Reasoning about Physical Systems with the Situation Calculus

Todd G. Kelley

Department of Computer Science
University of Toronto
Toronto, Canada M5S 1A4

email: tgk@cs.toronto.edu

Abstract

I use the results of (Reiter 1996) to show how the sit-
uation calculus can be used to reason about a physical
system with continuously varying parameters and con-
current actions. The situation calculus model of a toi-
let is discussed as an example that is well understood,
vet interesting. We present a PROLOG technology
simulator for situation calculus models, and describe
how to translate a situation calculus axiom into its
PROLOG equivalent.

Introduction

The situation calculus, in its latest form, can handle
qualitative reasoning about physical systems, includ-
ing continuous parameters and concurrent actions.
Reiter (Reiter 1996) has provided a firm theoretical
foundation for modeling physical systems and simulat-
ing their behavior.

Inspired by Rieger (Rieger 1985), T have used this
situation calculus to model toilet behavior. The toilet
seems to be a good example because it is simple enough
to be understood by everyone, but complicated enough
to be interesting.

Situation calculus

The instantiation of McCarthy’s (McCarthy & Hayes
1969) situation calculus language used in this paper
is due to Reiter (Reiter 1996), largely influenced by
Pinto’s (Pinto 1994) work on concurrency and contin-
uous processes.

The Language

The language used in this paper consists of the follow-

ing ontology:

e a sort situation, and a distinguished situation con-
stant symbol Sp.

e a sort tzme ranging over the reals.

e a sort action of simple actions. All actions are in-
stantaneous, and take a parameter in the last ar-
gument position denoting the time of the action’s
occurrence. Variables a, a’, etc. are used for simple
actions.

e a sort concurrent of concurrent actions which are
sets of simple actions. Variables ¢, ¢/, etc. are used
for concurrent actions.

¢ a function symbol time : action — R, where time(a)
denotes the time of the action a.

e a function symbol start : situation — R, where
start(s) denotes the start time of the situation s.

e a function symbol do action x situation —

situation

e The predicate symbol Poss, where Poss(a, s) means
that the simple action a is possible in situation s
(and similarly for any concurrent action c).

e The predicate symbol <, where s < s’ means that
s’ is reachable from s through the execution of a

sequence of possible actions (simple or concurrent).

e The foundational axioms for the concurrent situa-
tion calculus, provided in (Reiter 1996), which are
generalizations of those provided in (Lin & Reiter
1994) and (Reiter 1993) for the nonconcurrent situ-
ation calculus. These axioms include unique names
axioms for situations, a definition for <, a coherency
criterion for concurrent actions, and an induction ax-
iom.

Axiomatizing Application Domains

Levesque et al. (Levesque et al. 1996) list the general

types of axioms required to formalize an application

domain in the situation calculus. In particular, our

axiomatization consists of the following axioms:

e For each simple action A, a single action precondi-
tion axiom of the form

Poss(A(Z,t), s) = start(s) <t AD(Ft,s)
where ®(Z,t,s) is any first order formula with free

variables among Z, ¢, and s whose only term of sort
situation is s.

e For each fluent R, a single successor state axiom.
The form of a successor state axiom for a relational
fluent, F, is

Poss(c,s) D F(Z,do(c, s)) =
Vh(E e, 8)V F(,)Aw;(a‘:‘,c,s)

where v} (%, ¢,s) and 75 (Z,c,s) denote the condi-
tions under which ¢, if performed in s, results in
F(Z,do(c, s)) becoming true and false, respectively.

For a functional fluent, f, the form of the successor
state axiom is

Poss(c,s) D f(Z,do(e,s)) =y =
vf (f; Y, ¢, 5) \ Y= f(fa 5) A _‘(ay/)%’ (fa yla C, 5)

Here, v¢(Z,y, ¢, s) is a first order formula whose free
variables are among ¥, y, ¢, s.

e Unique names axioms for the primitive actions.
e Axioms describing the initial situation.

e The foundational axioms mentioned in the previous
section.

