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Abstract

We propose anew approach to value-directed be-
lief state approximationfor POMDPs. Thevalue-
directed model allows one to choose approxima-
tion methodsfor belief state monitoring that have
asmall impact on decision quality. Using a vec-
tor space analysis of the problem, we devise two
new search procedures for selecting an approxi-
mation scheme that have much better computa-
tional properties than existing methods. Though
these provide looser error bounds, we show em-
pirically that they have a similar impact on deci-
sion quality in practice, and run up to two orders
of magnitude more quickly.

1 Introduction

Partially observable Markov decision processes (POMDPs)
have attracted considerable attention as a mode for
decision-theoretic planning. Their generdity alows one
to seamlessly model sensor and action uncertainty, uncer-
tainty in the state of knowledge, and multiple objectives
[1, 5]. Their computational intractability has, however,
limited their practical applicability [11, 13].

Animportant approach to POMDPsinvolvesconstructing a
valuefunctionfor abelief state MDP offline, and maintain-
ing abelief state (or distribution over system states) online,
whichisused to implement an optimal policy [18]. A num-
ber of approaches attacking the offline computational prob-
lems have been studied, includingimproved algorithms[ 6],
the use of factored representations|[2, 8], aswell as numer-
ous approximation schemes [9]. Littlework hasfocused on
the online belief state monitoring problem. Because plan-
ning state spaces grow exponentially with the number of
variables, maintaining an explicit distribution over states
is generally impractical. Even when concise representa-
tions such as dynamic Bayes nets (DBNSs) are used, moni-
toringisgeneraly intractable, since the independencies ex-
ploited by DBNs vanish over time. Boyen and Koller [3]
proposed projection schemes for approximate monitoring,
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essentially breaking weaker correlations among variables
to ensure tractability. Poupart and Boutilier [15] proposed
val ue-directed methodsfor approximation, allowing thean-
ticipated lossin expected utility guide the choice of approx-
imation scheme,

In this paper we pursue the value-directed approach since
its emphasis on minimizing impact on decision quality is
acritical factor in devising useful approximations. We use
thevaluefunctionitself to determinewhich correl ationscan
be“safely” ignored when monitoring one' sbelief state. We
propose an alternative approach to choosing approximation
schemes for monitoring in POMDPs that overcomes many
of the computational bottlenecks of [15]. We introduce
a vector space formulation of the approximation problem
that allows one to construct approximation schemes with
looser error bounds, but much more quickly. Despite the
looser bounds, we show empiricaly that decision quality is
rarely worsethan that obtai ned using themore intensive ap-
proaches. Our methods work in time roughly on order of
the time taken to solve a POMDR, and since they run of-
fline, they can be used with any POM DP techniquethat can
currently be applied. Furthermore, these methods take ad-
vantage of thefactored (DBN) representationsto avoid state
enumeration. The offline cost alows much faster (approxi-
mate) online policy implementation. Even in cases where
a POMDP must be solved in a traditional “flat” fashion,
we typically have the luxury of compiling avalue function
offline. Thus, even for large POMDPs, we might reason-
ably expect to have value functioninformation (either exact
or approximate) available to direct the monitoring process.
Thefact that one isableto produce avaue function offline
does not imply the ability to monitor the process exactly in
atimely onlinefashion.! Finally, our model offers a novel
view of theapproximation problemfor belief state monitor-
ing for POMDPs.

We briefly overview POMDPs and value-directed approx-
imation in Section 2. We present our vector space formu-
lation in Section 3 and provide some suggestive empirical

while techniques exist for generating finite-state controllers

for POMDPs, there are still reasons for wanting to use value-
function-based approaches[14].



resultsin Section 4.

2 POMDPsand Belief State Monitoring

The key components of a POMDP are: afinite state space
§; afinite action space .A; afinite observation space Z; and
areward function R : § — R.. Actionsinduce stochastic
state transitionswith specified probabilities, and an agent is
provided with noisy observations of the system state (with
specified probabilities). A reward isreceived at each state
and an agent’ sobjectiveisto control the system through ju-
dicious choice of action to maximize the expected reward
obtained over some horizon of interest.

