
Chapter 9
A Millian Look at the Logic of Clinical
Trials

Roberto Festa, Gustavo Cevolani, and Luca Tambolo

Abstract The use of a certain drug or treatment in the cure of a disease or condition
should be based on appropriate tests of the hypothesis that said drug or treatment
is efficacious in the cure of the disease or condition at hand. In this paper, we aim
at elucidating how such “efficacy hypotheses” are tested and evaluated, especially
in clinical trials. More precisely, we shall suggest that the principles governing the
assessment of efficacy hypotheses, and, more generally, hypotheses of statistical
causality, are provided by an appropriate statistical version of such a venerable
procedure as the method of difference put forward by John Stuart Mill.
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9.1 Introduction

The use of a certain drug or treatment in the cure of a disease or condition should be
based on appropriate tests of the hypothesis that said drug or treatment is efficacious
in the cure of the disease or condition at hand. Let us call hypotheses of this
kind “efficacy hypotheses”. The problem of how to assess efficacy hypotheses is
crucial not only in pharmacology and clinical epidemiology, but also in many other
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fields, ranging from agriculture—where, to mention but one example, one needs
to appraise the efficacy of new pesticides—to the implementation of any policy
recommendation, whose efficacy needs to be properly evaluated. The principles
governing the assessment of efficacy hypotheses are arguably the same in all these
different areas. It then comes as no surprise that the problem of how to precisely
characterize such principles has steadily attracted the attention of both practicing
scientists and philosophers interested in the analysis of scientific reasoning and
inference.
The great amount of work devoted to the above problem has so far produced

some agreement on few crucial points. For instance, most scholars would agree
that efficacy hypotheses are a special kind of causal statistical hypotheses, i.e.,
hypotheses aimed at identifying the cause of a statistical difference between two
relevant groups (consider, as an example, the administering of a certain drug as the
cause of a greater frequency of remissions among the members of the treatment
group as compared to those of the control group in a properly conducted clinical
trial). Granted this point of agreement, however, heated controversies concern,
among other issues, the very meaning of efficacy hypotheses: philosophers and
epidemiologists disagree, for instance, on the precise nature of the causal claims
expressed by causal statistical hypotheses (see, e.g., Broadbent 2013). Still other
debates concern the most adequate statistical methods to test such hypotheses, and
many different proposals have been put forward within the two most important
approaches to statistical inferences, the orthodox and the Bayesian one.
In this paper, we shall not delve into such debates. In particular, we shall not try to

compare and evaluate the different methods of hypotheses assessment proposed in
the literature. Instead, our aim will be to identify the common, qualitative “cognitive
structures” (Kuipers 2001) underlying all of those methods, and hence to capture the
“core” logic of efficacy hypotheses assessment. More specifically, we shall suggest
that the basic principles governing the assessment of efficacy hypotheses, and of
causal statistical hypotheses in general, are provided by an appropriate statistical
version of such a time-honored procedure as the method of difference put forward
by John Stuart Mill. To use Worrall’s (2007a) apt phrase, our analysis will then
provide a description of a key component of the “scientific commonsense”, that is, a
set of qualitative principles underlying such diverse theories of scientific method as
Popperian falsificationism and Bayesianism, as well as the best scientific practice.
Roughly, Mill’s method of difference (MD) aims at identifying the sufficient

cause of a given phenomenon by eliminating all the other possible causes. The
statistical version of Mill’s method of difference (SMD), that we shall articulate
here, aims at identifying the cause responsible for a significant statistical difference
between two samples drawn from a given population by ruling out the alternative
hypothesis that such difference is the result of chance. As we shall argue, SMD
underlies various kinds of clinical trials and, more generally, methods of controlled
inquiry widely deployed in the empirical sciences. Interestingly (as we shall see
in Sect. 9.4), both philosophers and epidemiologists have often highlighted before,
if only occasionally, the possible relevance of Mill’s method for the assessment of
causal statistical hypotheses. Still, quite surprisingly, to the best of our knowledge
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none of them has provided a detailed characterization of such method as applied in
the statistical case.
We shall proceed as follows. In Sect. 9.2, we shall briefly survey the key features

of randomized controlled trials (RCTs), which in spite of increasing criticism are
still the method of choice for the assessment of efficacy hypotheses in clinical
research. We shall focus on RCTs as the clearest instance of controlled inquiry,
illustrating some crucial issues concerning efficacy assessment that are common
to many other methods, like case-control and cohort studies. Our conclusions, in
any case, apply more generally to all kinds of controlled trials, both inside and
outside epidemiology. In Sect. 9.3, we shall put forward our Millian analysis of
the assessment of efficacy hypotheses. Section 9.3.1 presents Mill’s method of
difference; we then introduce its statistical version in Sect. 9.3.2 and show how
it applies to reconstructing the logic of clinical trials in Sect. 9.3.3. As we shall
argue in Sect. 9.4, the Millian insight underlying our statistical method of difference
uncovers a fundamental principle of scientific commonsense. In Sect. 9.5, we shall
offer some concluding remarks and hints at future research.

9.2 Clinical Trials

In clinical research, one typically evaluates hypotheses concerning the efficacy
of treatments on the basis of controlled trials. We can summarize the standard
aspects of controlled clinical trials as follows. In order to assess the efficacy of
some treatment T for a given disease or condition, researchers will go through the
following fairly standard steps (see, e.g., Chow and Liu 2004; Day 2007):

(1) An experimental population P of patients suffering from the disease, and eligible for
the trial, is identified. (“Eligible” means here, for instance, that members of P do not
suffer from other pathologies, are not too old or too young, and so on.)

(2) A large sample S of patients, who agreed to participate in the trial, is drawn from
population P.

(3) S is divided into two groups: the “treatment group”, including the participants admin-
istered with T, and the “control group”, including those receiving some control
treatment, which may be a placebo, the standard treatment for the relevant disease, or
even nothing at all.

(4) The outcome of the trial, i.e., the course of the disease in all participants, is ascertained
by standardized procedures.

(5) The efficacy of T is assessed on the basis of an appropriate statistical analysis of the
observed outcome of the trial.