Modeling Toilet Behavior

In this section, I present an axiomatization of a toilet.
Because different people have different notions of the
workings of a toilet, I first provide an English descrip-
tion of toilet behavior which shall be considered correct
enough for the purposes of this paper.

A toilet consists of a tank and a bowl. The tank
has a plug at the bottom which is opened by pushing
the handle. The handle holds the plug open until the
handle is released, at which point the plug either floats
if the tank is not empty, or closes if the tank is empty.

When the plug is open, water rushes out of the tank
and into the bowl with rate Q;— . When the tank level
drops below full, the supply opens, so that water flows
from the supply into the tank at rate @Q,_:, and into
the bowl at rate ()s_5. Half the new water from the
supply goes into the bowl, and half goes into the tank,
meaning Qs_p = Q¢

By now, water is rushing into the bowl at a rate of
Qit—p + Qs—p. Since the bowl is full, water exits the
waste channel at the same rate. This rate is greater
than the threshold of siphoning, Qsiphon_thres, and si-
phoning begins. The siphoning flow rate through the
waste channel is Qi + Qs—p (the flow rate does not
change with siphoning).

Eventually, the tank will become empty and the plug
will close (if it was released). The flow from the tank
to the bowl drops to @Qs—p, which is less than the si-
phoning rate, and the bowl empties. Once the bowl is
empty, siphoning must stop.

Water continues to flow into both the bowl and the
tank until the tank is full and the supply closes. Since
the bowl is not at big as the tank, it will fill up before
the tank does.

This scenario can be modeled with the following flu-
ents:

o supply_open(s): the supply of incoming water is

open

e siphoning(s): water is siphoning out of the bowl into
the waste channel

e handle_pushed(s): the handle is held in the acti-

vated position

o plug_held(s): the plug at the bottom of the tank is
held open

o plug_floating(s): the plug at the bottom of the tank
is floating, and open

o plug_closed(s): the plug at the bottom of the tank
is closed

o flow_supply_tank(s) = f: f, a function of time, is
the flow of new water from the supply into the tank
in s

o flow_supply_bowl(s) = f: f, a function of time, is
the flow of new water from the supply into the bowl
in s

o flow_tankbowl(s) = f: f, a function of time, is the
flow of water from the tank into the bowl in s

o flow_bowl_channel(s) = f: f, a function of time,
1s the flow of water from the bowl into the waste
channel in s

o bowl level(s) = f: f, a function of time, is the bowl
water level in s

o tanklevel(s) = f: f, a function of time, is the tank
water level in s

and the following natural actions:
e push_handle(0)

o release_handle(0)

o open_supply(t)

o close_supply(t)

o close_plug(t)

o begin_siphon(t)

e end_siphon(t)

o bowl_become_full(t)
o bowl_become_empty(t)
o tank_become_full(t)
o tank_become_empty(t)

Toilet Precondition Axioms

The handle can be pushed only if it is not pushed al-
ready.

Poss(push_handle(t), s) =
t > start(s) A ~handle_pushed(s) (1)

The handle can be released only if it is not released
already.

Poss(release_handle(t), s) =
t > start(s) A handle_pushed(s) (2)

The tank becomes empty if the tank water level is drop-
ping and at 0.

Poss(tank become_empty(t), s) =
t > start(s) Atankdevel(s)(t) = 0 A
%(tanklevel(s))(t) <0 (3)
The tank becomes full if the tank water level is increas-
ing and at full tank level.
Poss(tank _become_full(t),s) =
t > start(s) Atankdevel(s)(t) = full_tankdevel A
%(tanklevel(s))(t) >0 (4)

The bowl becomes empty if the bowl water level is
dropping and at 0.

Poss(bowl_become_empty(t), s) =
t > start(s) Abowl level(s)(t) =0 A
%(bowl_level(s))(t) <0 (5)

The bowl becomes full if the bowl water level is in-
creasing and at full_bowl_level.