The rewards obtai ned over time by an agent adopting a spe-
cific course of action can be viewed as random variables
R®). Our aimisto construct apolicy that maximizes theex-
pected sum of discounted rewards £(3 "< , v R(*)) (where
~ is a discount factor less than one). An optima course
of action can be determined by considering the fully ob-
servablebelief stateMDP, where belief states (distributions
over S) form states, and a policy = : B — A maps
belief states into action choices. A key result of Sondik
[18] showed that the value function V' for a finite-horizon
problem is piecewise-linear and convex and can be rep-
resented as a finite collection of «-vectors; for infinite-
horizon problems, afinite collectiongenerally offersagood
approximation. Specifically, one can generate a collection
R of a-vectors, each of dimension |S|, such that V' (b) =
maxg,en b-a. In Figure 1 the value function is given by
the upper surface of the five vectors shown. Each vector
is associated with a specific (course of) action. For finite
horizon POMDPs, a set ¥* isgenerated for each stage k of
the process. Algorithmsexist that construct efficient repre-
sentations of «-vectors, such as decision trees or algebraic
decision diagrams (ADDs), when the POMDP is specified
concisely using DBNs|[2, §].

Insight into the nature of POMDP vaue functions can be
gained by examining Monahan's [12] method for solving
POMDPs. Monahan's agorithm proceeds by producing a
sequence of k-stage-to-go value functions V*, each repre-
sented by a set of a-vectors N*. Each o € ®* denotesthe
value (asafunction of the belief state) of executing ak-step
conditional plan. More precisdly, let the k-step observation
strategies be the set OS* of mappings o : £ — N1,
Then each a-vector in R* corresponds to the value of ex-
ecuting some action « followed by implementingsome o €
OS'; that is, it is the value of doing «, and executing the
k — 1-step plan associated with the a-vector o(z) if z is
observed. Using CP(«) to denote this plan, we have that
CP(a) = (a;ifz;,CP(c(z;))¥z). We informaly write
thisas(a; o). Wewritea({a; o)) to denote the «-vector re-
flecting the value of this plan.

The implementation of a policy requires that one monitor
belief state b over time so that it may be*plugged” into the
value function (or ) to make a suitable action choice. Be-
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Figure 1: The Switch Set Sw(«as) of as

lief states can bemai ntained by standard Bayesian methods,
but when | S| islarge, the cost is prohibitive. Thisis espe-
ciallytruewhen S isdetermined by aset of variables X (and
|S| = O(2/X1)). In such cases, DBNSs can be used to rep-
resent the dynamics of POMDPs and DBN inference tech-
niques that exploit conditiona independence among vari-
ablescan be applied to make monitoring moreefficient. Un-
fortunately, as shown by Boyen and Koller [3], in many
problems most if not al variables of DBNstend to become
correlated over time so DBNs offer no significant savings.

Boyen and Koller introduced projection schemes as a
method to approximate belief states. Given variables X
defining S, aprojectionisaset .S of subsets of X with each
variable in at least one subset. Correlations among vari-
ableswithin asubset are preserved whilethe subsetsare as-
sumed to be independent. For instance, if X = {4, B, C'},
then projection S = {AB, C'} approximates the exact be-
lief state b = Pr(A, B,C) withb' = Pr(AB)Pr(C).
The assumed independence allows more efficient monitor-
ing using DBNs: a most, one maintains marginals over
each subset in S.

The choice of projection scheme (or any other approx-
imation) can have a dramatic impact on decision qual-
ity in a POMDP, since the approximate belief &’ can lead
to the choice of a suboptimal course of action. Poupart
and Boutilier [15] propose a value-directed approximation
framework alowing computation of bounds on thelossin
expected utility for projection schemes, and search methods
for choosing projectionsthat tradeoff decision quality with
monitoring efficiency. The techniques are computationally
intensive (potentialy requiring time quadratic in the solu-
tion time of the POMDP); but this offline computation pro-
duces a projection scheme that improves onlinemonitoring
efficiency with minimal sacrifice in decision quality. We
briefly outlinethis model.

