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Abstract

We propose a directed graphical representation of util-
ity functions, called UCP-networks, that combines as-
pects of two existing preference models: generalized
additive models and CP-networks. The network de-
composes a utility function into a number of additive
factors, with the directionality of the arcs reflecting
conditional dependencein the underlying (qualitative)
preference ordering under a ceteris paribusinterpreta-
tion. The CP-semantics ensures that computing opti-
mization and dominance queries is very efficient. We
also demonstrate the value of this representationin de-
cision making. Finally, we describean interactive elic-
itation procedurethat takes advantage of the linear na-
ture of the constraints on “tradeoff weights’ imposed
by a UCP-network.

1 Introduction

Effective representations for preferences and utility func-
tions are critica to the success of many Al applications.
A good preference or utility representation should capture
statements that are natural for usersto assess, or are easy to
learn from data; it should offer the compact expression of
preferences or utilities; and it should support effective in-
ference.

A useful design stance for such representation is to exploit
the structure of utility functions using notions from multi-
attribute utility theory, such as conditional preferentia in-
dependence, mutual utility independence, etc. [10]. Re-
cent work has exploited such structureto devel op graphical
models: Bacchus and Grove [1, 2] propose an undirected
network representation for (quantitative) utility that cap-
tures conditional additive utility independencies; Boutilier,
Brafman, Hoos and Poole [3] propose a directed network
representation for (qualitative) preference functions that
captures conditional preference statements under a ceteris
paribus (al else equal) assumption. La Mura and Shoham
[11] describe a hybrid representation for combining both
probabilistic and utility information in a undirected graph-
ical model representing expected utilitiesdirectly.

In this paper, we propose a new directed network represen-
tation for utility functionsthat combines certain aspects of
the first two of these approaches. The UCP-network for-
malism can be viewed as an extension of the CP-network
model [3] that allows one to represent quantitative utility
information rather than simple preference orderings. The
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formalism also utilizes the notion of generaized additive
independence (GAI) [1]. By employing a directed graph,
UCP-nets allow one to make more powerful statementsthat
are often morenatural and lead to moreeffectiveinferences.
In particular, we will show that dominance and optimiza-
tion queries can be answered directly in UCP-nets. In addi-
tion, the formalism can be used in an interactive dicitation
process to determinerel evant parameters of the UCP model
in aspecific decision scenario. We propose a technique for
elicitation—muchlikethat proposed by Chajewska, Koller,
and Parr [4]—that exploits the linear constraints imposed
by a partially-specified UCP-model to determine an “opti-
mal” sequence of queries.

The rest of this paper is organized as follows: Section 2
provides necessary background. Section 3 describes UCP-
nets, their properties, and their relation to GAl decomposi-
tions of utility functions and CP-networks. Section 4 dis-
cusses the problem of optimization in the context of UCP-
nets, and shows the advantage of this representation tool.
Section 5 explains how elicitation and optimization can be
performed concurrently in order to recognize near-optimal
choices with minima questioning. We conclude in Sec-
tion 6 with a discussion of future work.

2 Background Concepts

We begin with an outline of some relevant notions from
multiattribute utility theory [10]. We assume a set of ac-
tions.A isavailableto a decision maker, each action having
one of a number of possible outcomes. The set of all out-
comes isdesignated O. A preference ranking isatotal pre-
order > over the set of outcomes: o > 0, means that out-
come oy isequally or more preferred by the decision maker
than o,. A utility function is a bounded, real-valued func-
tionwu : O — R. A utility function « induces a preference
ordering = such that o, > o5 iff u(o1) > wu(o2). A util-
ity function also induces preferences over lotteries, or dis-
tributionsover outcomes, where one lottery is preferred to
another when its expected utility is greater. When actions
have uncertain outcomes, thereby generating a distribution
over outcomes, preferences for actions can be equated with
preferences for the corresponding lotteries [12].

One difficulty encountered in diciting, representing, and
reasoning with preferences and utilities is the size of
the outcome space, which is generaly determined by a



set of variables. We assume a set of variables V. =
{Xy,...,X,} characterizing possible outcomes. Each
variable X; has domain Dom(X;) = {«%,... 2’ ,}. The
set of outcomes is©@ = Dom(V) = Dom(X;) x --- X
Dom(X,, ). Thusdirect assessment of a preference function
isgenerally infeasibleduetothe exponential sizeof O. For-
tunately, a preference function can be specified concisdly if
it exhibitssufficient structure. We describe certain standard
types of structure here (see [10] for further details).

We denoteaparticul ar assignment of valuestoaset X C 'V
as x, and the concatenation of two non-intersecting partial
assignmentsby xy. If X UY = V, xy isacomplete out-
come, and xy is a completion of the partial assignment x.
Comp(x) denotesthe set of completions of x.