Poss(bowl_become_full(t),s) =
t > start(s) A bowl level(s)(t) = full_bowl_ level A
4 (bowl_level(s))(t) > 0 (6)

The supply opens if the tank level is decreasing, and
at full_tank level.

Poss(open_supply(t),s) =
t > start(s) Atank level(s)(t) = full tanklevel A
4 (tank devel(s))(t) <0 (7)

The supply closes if the tank level is increasing, and at

full_tank level.
Poss(close_supply(t), s) =
t > start(s) Atank level(s)(t) = full tanklevel A
4 (tank level(s))(t) > 0 (8)
The plug at the bottom of the tank closes if it is floating
and the tank is empty.
Poss(close_plug(t),s) =
t > start(s) A plug_floating(s) A
tank level(s)(t) =0 (9)
Siphoning begins if siphoning is not currently happen-

ing, and the flow through the waste channel is greater
than Qsiphon_thres .

Poss(begin_siphon(t),s) =
t > start(s) A —siphoning(s) A
flow_bowl_channel(s)(t) > Qsiphon_thres (10)

Siphoning ends if siphoning is currently happening,
and the level of water in the bowl is 0.

Poss(end_siphon(t), s) =
t > start(s) A siphoning(s) A
bowl level(s)(t) =0 (11)

Toilet Successor State Axioms

The successor state axioms for handle_pushed(s),
plug_held(s), siphoning(s), and plug_floating(s)
are straightforward, and similar to the one for
supply_open(s):

Poss(c,s) D supply_open(do(e, s)) =
close_supply(time(c)) & ¢ A supply_open(s) V
open_supply(time(c)) € ¢ (12)

The axiom for flow_supply_bowl(s) is similar to that

for flow_supply tank(s):

Poss(c,s) D flow_supply_tank(do(e,s)) = f =
open_supply(time(c)) € c A f(t) = Qs+ V
close_supply(time(c)) € cA f(t) =0V
open_supply(t) ¢ c A close_supply(t) ¢ ¢ A
flow_supply_tank(s) = f (13)

The successor state axiom for plug_closed(s) is in-

teresting:

Poss(e, s) D plug_closed(do(c, s)) =
push_handle(time(c)) ¢ ¢ A

[plug_closed(s) V close_plug(time(c)) € c](14)
This is a case where the effects of one action (namely,
push_handle(t)) on the fluent conflict with what we
would intuitively expect to be the effect of another ac-

tion (namely, close_plug(t)). The same principle arises
with the successor state axiom for flow_tank _bowl(s),

below. See the discussion section for more on this
topic.

The successor state axioms for flow_tank_bowl(s)
and flow _bowl_channel(s) are

complicated. There are five simple actions that can
affect the flow_tank_bowl(s) fluent: open_supply(t),
close_supply(t), push_handle(t), close_plug(t), and
tank_become_empty(t). Because the actions can
happen concurrently (except open_supply(t) and
close_supply(t)), there are 24 different concurrent ac-
tions that can affect the flow_tank_bowl(s) fluent.
The situation for flow_bowl_channel(s) is worse, since
there are seven simple actions that can affect it.

The following axiom is the successor state axiom for
the flow_tank_bowl(s) fluent, but only part of it is
shown explicitly (the dots represent the rest).

Poss(c,s) D flow_tank_bowl(do(c,s)) = f =
close_supply(time(c)) € ¢ A
open_supply(time(c)) & ¢ A
push_handle(time(c)) ¢ ¢ A
close_plug(time(c)) & c A
tank _become_empty(time(c)) ¢ ¢ A
[plugclosed(s) A f = flow_tank_bowl(s) V
—plug_closed(s) A
[tankdevel(s)(time(c)) = 0A f(t) =0V
tank level(s)(time(c)) Z 0A f(t) = Q)] V
push_handle(time(c)) € ¢ A
close_plug(time(c)) € ¢ A
tank_become_empty(time(c)) € ¢ A
close_supply(time(c)) & ¢ A

open_supply(time(c)) & ¢ A
[supply-open(s) A f(t) = Qs—t V
—supply_open(s) A f(t) = 0]V