Assume a POMDP has been solved giving the set X of a-
vectors with o« € R. Let R(a) be the optimal region for
a (i.e., the set of belief states b such that « is maximal for
b). Given a projection scheme S, the switch set Sv(«) is



the set of o’ such that S(b) € R(o’) for someb € R(«).
Thus, S could induce oneto believe o’ has maximum value
at the current belief state instead of «, thereby erroneously
“switchingto” theplan correspondingto o’ from o by using
S. Figurelillustratesaswitch set Sw(as) = {ag, o, s},
Switch sets can be computed by solving a nonlinear pro-
gramfor each o € N. Linear programs (LPs) can be used to
more effectively produce a superset of the switch set [15].

Given the switch sets (or supersets thereof), one can com-
pute an upper bound B% on thelossin expected valuefor a
single approximationusing S at % stagesto go:

Bg = MaXgens MAXp MAX,cgpk (o) b-(a—a)

When multistage approximations are applied, one can de-
visean alternativeset whichissimilar in spirit to the switch
set. Thedternativeset Alt(«) istheset of al «-vectorscor-
respondingto alternative plansthat may be executed asare-
sult of repeatedly approximatingthe belief stateat all future
time steps (see [15] for a precise definition). Alt(«) is con-
structed with a dynamic programming procedure similar to
incremental pruning [6]. One can define an upper bound £%
on theloss in expected value due to successive belief state
approximationsusing S for & stagesto go:

k _ !
E% = max, ¢y maxy MaxX e Al (o) b (a—a)

These boundscan be extended to i nfinite-horizon problems.
Given the bounds B and F/, one can search for an “opti-
mal” projection scheme by looking for the projection that
minimizes one of those bounds. The space of projection
schemes isvery large (factoria in the number of variables),
but exhibits a nice lattice structure. Figure 2 illustratesthe
latticeof projection schemes when the state space i s defined
by the joint instantiation of variables A, B and C'. Each
point denotes a projection scheme, with “descendents’ of
any projection corresponding to more coarse-grained pro-
jections. Aswe move down the lattice, accuracy increases
since the number of correlations among the variables pre-
served inour belief state isincreased (hence, error bounds
B and E monotonically decrease); but monitoring effi-
ciency decreases as we move downward for the same rea-
son. A number of search procedures can be used to traverse
the lattice, using the error bounds to guide the search. For
example, asimple (and incremental) greedy scheme ispro-
posed in [15]. The search is stopped when a suitable accu-
racy/efficiency tradeoff has been reached.

3 Vector Space Analysis

We now provide a vector space analysis of belief state ap-
proximation by projection, showing in Section 3.1 that pro-
jections alow movement of belief state only in certain di-
rections (defining a subspace). This alows us to view a-
vectors as determining gradients of valuein different direc-
tions: approximations whose directions give similar value
gradientsarelesslikely to cause switching (hence minimiz-
ing error). In Section 3.2 we usethisto design faster switch

Figure 2: Lattice of Projection Schemes

test algorithms than those described above, though yield-
ing looser bounds. In Section 3.3 we devise a new vector-
space search agorithm to find projections without directly
trying to minimize these error bounds, instead relying on
value gradient similarity.

3.1 Vector spaceformulation

Given aprojection S over X, let b and b’ = S(b) be points
in belief space. Define d = &' — b to be the displacement
vector from b to &’. Projection S determines a set of lin-
ear equations constraining b in terms of &’. For example,
ifX ={X,Y}and S = {X,Y} (i.e, Streats X,Y as
independent), we have:

d(xy) + d(zy) + d(zy) + d(zy) =
d(zy) +d(zy) =
d(zy) +d(zy) =

Geometrically, we interpret each equation as a hyperplane;
and their intersection (or solution space) is a line through
the origin representing aone-dimensiona (in this example)
subspace. This subspace captures the set of al displace-
ment vectors resulting from the application of S (w.r.t. &').
Sincedl possible displacement vectorslieon thesameline,
they must all have the same direction (vectorswith opposite
orientation are assumed to have the same direction).