A set of features X ispreferential ly independent of itscom-
plement Y = V — X iff, for dl x;, x5, y1,y2, we have

X1y1 = Xoy1 Iff x1y2 = %0y

We denote thisas Pl (X, Y). In other words, the structure
of the preference relation over assignmentsto X, when all
other features are held fixed, i sthe same no matter what val -
ues these other featurestake. If PI(X,Y) and x1y = X2y
for any assignment y to V. — X, then we say that x; is
preferred to x, ceteris paribus. Thus, one can assess the
relative preferences over assignmentsto X once, knowing
these preferences do not change as other attributesvary. We
define conditiona preferential independence analogoudly.
Let X, Y, and Z be nonempty sets that partition V. X
and Y are conditionally preferentially independent given
an assignment z to Z (denoted CPI(X, z,Y)) iff, for al
X1,X2,¥1,y2, We have

x12y1 = Xozy1 Iff xizys = x02y»

In other words, the preferential independence of X and Y
holdswhenZ isassigned z. If wehave CPI(X, z, Y) fordl
z € Dom(Z), then X and Y are conditionallypreferentially
independent given Z, denoted CPI(X, Z,Y).
Decomposability of a preference function often allows one
to identify the most preferred outcomes rather readily. Un-
fortunately, the ceteris paribus component of these defini-
tions means that the CPI statements are relatively weak.
In particular, they do not imply a stance on specific value
tradeoffs. For instance, suppose PI( A, B) and PI(B, A) so
that the preferences for values of A and B can be assessed
separately, with a; > as and by > by. Clearly, a;1by
is the most preferred outcome and a»b, isthe least; but if
feasibility constraints make a;b; impossible, we must be
satisfied with one of a;b- or azb;. With just preferentia
independence we cannot tell which is most preferred us-
ing these separate assessments. Stronger conditions (e.g.,
mutual preferential independence [10]) are required before
such tradeoffs can be easily evaluated.

CP-nets [3] are a graphical representation for structuring
CPI statements. In particular, CP-nets are directed acyclic
graphs whose nodes are the variables of V. We associate a
conditional preference table (CPT) with each node X spec-
ifyingapreference order over X’ svaluesgiveneach instan-
tiationof itsparents U, and requirethat CPI (X, U, Z) hold,
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Figure1: A CP-Network

c
c

whereZ =V — (U U {X}). CP-nets structure these CPI
statements so as to support useful inferences about the un-
derlying preference order [3]. In Fig. 1 we see a CP-net
defined over a set of four boolean variables, where, eg.,
the CPT for C specifies that ¢ ispreferred to ¢ when « and
b hold. An important property of CP-nets is the induced
importance it assignsto different variables: nodes “higher-
up” inthe graph are more important than their descendants.
Thus, it is more important to obtain preferred values for a
node than for any one of its descendants. For example, in
the CP-net above, we can seethat abed (inwhich aless pre-
ferred value of C' appears) is preferred to abed (inwhich a
less preferred value of A appears). This property plays an
important role in UCP-nets.

Let X,y,. .., X} beseatsof not necessarily digointvariables
suchtha V. = U;X;. Xy,..., X} are generalized addi-
tive independent (GAI) for an underlying utility function u
if, for any two probability distributions Pr; and Pr, over
Dom(V) that have the same marginals on each of the sets
of variables X;, u has the same expected value under Pr;
and Pr,. In other words, the expected value of « isnot af-
fected by correlations between the X;. It depends only on
the the margina distributionsover each the X;;.

It can be shown [1] that X, ..., X are GAI iff « can be
written as u(V) = Zle fi(X;). That is, u can be de-
composed into a sum of factors over each of these sets of
variables. This property generalizes the standard definition
of additive utility independence, which requiresthat the X;
partition V. For UCP-netsthe ability to deal with overlap-
ping sets of variablesiscritical.

3 Adding Utilitiesto CP-Nets

As noted above, the precision of a utility function (as op-
posed to a preference ordering) is often needed in decision
making contexts where uncertainty is a factor. The rep-
resentation of utility functions should be natural, easy to
elicit, compact (in typical cases), and support effective in-
ference. There aretwo basic types of querieswith regard to
outcomes one will often ask:*

(8 Dominance queries: does one outcome have higher
utility than another (i.e., u(v1) > u(va))?

(b) Outcome optimizationqueries: what outcome has max-
imum utility given some partial assignment (i.e., what
isarg max{u(v) : v.€ Comp(x)})?

! Queriesregarding optimization with respect to actionsaredis-
cussed in the next section.
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Figure 2: A UCP-Network

GAI-models allow dominance testing to be performed very
effectively: the utility of outcome v isreadily determined
by looking up the value f; (v) of each factor applied to v,
and summing them to obtain «(v). In contrast, CP-nets
do not alow straightforward dominancetests, generaly re-
quiring reasonably sophisticated search techniques for all
but the simplest network topol ogies. Therelativeattractive-
ness of thetwo approachesis, however, reversed when one
considersoptimizationqueries. |n CP-nets, determiningthe
(conditional) maximal outcome in a preference relation is
straightforward. In contrast, maximization in a GAl model
requiresthe use of variableeimination[6, 13], whose com-
plexity depends on the structure of the mode!.?

