure, and the interaction
between negation as failure and incomplete knowledge.

The first problem is the treatment of temporal intervals. In the event calculus, two functions,
after and before, are used to deal with time periods. Both are two-place functions that take an
action and a fluent as arguments. According to Kowalski, a term of the form after(a,f) “names”
a time period. Furthermore, according to Kowalski and Sergot [6, p.87], the sentence:

Holds(p) (1)

“expresses that the relationship associated with p holds for the time period p.” For example, we
can write:
Holds(after(paint(Green), colour(Green)))

that can be taken to mean that paint(Green) is an event that starts a time period in which the
fluent colour(Green) is true. Now, if p1 and p2 are two time periods which are started and ended
by the same events, then they must be different names for the same temporal interval. Otherwise,
pin (1) could not denote a temporal interval. As a simple example, consider figure 1, in which we



Figure 1: Simple Example

have three events E1, E2 and E3 occurring at times T1, T2 and T3 respectively. Moreover, suppose
we have four fluents: W which holds only before T1 and after T3; B which holds only between T1
and T2; R which holds only between T2 and T3; and D which holds only between T1 and T3. Among
others, the time period after(E1,D) holds; this is the same as the time periods (T1 — T3) and
before(E3,D). Now, from rule G3 in Kowalski and Sergot’s program [6, p.88] we know that:

start(after(e,u),e). (2)

Therefore, we may infer that the time period after(E1,R) is started by E1 at time T1i. Now,
we can easily provide axioms that make event E2 terminate only B and nothing else. Therefore,
the interval after(E1,R) would not be terminated by E2. However, we know that E3 must ter-
minate R; therefore we conclude that the time period denoted by after(E1,R) is terminated by
E3. Hence, after(E1,R) is the time period (T1 — T3), which we know holds. We conclude that
Holds(after(E1,R)), which is clearly unintended (and contradictory).

This problem stems from a poor choice of ontology, and seems to be caused by the Holds
predicate, which states that time periods hold (?!). In [5, p. 142], Kowalski suggests that for a
very specific class of problems “time periods can be eliminated altogether.” This is suggested for
computational, rather than representational reasons. However, it seems that either time periods,
or the Holds predicate should be eliminated from the ontology for their proposal to work.

Another problem arises from the use of negation as failure. Assume that we query a temporal
reasoner based on the calculus of events with holdsAt(F,T), i.e. we want to know whether some
fluent F holds at time T. Furthermore, assume that we obtain a negative answer. How are we to
interpret this answer? In general, we want a clear characterization of what the system’s answers
mean. In this case, there are two possible interpretations: (i) Assuming complete information about
the events that have occurred, and assuming complete knowledge about the initial conditions and
the effects of events, it is the case that F does not hold in T, (ii) We have been unable to ascertain
whether F holds or not because of lack of information. It is simple to imagine examples of the first
case. The second possibility arises, for example, with case 3 in [6, p.90], where two events e and
e’ are known, the first one initiates a fluent u and the second one terminates a fluent u’, with u
and u’ mutually exclusive. It turns out that some intervening event (or events) must have occurred
between e and e’ which terminates u and initiates u’. The problem is that for any particular time
point T after e and before e/, the query holdsAt(u, T) will fail. This is a problem inherent to the use
of negation as failure, which is, in this case, too strong. Similar difficulties arise with concurrent
events which are not precluded by the event calculus.

In the event calculus, problems also arise with negation as failure in the presence of incomplete
information in settings having nothing to do with incompleteness about the temporal relations
between events. The event calculus appeals to case semantics. The basic idea is that events are
treated as first order objects which may be predicated by so-called cases. For example, events may
have agents, objects, etc. An apparent advantage of case semantics is that event cases need not
always be known in order to reason about events. Unfortunately, under negation as failure, this
advantage is not always realized. For example, assume that John gave a book away, but it is not



known to whom. Negation as failure will conclude that for each individual in the universe, it is not
the case that that individual owns the book. Therefore, nobody owns the book after John gave it
to somebody. It is also easy to construct examples where the event calculus will lead to incorrect
inferences about event occurrences in the presence of incomplete information about cases.