Well-known problems arise with the procedure outlined above, especially in
relation to steps 3–5. A crucial issue concerns step 3, i.e., how to split the sample
in the treatment and control groups. In principle, one would require the two groups
to be essentially similar with respect to every relevant variable which might affect
the course of the disease, as, for instance, sex, age, and so on. The reason is clear:
the possible differences in the outcomes within the two groups can be reasonably
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attributed to the action of T only if all the relevant variables are similarly distributed
across the treatment and control groups.
However, a short reflection suggests that the above requirement is too strong

in practice. Indeed, researchers can never guarantee that the treatment and control
groups are essentially similar with respect to every relevant variable. At best, they
will be able to control for those variables already known to be relevant for the course
of the disease. This means that one can never exclude that the two groups will
actually differ with respect to some variables, whose relevance is however unknown.
In order to minimize the probability that this occurs, researchers commonly employ
so called randomized controlled trials (RCTs),1 that is, a kind of controlled trial
where members of the relevant sample S are allocated to either the treatment or the
control group by randomization, i.e., by using some random mechanism.
To put it differently, one crucial reason to employ RCTs is to reduce the so

called selection bias, i.e., to minimize the probability that the treatment and control
groups are unbalanced with respect to some relevant variable: randomization should
maximize the probability that the two groups are essentially similar with respect to
any relevant variable, including those which one does not know are relevant for the
given disease. For instance, suppose that some food habit, mistakenly believed to be
irrelevant for the evolution of the condition, is in fact relevant. Randomization, its
advocates argue, makes it highly probable that the treatment and control groups will
include approximately equal proportions of participants with the relevant habit.
The selection bias is not the only systematic error which may affect the outcome

of clinical trials. Another source of biases is related to the participants’ expectations
concerning the effect of the treatment. In particular, knowing to which group
one belongs may significantly affect the course of a disease. Moreover, also the
expectations of the researchers may well distort the outcome of the trial. For these
reasons, one should make sure that neither participants nor researchers will be able
to learn to which group each participant has been allocated. To this aim, the standard
technique is to design a double-blind RCT, i.e., an RCT where both participants and
researchers are unaware of whether any given participant belongs to the treatment
or the control group. This implies, in particular, that the patients should be unable to
tell the studied treatment T from the treatment administered to the control group (see
Jenkins 2004, Ch. 2, for a vivid illustration of the difficulties that this engenders).
In this connection, it seems beyond doubt that in the case of various diseases a

treatment T, for the simple fact of being administered, will improve the condition
of the patient; in other words, that T will have a more or less significant placebo

1Since the second half of twentieth century, RCTs have progressively gained the status of the
method of choice first in clinical research and other fields of health care and later also in social and
public policy. Their increasing popularity has recently attracted renewed critical attention on RCTs,
and a growing body of literature has highlighted their limitations (see, e.g., Rothwell 2005, 2008;
Bluhm 2007; Cartwright 2007, 2012; Howick 2011). Moreover, the alleged advantages deriving
from randomization have been doubted (see, e.g., Urbach 1985; Howson and Urbach 2006. Ch.
6; Worrall 2007b; Howick 2011; Saint-Mont 2015), and a vocal minority has advocated instead
Bayesian trials (see, e.g., Kadane 1996; Teira 2011).
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effect (see, e.g., Benedetti 2008). For the moment, a placebo may be defined as
any treatment that the practitioner believes to have no specific therapeutic efficacy
for a certain disease.2 A classic example of placebo is the pillula panis (bread
pill), widely used in medicine since at least the Eighteenth century. Given that as
hinted above the placebo effect manifests itself in connection with various diseases,
assessing the efficacy of a treatment T for such conditions typically means to check
whether the effect of T is merely a placebo effect. This is the reason why the
members of the control group are usually administered an appropriate placebo,
which is as similar as possible to T. This is crucial since the intensity of the placebo
effect is affected by many variables, including the mode of administration and the
context of medical intervention. As an example, generally a treatment administered
at the patient’s home does not have the same effect as when administered at the
hospital (see Kaptchuk et al. 2000). For this reason, researchers testing a new
treatment T look for a placebo such that its outlook, its mode of administration,
and its collateral effects are identical to those of T. If this condition is satisfied,
then the possible differences between the course of the disease in the treatment and
control groups may be attributed with some confidence to the active component of
the treatment. What this exactly means will be the topic of the next section.

9.3 Assessing Hypotheses with the Method of Difference

As recalled in the foregoing section, a clinical trial aims at assessing the efficacy of
some treatment for a given condition. In this section, we shall argue that the logical
structure of clinical trials is best reconstructed as a statistical version of the well-
known “method of difference”, an inference schema introduced by John Stuart Mill
(1806–1873) in his System of Logic (1843). We shall start by briefly describing how
the method of difference may be used in assessing hypotheses of sufficient causality
(Sect. 9.3.1). We shall then introduce a statistical version of this method that, as we
shall argue, may be applied to the assessment of hypotheses of statistical causality
(Sect. 9.3.2) and, in particular, of hypotheses of efficacy as tested in clinical trials
(Sect. 9.3.3).

2A more precise definition will follow in Sect. 9.3.3. There is a wide scientific and philosophical
literature devoted to the attempt to provide an adequate definition of the concept of placebo: see,
for instance, Grünbaum 1993, Kaptchuk 1998, Macedo et al. 2003, Howick 2011, Broadbent 2013,
Miller et al. 2013, Holman 2015.
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9.3.1 Hypotheses of Sufficient Causality

Imagine that a group of researchers is investigating the causal relations occurring
among some features exhibited by the individuals3 belonging to a given population
P. In the course of their inquiry, researchers might come to consider what we call
hypotheses of sufficient causality. A hypothesis of sufficient causality H has the
form “C is a sufficient cause of E (in P)”, where both C and E are features that
may characterize the individuals of P. It is common to construe H as a universal
hypothesis, restating it as follows:

All the individuals (of P) exhibiting C also exhibit E,

or, equivalently, “If an individual (of P) exhibits C, it also exhibits E”. In the
following, we shall often omit the reference to the relevant population P, which
we take as tacitly understood. Moreover, we shall call “phenomenon” any feature
E which is investigated as the possible effect of some cause, and “conditions”
the features C, C1, . . . , Cn which are considered as possible sufficient causes
of E. To illustrate, suppose that researchers are investigating a case of foodborne
illness, so that the relevant phenomenon E is some kind of intoxication. The aim
of the investigation is then to discover a sufficient cause of E among a number of
possible conditions C, C1, . . . , Cn, like having consumed particular kinds of food
(an example will follow in moment).
Dealing with the inference of causal hypotheses, Mill proposed his famous five

“canons” of induction, which included the method of difference (Mill 1843, book
III, ch. VIII, sec. 2, p. 256):

if an instance in which the phenomenon under investigation occurs, and an instance in which
it does not occur, have every circumstance in common save one, that one occurring in the
former; the circumstance in which alone the two instances differ, is the effect, or the cause,
or an indispensable part of the cause, of the phenomenon.

Since Mill’s formulation may not be fully transparent, in the literature one finds
various ways of restating the method of difference in more rigorous terms (see
van Heuveln 2000 for a survey). Our proposed reconstruction of the method is the
following:

(MD) Suppose you are investigating a phenomenon E (in population P) and
accept the assumption A that “At least one of the conditions C, C1, . . . , Cn is
a sufficient cause of E”. Moreover, suppose that, by considering two different
individuals a and b in P, you make the observation O that “E is present in a and
absent in b, C is present in a and absent in b, and C1, . . . , Cn are all present both
in a and in b”. Then you can infer H, i.e., that C is a sufficient cause of E.

3We use here the term “individual” in a quite wide sense here, to denote not only persons or
organisms, but also different kinds of objects or events. For instance, different portions of lands, or
even different policies, may be individuals in our sense (cf., e.g., Holland 1986, p. 945).