We propose in this section a new network representation
for utilitiesthat combines aspects of both CP-nets and GAI
models. The model is directed, like CP-nets, but prefer-
ences are quantified with utilities. The semanticsis given
by generalized additive independence aong with the con-
straint that the directed influencesreflect the ceteris paribus
condition underlying CP-nets. By extending CP-nets with
quantitative utility information, expressive power is en-
hanced and dominance queries become computationally ef-
ficient. By introducing directionality and a ceteris paribus
semanticsto the GAl model, weallow utility functionsto be
expressed more naturally, and permit optimization queries
to be answered much more effectively.

A UCP-net extends a CP-net by allowing quantification of
nodes with conditiona utility information. Semantically,
we treat the different factors as generalized additive inde-
pendent of one another. For example, the network inFig. 1
can be extended with utility information by including a
factor for each family in the network, specificaly, fi(A),
f2(B), f3(A, B,C), and f4(C, D) (see Fig. 2). We inter-
pret this network using GAl: (A, B,C, D) = fi(4) +
J2(B) + f3(A, B,C) + f4(C, D). Each of thesefactorsis
quantified by the (now quantitative) CPT tablesin the net-
work. For example, inFig. 2we havethat f3(a, b, ¢) = 0.6,
while f3(a, b, ¢) = 0.1. Thus, the CPT tablesalongwiththe
GAl interpretation providea full specification of the utility
function. For example, we havethat u(a, b, ¢, d) = f1(a)+
f2(b) + f3(a,b,¢) + fa(c,d) =5+ 5+0.1+0.3 = 10.4.
Notice however that the factors f; and f> are redundant in
the sense that they refer to variables that are included in
f3. Thus, this utility function could be represented more
concisely using a GAl decomposition containing two fac-
tors: f4(C, D) and f5(A, B,C) = fi(A) + fo(B) +
f3(A, B,C). The directionality of the utility-augmented
CP-network, on the surface, seems to serve no purpose

2GAI optimization can be effected using cost networks[7].

other than to break up the GAI-factors unnecessarily.

However, we can use this directionality to represent CP
conditionson the utility function «, and thus provideasim-
ple and natural interpretation for the individual factors of
u. In particular, we interpret the fact that A and B are par-
entsof ' asassertingthat CPI(C', { A, B}, D), and thusthe
factor f5(A, B, C') specifiestheutility of C' given A and B.
The fact that each nodeisisolated from the rest of the net-
work giventhevauesof itsparents greatly smplifies utility
assessment.  Furthermore, this structure supports more ef-
ficient inference for certain queries than the standard GAI
representation.

Definition 1 Let u(Xy, ..., X,) beautility functionwith
induced preference relation >=. A UCP-network for « is a
DAG G over Xy, ..., X, andaquantification (i.e., aset of
factors f; (X;, U;) where U; arethe parents of X;) st.:

(a) U(Xl, e ,Xn) = Zz fz(Xz,Uz)

(b) The DAG ¢ isavaid CP-network for >; i.e, > sat-
isfies CPI(X;, U;, Z;) for each X;, where Z, = V —
(Ui u{Xi})

Condition (a) means that every UCP-net specifies a GAI
decomposition of the underlying utility function «. How-
ever, the acyclic restriction means that not every GAI de-
composition can be represented in a UCP-net. For exam-
ple, the GAI decomposition u(A, B,C) = fi1(A, B,C) +
f2(C, B) would have to converted to the decomposition
u(A, B,C) = f3(A, B,C), where fs = f1 + f2, before
it could be represented as a UCP-net. Nevertheless, there
isasimple case where a GAl decomposition can easily be
seen to be representable using a UCP-net topol ogy.

Proposition 1 If there exists a ordering of the variables
such that under thisordering thelast variablein every GAI
factor is unique (i.e., no variableis last in more than one
factor), then the GAl decomposition can be represented
with a UCP-net topol ogy.

To construct the UCP-net in this case, for every factor we
make every “last” variableachild and al of the prior vari-
ablesits parents.

Evenif we can represent aGAI decompositioninaUCP-net
topology and we parameterize the net using the GAI fac-
tors, thethe result might not be a UCP-net, since the utility
function might not satisfy the CP requirements of condition
(b). For example, let u beautility function over the bool ean
variables A and B with u(ab) = 9, u(ab) = 1, u(ab) = 2
and u(ab) = 8. No UCP-net can represent . To see this,
first notice PI( A, B) failsto holds, since preferences for B
depend on A. But we cannot make A a parent of B, since
the preferences for A depend on B; nor can we make B a
parent of A for asimilar reason.®

3The example above can be accommodated by clustering the
dependent variables. That is, we can defineanew variable C with
Dom(C') = Dom(A4) x Dom(B). In general, any utility function
can be represented in a UCP-net by clustering appropriate sets of

variables. Thiscan beareasonableapproachif the clustersremain
relatively small. It is also possible to generalize the definition of
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Figure 3: The Domination Relation

This example shows that, for afixed set of variables, UCP-
nets define a proper subset of all utility functions; but this
subset has certain attractive computational properties as
well as pragmatic advantages when it comes to dlicitation.