It is well known that logic programming is inappropriate for reasoning with non-categorical
theories. In fact, the extension of the logic programming paradigm to work with such theories
is a very active area of research [3]. Therefore, it should not be surprising that the examples
of overcommitment mentioned above arise. Our concern with the event calculus, formulated as
it is as a logic program with negation as failure, is that it provides no clear guidelines to the
programmer about when overcommitments can arise, which is to say, it does not characterize a
class of sound programs. Of course, soundness is possible only relative to some prior, universally
accepted specification of the task. This paper attempts to provide such a specification of the kinds
of temporal reasoning tasks for which the event calculus was designed. In doing so, we shall appeal
to an extension of the situation calculus, enriched with time and event occurrences. With this
specification in hand, we shall be in a position to derive a logic program which is sound with
respect to it.

3 The Extended Situation Calculus.

3.1 The Basic Language and Axioms.

In this subsection we summarize the axiomatization and some results from [10]. We have sorts
A, 8, F,T,D for action types, situations, propositional fluents, time, and other domain objects
respectively. Variables are denoted by lower case letters (with or without subscripts), and constants
are denoted by upper case letters (with or without subscripts). Unless otherwise stated, letters a,
s, f, t (A, S, F, T) are used for variables (constants) of sorts A, S, F, T respectively. We will
have a single 1-place predicate variable ¢ over situations. Other variables and constants will be
assumed to be of sort D. Also, free variables are assumed to be universally quantified. The sort T
corresponds to the non-negative reals, extended to include oo, for which we assume the standard
interpretation.

Strictly speaking, our language is second order. However, the only second order sentence we
use is the induction axiom (3). Therefore, we restrict ourselves to a standard sorted first order
sublanguage (with equality) to express all other axioms of our theories.

We include the special constant Sy, denoting the initial state, of sort &, the function do :
A xS — 8, the relation < C § x S, along with other functions and relations introduced later.?

Basic Axioms:

(V).[e(S ) (Vs,a).(¢(s) D ¢(do(a,5)))] D (Vs).0(s), (3)
(Vs1,82,a).51 < do(a, s2) = s1 < s2, (4)
(Val,ag,sl,sz) do(ay, s1) = do(ag, $2) D a1 = ay (5)
(Vsl,SQ) S1 < 89 D 18y < 81, (6)

Axiom (3) is an induction axiom, necessary to prove properties true in all situations [13]. Notice
that axiom (5) precludes concurrent actions.

2We use the abbreviation s; < 82 to mean s; < 32 V 81 = s2. Also we use the notation a < b < ¢ to mean
a < bAb < ¢, and similarly when the expression combines < and <.



Proposition 3.1 Some consequences of these axioms are:

(Vs).So < s,
(Vs).s # So D (Fa,s).s = do(a, s,
(V s1,82,83).51 < Sg A Sz < 83D 81 < Sa,
(Va,s).s < do(a,s),
(Va,s).ms<s,
(Vaq,az,s1,82).do(ay,s1) < do(az,sz) D s1 < ss.
Proposition 3.2 Unique names axioms for states are consequences of the basic axioms:
So # do(a, s),
do(a,s) =do(d,s'y Da=d Ns=¢.

Later on, we will use the function not : ¥ — F, whose meaning is constrained by the following
axioms:

not(not(f)) = f, (7)
holds(not(f),s) = —holds(f,s). (8)

We introduce the primitive predicate precond C F X A, which is meant to say that a property is a
precondition for the successful execution of an action. Also, we define the predicate possible C AxS
to mean that it is possible to do an action in a situation:

possible(a, s) = (¥ f).precond(f,a) D holds(f,s). (9)
To introduce change, effect axioms have to be specified; these have the following form:
possible(A,s) A ¢a,r(s) D holds(F,do(A,s)).

Here, ¢4, r(s) is a first order formula providing qualifications for the effect of the action A on fluent
F. Effect axioms of this form provide sufficient conditions for literals of the form holds(F, do(A,s)).
In order to obtain necessary and sufficient conditions we need to provide some completion mecha-
nism (e.g., closed world assumption, predicate completion, etc.). As discussed later (section 3.2),
we utilize a monotonic approach, using so-called successor state axioms.