Y
close_supply(time(c))

%
open_supply(time(c)) ¢ c
push_handle(time(c)) gé

close_plug(time(c)) ¢
tank_become_empty(tzme()) & cA

f = flow_tank_bowl(s) (15)

This axiom states, among other things, that if the
only action in ¢ relevant to the flow of water from the
tank to the bowl is close_supply(t), then the effect of
¢ on the flow depends on the status of the plug at
the bottom of the tank. Further, if the plug is closed,
closing the supply has no effect on the flow from the
tank to the bowl; however, if the plug is open, the effect
depends on whether the tank is empty. If the tank is
not empty, closing the supply has no effect, but if the
tank is empty, closing the supply ceases any flow from
the tank to the bowl.

This axiom also shows what happens when
close_plug(t) and push_handle(t) occur simultane-
ously. The result is the same as if close_plug(t)
had not happened. In other words, the effect of a
push_handle(t) action supersedes the effect of a simul-
taneous close_plug(t) action.

Due to its excessive size, the successor state axiom
for flow_bowl_channel(s) is omitted.

State Constraints

Reiter’s solution to the frame problem (Reiter 1991)
relies on the assumption that there are no state con-
straints. The problem with state constraints is that

they can lead to indirect effects which violate the
Completeness Assumption on which the solution de-
pends. The following state constraints cannot violate
the Completeness Assumption, because we use these
state constraints in lieu of successor state axioms to de-
scribe the tank level(s) and bowl level(s) fluents. We
could write down successor state axioms that would be
equivalent to these state constraints, but they would
be much larger.

Poss(e, s) D bowl level(do(c, s)) =
f(t) = bowl level(s)(time(c))

¢
/ flow_supply_bowl(do(c, s)) +
¢

ime(c)

f=
|

flow_tank bowl(do(c, s)) —
flow_bowl_channel(do(c, s))dt (16)

Poss(c, s) D tank devel(do(e,s)) = f =
f(t) = tank devel(s)(time(c)) +

¢
/ flow_supply_tank(do(c, s)) —
¢

ime(c)

flow_tank_bowl(do(c, s))dt (17)

Background Knowledge

Although we may not know (or care) what the exact
real values of the various flows are, we do have quali-
tative knowledge about those values:

e Qisp > 0, Qse > 0, Qisp > 0, Q“’phon > 0,
Qsiphon_thres > 01 all flow rates are positive

Qiob > Qsiphon_thres: the flow from the tank to
the bowl when the plug is open and the tank is not
empty is enough to initiate siphoning

. Qszphon_thres > @Qs—b: the flow from the supply to
the bowl is not enough to initiate siphoning

o Qiyp + Qssb = Qsiphon: When the tank is not yet
empty, the level of water in the bowl does not change
during siphoning

e st < Qi—p: the tank will eventually empty if the
plug is open, even if the supply is on

® Qsiphon > Qs—p: the bowl will eventually empty due
to siphoning, even if the supply is on

® (Qs_sp = Qs+ the supply water is divided evenly
between tank and bowl

® Qs+ Qs—t < Qsiphon: the total supply water flow
is less than the siphoning flow

Simulation

In this section T discuss a PROLOG technology sim-
ulator. The simulator can be used to reason about a
concurrent situation calculus model like the axiomati-
zation of a toilet presented in the previous section.

The PROLOG Simulator

A situation calculus model defines a tree of situations
emanating from the distinguished situation Sy. Some
of the situations in the tree correspond to legal situ-
ations, and some do not. A legal situation is consis-
tent with the laws of Nature, in that a natural action
must occur at the time dictated by natural laws gov-
erning the behavior of the system, unless the action is
prevented from occurring by an earlier natural action.
Reiter (Reiter 1996) defines the legal(S) predicate to
formalize this principle:

legal(s) =
So < sA
(Va, c, s").natural(a) A Poss(a,s') A
do(c,s') < sNagcDtime(c) < time(a).(18)

Here, < is the ordering relation defined by the founda-
tional axioms mentioned earlier. The legal predicate
is instrumental in the implementation of a simulator,
as will become clear.