Given a UCP-network ¢/ for utility function «, verifying
that it satisfies the CP-relationships among variables re-
quired by itsdefinition can be accomplished by testsinvolv-
ing the local neighborhoods of each node in the network.

Definition 2 Let X beavariableinaquantified DAG with
parents U and children Y = {Vi,...,Y,}, and let Z;
be the parents of Y;, excluding X and any elements of U.
LetZ = U Z;. Let U; be the subset of variablesin U
that are parents of Y; (the relationships among these vari-
ablesisshownin Fig. 3). We say X dominatesitschildren
givenu € Dom(U) if, for all 1, #» such that fx (z1,u) >
Jx(22,u),fordl z € Dom(Z), and forall (yi,... ,yn) €
Dom(Y):

Ix(zi,u) — fx(x2,u) >
ZfY,(yz’, To, w4, 2i) — [y (Y, 21, Wi, ;)

X dominatesitschildren if thisholdsfor al u € Dom(U).

Testing whether X dominatesitschildrenisalocal test, in-
volving only thefactor for variable X and those of its chil-
dren. It requiresthat we check that, for each instantiation of
X'schildren and the parents of itschildren, whether the de-
crease inlocal utility (i.e., infactor fx) dominatesthe (po-
tential) increaseit causesinthelocd utilitiesof itschildren.

With this definition, we can specify a straightforward nec-
essary and sufficient condition that ensuresaDAG satisfies
the CP conditions required by the definition of a UCP-net.

Proposition 2 Let G'bea DAG over { X; } whosefactors f;
reflect the GAl-structure of utility function «. Then GG isa
UCP net iff each variable X; dominatesits children.

Proof: We need only show that the CP-condition holds for
X iff X dominates its children. Assume the same vari-
ables stand in relation to X as in the definition of domina-
tionabove, andlee W =V - (UU{X}UY UZ) (e,

aUCP-net to allow cycles. This example could be represented by
allowing A and B to be parents of one another. Cyclesallow one
to expressalarger set of utility functions, but still do not permit all
utility functionsto be represented. They also may admit inconsis-
tency: certain network structureswith cyclesdo not correspondto
aconsistent utility function satisfying the CP-constraints (an im-
possibility in acyclic graphs). We refer to [3] for details.

all of the other variables in the network). X satisfies the
CP-condition iff, for dl x1, s, u: ziuyzw > zsuyzw
implies z1u(yzw)’ > zou(yzw) for al (yzw)’. Now
riuyzw = rouyzw iff u(ziuyzw) > u(zsuyzw), iff

Ix(zi,u) — fx(x2,u) >
ZfY,(yz’, To, w4, 2i) — [y (Y, 21, Wi, ;)

since the only factors whose values can vary between these
two terms are fx and the fy,. By définition this relation
holds for al values of y and z (and trivially for all w) iff
X dominatesits children. «

Determining if a quantified network is in fact a UCP-
network requires a case-by-case anaysis for each “ex-
tended family” in the network involving a number of tests
exponential in the size of the extended families (by thiswe
refer toavariable, itsparents, itschildren, and itschildren’s
parents). Severa stronger sufficient conditions exist that
areeasier totest. Herewe present aparticularly smpleone.

Proposition 3 Let ¢ be a quantified DAG over the set of
variablesV. For eachvariable X let U beitsset of parents
inG. For 1,22 € Dom(X), let

Minspan(zy, z2) =  min  (|fx(z1,u) — fx(z2,u)]),
ueDom(u)
Minspan(X) = min Minspan(zy, z2).
z1,z2eDOM(x)

Define Maxspan(X') analogouslywith max replacing min.
Then G isa UCP-net if Minspan(.X') > 5. Maxspan(Y;)
where theY; arethe children of X.

The values of Maxspan and Minspan can be computed for
eachvariable X inO(|Dom(X)|| fx |) time. Thus, thiscon-
dition can be checked in time polynomial in the number of
network parameters.

For purposesof dlicitation and computation, it is often con-
venient to normalize utilities over the range [0, 1]. Simi-
larly, it is useful to normalize the individua factors of a
UCP-net. In Section 5 we will consider anormalized vari-
ant of the UCP-net model inwhichthe“rows” of each factor
are normalized and “tradeoff” weightsare used to calibrate
them. Specificaly:

(8) For each variable X, with parents U and factor fx,
and each u € Dom(U), we normalize the func-
tion fx (x,u) so that its values lie in the range [0, 1].
That is, we indst that min, fx(x,u) = 0 and
max; fx (z,u) = 1. We denote the normalized func-
tion v% and call it thelocal value function for X given
u.

(b) For each X and instantiation of its parents u, we spec-
ify amultiplicativetradeoff weight 7%, and an additive
tradeoff weight o'

The semantics of such anormalized UCP-net isasfollows:
the utility of any outcome is given by the sum of the terms



(foreachvariable X) 7% v% () +o% , wherez istheinstan-
tiation of variable X and u istheinstantiation of its parents.
It isnot hard to see, by the usua transformation results in
utility theory, that every UCP-net has an equiva ent normal -
ized representation.