So far, we have introduced axioms that allow for the specification of what is true and what
truths change along different paths® that start in the initial situation Sy. Fach one of these paths
is interpreted as a different way in which the world could evolve. We incorporate a predicate actual
for situations. The intended meaning is that a situation is actual if it lies on the path that describes
the world’s real evolution. The axioms for actual are:

actual (So), (10)
(Va,s).actual(do(a, s)) D actual(s) A possible(a, s), (11)
(Vay,az,s).actual(do(ay, s)) A actual(do(az, s)) D a1 = as. (12)

Axioms (10-11) express that the initial situation is always actual, and if a situation is actual, then
its immediate predecessor must also be. Axiom (12) says that an actual situation has at most one
actual successor situation. An important characteristic of actual situations is that they all lie on
the same path (i.e., they constitute the time line), as the following shows:

9 A path is a sequence of situations that result from performing a sequence of actions starting in Sp.



Proposition 3.3

(V s1,82).51 < 82 D [actual(sz) D actual(sy)],
(V 51, 82).actual(s1) A actual(sy) D s1 < $2 V sy < 81V 81 = Sa.

We also introduce a notion of time, which will allow us to gain the same representational features
as some linear temporal logics (e.g., the calculus of events [6]). Intuitively, each actual situation has
a starting time. The time span of of an actual situation s extends from its starting point upto the
starting point of its successor situation (i.e., the ending time of s) in the actual line. If an actual
situation has no actual successor situation, then it spans all time points after its starting point.
During the time span of a situation no fluents change truth values*. We incorporate the sort 7,
interpreted as a continuous time line, into our language and introduce the relation start C S x 7.

Events/actions are considered to occur at the ending time of situations. This is captured by the
5.

following axioms
actual(s) = (3t).start(s,t),
start(s,t) A start(s, ') Dt =1,
start(s,t) A start(do(a,s),t') Dt < ',
start(Sgp) = 0.

These have the immediate consequence:
Proposition 3.4

start(s,t) Astart(s',t) D [s<s'=t <]

Occurrences are introduced as a relation between event {ypes and situations. For example,
occurs(pickup(z), s) says that a pickup event occurred in situation s. Occurrences are defined in
terms of the actual path as follows:

occurs(a, s) = actual(do(a, s)). (17)
Proposition 3.5 The following can be easily established:
actual(s) = s = So V (Ja, s').s = do(a, s') A occurs(a, s').

In some cases, it might be convenient to establish a relationship between events/actions that
occur and the time at which they occur (rather than the situation). For this purpose, we introduce
a predicate occursT C A x T, defined as:

occurst(a,t) = (3 s).occurs(a, s) A start(do(a, s),t). (18)
Also, define a relation holds7 between fluents and time points and a relation during between time
points and situations:

holds(f,t) = (3s).during(t, s) A holds(f,s), (19)
during(t,s) = start(s,t;) ANty < tA
[((Fa,ty).start(do(a, s),ta) ANt < t3)V (=(Fa)actual(do(a,s)))].  (20)

Intra-state persistence is derivable:

*This restricts the properties of the world that can be represented as fluents, e.g. the position of a moving ball
may not be conveniently represented by a fluent. This topic is left for future research.

°In what follows, we use < and < as relations between situations (as defined earlier), as well as for the standard
ordering relation between the elements of 7.



Proposition 3.6
during(t, s) A during(t', s) D holds(f,t) = holdsT(f,t').

Also, a time point belongs to exactly one situation:
Proposition 3.7

during(t, s) A during(t,s') D s =5

Proposition 3.8
occurs(a, s) = (3t).occursy(a,t) A start(do(a, s),t).

We can also introduce the notion of events occurring between situations or between times as follows:
occursBet(e, s1,s2) = (Is).51 < s < 53 A occurs(e, s). (21)
occursBetr (e, ty,ty) = (It).t1 <t < ta A occursy(e,t). (22)

We can infer that given two actual situations s; and sg, if nothing occurs between them, then
one situation must immediately follow the other:

Proposition 3.9
actual(sy) A sy < sy A—(Fe).occursBet(e, sy, s2) D (Fa).s; = do(a, s1).

