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Abstract. Multi-Agent Plan Recognition (MAPR) is the problem of in-
ferring the goals and plans of multiple agents given a set of observations.
While previous MAPR approaches have largely focused on recognizing
team structures and behaviors, given perfect and complete observations,
in this paper, we address potentially unreliable observations and tempo-
ral actions. We propose a multi-step compilation technique that enables
the use of AI planning for the computation of the probability distri-
butions of plans and goals, given observations. We present results of
an experimental evaluation on a novel set of benchmarks, using several
temporal and diverse planners.

1 Introduction

Plan recognition (PR) – the ability to recognize the plans and goals of agents
from observations – is useful in a myriad of applications including intelligent
user interfaces, conversational agents, intrusion detection, video surveillance,
and now increasingly in support of human-machine and machine-machine in-
teractions. Originally conceived in the context of single agent plan recognition
(e.g., [1]), recent work has turned to the more complex task of Multi-Agent Plan
Recognition (MAPR). In MAPR, the goals and/or plans of multiple agents are
hypothesized, based upon observations of the agents, providing a richer paradigm
for addressing many of the applications noted above. Early work in this area
(e.g., [2]) limited observations to activity-sequences, and focused the recognition
task on the identification of dynamic team structures and team behaviors, rel-
ative to a predefined plan library. While this formulation is effective for certain
classes of problems, it does not capture important nuances that are evident in
many real-world MAPR tasks. To this end, we provide in this paper an enriched
characterization of MAPR that provides support for a richer representation of
the capabilities of agents and the nature of observations. In particular, we sup-
port (1) differing skills and capabilities of individual agents; (2) agent skills and
actions that are durative or temporal in nature (e.g., washing dishes or other
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durative processes (cf. [3])); (3) observations with respect to the state of the
system; such observations range over fluents rather than over actions as actions
may not be directly observable but rather inferred via the changes they manifest;
(4) observations that are missing or unexplainable (i.e. cannot be accounted for
by agents’ actions).

Our approach to addressing this problem is to conceive the computational
core of MAPR as a planning task, following in the spirit of the single-agent char-
acterization of plan recognition as planning proposed by Ramı́rez and Geffner
[4]. This contrasts with much of the previous work on MAPR which requires
explicit plan libraries. To realize MAPR as planning, we propose a two-step
compilation process that takes a MAPR problem as input. We first compile
away the multi-agent aspect of the problem and then we compile away the ob-
servations. The resulting planning problem is temporal, has temporal actions
and temporal constraints; hence, temporal or makespan-sensitive planners can
be applied to generate plans that are then post-processed to yield a solution to
the original MAPR problem. We propose three different approaches to gener-
ating high-quality MAPR results, evaluating them experimentally. Using these
approaches, we are able to compute the probability distributions of plans and
goals, given observations. The main contributions of this paper are: (i) a for-
malization of the MAPR problem with unreliable observations over fluents, and
actions that are temporal or durative in nature; (ii) characterization of MAPR
as planning via a two-step compilation technique that enables the use of tem-
poral AI planning on the transformed planning problem; (iii) three approaches
to computing the probability distributions of goals and plans given the observa-
tions; (iv) a set of novel benchmarks that will allow for a standard evaluation of
solutions to the MAPR problem; (v) experimental evaluation and comparison of
our proposed techniques on this set of benchmarks.

2 Problem Definition

In this section, we review basic definitions, and introduce the multi-agent plan
recognition problem with temporal actions and its solution.

Definition 1 (MAPP with Temporal Actions). A Multi-Agent Planning
Problem (MAPP) with temporal actions is a tuple Pm = (F, {Ai}Ni=1, I, G),
where F is a finite set of fluent symbols, I ⊆ F defines the initial state, and
G is the goal of the multi-agent problem, achieved by N agents, each with their
own set of temporal action descriptions, Ai.

Each temporal action a ∈ Ai, as defined in [3], is associated with a duration,
d(a), precondition at start, pres(a), precondition over all, preo(a), precondition
at end, pree(a), add effects at start, adds(a), add effects at end, adde(a), delete
effects at start, dels(a), and delete effects at end, dele(a). The semantics of
a temporal action is often given using two non-temporal actions “start” and
“end”. Additionally, the overall precondition, preo(a) must hold in every state
in between. The solution to Pm is a set of action-time pairs, allowing actions to



occur concurrently, where each action is executable, and the goal G holds in the
final state. The makespan of the solution is the total time that elapses between
the beginning of the first action and the end of the final action.