Toillustrate, let b(x) = 0.3 and b(y) = 0.4. The approxi-
meate belief state using .S above gives:

bry) = bx)b(y) = 0.12
b(zy) = blz)b(y) = 0.18
bVzy) = b(@)b(y) = 0.28
bVzy) = b(&)b(y) = 0.42

Figure 3 shows a three-dimensional belief space for belief
states ry, =y, zy and zy.2 All belief sates b with b(z) =

2\We omit dimension b(77) as probabilities sumto 1.



b(xy)

b(xy)+b(xy)=0.4 b(xy)+b(xy)=0.3
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Figure 3: Solution space of possible exact belief states b

0.3 liein ahyperplane, and similarly for 6(y) = 0.4. Their
intersectionistheset {6 : ' = S(b)}, and al displace-
ment vectorsfor &’ havethe same direction. (For marginas
other than 0.3 and 0.4, the hyperplanes and their intersec-
tion shift, but remain paralld).

Let Dg be the displacement subspace spanned by the set
of al displacement vectors induced by S: it is completely
characterized by its marginals (elements) and it describes
the directions of al displacements. In general, Ds isa
(21Xl — ¢)-dimensional subspace, where ¢ is the number
of constraints, since it is the solution space of ¢ linearly
independent equations, each corresponding to a constraint
d(m) = 0. (c isthe number of subsets of variables con-
tained in some subset m € S, as above.) Thisis obvious
when we rewrite the constraints as v,,, - d = 0, where v,,,
isaboolean |S|-vector with 1 a stateswith al X € m true
and O at states with some X € m fase® In our example,
we have:

ry xy xy TY

w o= (1 1 1 1 )
vx = ( 1 1 0 0 )
vy = ( 1 0 1 0 )

Let D3 bethesubspace spanned by thevectorsv,,, m € S
thespace D3 isthenull spaceof Ds (i.e., theset of vectors
perpendicular to each vector in D).

3.2 Vector space switch test

We will see below that the subspaces Ds and Dy alow
a nice characterization of a new switch test. We first con-
sider asimple relaxation of the switch test of [15]. Recall
from Section 2 that approximation .S could induce an agent
to switch from optimal vector «; to suboptimal vector o if
S(b) € R(«;) forsomeb € R(«a;). Theideabehindthere-
laxed vector space (VS) switch test is to ssimply apply the
same technique ignoring the presence of other «-vectors.
The VS switch test askswhether thereis some belief state b
forwhichb-a; > b-a; yet S(b)-«; < S(b)-;. If S0, wesay
%The generalization to
straightforward.

nonboolean variables is

max &
s.t.

Ym' Cm,Ym € S

> bls) =
b(s) >0 Vs
b(s) >0 Vs

Tablel: Linear VS-switchtest for projectionschemes. This
LP has a gtrictly positive objective value iff there is some
b € R(oy) and b’ € R(a;) such that b(m') = '(m’) for
any subset m’ of variablescontained in some marginad m &

a; isinthe VSswitch set of «;. Thisisequivaent to ask-
ing if «; € Sw(a;) when dl vectors except these two are
removed from R. Note that the VS-switch set is a superset
of the true switch set.

Sincethe constraintsrelating b and S(4) are nonlinear, VS-
switch sets can be computed using nonlinear programs. We
can define a ssimpler linear VS-switch test as in Table 1
which produces a superset of the VS-switch set. This LP
isarelaxation of the LP switch test [15].

Now define «;; = «; — a; to be avector representing the
difference in expected value for executing «; instead of «;.
We can show that the VS-switch test for «; and «; is pos-
itiveiff o;; ¢ Dy . Consider «;; as a gradient that mea-
suresthe error induced by an approximation when it causes
aswitch from a; to ;. After an approximation, if this dif-
ference changes considerably, the agent is likely to choose
the wrong maximizing «-vector. Define the relative error,
di;, of thischange in the relative assessment of «; with re-
spect to «; as:

dij = blag —aj) = S(b)(a; — )

= d~0zij

Here o;; can be viewed as a gradient since approxima-
tions corresponding to displacement vectors d paradld to
a;; maximize the magnitude of d - a;;. In general, the an-
glebetween d and «;; isagood indicator of approximation
error. In particular, if they are perpendicular, their dot prod-
uct is zero and the rel ative assessment of «; and «; remains
unchanged, preventing any switch. By definition, the sub-
space D3 isthe set of vectors perpendicular to &l displace-
ment vectors possibly induced by .S, so when «;; isamem-
ber of D3, al possibledisplacement vectorsare perpendic-
ular to «;; and consequently there cannot be a switch from
a;toay. Thusay; € Dy iff theVS-switch test ispositive.