9 A Millian Look at the Logic of Clinical Trials 193

Let us illustrate how MD works by means of a simple example. Suppose that Adam
and Eve are two friends who had dinner together last night. In the morning, Adam
feels sick, while Eve is fine: thus, there is a phenomenon E (the illness in question,
or better its symptoms, like, say, vomit, aches, and fever) affecting Adam but not
Eve. A reasonable assumption (A) is that Adam’s illness may depend on some of
the foods served at dinner being noxious for Adam. After a short reflection, the two
friends realize that only Adam, but not Eve, had mushrooms as garnish for the steak,
while all other courses — say soup, steak, and cake — were the same for both. In
other words, there is a condition C (having eaten mushrooms) which affects Adam
but not Eve, whereas all other conditions — i.e., C1 (eating soup), C2 (eating steak),
and C3 (eating cake) — have been common for both of them. Such observation (O)
is graphically represented in Table 9.1. On the basis of it, one has reasons to suspect
that eating mushrooms (C) was the cause of Adam’s intoxication. Moreover, one
can presume that also other guests of the same restaurant, who also had mushrooms
for dinner last night, will be probably intoxicated as well.
Let us now consider the general case. Table 9.2 represents the general form of

observation O appearing in our formulation of the method of difference. Here the
presence of E in a is indicated by “+” and its absence in b by “−”; similarly, “+”
(“−”) is used to indicate the presence (absence) of each condition C, C1, . . . , Cn in
a and b.
It should be clear where the name “method of difference” comes from. It refers

to the key intuition underlying Mill’s method: observation O shows that, as far as
features E, C, C1, . . . , Cn, are concerned, there are only two differences between the
individuals a and b: first,C is present in awhile absent in b; second, E is present in a
while absent in b. It is then natural to conclude that the former difference is the cause
of the latter, i.e., that a has E just because it has C. Moreover, under appropriate
circumstances, one may generalize this inference and conclude that, presumably, C
is a sufficient cause of E in the whole population P.

Table 9.1 A toy application of the method of difference MD: eating mushrooms is identified as
the sufficient cause of Adam’s intoxication

Individuals Possible sufficient causes Phenomenon
Mushrooms Soup Steak Cake Illness

Adam Yes Yes Yes Yes Yes
Eve No Yes Yes Yes No

Table 9.2 General form of the method of difference MD: observation O shows that the presence
of condition C in individual a, but not in b, is a cause of the presence of E in a, but not in b.

Individuals Possible sufficient causes Phenomenon

C C1 . . . Ci . . . Cn E

a + + + + +
b − + + + −
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The plausibility of the inference licensed by MD is relatively uncontroversial.
Still, long debates have addressed the question of how to rigorously characterize
and justify such kind of inference. In particular, one may ask under what conditions
MD can be properly applied, so that H can be reliably inferred from observation O.
For what concerns us here, it will be sufficient to recall the following points, which
are generally agreed upon (cf. Mackie 1980; Skyrms 2000; Hurley 2012).
First, it should be clear that H is a deductive consequence of A & O. In fact,

if assumption A concerning the possible sufficient causes of E is true, and if
observation O is correct, then H must be true, i.e., C must be a sufficient cause
of E. In our example, if one is sure that the symptoms affecting a may only depend
on one of the foods served at dinner, then eating mushrooms has to be the cause of
the illness, since all the other possible causes have been excluded. As already this
simple example suggests, however, in typical situations one cannot be completely
certain that A is true. Consequently, one cannot be sure that H is true, in spite of the
fact that H deductively follows from A & O.
Second, H is not a deductive consequence of observation O alone. In fact, it

is logically possible that H is false even though O is true: we cannot rule out that,
sooner or later, one will stumble upon an individual of P exhibiting C but not E. This
would mean that assumption A is false, i.e., that none of the conditions C, C 1, . . . ,
Cn is actually a sufficient cause of E. For instance, suppose it turns out that, on the
morning Adam feels sick, other guests of the restaurant, who also had mushrooms
for dinner, are however perfectly fine. In such scenario, eating mushrooms can be
excluded as a sufficient cause of a’s illness: some other cause, such as a previously
acquired gastroenteritis, has to be identified.
Third, even if H cannot be deductively inferred from O alone, it can be

however inductively inferred from O. Depending on the underlying epistemological
framework, one can defend this claim in different ways. Within the Bayesian
approach, for instance, one may argue that H inductively follows from O in the
sense that O increases the initial probability of H or, in equivalent terms, that
O confirms H (see, e.g., Crupi 2016). This can be proved as follows. Let p(A)
be the initial probability attributed to A in the light of the available background
knowledge. Since H logically entails A, but not vice versa, inequality p(A) > p(H)
holds. However, O logically implies that H and A are, in fact, logically equivalent.
In turn, this implies that p(H|O) = p(A|O). Since there is no reason to think that
O affects the initial probability of A, one can plausibly assume that p(A|O) = p(A)
holds. From the (in)equalities so obtained—i.e., p(H|O) = p(A|O), p(A|O) = p(A),
and p(A) > p(H)—it follows that p(H|O) > p(H). This means that O increases the
initial probability of H or, which is the same, that O confirms H. Finally, one may
also argue that H inductively follows from O in another sense: i.e., that the final
probability p(H|O) of H given O is significantly high. Indeed, given the above
equalities p(H|O) = p(A|O) and p(A|O) = p(A), p(H|O) will be high just in case
p(A) is. In other words, if the initial probability attributed to A on the ground
of the available background knowledge is high, the final probability of H will be
comparably high.
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In sum, while the method of difference MD, in typical circumstances, licenses
conclusions that are not certainly true, it can provide good reasons to accept them
with reasonably high confidence.

9.3.2 Hypotheses of Statistical Causality

In most real-life circumstances, and especially in the medical domain, it is typ-
ically very difficult, if not plainly impossible, to identify a sufficient cause of a
phenomenon E. For instance, in many cases, eating mushrooms of a certain species
is not a sufficient cause of illness: it may be that most, but not all, individuals
eating themwill feel sick, perhaps depending on their personal allergies, intolerance,
medical history, and on the complex combination of these and other, possibly
unknown, factors. Even in such cases, however, the search for causal relations is not
entirely hopeless. In fact, researchers will often rest content with investigating what
one may call hypotheses of statistical causality. There are many ways of interpreting
a hypothesis H like “C is a statistical cause of E in population P”; one, particularly
useful for our purposes, is the “comparative model” proposed by Giere (1979, sec.
9.5).
According to Giere, we may construe the hypothesis “C is a statistical cause of

E” as comparing two “hypothetical populations”, to be called PC and P¬C. These are
obtained by altering the actual population P in two different ways: PC by imaging
“everyone in the population [P] as having [C], but otherwise the same in all relevant
respects” (Giere 1979, p. 177), and P¬C by imaging no one in P as having C, but
otherwise the same in all relevant respects. Then, “C is a statistical cause of E”
simply means that the number of individuals exhibiting E is greater in PC than in
P¬C. For instance, suppose that P is the group of people who had dinner in our
restaurant last night; probably, some of them did eat mushrooms (C), and others did
not (¬C). Within this framework, PC is construed as the same as population P, with
the only difference that everybody had mushrooms for dinner; and P¬C is the same
as P except for the fact that nobody had mushrooms. The meaning of hypothesis H,
in this case, is that there would be more sick people in the former population than
in the latter.
In the following, we shall express a hypothesis H of statistical causality in this

form:

C is a statistical cause of E in P if and only if %EC > %E¬C.