Next, we define the plan recognition problem with temporal actions, as well
as unexplainable and missing observations, adapting the definitions of Sohrabi
et al. [5], where quality as measured by cost is used instead of action durations.

Definition 2 (PR Problem with Temporal Actions). A plan recognition
problem with temporal actions is a tuple P r = (F,A, I,O,G,prob), where F ,
I, are defined as before, A is a set of temporal actions as defined earlier, O =
[o1, ..., om] is the sequence of observations, where ok = (fk, tk), 1 ≤ k ≤ m,
fk ∈ F is the observed fluent, tk is the time fk was observed, and ∀oi, oj, if i < j
then ti < tj. G is the set of possible goals G, G ⊆ F , and prob is the probability
of a goal, P (G), or the goal priors.

Definition 3 (Unexplainable/Missing Observations). Given an observa-
tion sequence O and a plan π for a particular goal G, an observation o = (f, t)
in O is said to be unexplainable (aka noisy), if f is a fluent that does not arise
as the consequence of any of the actions ai from the plan π for G. In contrast, an
observation o′ = (f ′, t′) is said to be missing from O, if o′ is not in the sequence
O and f ′ is added by at least one of the executed actions ai ∈ π.

In this paper, we consider sequences of observations where each observation
oi ∈ O is an observable fluent, with a timestamp that indicates when that
fluent was observed. To address the unexplainable observations, Sohrabi et al.
[5] modifies the definition of satisfaction of an observation sequence by an action
sequence introduced in [4] to allow for observations to be left unexplained. Given
an execution trace and an action sequence, an observation sequence is said to
be satisfied by an action sequence and its execution trace if there is a non-
decreasing function that maps the observation indices into the state indices as
either explained or discarded. Hence, observations are all considered, while some
can be left unexplained. Next, we define the problem we address in this paper.

Definition 4 (MAPR Problem with Temporal Actions). The Multi-Agent
Plan Recognition (MAPR) problem with temporal actions is described as a tuple
P = (F, {Ai}Ni=1, I, O, Z,G,prob), where F is a finite set of fluents, Ai is a
set of temporal actions for agent i, 1 ≤ i ≤ N , I ⊆ F defines the initial state,
O = [o1, ..., om] is the sequence of observations, where ok = (fk, tk), 1 ≤ k ≤ m,
fk ∈ F is the observed fluent, tk is the time fk was observed, Z is a set of agents
(each element in Z corresponds to an index between 1 and N), 1 ≤ |Z| ≤ N ,
G is the set of possible goals, G ∈ G, pertaining to the set of agents Z, G ⊆ F ,
prob is the prior probability of a goal, P (G).

Given a MAPR problem with temporal actions, P , a solution to P is in the
form of two probability distributions. The first is the probability of plans given
the observations, P (π|O), where each π is a plan that achieves a goal G ∈ G,
satisfies the observation sequence, O, and involves at least one action performed



by an agent in Z. The second distribution is the probability of goals given the
observations, P (G|O), where each G assigned a non-zero probability is a goal
achieved by a plan in the first distribution.

3 Transformation

In this section, we briefly describe our multi-step compilation technique compila-
tion technique that allows the use of temporal planning on the MAPR problem.
The pipeline consists of transforming a MAPR problem as defined in Defini-
tion 4 into a single agent plan recognition problem with temporal actions, and
a transformation step that compiles away the observations, allowing the use of
temporal planning to compute the posterior probabilities of goals.

To transform the original MAPR problem with temporal actions to a sin-
gle agent PR problem with temporal actions, we compile away the multi-agent
information by using special predicates that keep track of an agent’s access to
fluents and objects; every object o and agent i in the domain are assigned a
corresponding fluent. For an agent i to be allowed to execute an action on object
o, a precondition must be met, in which the corresponding fluent holds.

To incorporate a temporal aspect into the compilation process, our work re-
places the notion of cost with that of duration, and compiles the observations
into temporal actions that are part of the transformed temporal planning do-
main. The transformation compiles away observations, using special predicates
for each fluent in the observation sequence O, while ensuring that their order is
preserved. We also add extra actions, “explain” and “discard” for each observa-
tion with a penalty to the “discard” action to encourage the planner to explain
as many observations as possible. We also update the duration of the original
actions, by adding a constant duration to each action; this is the penalty for
the possible missing observations, which encourages the planner to use as few
unobserved actions as possible. The transformation ensures that observation o1
with timestamp t1 will be considered (explained or discarded) before observa-
tion o2 with timestamp t2, where t1 < t2. Finally, in order to allow the use of
diverse planning, the goal of the transformed planning problem is set such that
all observations are considered and at least one of the goals G ∈ G is achieved.