Thisfact providesfor amuch more efficient method to com-
pute switch sets than the LP of Table 1. We decompose «;;
in two orthogonal vectors corresponding to the projections
of «;; onto Dy and Dg:

a;; = proj(auj, D5 ) + proj(ai;, Ds)



(where proj(a, D) stands for the projection of « onto
D). If o;; € Dy, then proj(ei;, Ds) = «ay; and,
consequently, proj(a;;, Ds) isthe zero-vector; otherwise,
proj(ai;, Ds) isnonzero. We can thus determine if «;; €
Dy by measuring the length of proj(a;;, Ds). We have
that ||proj(a;;, Ds)|l» = 0 when «;; € Dj, and
[[proj(e;;, Ds)||l2 > 0 when «y; ¢ Dy . Inparticular, the
squared length of proj(a;;, Ds) can be computed by the
following equation:

llproj(aij, Ds)Il3 = aij - aij — Y (oij-v)* (1)
vEDé

Here D3 is some orthonormal basis spanning D3 . The
spanning set of vectors v,,, above can be used to generate
severa orthonormal bases using the Gram-Schmidt orthog-
onalization process and normalizing. We consider a spe-
cific orthonormal basisin particular—which we refer to as
D3 —because of its factored representation. For problems
involving binary variables, every vector in Dg consists of
asequence of 1'sand —1's (before normalization). The un-
normalized basis vector v,,, associated with subset m has a
1 in every component correspondingto a state with an even
number of true variablesin m and —1 in every component
corresponding to a state with an odd number of true vari-
ablesin m. For instance, projection S = {XY,Y 7} has
six marginds (0, X, Y, Z, XY and Y 7), yidding the fol-
lowing basis vectors:*

TYyz TYZ wYz TYI Tyz: TYI TyYz TYZ
e o= (1 1 1 1 1 1 1 1 ) /4/l8l
ox = (-1 -1 -1 -1 1 1 1 1 ) /+/sl
oy o= (-1 -1 1 1 -1 =1 1 1) /IS
vz = (-1 1 -1 1 -1 1 -1 1 ) /sl
oxy= (1 1 -1 -1 -1 -1 1 1 ) /4/Is]
syz= (1 -1 -1 1 1 -1 -1 1 ) /+/ls]

With this orthonormal basis, we can implement V S-switch
testsvery effectively, without recoursetothe LPin Table 1.
We must simply compute Eqg. 1 which requires O(c) dot
products. If unstructured, each dot product requires O(|S|)
elementary operations, for atotal time of O(¢|S|). Theuse
of factored representations such as ADDs considerably im-
proves this running time. Each basis vector has only two
distinct values, and yieldsavery compact ADD representa
tion. Assuming that the POMDP has been solved to pro-
duce ADD representations of the a-vectors, then the o;;
will have compact representations, and the dot productswil|
be computed very efficiently: often asmall constant inde-
pendent of thesize of the state space. Hence, for sufficiently
structured POMDPs, the effective running time of aVS-
switch test isO(c).

By comparison, solving the linear program of an L P-switch
test [15] is polynomia in the number of constraints ¢ and
the size of the state space. Furthermore, ADDs do not pro-
vide as useful a speed up for LPs since the effective state

4This definition can be generalized to non-binary variables.

space istheintersection of the abstract state space of al the
congtraints. The pricepaidisthat the B and £ boundscom-
puted using the V S-switch test will generally belooser than
that usingtheoriginal LPtest. Asin Section 2, these bounds
can be used to search the lattice of projection schemes for
making appropriate time-decision quality tradeoffs.

3.3 Vector space search

In this section we describe an aternative search method
based on the relative error expression 4;;. We do not com-
pute switch sets at all, nor attempt to minimize worst-case
error bounds as above. This new vector-space (VS) search
process instead seeks a projection S which defines a dis-
placement subspace Dy that isas perpendicular as possible
to all gradients «;;. Thisis motivated by the observation
that the more perpendicular the direction of an approxima-
tion with respect to «;;, the smaller the magnitude of ¢;;
and, consequently, thelesslikely aswitch will occur. Tech-
nically, thisisdone by minimizing the squared length of the
projection of each gradient «;; on Ds (asin Eq. 1).