Here, %EC and %E¬C are the percentages of the individuals exhibiting E in PC and
P¬C, respectively; in other words, H says that the frequency of E in PC is greater
than in P¬C, or that C is a “positively relevant factor” for E. This latter terminology
is justified by noting that a statistical cause, in the sense just defined, is but a special
case of a more general notion, that of a “causally relevant” factor. In words, C is
causally relevant for E just in case the frequencies of E in PC and P¬C are not
identical (i.e., %EC �= %E¬C). In the opposite case, when %EC = %E¬C, C is
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causally irrelevant for E. Thus, a statistical cause is a particular kind of causally
relevant factor, i.e., a positively relevant factor.
Assessing a hypothesis of statistical causality H, then, amounts to assessing

whether C is a positively relevant factor for E. The most direct way to do this would
be to check whether the number of individuals having E is greater in PC than it is in
P¬C, i.e., whether %EC > %E¬C. This, however, is impossible, for the plain reason
that both PC and P¬C are hypothetical, and not actual, populations. Since the only
actual population is P, what one can do is to draw a large sample S from P, and
then divide the sample into two parts, SC and S¬C, such that all the individuals in
SC have C and none of the individuals in S¬C has C (more below on the appropriate
procedures to adequately split S in this way). Arguably, SC and S¬C “play the role
of samples from the two hypothetical populations” PC and P¬C, since these samples
“are just as if they had been sampled from the two hypothetical populations” (Giere
1979, p. 249).4 Finally, one can check whether the percentage %eC of the individuals
exhibiting E in SC is higher than the percentage %e¬C of individuals having E in
S¬C.
The intuition outlined above underlies what we call the statistical method of

difference, SMD for short:

(SMD) Suppose you are investigating a phenomenon E (in population P) and you
accept the assumption A that “Conditions C, C1, . . . , Cn include all causally
relevant factors for E”. Moreover, suppose that, by considering two samples SC
and S¬C from P, you make the observation O that “%eC is much greater than
%e¬C, while the two samples are otherwise ‘balanced’ with respect to C1, . . . ,
Cn”. Then you can infer H, i.e., that C is a statistical cause of E.

Here, that the two samples are balanced means that they include roughly the same
percentage of individuals having Ci as population P. More precisely, note that, by
their very definition, the two hypothetical populations PC and P¬C contain exactly
the same percentage %Ci of individuals exhibiting Ci, for any condition Ci different
from C; as far as the latter condition is concerned, PC and P¬C contain, respectively,
100% and 0% of individuals having C. This latter point holds also for the two

4Giere’s passage is worth quoting at length:

[...] we create samples that play the role of samples from the two hypothetical populations
[PC and P¬C]. We do this by taking a sample from the real population and then dividing it
in two parts [i.e., SC and S¬C]. All the individuals in one part [i.e., SC] are experimentally
manipulated so that they have the condition [C] that defines the hypothetical population
[PC]. The individuals in the other part [i.e., S¬C] are experimentally manipulated so that
they have the condition [¬C]. These two groups, then, are just as if they had been sampled
from the two hypothetical populations [PC and P¬C].

Here Giere refers to an experimental inquiry, where researchers can control the condition C by
manipulating individuals taken from P in order to create, as it were, C-individuals. However,
Giere’s insight can be easily adapted to purely observational contexts, where researchers lack full
control on C, but still can observe whether an individual drawn from P exhibits, or not, C. Also in
this case, in fact, they can adequately form the two relevant samples SC and S¬C.



9 A Millian Look at the Logic of Clinical Trials 197

samples SC and S¬C: all individuals in the former, and none in the latter, exhibit
C. What distinguishes the hypothetical populations from the actual samples is that
the percentage of individuals having Ci (for Ci �= C) may differ in the two samples.
This means two things: first, that the frequency of individuals having Ci in SC may
differ from the corresponding frequency in S¬C; and, second, that both those figures
may differ from the actual frequency %Ci of the conditions in P. In short, the
frequencies of individuals exhibiting Ci in SC, S¬C, and P will often be, at best,
only approximately equal; this is normally expressed by saying that SC and S¬C are
“balanced” with respect to any Ci �= C. Table 9.3 displays the ideal special case
where the two samples are “perfectly balanced”.
The structural similarity between Table 9.3 and Table 9.2 makes it clear why

SMD can be construed as a statistical version of MD. In fact, the key intuition
underlying both methods is the same. In the present case, this amounts to the
following: there are only two substantial differences between the two samples SC
and S¬C. The first, as just recalled, is that, by definition, all members of SC and
no member of S¬C exhibit C. The second substantial difference, highlighted by
observation O, is that the frequency of E in SC is much higher than in S¬C. Hence,
one can plausibly infer that the second difference depends on the first, in the sense
that the higher frequency of E in SC is caused by the higher frequency of C in SC.
Moreover, under appropriate circumstances, one may generalize this inference to the
whole population P, and conclude that C is presumably a statistical cause of E in P.
For the sake of clarity, let us slightly modify our restaurant example. Suppose that

the relevant population P includes some hundreds workers of a big factory, some of
which suffered from a severe form of intoxication after consuming lunch at the
factory’s cafeteria. Suppose that the cafeteria’s menu had soup, steak, mushrooms,
and cake for lunch, and that these are all causal factors considered as possibly
relevant for the intoxication. Now suppose that SC and S¬C are two groups of 100
workers each, the former including only workers who had mushrooms for lunch,
the latter including only people who did not have mushrooms for lunch. Table 9.4
displays a distribution of all possible causal factors among the members of such
groups. In such a case, SMD would allow one to infer that eating mushrooms was
probably a statistical cause of foodborne illness.
Our statistical version of Mill’s method provides, we submit, an appropriate

characterization of the logical structure, i.e., of the qualitative conceptual aspects, of
a wide variety of statistical procedures deployed in empirical sciences. As we shall

Table 9.3 General form of the statistical method of difference SMD

Samples Possible causally relevant factors Phenomenon

C C1 . . . Ci . . . Cn E

SC 100 %C1 %Ci %Cn %eC
S¬C 0 %C1 %Ci %Cn %e¬C
Observation O shows that the fact that all individuals in one sample, and none in the other, share
condition C, is a cause of the difference in the proportion of individuals exhibiting E in the two
samples: it is assumed that %eC is much greater than %e¬C and that the frequency of each Ci in
both samples is (at least approximately) equal to %Ci. See Table 9.4 for an illustration
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Table 9.4 A toy application of the statistical method of difference SMD (see Table 9.3 for the
general form): eating mushrooms is identified as a statistical cause of intoxication among the
factory’s workers