4 Optimization Algorithms

The two types of queries discussed above, dominance
gueries and optimization queries, can both be answered di-
rectly in UCP nets. Dominance queries can be answered
trivially: determining whether w(vy) > w(vz) for two
complete outcomes simply requires that one extract and
sum the values of each factor in the network and then com-
pare the sums. This can be donein time linear in the size
of the network. Thus UCP-nets offer the advantages of
other additive decompositions. In contrast, dominance test-
ingin CP-netsiscomputationally difficult precisely because
thetradeoffs between the (conditional) preference levelsfor
different variables have not been specified.

Outcome optimization queries can aso be answered di-
rectly given a UCP-net, taking linear time in the network
size. Given a partia instantiation z € Dom(Z), de-
termining argmax{u(o) : o € Comp(z)} can be &f-
fected by a straightforward sweep through the network. Let
X1,...,X, beany topologica ordering of the network
variables excluding Z. We set Z = z, and instantiate each
X; inturnto itsmaximal value given theinstantiation of its
parents. This procedure exploitsthe considerable power of
the CP semantics to easily find an optimal outcome given
certain observed evidence (or imposed constraints).

Proposition 4 The forward sweep procedure constructs
the optimal outcome arg max{u(v) : v.€ Comp(z)}.

Proof: Let v, be any outcome in the set of completions
of z. Define a sequence of outcomesv;, 0 < i < n, as
follows: (&) vo = v4; (D) if X; € Z, v; is constructed
by setting the value of X; to its most preferred value
given the instantiation of its parentsin v;_,, with al other
variables retaining their values from v;_1; (¢) if X; € Z,
thenv; = v,;_;. By construction, v; = v;_;. Thelast
outcome v,, is precisaly that constructed by the forward
sweep a gorithm (assuming tiesare broken in the same way
as in the procedure). Sincev,, = v, for any outcome v,
consistent with the evidence, the forward sweep procedure
yields an optimal outcome. «

Thisagorithmiillustrates the sharp contrast between UCP-
netsand GAl representations. Effective outcome optimiza
tionin a GAl model requires that one use a dynamic pro-
gramming agorithmlike variable elimination. As a conse-
guence, the complexity of such an agorithm—exponential
in the induced tree width of the GAI model—depends crit-
ically on the “topology” of the model and the ability to find
good elimination orderings.

Thus, UCP-nets offer avaluable restriction of GAl models
and generalization of CP-nets. In particular, they impose
restrictions on the rel ative strength of the GAI factors, and
generalize CP-netsto allow for the representation of quan-

titative utilities. But we preserve the convenient graphical
representation of CP-nets, and gain considerable computa-
tional benefits over both models.

One of the main reasons to move from quaitative to quan-
titative preference models is to support decisions under
(quantified) uncertainty. Naturally, given a decision prob-
lem and a fully specified UCP-network, determining an
optimal course of action is (conceptually) straightforward.
When the distributionsinduced by actions can be structured
in a Bayes net, UCP-nets can be used to help structure the
decision problem. Suppose that the distribution over vari-
ables'V determined by an action « isrepresented as aBayes
net (possibly with a choice node if we wish to represent all
actions) and the utility function over outcome space is de-
termined by a UCP-net.* To compute the optimal action,
we can construct an influence diagram by adding one utility
variable F; for each (nonconstant) factor fx, in the UCP-
network. [; has as parents both X; and the parents of X;
inthe UCP-net, and is quantified using factor fx, from the
UCP-net. Variable elimination (e.g., Dechter’s [6] MEU
variant) can be used to determine the optimal action.®

This approach uses the GAI factorization of utilities af-
forded by the UCP-net, but not the CP-semantics. We can
improve upon these ideas by noticing that our goal isto se-
lect the optimal action, not (necessarily) compute its ex-
pected utility. Inany GAI representation, we can bound the
error associated withignoringautility variable F; with par-
ents U asfollows. Lets; = maxy Fi(u) — ming F;(u).
The expected value EV(a) of any action « isgiven by

Z Pr(v|a)(z Fi(v)) = Z(Z Pr(via)Fi(v))

vev i VvEV

Let EV_;(a) be the expected value of action a with re-
spect to al utility variables except F;. Then |[EV(a) —
EV_;(a)] < &. Thusif there is some «* such that
EV_i(a*) — EV_;(a) > ¢; fordl a # a*, we know a*
is optima without having to compute the i'th term in the
above summation. Anal ogous statements hold for ignoring
any subset F of the utility variables, settingep = ) ;g -
This suggests an incremental technique for computing
an optimal (or near-optimal) action that exploits the CP-
semantics of a UCP-net. Let X, ... X,, beatopological
ordering of the variables in the UCP-net. Our technique
runsin (at most) n stages, where at stage &, we compute
EV_;isky(a) for each action a. If for some «* we have
EV_{Dk}(a*) — EV_{i>k}(a) > Efi>k} for dl a ;é a*,
we know «* isoptima and we can terminate without com-
putingany further terms. Furthermore, we can removefrom
consideration at subsequent stages any action whose partia
utility differs by morethan ey, fromthe (estimated) op-
timal action at this stage. The motivation for this approach
liesinthefact that in a UCP network, variables near the top
of the UCP-net have alarger impact on utility, and are thus
more likely to lead to the separation of actions than factors

40ften utilities are elicited only over variablesthat are directly

related to preferences. Thevariablesin the Bayesnet may include
variables not contained in the UCP-net.