Thelength of proj(«;;, Ds) has aspecial interpretation: it
correspondsto the greatest (absolute) relative error ratefor
an approximation in some directiond € Dg. The relative
error rate corresponding to displacement vector d istherel-
ative error induced by a unit displacement in the direction

of d:
d

E

Hence, by choosing aprojection .S that minimizesEg. 1, we
are minimizing the (squared) worst relative error rate that
may result from projection 5. When ignoring the distance
between the exact and approximate belief states, the rela-
tive error rate permits us to quantify how bad an approxi-
mation in some direction islikely to be. Each projection S
constrai ns approximationsto directionswithin the subspace
Ds. Thedirectiond € Dg with the highest (absolute) rel-
ative error rate hasthisworst relative error rate, which also
happensto be||proj(«;;, Ds)||2. Thus, itisdesirabletotry
to minimize Expression 1.

Ideally we should choose an S that simultaneously mini-
mizes Eq. 1for every gradient «;; (7 # 4). Intheabsence of
any prior information about the rel ativeimportance of each
gradient, we suggest two simple schemes: (a) minimizethe
sum of squared lengths of each projection; or (b) minimize
the squared length of the greatest projection:

ZHprOj(aij,DS)H%
J#i
= D (o= Y v-ay) @)
I veDE
max ||proj(aij, Ds)||3
J#

= max(aij C QG — Z v aij) (©)

J#i
vEDé



We refer to these schemes as the sum and the max error es-
timators, respectively, for projection schemes. Of course,
many other schemes could be proposed.

Given avector «; € X, VSsearch useseither Eq. 2 or Eq. 3
above to find a good projection S as follows. Starting at
the root, we traverse the lattice of projection schemes (Fig-
ure2) downwardinagreedy manner. At each node, we pick
the most promising child by minimizing Eq. 2 or Eq. 3 The
computational complexity of aVS search isfairly low asit
avoids LPs. Its running time is O(nc®|R|?|S]), since one
good projection must be found for each of the |R| regions
R(a). For each region, O(nc?) nodesinthelattice are trar
versed, each requiringtheevaluation of Eq. 2 or Eq. 3which
both take O(c|R||S]|) elementary operations.

The V Ssearch can a so be streamlined. The constraintsof a
node S are essentially the same asthe constraints of its par-
ent node .S” with one extra constraint corresponding to the
margina m that |1abels the edge connecting the two nodes.
Sincethereis one basis vector per constraint, the following
equation holds:

Dg =D5 U{tn}

This means that both Eq. 2 and Eg. 3 can be computed in-
crementally as the latticeis traversed downward:

> llproj(es;, Ds)lI3
i
= > lproj(aij, Dsi)l3 = tm - i
i
max [proj(aij, Ds)||3
J#i

= max||proj(aij, Ds:)||3 — m - v
J#i

Thisincremental computation schemefor traversingthelat-
tice reduces the running time to O (nc?|RX|%|S|) since only
one dot product needs to be computed instead of one for
each of the ¢ constraints. This running time is significantly
smaller than O (nc?+*|R||S|*) for the B-bound or £-bound
greedy search with LP-switch tests used in [15]. As for
the B-bound or E-bound greedy search with VS-switch
tests, the running time O(nc®|R||S|) is comparable. The
VS search has an extra || factor, but one less ¢ factor. In
practice, |R| isusudly larger than ¢, sothe VS search isac-
tualy dower. Again, the upper bounds on running times
aregivenintermsof |S|, but in practice, factored represen-
tations can drastically reduce the size of the effective state
space for structured POMDPs.

4 Empirical Evaluation

Threetest problemswere used to carry out the experiments.
The first POMDP is essentially the coffee problem intro-
duced by Boutilier and Poole[2]. The second POMDPisa
variation of thewidget problemdescribed by Draper, Hanks

Problem | State Space Size

Sizeof N ‘ Solution

full | effective | max | aver. | time(s)
Coffee 32 12 102 | 56 47
Widget 32 14 205 | 121 397
Pavement | 128 85 39 16 250

Table 2: Solution statisticsfor the three test problems

and Weld [7]. Thethird POMDP isinspired from the pave-
ment maintenance problem described by Puterman [17].
Since the analysis of the experiments doesn’'t require any
specific domain knowledge, the reader isreferred to[14] in
which the full specification of those problemsis given.