Samples Possible causally relevant factors Phenomenon
Mushrooms Soup Steak Cake Intoxication

SC 100/100 51/100 68/100 27/100 89/100
S¬C 0/100 55/100 71/100 25/100 22/100

better detail in Sect. 9.4, several authors have noted that some statistical version
of Mill’s method of difference should be applicable in assessing hypotheses of
statistical causality. Still, to the best of our knowledge, no explicit formulation
of principles such as SMD is to be found in the philosophical and statistical
literature. This is rather surprising, among other things, since it seems quite clear
that SMD is widely, if tacitly, accepted by statisticians, philosophers, and working
scientists. One reason for neglecting SMD (or similar formulations of the same
principle) may be that scholars have focused on the differences, more than on the
fundamental similarities, among the various statistical procedures for the assessment
of hypotheses of statistical causality, which have been the topic of heated debate.
In this connection, we believe that all these procedures may be construed as

alternative ways to specify and implement the central intuitions expressed by SMD.
To be sure, one can construe each step in SMD in different ways, and this leads to
apparently wildly diverse conceptions of the assessment of hypotheses of statistical
causality. Of particular importance is the disagreement on three related points: the
selection of samples SC and S¬C from population P, the nature of the inference
licensed by SMD, and the “strength” of this inference in relation to the size of the
samples. Let us briefly comment on these points in turn.

Selection of Samples SC and S¬C As the reader will recall, observation O in SMD
requires that, for any causally relevant factor Ci different from C, the frequencies
of Ci in the two samples SC and S¬C are approximately equal to the frequency of
Ci in P. Typically, observing that this is indeed the case is only possible because SC
and S¬C are formed in advance exactly in order to meet such requirement. There are
basically two possible ways of forming balanced samples, briefly described below.

Under the first, “restrictive” construal of SC and S¬C, conditions C1, . . . , Cn
are just the conditions that, on the basis of the available background knowledge,
one knows to be causally relevant factors for E in P (or, more inclusively: the
conditions that, given one’s background knowledge, one believes are certainly
or likely causally relevant). Under this construal, one typically knows, at least
approximately, the frequencies %C1, . . . , %Cn of the corresponding conditions in
P. Given this restriction, one will draw SC and S¬C from P in such a way that the two
samples will contain roughly the same percentages of individuals exhibiting each of
the conditions C1, . . . , Cn.
A second, “unrestrictive” construal of SC and S¬C is that conditions C1, . . . ,

Cn are all the possible, known and unknown, causally relevant factors for E in
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P. This means that the set C1, . . . , Cn is actually split in two parts: the class
of causally relevant factors C1, . . . , Ck which are known to be causally relevant,
and the set of causally relevant factors Ck + 1, . . . , Cn which are not known to
be causally relevant. Under this construal, one cannot know, even approximately,
the actual frequencies of all the conditions C1, . . . , Cn in P. Hence, in order to
guarantee that (very probably) SC, S¬C, and P contain approximately the same
percentages of individuals exhibiting each condition, one needs to apply appropriate
procedures to randomly draw the two samples from P. A huge literature discussing
such randomizing procedures exists, and we shall not discuss this issue further.

Inferring H from O in SMD It is well-known that proponents of different
approaches to statistical inference disagree quite strongly on the nature of the
inference leading from observation O to the hypothesis of statistical causality H.
Still, they agree at least on one point, i.e., that such inference is not deductive, since
H follows neither from O alone nor from A & O (contrary to what happened with
MD). In turn, this means that the inference of H from either O or A & O is an
inductive inference, which, in any case, cannot afford full certainty to H.

Granted this, heated debates concerning the most appropriate way to characterize
such inductive inference divide the supporters of different versions of both the
orthodox and the Bayesian approach (e.g., Romeijn 2017). Even a quick look at
the various positions defended within the debate is sufficient to recognize two
“families” of approaches. The first construes the inference licensed by SMD as
leading to some form of “inductive acceptance”, meaning that H is fully, if only
tentatively, believed as the conclusion of that inference.5 The second view is that
such inference assigns H a (high) degree of credibility, where “credibility” is
here a catchall term used to denote epistemic probabilities, p-values, indexes of
significance, and other quantitative notions of credence.

Sample Size and Inference Reliability In all accounts of statistical inference, the
question arises as to what is the “sufficient size” that samples SC and S¬C are
required to exhibit in order to guarantee that the inference from O to H is indeed
reliable. The issue is intertwined with the specific interpretation of inductive
inference adopted in each case, so opinions diverge also in this matter. At the very
least, all accounts agree on one simple point: that ceteris paribus, the greater the
sample, the more reliable the corresponding inference. A further point of agreement
concerns another important feature of the sample, which affects the reliability of the
corresponding inference. This is the following: the greater the extent to which %eC
exceeds %e¬C, the stronger our confidence that %EC is greater than %E¬C. In other
words: when %eC is much greater than %e¬C, this increases the probability that
%EC is greater than %E¬C, i.e., that C is a statistical cause of E. Again, granted
this, opinions differ on the proper way of measuring how much eC exceeds %e¬C,

5This notion of inductive acceptance, where acceptance may be construed in several, cognitive or
pragmatic, senses, has been thoroughly analyzed by philosophers of science, starting already with
Hempel (1960; see also Levi 1967 and Hilpinen 1968).
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and hence how strong is the corresponding inductive inference (Broadbent 2013,
Ch. 9).6

We conclude by emphasizing again that, however important these points of
disagreement are, they should not obscure the fact that different views concerning
sample size and selection, as well as the nature and strength of inductive inference,
are but variations on a common logical structure, which is provided, as we argued,
by SMD.

9.3.3 Hypotheses of Efficacy

An “efficacy hypothesis” H is the attempt of identifying the cause responsible for
a statistical difference between two relevant groups. In a typical case, H says that
some drug or treatment T is efficacious in the cure of some disease or condition
(cf. Sect. 9.2). Performing an RCT amounts to testing the corresponding claim that
the administration of T is the cause of a greater frequency of remissions among
the members of the treatment group as compared to those of the control group. In
what follows, we shall argue that the statistical method of difference SMD is an
adequate tool for assessing efficacy hypotheses, which are but a special kind of
causal statistical hypotheses as discussed in Sect. 9.3.2. To this purpose, we shall
focus on an imaginary RCT in which a given treatment T is administered to the
treatment group and a placebo to the control group. Let us start by clarifying what a
placebo is in relation to some treatment T.
In general, one can view a treatment T as a combination of two components: a

specific or distinctive component D, believed to favor the remission of the relevant
disease, and a generic component G that is constituted, as it were, by the kind of
treatment to which T belongs (see Grünbaum 1993, Ch. 3, who calls D and G,
respectively, the characteristic and the incidental factors of T). For instance, suppose
that treatment T consists in administering some substance, say vitamin C, which is
believed to favor quick remission of some condition, like the common cold. Suppose
that the substance is administered orally: for 7 days the patient takes, every 8 h,
a small, circular, white, bitter-tasting pill. Of course, the pill will contain a given
amount of vitamin C; but, besides this, it will also contain certain quantities of
various excipients (e.g., lactose, flavors, etc.) that, as far as we know, can in no way