A domain of discourse in which all actions are natu-
ral is said to comply with Reiter’s (Reiter 1996) Nat-
ural World Condition (NWC'). This condition assures
a deterministic simulation.

Another concept crucial to the implementation of a
simulator is the notion of Reiter’s (Reiter 1996) Least
Natural Time Points:

Intp(s,t) =
(Ja)[natural(a) A Poss(a, s) Atime(a) =t A
(Va')[natural(a’) A Poss(a’,s) D
time(a’) > 1]. (19)
Informally, the least natural time point is the earliest
time at which any natural action can possibly occur in

a situation. The Least Natural Time Point Condition

(LNTPC) is the following:
(Vs).(3a)[natural(a) A Poss(a,s)] D (3t)intp(s,t). (20)

Reiter (Reiter 1996) puts this all together and
proves:

LNTPCANWC D legal(do(c,s)) =
legal(s) A Poss(c,s) A
(Va)la € ¢ = Poss(a, s) Alntp(s, time(a))](21)

Formula 21 is the engine for the simulator. The sim-
ulator is a PROLOG procedure that takes a situation
term s as an argument (initially Sp), prints its argu-
ment, constructs a set of actions ¢ such that

(Va)[a € ¢ = Poss(a, s) Alntp(s, time(a))],

and recursively calls itself with do(c,s). In so doing,
the simulator follows the path of legal situations (there
is only one path of legal situations when all actions are
natural), simulating the evolution of the system.

Here is the PROLOG code:

what_happens(S) :-
nl,nl,print(S),
setof (A,occurrence(4,S),C),
what_happens(do(C,S)).

occurrence(A,S):-

natural(4)),

poss(4,S),

time(A,T),

not (
natural (A_prime),
poss(A_prime,S),
time(A_prime,T_prime),
sign(T-T_prime,pos)
).

Translating a Model to PROLOG

Clark’s completion semantics for logic programming

admit a translation from the situation calculus axioms

of the toilet model to PROLOG clauses. The proce-

dure is to simply make the implication in the axioms

go only one way, and write down the clausal form.
For example, Precondition Axiom 3 becomes

%hhY The tank becomes empty if the
%hh% tank level is dropping, and
%% the level is 0.
poss(tank_become_empty(T0),S): -

% tank_level(T,S) = Lt

tank_level(Lt,T,S),

% Lt(T) = 0 when T = TO

solve(Lt=0,T,T0),

% d/dT Le(T) < O

sign(subst(T0,T,diff(Lt,T)),neg),

start(S,T_s),

% if it can happen at T_s,

% it will

(TO=T_s; not TO=T_s),

% start(S) <= TO

(sign(TO-T_s,pos) ; sign(TO-T_s,zero)).
where

e solve(Eqn,Var,Soln) asserts that Soln solves the
equation Eqn for Var.

e subst(X,Y,Expr) is an expression the same as Expr
with all occurrences of Y replaced by X.

e sign(X,S) asserts that S is the sign of expression X.

e diff (Expn,Var) is the derivative of Expr w.r.t
variable Var
Successor State Axiom 12 becomes
supply_open(do(4,S)):-
poss(4,S),
(
not member(close_supply(T0),4),
supply_open(S)
member (open_supply(T0),A).
).