From these we can show that:

Proposition 3.10
start(s,t) A start(do(a, s),t") D —(e).occursBetr(e,t,t').
and

Proposition 3.11

start(s,t) =
[s=SoAt=0]V
[(Fa,sp,t,).s =do(a,s,) Aoccurst(a,t) A
start(sy,t,) A =(3d').occursBetr(d', t,,1)].

To facilitate the implementation described later, specifically, to eliminate a potential source of
loops in the logic program corresponding to these axioms, we need:

Proposition 3.12

start(s,t) =
[s=SoAt=0]V
[(Fa,sp, t,).s =do(a,s,) Aoccurst(a,t) A
start(sp,t,) A =(3a’).occursBety(a',t,,t) A
by <t A (L, =0V (Fap)occursy(ap, tp))].



3.2 The Frame Problem.

Given two situations sy and sg, with s; < sy we want to infer that anything true in s; persists to
s2, unless there is reason to believe otherwise. In the extended situation calculus, this problem has
two components:

1. We need to infer persistence of fluents from one situation s to its immediate successor do(a, s)
based on the effects of the action a. We call this successor state persistence.

2. We need to assume that between two situations s; and sz, no event occurs, whenever this
assumption is consistent. We call this the assumption of no intervening events. ;From this
assumption, it will follow that sy = do(a, s1) for some action a (see prop. 3.9), in which case
successor state persistence will yield persistence of fluents from s; to ss.

3.2.1 Successor State Persistence

To address this problem, we appeal to a monotonic solution to the frame problem which relies on
successor state axioms [11]. In this approach a successor state axiom is provided for every fluent
in the language. Fach such axiom provides a complete characterization of a fluent’s truth value in
state do(a, s) in terms of what is true of the state s. Syntactically, for each given fluent F', these
axioms have the form:

possible(a, s) D holds(F,do(a,s)) = ®p(a,s),

where ®r(a, s) is a first order formula with free variables a and s, and where s is the only term of
sort situation mentioned by ®r. For example, in the blocks world, the following might be a suitable
successor state axiom for the fluent holding:

possible(a, s) D [holds(holding(z),do(a, s)) =
a = pickup(z) V holds(holding(z),s) A a # drop(z) A =(3y)a = put(z,y)].

In a database setting, say for an education application, the following might be a successor state
axiom for the relation enrolled(st,c), meaning that student st is enrolled in course c:

possible(a, s) D [holds(enrolled(st, c),do(a,s)) =
a = register(st,c) V holds(enrolled(st, c), s) A a # drop(st, c)].

Notice that for these axioms to have their intended effects, we need unique names axioms for
actions. See [11] for a discussion.

Reiter ([11]) shows how such axioms may be obtained from the effect, or “causal” axioms of the
domain, and how it is that they solve the frame problem. In [12] Reiter shows how successor state
axioms can be used to specify transactions in database update applications.

To summarize, our solution to the successor state persistence assumption consists of a set of
successor state axioms, one for each fluent, together with a set of unique names axioms for the
action terms.

3.2.2 No Intervening Events

Formalizing the assumption that no event occurs between states s; and s, unless it must occur,
reduces to a suitable form of occurrence minimization, namely, predicate circumscription [8] to



minimize the extension of the occurs predicate, leaving the remaining predicates fixed. Elsewhere®,
we elaborate on this idea. Our appeal to circumscription for the purposes of providing a logic
program for a fragment of the extended situation calculus (Section 4) will be unproblematic, since
we will be appealing to a simple completeness assumption about event occurrences. See Section 4
below for details.

3.3 Defining an Interval Based Ontology.

The version of the situation calculus we have introduced has an ontology based on time points.
On the other hand, the calculus of events, as well as other prominent temporal logics (e.g. Allen’s
[1]), have ontologies in which the primitive temporal objects are intervals of time. In this section
we show how the expressiveness of the interval based language can be realized within the situation
calculus. Therefore, when axiomatizing a given domain, one has the freedom to choose whatever
view of time that seems most appropriate for the application.

Before introducing predicates on intervals, we extend the language of the situation calculus with
two functions pred and act which identify the unique predecessor of a situation and the action that
led to a situation. From (3)-(6) it follows that:

S ;é SO D) (El !a, SI) s = do(a7 sl)' (23)

That is, every situation, except for Sp, has a unique predecessor. Also, there is a unique action
connecting a situation different from Sy to its predecessor. Thus, we use the function pred : § — S
to name the predecessor of a situation (we leave it undefined for Sp), and the function act : § — A
to name the action that leads to the situation (also left undefined for Sy). Therefore:

s # Sy D do(act(s), pred(s)) = s. (24)
JFrom this, it follows that:

Proposition 3.13
actual(s) D end(pred(s)) = start(s).