6Interestingly, this issue seems an instance of the so called problem of measure sensitivity. In the
theory of Bayesian confirmation, such label refers to the existence of a plurality of non-equivalent
ways of measuring how much some piece of evidence confirms a given hypothesis, and to the
fact that the soundness of theoretical arguments surrounding confirmation crucially depends on
the specific measure adopted (see Fitelson 1999; Brössel 2013; Crupi 2016, sec. 3.4; Festa and
Cevolani 2017). As the present case suggests, the problem may arise in virtually any area where
one explicates informal concepts (like confirmation, inference strength, and the like) by using
formally defined models or measures. On probabilistic measures of causal strength see Fitelson
and Hitchcook (2011) and Sprenger (2018).
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influence the course of the disease. We shall say that vitamin C, taken in the dose
mentioned above, is the specific component D of T, while the pills are its generic
component G, i.e., the “vehicle” through which vitamin C is administered to the
patient.
The distinction just introduced allows us to define the concept of a “placebo

corresponding to T”—for short: a T-placebo. We shall say that a certain treatment is
a T-placebo if it has the same generic component of T, so that it appears identical to
T, but lacks the specific component of T. By designing an RCT, one aims at testing
the hypothesis H that T is efficacious, i.e., that if patients were administered T, the
frequency of positive outcomes would be higher than if they were administered a
T-placebo. Based on our characterization of H as a causal statistical hypothesis, we
can proceed to describe the situation as follows. The relevant population P is formed
by all the patients suffering from a given condition, and the phenomenon E under
investigation is the possible remission or positive outcome recorded for any patient.
Then our efficacy hypothesis concerning treatment T has the following form:

D is a causally positive factor for E in P,

where, to recall, D is the specific component of T. As we know, SMD implies that
testing such a hypothesis means comparing the relative frequencies of E in two
balanced samples drawn from P. Indeed, this is exactly what an ideal RCT does. The
first sample, SD, corresponds to the experimental group, containing patients from P
who are all administered both the specific component D and the generic component
G of the treatment. The second sample, S¬D, is instead the control group, where all
patients receive G (via the T-placebo), but none of them receives D.
Table 9.5, which is but a small variation on Table 9.3, shows how SMD is applied

to the testing of the efficacy hypothesis in our imaginary RCT.
The causally relevant factors C1, . . . , Cn appearing besides D and G in the table

are the so called “prognostic factors”, which can influence the probability of a
positive outcome. Since the only substantial difference between the two samples
concerns the frequency of patients treated with the specific component D, one can
infer that this is the cause of the observed difference in the frequencies %eD and
%e¬D of remissions in the two cases, i.e., that treatment T is efficacious.

Table 9.5 General form of the statistical method of difference SMD as applied to clinical trials

Samples Possibly relevant causal factors Phenomenon

D G C1 . . . Ci . . . Cn E

SD 100 100 %C1 %Ci %Cn %eD
S¬D 0 100 %C1 %Ci %Cn %e¬D
ObservationO shows that the fact that all individuals in one sample, and none in the other, are given
the specific component D of the relevant treatment, is a cause of the difference in the proportion of
individuals exhibiting E in the two samples: it is assumed that %eD is much greater than %e¬D and
that the frequency of each Ci in both samples is (at least approximately) equal to %Ci. See Table
9.6 for an illustration
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Table 9.6 A toy application of the statistical method of difference SMD to an imaginary RCT
(see Table 9.5 for the general form): the assumption of vitamin C is identified as a statistical cause
of early remission from the common cold

Samples Possible causally relevant factors Phenomenon
Vitamin C White pill Sex Sporting Vegetables Early remissions

SD 100/100 100/100 48/100 29/100 27/100 89/100
S¬D 0/100 100/100 51/100 32/100 25/100 22/100

Table 9.6 (which is structurally identical to Table 9.4) illustrates an imaginary
RCT designed to test the efficacy of vitamin C in favoring the quick remission from
the common cold. Both the treatment and the control group include 100 participants;
all the members of the former are administered vitamin C in the form of a white pill,
while all themembers of the latter receive the corresponding placebo. The only other
prognostic factors are sex (expressed as the number of men in each sample), doing
sport and eating vegetables. Given the displayed figures, SMD would allow one to
conclude that vitamin C is probably a positively relevant factor for the remission
from common cold.
Table 9.6 should make it clear that, as we argue, SMD describes the qualitative

structure of all kinds of RCTs. Indeed, SMD arguably describes the logical structure
of any kind of controlled trial, randomized or not. In fact, to briefly sum up the
central point of our discussion so far, the aim of all controlled trials is to assess
hypotheses of statistical causality, i.e., to identify the likely cause of an observed
difference between two sufficiently large samples of the relevant population. As we
argued here, the logic governing such assessments is essentially the same underlying
Mill’s method of difference.

9.4 Mill’s Method and the Cognitive Structure of Scientific
Commonsense

In the previous section, we argued that most standard methods for the assessment
of hypotheses of statistical causality, including RCTs and other kinds of controlled
experiments widely used in the medical and social sciences, essentially rely on a
statistical version of Mill’s method of difference, i.e., SMD. In this section, we shall
briefly survey some Millian insights in the philosophical and scientific literature,
and show how the logic of controlled inquiry, as summarized in SMD, meshes well
with recent reflections on the fundamentals of the scientific method.

Millian Insights in Epidemiology and Statistics To the best of our knowledge, a
study of the influence of Mill’s methods on the development of modern statistical
methods, and of their reception in the philosophical, epidemiological and, more
generally, scientific literature of the last 150 years is still to be done. Here we shall
restrict our attention to the works of a number of philosophers, epistemologists of
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medical sciences, and epidemiologists who noticed the relevance of Mill’s methods
for standard statistical procedures.