Each of the three problems was solved using Hansen and
Feng's [8] ADD implementation of incremental pruning
(IP) to produce a set R of a-vectorsusing a compact ADD
representation. Each problem is run to 15 stages (dis-
counted). Table 2 shows, for each problem, its full state
space size, |S|, and its effective size, the largest intersec-
tion of abstract (ADD) states encountered during solution
(specifically, the LP-dominance test in IP). The effective
size is more relevant to solution time than |S|. We aso
show the solution time (in seconds) aong with the average
size of the sets R over the fifteen stages and the maximum
Size set.

Once solved, we searched for agood projection scheme for
each POMDP by minimizing different error bounds and/or
using different switch tests, as described above. Specifi-
caly, six algorithms are tested: the B-bound and £-bound
search of [15], which computes switch sets using an LP
and chooses a projection using either the B or £ error
bounds; the VS analogs of these procedures which com-
putes weaker VS-switch sets using the algebraic formula
tion of Section 3.2; and the VS search methods (sum and
max) of Section 3.3, which ignorethese bounds, but instead
try to minimize Eq. 2 or Eq. 3. All search algorithms per-
form a lattice search within the set of projection schemes
that partition variablesin digoint subsets. Furthermore, as-
suming that marginals of at most two variables provide a
suitabl e efficiency/accuracy tradeoff, thelatticeistraversed
until al children of anode correspond to projectionswith a
margina with 3 variables. Thislast nodeis the projection
scheme returned by the search.

We compare thetime required to find a good projection us-
ing thedifferent search proceduresin Table 3. Asexpected,
the running time is much less when using V S-switch tests
(compared to LP-switch tests), since V S-switch testsdo not
require the solution of LPs. Asfor VS search agorithms,
whether we minimize the sum of the relative error rates or
their maximum, the running time is roughly the same and
it is significantly faster than B-bound and £'-bound search
algorithms that use LP-switch tests, but a bit Slower if VS



Problem | Solut.| B-bdsearch| FE-bdsearch | VSsearch Error| B-bdsearch | FE-bd search VS search
time ‘ LP | VS| LP | VS ‘ max | sum LP | VS | LP | VS | max | sum
Coffee 47 1019 | 30 | 4379 | 2651 | 151 | 154 Single [Aver.|0.0352(0.0352(0.0352(0.0352(|0.0082(0.0081
widget 397 10142 | 109 | 89605 | 48695 | 707 | 703 Approx| B-bd|3.4080(3.6270|3.4080(3.6270|3.4080|3.4080
Pavement| 250 345 35 841 126 97 96 Several |Aver.[0.0509(0.0508]0.0508(0.0508[0.0519(0.0517
Approx| £-bd|8.3811(8.3811|8.3811(8.3811|8.3811|8.3811

Table 3: Search running time in seconds

Error

VS search

max

sum

Single
Approx

Aver.
B-bd

0.0013
3.2840

0.0063
5.9150

0.0063
4.3910

0.0063
5.9150

0.0013
3.2840

0.0014
3.2840

Several
Approx

Aver.
E-bd

0.0144
13.085

0.0161
13.085

0.0161
13.085

0.0161
13.085

0.0154
13.085

0.0107
13.085

Table 5: Widget problem: error comparisons

Error

B-bd search

LP

VS

FE-bd search

LP

VS

VS search

max

sum

Single
Approx

Aver.
B-bd

0.0015
5.3860

0.0015
5.6900

0.0015
5.3860

0.0015
5.6900

0.0014
5.3680

0.0014
5.6160

Several
Approx

Aver.
E-bd

0.0066
23.218

0.0066
35.392

0.0066
23.498

0.0066
35.392

0.0071
23.874

0.0028
24.384

Table 4: Coffee problem: error comparisons

switch tests are used for B-bound search. Thisis because,
on the one hand, the VS search does not solve LPs (com-
pared to LP-switch tests), but on the other hand, it has a
stronger dependence on the number of a-vectors (compared
toVS-switch tests). Thetimeto search for good projections
can be much worse than that of solving POMDPs (though
this offline cost trandates into online gains). In fact, only
search procedures that avoid solving LPs scale effectively
to larger problems. In some cases, these offer a decrease of
up totwo orders of magnitude. Therunningtimeof VS pro-
ceduresisroughly of the same order of magnitude asthat of
the POMDP sol ution procedures.