50One might also consider how expected utility networks [11]
might be used in this regard.



lower inthenet. For example, if action « has high probabil-
ity of making the most important variable X; take its most
desired value, whileaction b islikely to ensureitsleast de-
sired value, we may be able to eliminate b from considera-
tion by just computing the first term of above summation.
We can a so terminate when the error associated with «* is
below some threshold, even if it is not optimal.

The computationa benefits arise when one considers that
computing EV_y;> ) (@) requires one to do inference only
on those variables that are relevant to predicting F_ ;5 3.
Furthermore, at each each stage we need only compute the
expected value with respect to the newly added utility vari-
able. In a problem with no evidence, for example, this can
be accomplished by considering only ancestors of the vari-
ables F; inthe Bayes net. Animportant issuewith thisiter-
ative procedure ishow to minimize overall computation by
reusing information computed in earlier iterations. Thisis
plausiblesince (utility) factors generally overlap, and these
factors generally have common influences. For example, if
VE isused it might be possible to find variable orderings
for each computation that facilitate the reuse of previous
results—determining such orderingsis an interesting algo-
rithmic question.

5 Elicitation with UCP-nets

Oneof thekey problemsfacing theuse of decision-theoretic
models isthe dicitation of preference information. In this
section we describe one possible procedure for exploiting
the structure and semantics of a UCP-network to facilitate
an incremental elicitation process. More precisaly, given
a specific decision scenario—i.e., a set of possible actions
and the corresponding distributions over outcomes they
induce—and a set of constraints on the tradeoff weights of
a normalized UCP-network, the regret of the best action
can be computed as a ssmple linear optimization problem.
Given a specific set of questions that can be posed to the
user, the (myopic) value of information for each question
with respect its reduction of the minimax regret can also be
computed by solving a linear program. As such, an incre-
mental procedure can be used to compute a greedy query
plan that will ask just enough questions of the user to de-
cide on acourse of action whose regret is below some pre-
specified threshold (if thisthreshold is set to zero, then the
optimal action will be recommended).

To make this more precise, we define a decision scenario
to beaset of actions A = ay, ..., a,, Where each action
a; € Ainducesadistribution Pr; (V) over outcomes. Let
O, denote the support set for Pr; (i.e., the set of outcomes
v for which Pr; (V) > 0). We generdly assume that O; is
small relativeto Dom('V).

As a gtarting point, we assume that we have been provided
with anormalized UCP-network, whose structureand local
value functions v% have been provided, but whose trade-
off weights 7% and o remain unspecified. We fed that
the elicitation of both structure and local value functions
is something that users will often be able to provide with-
out too much difficulty. Structure dicitation, involving
guestions regarding the relative importance of different at-
tributes, as well as the dependence of these assessments on

other attributes should not be especially onerous. Eliciting
value function v requiresordering asmall number of val-
ues, given a specific parent context, and calibrating these
valueusing (local) standard gambles, again, arelatively un-
problematic task.

Although the structure and value functions are thus de-
termined, the tradeoff weights for the normalized UCP-
network remain unknown. The utility of any outcome v is
alinear function of these weights: specificaly, if v instan-
tiates each variable X; to x; and parent set U; tou,, then
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Let W be the set of possible instantiations of the tradeoff
weights, and «(v, w) denotethe utility of v for aparticular
instantiationw € W. The expected value of any action a;
isalso alinear function of the tradeoff weights:

EV(a;, w Z Pr;(

veo,;

Notethat by assumption |O;| isrelatively small, so thissum
should contain only a small number of terms.

We define the optimal action a3, with respect to an instan-
tiation w of the tradeoff weightsto be

ay, = argmax EV(a;, w)
If the utility function were known to have weights w, a,
would be the correct choice of action. The regret of action
a; withrespect tow is
R(a;,w) = EV(a},,w) —

W)

EV(a;, w)

i.e, the loss associated with executing «; instead of acting
optimally. Let C' be a subset of the set of possible instanti-
ations of the tradeoff weights, W. We define the maximum
regret of action a; with respect to C' to be

MR(a;, C) = angg(R(ai, w)
Findly, we define the action a7, with minimax regret with
respect to C":

aj, = argmin MR(a;, C)

a;

The (minimax) regret level of weight set C' isMMR(C) =
MR(af, C). If theonly informationwe have about auser’s
utility functionisthatit liesintheset C, then - isareason-
able choice of action. Specifically, without distributional
information over the set of possibleutility functions, choos-
ing (or recommending) ;. minimizes the worst case loss
with respect to possible realizations of the utility function.