Next, we introduce definitions for the following predicates:

term(f,s) = —holds(f,s) A[s # Sy D holds(f,pred(s))],
nit(f,s) = holds(f,s) A\ [s# So D —holds(f,pred(s))],
broken(f,s1,s2) = (Is)(s1 < s < s2) A—holds(f,s),
maximal(sy, sz, f) =

(s1 < s2) A —broken(f,s1,s2) A

init(f, s1) Aterm(f,sz),
incompatible(f, f') = [holds(f, s) = —holds(f', s)]. (29)

These have the following consequences:

SWork in progress



term(f,s) As# So D (3s')ymazimal (s, s, f), (30)
[term(f, s) A incompatible(f, ') Aterm(f',s') ANs < s']D

(3 s1)mazimal (s, s, f') As < s, (31)
[init(f, s) A incompatible(f, f') Ninit(f',s') As < §'] D
(I s2)mazimal (s, sz, ') A sy < &, (32)

[init(f,s) Aterm(f',s") A incompatible(f, f')] D
(3 81,82)(8 <81 <89 <K S/) A

mazimal(s, s1, f) A mazimal(ss, ', f'). (33)

It is important to note that the predicates introduced in this subsection do not depend on the
definition of actual. However, by integrating the notion of an interval with the notion of an actual
time line we gain the same representational features claimed for the event calculus. For example,
the definition of mazimal (axiom (28)) and theorems (31)-(33) capture the intuitions behind the
cases of start and end points of intervals as discussed in [6, pp. 90-93].

Without a precise axiomatization for the calculus of events a formal argument that our language
subsumes that of the calculus of events cannot be made. The alternative, which we have followed
in the definitions above, is to show how, within the extended situation calculus, an interval-based
ontology can be defined analogous to that of the event calculus. In other words, we have argued
that the extended situation calculus is suitable for those applications where something like the
event calculus provides the right ontology.

It is also worth noting that the introduction of terminations and initiations (term, init and
mazimal) provides an efficient algorithm for dealing with the frame problem in the case that
complete information is at hand. Following Kowalski’s proposal [5, pp.138-142], we can define
an algorithm to answer queries of the form holds(F,S), in which S is a completely determined
situation. Such an algorithm would deal with a unique sequence of actions, which is required to be
totally ordered, and the effects of each action have to be completely known. The algorithm uses
a simple table of terminations and initiations. For every action that is given in the sequence, the
algorithm keeps track of all the fluents that are affected by the action”. If a query is given with
regards to a fluent F, the algorithm looks in its data structure for the last action that affected that
fluent and answers whether the fluent holds based on the information encoded.

4 A Logic Programming Implementation and a Soundness Ar-
gument.

In this section we describe a logic programming implementation of a fragment of our extended situ-
ation calculus axiomatization, and show its soundness with respect to Clark’s completion semantics
([2]), under suitable circumstances. The program exhibits much of the functionality of the event
calculus, but in view of its soundness, is on firmer ground. Many of the assumptions we make in
what follows are clearly too strong, and can be relaxed; exactly how to do this will be the subject
of future research.

"The primitive fluents or their negations.
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4.1 Problem Independent Clauses

holds(n(F),S):- not holds(F,S). /* If half of axiom (8). */
holdsT(F,T):- during(T,S), holds(F,S). /# If half of axiom (19). */
actual(s_0). /* Part of if half of Proposition 3.5. */

actual(do(A,S)):- occurs(A,S). /# Rest of if half of Proposition 3.5. */

occurs(A,S):- occursT(A,T), start(do(A,S),T).
/* If half of Proposition 3.8. */

start(s_0,0). /* Part of if half of Proposition 3.12. */

start(do(A,S),T):- occursT(A,T), /* Rest of if half of */
(occursT(Ap,Ts);Ts=0), /#* Proposition 3.12. */
Ts<T,

start(S,Ts),
not occursBetT(E,Ts,T).

occursBetT(E,Tp,T) :- occursT(E,Tpp), Tp<Tpp, Tpp<T.
/* If half of Axiom 22. #*/

during(T,S):- start(S,T1), /# Part of if half of Axiom 20. */
start(do(A,S),T2),
T1<T, T=<T2.

during(T,S):- start(S,T1), Ti<T, /* Rest of if half of Axiom 20. */
not actual(do(4,S)).