We also comparetheactual average error, aswell asthefor-
mal B and F error bounds, obtained when applyingthe pro-
jection schemes found by various search a gorithms(Tables
4,5 and 6). The average error is the average loss incurred
for 5000 random initia belief states generated from a uni-
form distribution. We see that the average error is essen-
tially the same whether the VS search procedureis used or
some error bound is minimized. As aresult, the dramatic
computational savings associated with the VS procedures
has effectively no impact on solution quality. Note that the
B and £ bounds are much larger than the average error
observed because the bounds are concerned with the worst
case scenario and, furthermore, they are not tight (supersets
of the switch sets are really computed).

5 Concluding Remarks

We have proposed a new approach to value-directed
belief state approximation for POMDPs. Our vector space
approach—using either VS-switch tests or direct VS
search—offers significant computationa benefits over the
value-directed methods proposed by Poupart and Boutilier
[15]. While the error bounds are looser, we have seen in
practice that our new schemes perform as well asthe others

Table 6: Pavement problem: error comparisons

with respect to solution quality; thus the computational
savings are achieved with littleimpact on decision quality.
Furthermore, the vector space model providesnew insights
into the belief state approximation problem and how
approximation impacts decision quality.

Thisnovel view also givesusaccess to numeroustool sfrom
linear algebra to design approximation methods that could
potentialy offer better tradeoffs between decision quality
and monitoring efficiency. For instance, it would be in-
teresting to investigate linear projectors since they alow
the design of linear approximation methods by specifying
(among other things) a displacement subspace Dg which
could be made as perpendicular as possible to the gradi-
ent vectors «;;. Linear projectors are well-studied approx-
imation methods with numerous properties and therefore
they provide a promising aternative for improving value-
directed approximate belief state monitoring.

The success and scalability of our methods strongly de-
pends on the structure and compactness of the a-vectors.
Therefore, one could a so analyze the dependency between
the a-vector structure and the conditional independence
structure of the transition and observation functions. From
alinear al gebra perspective, the a-vectors can be viewed as
adiscounted sum of reward vectors multiplied by transition
and observation matrices. Thus compact and structured «-
vectors could arise when thereward vectorsfall into asmall
invariant subspace of the transition and observation matri-
ces. A possible direction of research would then beto re-
late the conditional independence structure of thetransition
and observation functionswith their eigenvalue and eigen-
vector properties since they define the invariant subspaces.
Thiswould allow us to better characterize the situationsin
which our approach is suitable.

We are currently extending this approach, and its analysis,



inanumber of different directions. First, we motivated this
work by focusing oninfinite-horizon POMDPs, though our
algorithmsand analysisassume afiniteset of «-vectors. Of-
ten oneisforced to approximatethevauefunction (e.qg., by
producing afinite set of vectors where an infinite set isre-
quired, or simply by reducing the number of vectorsto keep
it manageable in size). Our agorithms can be applied di-
rectly to approximate value functions, and we expect that
the analysis can be extended with suitable modifications as
well. We are aso interested in applying the idea of value-
directed monitoring to other representations of value func-
tions and other forms of approximate monitoring. The use
of grid-based value functions[4, 9, 10] providesavery at-
tractive method for producing approximate value functions
for which approximate monitoringwill generally be neces-
sary. We expect that information in grid-based value func-
tionscan be used profitably to direct the choiceof projection
(or other approximation) schemes. The use of value infor-
mation to guide other belief state approximation methodsis
also of tremendous interest: we have recently developed a
sampling (particlefiltering) algorithm that is influenced by
value function information [16]. Finadly, if it is taken for
granted that someform of belief state approximationwill be
used, one might attempt to solve the POMDP to account for
thisfact; that is, can we construct policies that are optimal
subject to the resource constraints placed on the monitoring
process?
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