If C isdefined by aset of linear constraints on theweights,
then a}. aswell asMMR(C') can be computed using a set of
linear programs. First note that we can compute

max EV(a;, w) — EV(a;, w)

wel



for any pair of actionsa; and a; using alinear program: we
are maximizing a linear function of the weights subject to
thelinear constraintsthat define C'. Solving O (n?) suchlin-
ear programs, onefor each ordered pair of actions, allowsus
to identify the action «, that achieves minimax regret and
to determine the minimax regret level MMR(C).

MMR(C) tells us how bad off we could be recommending
af.. Inparticular if MMR(C) = MR(af,C) = 0 then
ay, dominates &l other actions: itisat least as good as any
other action for every feasible set of tradeoff weights. How-
ever, unlessC'isvery refined (i.e., isdefined by strong con-
straints), multiple actions will potentially be optimal (i.e.,
will be maximal in certain regions of weight space). To de-
termine which of these actions to recommend, we need to
refine the constraints defining C' further.

(' can contain arange of different linear constraints. One
class of constraintsin C' isimposed by the structure of the
network. In particular, each variablemust dominateitschil-
dren: thisis a necessary condition in any UCP-net. Us
ing the same notation for variable X's neighborhood as in
Defn. 2, dominationimposesthefollowinglinear constraint
ontheweights: for eachu, z, y and pair 21, x5 € Dom(X)
such that v% (z1) > v% (z2), we must have:

mxVx (1) — Tk vx (2)

ToW;Z;, ToW;Z; To2W;Z;
Z Ty Rt (i) + oyt

Z o T1WZ; xlu,z,( ')_ T1U;Z;
Y, Ty, Uy, Yi) = oy,

Another class of constraints is the set of bounds that re-
strict each tradeoff weight 7% and o to a specific range.
Such bounds are required in order to keep the LP problems
we have proposed using bounded. Eliciting such bounds
from the user is not a difficult task, as one can aways start
with very loose bounds. For example, the minimum and
maximum utility of any possible outcome is a simple uni-
form bound on the tradeoff weights. Besidestheserequired
constraints, C' could contain other nonstructural linear con-
straintsprovided by the user, e.g., constraintsontherelative
magnitudes of different wel ghts (reflecting degree of impor-
tance) or constraints on the rel ative expected utility of dif-
ferent actionsin certain fixed contexts.

If minimax regret is zero, or lies below some acceptable
threshold, the action a7, can be recommended. Otherwise,
guestions can be asked of the user to help differentiate be-
tween possible actions. The solution to the above set of
O(n?) linear programs can provide some guidance. For
example, the linear program for solving MR(q;, ') aso
yieldsasolutiontothedual problem. Thissolutionprovides
a multiplicative factor associated with every inequality in
C that tells us how much of a change we can produce in
MR(a;, C') (inthe neighborhood of the optimal solution) by
modifying the inequality. Say that the k-th inequality isthe
upper bound 7Y < 290, and that the value of the k-th vari-
ableinthedual solutionis 100. Thistellsusthat if we can
get the user to tighten their upper bound on 7Y by 9 units
this might yield a 900 unit decrease in MR(«;, C'). By ex-
amining the factors associated with the boundsimposed on
the weights, those weights that have the most potentia to
influence MMR(C") could be identified. Furthermore, after

we have queried theuser and obtained an updated bound we
need not resolvethelinear programsfrom scratch to recom-
pute the maximum regret of each action. There are many
techniques in the LP literature on sensitivity analysis that
can be employed to minimize the amount of computation
that needs to be performed [5].

However, generaly for redistic elicitation we cannot rely
solely on the recommendations of the linear programs. In
particular, sharpening the inequality recommended by the
dua solution might not be an easy task for the user. The
typesof questionsthat can (reasonably) be asked will be do-
main dependent, and influenced by factors such as the com-
plexity of the domain (e.g., if the number of attributesis
manageable, asking a user to compare full outcomes may
be acceptable, but otherwise not), the sophistication of the
user, and the importance of the decision to be made. To ad-
dress the genera prablem here, we will assume a (finite)
set of possible questions @ = {¢1,...,qx}, with each ¢,
having m possibleresponses r}, ..., ™ (we fix the num-
ber of responses simply to streamline the presentation). We
suppose that every response adds an additional linear con-
straint to C' (this subsumes the case of sharpening an exist-
ing constraint). Let C'(r]) denote the set of weights that
satisfy C' U {r]}. Then asking a question ¢; and receiv-
ing aresponse ;] will reduce minimax regret by the amount
MMR(C) — MMR(C(r})).

This suggests a querying strategy in which questions that
havetheability to reduce minimax regret themost are asked
first. In acertain sense, asking questions that reduce mini-
max regret can be seen asadistribution-freeanal og of tradi-
tional value of informati on approachesto querying. Specif-
ically, the procedure we suggest strongly parallelsthe eic-
itation method proposed in [4], where a distribution over
possible utility functions is used to guide the interactive
elicitation process. In our distribution-free model, we can-
not define the expected value of a question, but instead
use the worst-case response to define the minimal improve-
ment we can obtain from some question. The minimax
improvement of question ¢;, MI(g;) is min; MMR(C) —
MMR(C(r)). The minimax optimal query with respect to
C isthat query with maximal improvement Mi(¢;).5 We
note that the improvement Ml (q¢;) for any query must be
nonnegative, since ¢; will awaysreduce thesize of thefea
sible weight space, and generally will be nonzero.