To begin with, let us point out that, as a matter of historical coincidence, Mill
wrote the System of Logic during what Morabia (2004) calls the “pre-formal” phase
of epidemiology. During this phase, lasting until the end of nineteenth century,
“scientists used population thinking and group comparisons, spontaneously, without
referring to some theory [ . . . ] The mathematical and philosophical bases existed but
no formal theory [ . . . ] none of the concepts andmethods had been formally defined”
(Morabia 2004, p. 107). Some main figures of this era include such pioneers as
British physicians William Farr (1807–1883) and John Snow (1813–1858), French
physiologist Claude Bernard (1813–1878), and Hungarian physician Ignaz Philipp
Semmelweis (1818–1865). Studying the possible relations and interactions between
Mill, who employs a number of medical examples in his work (cf., e.g., Mill 1843,
Book III, Ch. IX, §§ 1, 6, 7), and the epidemiologists of his time would be of great
interest, especially in order to establish whether Mill was motivated (at least partly)
by the epidemiological research of his time in developing his methods, and whether
the latter influenced some working scientist.
In light of our discussion of SMD, one can even speculate that Mill’s meth-

ods, and in particular his method of difference, might have provided the formal
reconstruction of the basic “concepts and methods” of epidemiology that, according
to Morabia, was missing. Indeed, Morabia acknowledges, without pursuing the
issue, that “from Mill on, group comparisons combined with population thinking
became a philosophically valid principle of knowledge acquisition” (2004, p. 102).
Some encouraging suggestions in this direction are indeed to be found in the recent
literature. For instance, Scholl (2013, p. 73) convincingly argues that Semmelweis,
in his famous investigation of puerperal fever carried out in the years 1846–49,
“made conscious use of something like the method of difference, and that he did
so in full awareness of the method’s logic and force”.7 Scholl provides a detailed
reconstruction of Semmelweis’ reasoning, based on the tables of mortality and
morbidity appearing in his original publications, and concludes that “Semmelweis’s
data and arguments align neatly with [Mill’s] methods” (2013, p. 67) and, in
particular, that “the causal role of cadaverous matter was established according to
the method of difference” (2013, p. 74). Similarly, Lee (2012) discusses Snow’s
study of the 1854 cholera outbreak in London (based on the so called Broad Street
pump experiment), concluding that “Snow’s experiment, as well as drug trials
conducted today, appears to rely, in the main, on the method of difference” (2012,
p. 153). A consonant assessment appears also in Tulodziecki’s (2012) detailed
discussion of the principles of reasoning underlying Snow’s method.

7Semmelweis’ discovery has been a favorite case study of philosophers of science, from Hempel
(1966) to Gillies (2005) and beyond. Tulodziecki (2013) offers a very useful critical survey of all
the most important philosophical reconstructions of this historical case. Both Salmon (1984, sec.
29) and Lipton (2004, pp. 74 ff.) discuss Semmelweis’ method in relation with Mill’s method of
difference.
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As the above cases show, Mill’s method of difference is close to the kind of
reasoning routinely implemented in science since the earliest days of epidemiology
and statistics.8 Indeed, it is not difficult to find references to Mill’s methods also in
later epidemiological writings (cf. Morabia 2004, p. 101, who refers in particular to
the work of Mervyn Susser; see also Broadbent 2013, p. 67). To mention but one
example, epidemiologist Raj Bhopal (2002, p. 117) recently claimed that “Mill’s
canons [ . . . ] are of paramount importance to epidemiology and are essentially
incorporated into its own widely used criteria” and that, in particular, “the method
of difference is at the core of epidemiological thinking (e.g. why do some people
get heart disease and others of the same age and sex do not)”. As Morabia (2004, p.
101) puts it, the method of difference is “typically the rationale for epidemiologic
designs, either cohort or case-control studies, aiming to compare like with like. In
epidemiology, however, the method has to be reformulated in probabilistic terms”
(see also Morabia 2013). Our presentation of SMD provides precisely this kind of
reformulation of Mill’s MD.

Early Insights on a Statistical Version of Mill’s Method of Difference As we
already noted in Sect. 9.3, several logicians and philosophers have recognized
that a probabilistic version of Mill’s methods may illuminate some basic forms
of inference used in scientific research. For instance, in a well-known textbook
on critical thinking the author plainly claims, without further comments, that “the
method of difference is virtually identical to the method of controlled experiment
employed in such fields as biology, pharmacology, and psychology” (Hurley 2012,
Ch. 10. pp. 540–41). Indeed, this seems to have become a commonplace in
philosophical literature on evidence-based medicine, policy, and social science of
the last few years. As an example, Cartwright and Hardie (2012, 33–34), introducing
the reader of their Evidence-based policy to the very concept of an RCT, note that
“an RCT is a study design based on John Stuart Mill’s method of difference for
making causal inferences”, specifying that “an RCT is aMill’s method-of-difference
group study in which individual units, all of which are supposed to be governed
by the same causal principle, are randomly assigned to the treatment and control
groups”. Following them, Holman (2015, p. 1334), aiming at a “methodological
definition of a placebo [ . . . ] determined by the underlying logic of ideal RCTs”,
plainly states that “the ideal RCT is a manifestation of Mill’s method of difference”.
Similarly, in his introduction to the philosophy of economics, Reiss (2013, p. 201)
explains that “RCTs aim to implement a probabilistic version of Mill’s method of
difference”.

8Statisticians are familiar with Mill’s method of difference at least since Sir Ronald Fisher (1890–
1962) famously attacked it in his groundbreaking work on the Design of experiments (1935). In
his analysis of statistical causality, Holland (1986) discusses both Fisher and Mill as two of the
central contributors to the topic. Rosenbaum (2009, Ch. 15) provides an assessment of the debate.
For a compact but highly informative survey on the origins of control groups and RCTs, see Dehue
(2005).
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In view of the fact that most commentators appear to agree that the logic of
RCTs and controlled inquiry is essentially Millian, it is surprising that, to the best
of our knowledge, no previous attempts to formulate detailed statistical versions of
the method of difference, or of the other Millian methods of eliminative induction,
have been made. To be sure, one can find in the philosophical literature a couple of
interesting suggestions on the need to integrate those methods with corresponding
statistical versions. In his Teatrise on probability (1921), for instance, JohnMaynard
Keynes claimed that an adequate inductive logic should be based on the theory of
probability, since most “laws” established in scientific research are not universal
but only statistical, i.e., what Keynes called “inductive correlations”. As Keynes
notes, his inductive correlations are the same as the “approximate generalizations”,
propositions of the form “Most A are B” discussed by Mill in his book (ch. XXIII).
While recognizing Mill as a leading figure in inductive logic, Keynes also suggests
that his ignorance of probability theory may have prevented him to develop an
adequate theory of the inductive inference of approximate generalizations (1921,
pp. 267–8).9

Von Wright’s Treatise on Induction and Probability (1951) is probably the most
systematic attempt to provide a logical reconstruction of Mill’s methods, although
perhaps not the clearest one (cf. Mackie 1980, p. 298; van Heuveln 2000, p. 28).
In passing, von Wright (1951, pp. 183 ff.) notes that it would be interesting to
investigate whether the “logic of induction” underlying Mill’s methods could be
applied to the assessment of “statistical inductions” or “statistical generalizations”,
his labels for Mill’s approximate generalizations and Keynes’ inductive correlations.
However, he drops this suggestion without developing it.
Later, Salmon (1984, pp. 103 ff.) argued that, in order to account for the fun-

damental role played by statistical considerations within investigations concerning
causal relations, one needs to put forward appropriate refined versions of Mill’s
methods. According to Salmon, one such refinement is the method of controlled
experiment, whose hardcore he characterized as follows: if the presence of a certain
condition C makes a difference for the onset of E—for instance, if C increases
the probability that E is present—then C is a cause of E. His illustrative example,
involving vitamin C and the common cold, is essentially identical to the one used
to illustrate SMD in Sect. 9.3.3. Following Salmon, Grünbaum discusses Mill’s
methods in his analysis of inference patterns in medical and psychological sciences,
noting that “the establishment of a causal connection in psychoanalysis, no less
than in ‘academic psychology’ or in medicine, has to rely on modes of inquiry that

9Keynes’ harsh assessment of Mill’s contribution is worth quoting at length. After having said that
“Mill has not justly apprehended the relativity of all inductive arguments to the evidence, nor the
element of uncertainty which is present, more or less, in all the generalisations which they support”,
Keynes adds in footnote: “This misapprehension may be connected with Mill’s complete failure to
grasp with any kind of thoroughness the nature and importance of the theory of probability. The
treatment of this topic in the System of Logic is exceedingly bad. His understanding of the subject
was, indeed, markedly inferior to the best thought of his own time” (Keynes 1921, Pt. III, Ch. 23,
pp. 267–68).