Theorem 1. Given a MAPR problem with temporal actions, P = (F, {Ai}Ni=1,
I, O, Z,G,prob), as defined in Def. 4, where |Z| = N , and the corresponding
transformed temporal planning problem P ′ = (F ′, A′, I ′, G′) as described above,
for all G ∈ G, if π is a plan for the planning problem (F, {Ai}Ni=1, I, G), then
there exists a plan π′ for the corresponding planning problem, P ′, such that the
plan π can be constructed straightforwardly from π′.

Proof is based on the fact that the extra actions only preserve the order-
ing amongst the observations and do not change the state of the world. The
makespans of plans in the transformed planning problem map to V (π), which is
used to approximate P (O|π)P (π|G); thus, the probability distributions, P (G|O)
and P (π|O), can be computed using these makespans.



4 Computation

In this section, we briefly describe our approaches to computing a solution to
the MAPR problem, as described in Definition 4, namely the probability distri-
butions of plans and goals, given observations. For further details, we refer the
reader to [6].

Delta - This approach is based on finding, for each of the goals, the delta
between the costs of two plans, one that explains the observations and one that
does not; this method is a modification of the goal recognition approach proposed
in [4]. The delta is found by running the planner twice for each goal.

Diverse - This approach computes the probability distribution of goals by
finding a set of diverse plans, that serves as a representative approximation of
the distribution of plans that satisfy the observations and achieve one of the
possible goals (P (π|O)); it is a modification of the proposed approach in [5].
The set of diverse plans, which serves as an approximation to the probability
distribution of plans and goals, given O, is found by running a diverse temporal
planner on the transformed planning problem.

Hybrid - This approach is a combination of the two previous approaches,
in that it computes a set of plans for each goal. In order to take advantage of
both previous approaches, we propose an approach in which we use a temporal
planner to compute a smaller set of plans for each of the goals. After merging
the sets of plans, we are able to compute the probability distribution of goals,
just as we did in the Diverse approach.

5 Experimental Evaluation

In this section, we briefly present the results of our experimental evaluation. For
further details, we refer the reader to [6]. To evaluate our MAPR approach, we
used a temporal planner, LPG-TD [7], for the delta approach and the hybrid
approach, and a diverse planner, LPG-d [8], for the diverse approach. We have
created, for evaluation purposes, a set of novel benchmarks, based on Interna-
tional Planning Competition (IPC) domains, namely Rovers, Depots, Satellites,
and ZenoTravel. We modified the domains to create benchmark problems for the
MAPR problem with temporal actions. In addition, we have introduced missing
observations, by creating several variations of each problem that did not include
the full observation sequence. Lastly, we have introduced noise by adding extra
random observations, with two different levels of noise.

To evaluate the coverage and accuracy of our approaches on the goal recogni-
tion task, we compute the average percentage of instances in which the ground
truth goal was deemed most and less likely, i.e., whether or not the ground
truth goal was assigned the highest posterior probability given the observations.
Our results (shown in [6]) show that the Delta approach, on average, does best
(i.e., deems the ground truth goal most likely) across all domains when obser-
vations are reliable and no noise is introduced. Further, on average, over all our
problems, when unreliable observations were not introduced, Delta deemed the



ground truth goal most likely in 77% of cases, Diverse - 75% of cases, and
Hybrid - 49% of cases.

The total number of problems solved by each approach is as follows: Delta
- 458/912; Diverse - 611/912; Hybrid - 790/912. Note that approach 1 man-
ages to solve the least amount of problems, on average, compared to the other
approaches. We plan to conduct further experimentation, testing both the ro-
bustness and scalability of our approach.

6 Discussion

The merit of this paper is that it provides a way to solve an important class of
Multi-Agent Plan Recognition problems that could not previously be addressed.
It does so by leveraging and augmenting a combination of ideas from single
agent plan recognition and multi-agent planning. Solving this class of problems,
with unreliable observations and temporal actions, is paramount to the appli-
cability of a MAPR approach to many real-world instantiations of the problem.
Furthermore, our formalization allows for much needed expressivity, while also
providing the foundation for incorporation of various important and interesting
aspects of the problem, including, for example, agents with varying and limited
knowledge of the state of the world and with differing physical and even cogni-
tive capabilities. Finally, our work enables the application of a MAPR approach
to previously unaddressed problems, by modeling them in planning domains. By
enabling the use of existing temporal planners, one can choose the planner that
works best for their domain and compute a solution to their MAPR problem.
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