Notice that, in the above, we use the if half of Proposition 3.12 instead of Proposition 3.11. This is
to eliminate a source of non-termination in the program, which the use of Proposition 3.11 would
cause.

4.2 Problem Specific Clauses
4.2.1 Initial State

We assume that the specification of the initial state consists of a sentence of the form:
holds(f,So)=f=F V...V f=F}.

In other words, we assume complete initial information about the holds predicate. The if half of
such a specification yields the corresponding logic programming clauses:

holds(f1,s_0). holds(f2,s_0). ..., holds(fk,s_0).

4.2.2 Event Occurrences

We assume that the specification of event occurrences consists of a sentence of the form:
occurst(e,t) =le=EyNt=Th|V...V[e=E, ANt =T,

In other words, we assume complete information about the occurss predicate. The if half of such
a specification yields the corresponding logic programming clauses:

occursT(el,tl1). occursT(e2,t2). ..., occursT(ep,tp).

11



Notice that there are two possible ways to interpret a declaration that at time 7 an event F has
occurred:

1. The assertion occurst(FE,T) is an implicit assertion that, in addition, possible(E, S) is true,
where S is the state which includes time 7' (see axiom (11). This perspective is problematic
in the logic programming setting. (See Kowalski [6] for an example.)

2. The preconditions of the event E are known to be true at time T. In this case, event precondi-
tions are being treated as integrity constraints; before an assertion of the form occursy(E,T)
can be accepted by the database, the precondition (integrity constraint) possible(FE, S) must
be proved true, where S is the state which includes time 7. If the precondition is false (or
unknown), the update occursy(F,T) is rejected.

In this paper, we adopt the latter interpretation. This allows us to assume that all event precon-
ditions are identically true, i.e.
possible(a, s) = true. (34)

Of course, this makes sense only when integrity constraint enforcement has been incorporated into
the temporal database, and is invoked whenever event occurrences are declared to the database.
We do not further discuss integrity maintenance in this paper.

4.2.3 Successor State Axioms
As discussed in section 3.2.1, these are sentences of the following form, one for each fluent F:
possible(a, s) D holds(F,do(a, s)) = ®r(a,s).

In view of our assumption about integrity maintenance (axiom (34)), successor state axioms
will have the particularly simple form:

holds(F,do(a,s)) = ®r(a,s).
For example, the following is a successor state axiom for the fluent rank in an education
database:
holds(rank(z,y),do(e, s)) =
[
[

(3z)e = promote(z, z,y) V e = hire(z,y) V
=[(Fz)e = promote(x,y, z) V e = leave(x, y)] A holds(rank(z,y), s)]].
This has, as its if half, the logic programming clauses:

holds(rank(X,Y),do(E,S)):- E = hire(X,Y) ; E = promote(X,Yp,Y).
holds(rank(X,Y),do(E,S)):- not E=promote(X,Y,Z), not E=leave(X,Y),
holds(rank(X,Y),S).

We shall assume that all logic programming clauses corresponding to successor state axioms are
if halves of such axioms.

4.3 An Example

As a simple example, in figure 2 we show a very simple set of problem specific rules to implement
Kowalski and Sergot’s promotion example. Of course, these clauses are in addition to the problem
independent clauses of Section 4.1 above.
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holds(rank(X,Y),do(E,S)):- E = hire(X,Y) ; E = promote(X,Yp,Y).

holds(rank(X,Y),do(E,S)):- not E=promote(X,Y,Z), not E=leave(X,Y),
holds(rank(X,Y),S).

occursT(promote(mary,lecturer,assisProf),1).

occursT(promote(john,lecturer,assisProf),2).

occursT(leave(john,assisProf),3).

holds(rank(mary,lecturer),s_0). holds(rank(john,lecturer),s_0).