This suggests the following abstract dicitation strategy,
which myopicaly attempts to improve minimax regret.
Given a set of feasible weights €', the query ¢; with max-
imal improvement is asked, and response r] is obtained,
resulting in a more refined weight space C'(r/). Then
MMR(C(r)) is computed by solving the previously spec-
ified linear programs with the added constraint /. Tech-
niques for sensitivity analysis can be utilized to minimize
the work involved in doing these computation. This pro-
cess is repeated until one of two conditionsis met: (a) the
current weight space admits an action with regret less than

5Queries can be ranked simply using their worst-case minimax

regret, rather than their worst-case improvement, since the term
MMR(C') is common to all queries and responses.



somethreshold 7; or (b) no query has an improvement score
greater than the cost of that query. This latter condition
istypicaly important in interactive elicitation: while one
could ask many questionsto narrow down a utility function
so that a (near) optimal decision can be made, one must ac-
count for the cost of these questions (e.g., the burden they
impose on the user).

Making this procedure concrete requires having a set of
possible questions whose responses induce linear con-
straints on weight space. As pointed out above, such
guestions will in general be domain dependent. However,
they might include asking the user to quantify the relative
strengths of various tradeoff weights associated with asin-
glevariable o and 7. For example, asking the user for
avalueof k such that oy < ko'y?. Sincethisinvolvesthe
outcomes of acommon variableit should be relatively easy
for the user to answer. Assessing relative tradeoff weights
associated with different variablesis a similar, albeit more
difficult, question. Sharpening an upper or lower bound on
aweight was addressed above. One more type of question
might be to ask the user which of actionsa; or ¢; shewould
prefer in a specific context. The answer to this question
again imposes a linear constraint on weight space.
Thisapproach isvery similar to that utilized in imprecisely
specified multiattribute utility theory (ISMAUT) [9]. In
such work, standard additiveindependent utility modelsare
assumed and constraints on tradeoffs weights are used to
determine if an optima decision can be made. If no ac-
tion dominates all others, further preferences are elicited.
Our approach extends this basic viewpoint in a number of
ways, includingthe utilization of richer utility modelsand a
minimax regret model that supportsdecisionseven when no
action is dominant. ISMAUT does not generally describe
means for generating queries automatically or making de-
cisionswhen no action is dominant.

Our €licitation procedure has several drawbacks. The
greedy nature of the algorithm means that sequences of
guestions that reduce regret may not be considered if the
individual questions in the sequence do not. Circumvent-
ing this requires lookahead or some form of dynamic pro-
gramming. This problem is common to most value of in-
formation approaches (e.g., [4]). The use of minimax re-
gret to select actions should be viewed asreasonable in the
absence of distributiona information. However, selecting
gueries so that the worst response has maximal improve-
ment may not aways be appropriate; and comparing this
worst case improvement to the cost of the query may also
be questioned, but other strategies are possible.

We are currently exploring the use of distributions over
weight space (i.e., over utility functions) to guide the elici-
tation process. In the abstract, such amode would be sim-
ilar to that of Chajewska, Koller, and Parr [4]. The dif-
ferences lie in the use of UCP-nets as the underlying util-
ity representation, and the use of dynamic programming to
construct optimal query sequences (rather than using my-
opic vaue of information). Integrating thiswith linear op-
timization poses some interesting challenges.

6 Concluding Remarks

Wehave proposed anew directed graphical model for repre-
senting utility functionsthat combines appealing aspects of
both CP-netsand GAIl models. The UCP-net formalism has
anumber of conceptual and computational advantages over
these models, providing leverage with respect to inference
and dicitation. Clearly, practical experience and empiri-
cal studiesare needed to gauge the ultimate eff ectiveness of
UCP-nets. However, we are encouraged by the widespread
use of additivemodels, and more recently, by the successful
application of CP-nets to the problem of preference-based
Web page content configuration [8].

We are currently in the process of implementing the inter-
active elicitation algorithm described in Section 5. Future
research includes the inclusion of distributional informa-
tion over utility functions (or tradeoff weights), and devel-
oping agorithms that compute and use value of informa-
tionto construct optimal query plans. Another fundamental
guestion pertainsto determining optimal query plans when
the query space islarge or infinite, involving parameterized
gueries (eg., standard gambles). We expect that the con-
siderable structure exhibited by the problem (e.g., the fact
that the set of actions divides weight space W into a set of
convex regionswhere each action isoptimal) will alow op-
timization over each query type to be effected, without ex-
plicit enumeration of all instances.

Theinvestigation of the suggested optimization algorithms,
specifically, empirical validation of the incremental vari-
able elimination approach to decision making described in
Section 4, isahigh priority.
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