The Output

When we issue the query, what_happens(s0), the last
state the simulator prints out (just before it fails to
find a successor state) is:

do([tank_become_full(2*qtb/(gqst*qtb-qst~2)),
close_supply(2*qtb/(gst*qtb-qst~2))],
do([bowl_become_full(
(- ((2%gsb+gbc) *qtb-gbc*qst))/
((gsb~2-gbc*qsb) *qtb+
(gbc*qsb-qsb~2)*qst))],
do([bowl_become_empty ((-(3*qtb-gst))/
((gsb-gbc) *qtb+(gbc—-gsb)*qgst))],
do([close_plug(2/(qtb-gst)),
tank_become_empty(2/(qtb-qst))],
do([begin_siphon(0), open_supply(0),
release_handle(0)],
do([push_hand1e(0)],s0)))))))))

Discussion

This paper has uncovered three issues of interest:
Situations can have zero duration: In Reiter’s
paper (Reiter 1996), he imposes the global constraint,

start(s) < start(do(c, s)),

which states that no situation has zero duration. There
are cases, however, where a situation with zero dura-
tion is intuitively desirable, and for that reason, the
version of the constraint in this paper has been
start(s) < start(do(c, s)).

A result of the more relaxed constraint i1s the output

do([begin_siphon(0),
open_supply(0),
release_handle(0)],
do([push_handle(0)],s0)))))))))

which is intuitively correct, since it should not be pos-
sible for the supply to open until after the handle has
been pushed. However, with this idealized toilet, the
supply must open immediately as the handle is pushed.

Actions can cancel out the effects of oth-
ers: As previously pointed out, when push_handle
and close_plug occur in the same concurrent action,
the effect of push_handle takes precedence over the
effect of close_plug. This phenomenon is closely re-
lated to the Precondition Interaction Problem of (Pinto
1994), but it is not the same. In particular, succes-
sor state axioms—not precondition axioms—are the
proper place to deal with it. Consider another exam-
ple: a ball that is caught just as it bounces. The ob-
served effect is that of the catch action, but the bounce
also occurred, since after the catch, the ball is still
touching the ground.

Successor state axioms can be large: The cause
of this practical (rather than theoretical) problem is
that every possible combination of the actions that
can affect a fluent must be considered as a separate

action. Hence, the number of actions the axiomatizer
must consider when writing a successor state axiom
grows exponentially with the number of simple actions
that can affect the fluent. A naive approach might
be to consider every situation with concurrent actions
to have only simple actions, some of which occur at
the same time. The hope would be that the effects
of the simple actions will naturally add up. This ap-
proach is overly simple and will not work: consider two
cowboys who shoot each other simultaneously. Both
cowboys are dead in do([shoot1(0), shoot2(0)], Sp), but
do(shoot1(0), do(shoot2(0), s0)) is not even a legal sit-

uation.

Acknowledgements

I thank Ray Reiter for his comments on an earlier ver-
sion of this paper. Ray’s paper (Reiter 1996) provides
a theoretical foundation for this one. T have also ben-
efited from discussions with Javier Pinto.

References
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F;
and Scherl, R. 1996. GOLOG: A logic programming
language for dynamic domains. Journal of Logic Pro-
grammung, Special Issue on Reasoning about Action
and Change. To appear.

Lin, F., and Reiter, R. 1994. State constraints revis-
ited. Journal of Logic and Computation 4(5):655-678.

McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence.
In Meltzer, B., and Michie, D., eds., Machine Intell:-
gence 4. Edinburgh, Scotland: Edinburgh University
Press. 463-502.

Pinto, J. A. 1994. Temporal Reasoning in the Sit-
uation Calculus. Ph.D. Dissertation, University of
Toronto, Toronto, Ontario, Canada.

Reiter, R. 1991. The frame problem in the situation
calculus: a simple solution (sometimes) and a com-
pleteness result for goal regression. In Lifschitz, V.,
ed., Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy.
San Diego, CA: Academic Press. 359-380.

Reiter, R. 1993. Proving properties of states in the
situation calculus. Artificial Intelligence 64:337-351.

Reiter, R. 1996. Natural actions, concurrency and
continuous time in the situation calcu lus. In COM-
MON SENSE ’96: the third symposium on logical for-
malizations of commonsense reasoning.

Rieger, C. 1985. An organization of knowledge for
problem solving and language comprehension. In
Brachman, R. J., and Levesque, H. J., eds., Readings
in Knowledge Representation. Los Altos, CA: Morgan
Kaufmann.