Figure 2: The Promotion Example

4.4 A Soundness Argument

We are now in a position to argue the soundness of the above description of a logic programming
implementation for temporal reasoning. Soundness will be with respect to the Clark completion
semantics of the program.

1. iff: All the program clauses are if halves of corresponding iff axioms in our extended situation
calculus.

2. Equality Theory: Unique names for states holds (Proposition 3.2), as they do for events
(Section 3.2.1). We assume they hold for all other domain functions, for example, that
AssisProf # AssocProf, etc. In other words, the axioms satisfy Cark’s equality theory.

3. The Frame Problem: Our specification of a solution to the frame problem had two compo-
nents (Section 3.2): successor state persistence and the assumption of no intervening events.
The former is handled by successor state axioms, which we have already incorporated into our
axiomatization. The latter involves minimizing event occurrences. It is easy to see that under
the assumption about event occurrences of Section 4.2.2, minimizing the predicate occurs,
leaving all other predicates fixed, does not change the theory, i.e. the models of the theory
are all already minimal with respect to occurs. So the axioms satisfy the assumption of no
intervening events. It follows that the axioms satisfy our specification of a solution to the
frame problem.

The axioms satisfy all the conditions of the Clark completion semantics of the program. We
conclude that the program is sound with respect to Clark’s semantics.

4.5 Completeness

While we do not give it here, there is a simple inductive proof that the above logic program is
complete for ground queries of the form holds(f,t), where f is some fluent constant and t is a
numeric constant representing a time point.

5 Conclusions and Future Research.

We have shown how the advantages of linear temporal logics can be realized within the situation
calculus, a theory with a branching temporal structure. In our first order axiomatization it is
not necessary that actions be totally ordered, nor that information be provided in chronological
order. Furthermore, a lower bound on the computational cost is determined by the computational
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complexity of the task at hand. Whether or not this lower bound is realized by a given implemen-
tation is dependent upon the algorithms or reasoning framework utilized. The algorithm proposed
by Kowalski for the calculus of events [5, pp.138-142] can be used in conjunction with our logi-
cal specification to efficiently address the inefficiencies associated with our solution to the frame
problem.

We have also provided a logic programming implementation of our axiomatization for a very
specific class of problems, namely, those for which we have a complete specification of the occur-
rences, along with a complete specification of the initial state. This implementation is provably
sound with respect to the Clark completion semantics, and is complete with respect to ground
queries of the form holdsT(F,T).

This research can be extended in several ways. Our logic programming implementation can
certainly be improved. In particular, the requirement of complete knowledge of events and effect
of actions can be relaxed if we use a logic programming framework that allows for uncertainty (e.g.
logic programming with both classical negation and negation as failure [3]).

Furthermore, our version of the situation calculus has certain representational limitations. For
example, it is not possible to describe continuously changing properties as fluents (e.g., the position
of a falling object). To extend our framework to deal with these limitations, ideas of Gelfond,
Lifschitz and Rabinov [4] will prove valuable.

A natural extension of this framework is the inclusion of axioms from which occurrences can
be derived, as opposed to axioms in which occurrences are explicitly stated. For example, we can
write a sentence stating that whenever Fy occurs at time 7', then some other event Fy must occur
at time T + §, for some fixed §. These axioms arise in domains in which causality between events
can be expressed.

Levesque, Lin and Reiter have introduced a notion of complex events, which are defined in terms
of a set of operators for sequencing, non-deterministic choice, while-loops, etc. These complex events
have been defined within the standard situation calculus, and the integration of these events in a
framework in which occurrences take place has yet to be done. Such an extension will translate
into a more expressive situation calculus with complex event occurrences. In turn, this will allow
us to expand the classes of problems we can solve in a logic programming setting, by incorporating
these complex occurrences.

Finally, a clear advantage of the situation calculus over other temporal frameworks derives from
the branching structure of time. When incorporating a time line, we have not lost the remainder of
the branching structure. The non-actual branching structure can be interpreted as alternative ways
in which the world could evolve (as opposed to the way in which it actually evolved). Therefore, the
temporal structure of the situation calculus can be used as the basis for hypothetical reasoning in
theories in which occurrences are stated. We intend to explore this form of hypothetical reasoning
in future research.
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