206 R. Festa et al.

were refined from time-honored canons of causal inference pioneered by Francis
Bacon and John Stuart Mill” (1984, p. 47). His conclusions are as clear as telling:
“modernized or refined statistical versions of the famous four methods of controlled
inquiry articulated by Mill serve to test the causal relevance of an X to a Y: such
controlled inquiry shows whether the presence of X makes a difference to the
occurrence of Y” (Grünbaum 1993, p. 163).

The Cognitive Structure of Scientific Commonsense There is a simple way to
explain the wide, if often implicit, consensus on the plausibility of Mill’s method
of difference amongst epidemiologists and philosophers of different schools and
tendencies. The reason, we suggest, is that Mill’s method illuminates some of the
essential aspects of what, following Kuipers (2001, p. x), we may call the cognitive
structures of scientific inquiry. In different terms, the method of difference is a
particularly clear illustration of what Kuipers (2000), Worrall (2007a) and others
call “scientific commonsense”, that is, a set of qualitative principles underlying such
diverse theories of scientific method as Popperian falsificationism and Bayesianism,
as well as the best scientific practice. According to Worrall one such principle, “an
obvious (but in practice immensely powerful)” one, is the “idea that really telling
evidence for any claim is evidence that at the same time tells against plausible rival
alternative hypotheses” (Worrall 2007a, p. 1015; cf. also Howick 2011, Ch. 4). We
can reformulate in a more precise way this fundamental methodological principle,
widely embraced by scientists and philosophers of science, as follows: a hypothesis
is strongly confirmed by empirical evidence if, and only if, the evidence is explained
very well by the hypothesis, and it is not explained well by any plausible alternative
hypothesis. This idea might be labeled as the “principle of explanatory differential”.

It should be clear that the principle of explanatory differential underlies the idea
of any controlled (clinical) study, and RCTs in particular (cf. Table 9.5 in Sect.
9.3.3). In this regard, Worrall (2007a, pp. 1015–1016) claims:

In the case of therapeutic claims in medicine, this means evidence that tells in favour of the
claim that the treatment at issue (or rather the ‘characteristic features’ of that treatment over
and above any placebo effect) is responsible for the observed outcome, but that at the same
time tells against plausible rival explanations of that observed outcome. [ . . . ] If the control
group received no treatment at all (making it a ‘natural history’ group) then – depending, I
would suggest, on the nature and size of the observed difference in average outcome – the
alternative hypothesis may be plausible that the difference is a placebo effect; that is why
clinical trials invariably involve a control group that is given either placebo or conventional
treatment.

As readers will have noticed, similar considerations apply, more generally, to all
inductive strategies for the testing of hypotheses of statistical causality as discussed
in this paper. In fact, the principle of explanatory differential underlies both Mill’s
original method of difference MD (cf. also Howick 2008, Ch. 3) and its statistical
version SMD. In the former case, the evidence provided by the relevant observation
(cf. Table 9.1 in Sect. 9.3.1) rules out all other possible sufficient causes besides C,
which is then inferred as the probable sufficient cause of phenomenon E of interest.
In the latter case, things are only slightly more complicated. Indeed, what is ruled
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out by applying SMD (cf. Table 9.3 in Sect. 9.3.2) is the hypothesis that the much
greater frequency of E in one sample with respect to the other is due, not to the
causal factor C under investigation, but to some other factors, for instance plain
chance. In short, the conclusion that C is a statistical cause of E is made probable by
excluding all other plausible alternative hypotheses concerning E as improbable in
the light of the relevant observation. In this way, the (statistical) method of difference
illuminates a crucial aspect of the cognitive structures of scientific commonsense.

9.5 Concluding Remarks

In this paper, we offered a rational reconstruction of the logic of clinical trials
and, more generally, of the assessment of hypotheses of statistical causality, along
distinctively Millian lines. More precisely, we argued that an appropriate, statistical
version of Mill’s method of difference underlies most current methods used to
test and evaluate efficacy hypotheses in many different fields, from pharmacology
to evidence-based policy and social sciences. Very roughly, Mill’s method of
difference (MD) aims at identifying the sufficient cause of a given phenomenon by
eliminating all other possible causes. Similarly, the statistical version of the method
of difference (SMD) aims at identifying the cause responsible for a significant
statistical difference between two samples from a given population by ruling out
the alternative hypothesis that such difference is the result of chance. As we argued,
this is the crucial insight underlying RCTs and many other kinds of clinical trials
and, in general, methods of controlled inquiry widely adopted in different fields;
indeed, SMD highlights a basic aspect of scientific commonsense or, in other terms,
of the qualitative cognitive structures of scientific inquiry.
The reader may well wonder whether and how, as a matter of fact, Mill’s work

exerted a more or less direct influence on the historical trajectory that led to the
development of randomized clinical trials. The brief historical overview offered
in Sect. 9.4 shows that SMD-like intuitions have been around for quite a while
in both philosophical and scientific literature—and this, we submit, renders our
rational reconstruction all the more plausible. However, here we choose to remain
noncommittal about the specifics of Mill’s historical role.
We wish to conclude by mentioning that the foregoing discussion of SMD is

just a preliminary contribution to a more extensive exploration of the basic logic of
controlled inquiry, and that much work lies ahead in this regard, as the following
examples suggest. First, in its present formulation SMD is just a sketch of a proper
inference method, a sort of “inductive inference schema” which one needs to
reconstruct in detail to put it at work. Amore detailed discussion than the one offered
in Sect. 9.3.2 is needed in order to assess how SMD is applied within the different
statistical methods on the market and in the various kinds of test of statistical
causality. Secondly, it is a task for the future to explore and define statistical versions
of the other methods put forward by Mill: the “method of agreement” and that “of
concomitant variations” look particularly promising under this respect. Finally, in
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view of the consensus on the plausibility of Mill’s insights in the field of hypothesis
testing and causality assessment, it would be interesting to investigate particular
examples where those insights are effectively applied by working scientists. For the
moment, however, we remain content with having highlighted the Millian logic of
clinical trials and controlled inquiry in general.
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