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Abstract

Modern power systems will have to face difficult chal-
lenges in the years to come: frequent blackouts in ur-
ban areas caused by high power demand peaks, grid
instability exacerbated by intermittent renewable gen-
eration, and global climate change amplified by rising
carbon emissions. While current practices are growingly
inadequate, the path to widespread adoption of artifi-
cial intelligence (AI) methods is hindered by missing
aspects of trustworthiness. The CityLearn Challenge is
an exemplary opportunity for researchers from multiple
disciplines to investigate the potential of AI to tackle
these pressing issues in the energy domain, collectively
modeled as a reinforcement learning (RL) task. Mul-
tiple real-world challenges faced by contemporary RL
techniques are embodied in the problem formulation.
In this paper, we present a novel method using the so-
lution function of optimization as policies to compute
actions for sequential decision-making, while notably
adapting the parameters of the optimization model from
online observations. Algorithmically, this is achieved by
an evolutionary algorithm under a novel trajectory-based
guidance scheme. Formally, the global convergence prop-
erty is established. Our agent ranked first in the latest
2021 CityLearn Challenge, being able to achieve supe-
rior performance in almost all metrics while maintaining
some key aspects of interpretability.

1 Introduction
Rapid urbanization in the past decades has led to a substan-
tial increase in energy use that puts stress on the grid assets,
while the integration of additional renewable generation and
energy storage at the distribution level introduces both oppor-
tunities and new challenges (Rolnick et al. 2022). The cor-
nerstone of addressing emerging issues is the deployment of
proper control and coordination strategies, which have a po-
tential impact on enhancing energy flexibility and resilience
in the face of a surge in climate-induced demand (as already
seen in places like California, where rolling blackouts are
increasingly frequent during the summer) (Vazquez-Canteli
et al. 2020). Current industry practice is heavily based on
optimization models, such as energy dispatch and unit com-
mitment, where parameters (e.g., technological and physical
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constraints) are fixed throughout the lifecycle; however, such
an approach is increasingly confronted by environmental
uncertainty, renewable generation stochasticity, and the ever-
increasing complexity of the distribution grid (Abedi, Gau-
dard, and Romerio 2019). On the other hand, there has been
a surge in machine learning research, notably RL, because
it allows the agent to act without the need to access the true
model—a feature of particular interest for large-scale, com-
plex systems, where it is not cost-effective to develop models
of such high fidelity. Despite recent progress, real-world RL
is still in its infancy (Dulac-Arnold et al. 2021).

Against this backdrop, the CityLearn Challenge aims to
spur RL solutions for the control of modern energy systems
by providing a set of benchmarks for urban energy man-
agement, load shaping, and demand response in a range of
climate zones (Vazquez-Canteli et al. 2020). The agent is
tasked with exploring and exploiting the best control strategy
for energy storage distributed in a community of buildings.
Performance is evaluated against standard metrics such as
ramping costs, peak demands, and carbon emissions. The
CityLearn encapsulates 4 of the 9 real-world RL challenges
identified by (Dulac-Arnold et al. 2021), including 1) the
ability to learn on live systems from limited samples—there
is no training period; 2) dealing with system constraints that
should never or rarely be violated—there are strict balancing
equations for electricity, heating, and cooling energy; 3) the
ability to provide quick action—there is a strict time limit
for completing the 4-year evaluation on Google’s Colab; and
4) providing system operators with explainable policies—a
necessity to facilitate real-world adoption and deployment.

In this paper, we describe our winning solution for the 2021
CityLearn Challenge based on the idea broadly categorized
as adaptive optimization. Indeed, optimization (especially
convex optimization) has become the de facto standard in
industrial systems with profound theoretical foundations and
various formulations for control and planning applications
(Boyd, Boyd, and Vandenberghe 2004). Such approaches can
easily encode domain-specific constraints (in the form of
nonlinear functions, variational inequalities), and can grace-
fully handle problems with millions of decision variables
(Facchinei and Pang 2007). Although well established, opti-
mization models, once built, typically do not adapt to real-
world conditions, rendering current approaches rather “rigid.”

To address this fundamental limitation, we exploit that the



agent control trajectory

policy and guidance signal

Environment

compute weights

sample 
candidates

. . 
. . . 

.

. . 
.

optimization 
planner

<latexit sha1_base64="dC4p2HYwDGSU0zwogelvBquguUs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK/YI2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vp7C2vrG5Vdwu7ezu7R+UD49aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY9kwkwT9iA4lDzmjxkqPut/olytu1Z2DrBIvJxXIUe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzU+dkjOrDEgYK1vSkLn6eyKjkdaTKLCdETUjvezNxP+8bmrCGz/jMkkNSrZYFKaCmJjM/iYDrpAZMbGEMsXtrYSNqKLM2HRKNgRv+eVV0rqoeldV7+GyUrvN4yjCCZzCOXhwDTW4hzo0gcEQnuEV3hzhvDjvzseiteDkM8fwB87nDzsWjcQ=</latexit>sT

<latexit sha1_base64="utuV3F2o0ytN27DDOTG8FZUc0Gw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9PHfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpHVR9WpV7/6yUr/J4yjCCZzCOXhwBXW4gwY0gcEQnuEV3hzpvDjvzseiteDkM8fwB87nD2uWjeQ=</latexit>st

<latexit sha1_base64="wcBquOxYOXII+5O8x5VOCBMPqRA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiRT0WvXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtU0/wwtv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbQuq95V1XuoVeq3eRxFOIFTOAcPrqEO99CAJjAYwzO8wpuTOC/Ou/OxaC04+cwx/IHz+QMJ1o9g</latexit>st+1

<latexit sha1_base64="qJZoDkAg7FiUpXiPqZ7+kSq/HZA=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBHqpSQi6rHoxWMF+wFNDJvttl262YTdiVJD/4cXD4p49b9489+4bXPQ1gcDj/dmmJkXJoJrdJxva2l5ZXVtvbBR3Nza3tkt7e03dZwqyho0FrFqh0QzwSVrIEfB2oliJAoFa4XD64nfemBK81je4ShhfkT6kvc4JWikey/hgffEkFR0gCdBqexUnSnsReLmpAw56kHpy+vGNI2YRCqI1h3XSdDPiEJOBRsXvVSzhNAh6bOOoZJETPvZ9OqxfWyUrt2LlSmJ9lT9PZGRSOtRFJrOiOBAz3sT8T+vk2Lv0s+4TFJkks4W9VJhY2xPIrC7XDGKYmQIoYqbW206IIpQNEEVTQju/MuLpHladc+r7u1ZuXaVx1GAQziCCrhwATW4gTo0gIKCZ3iFN+vRerHerY9Z65KVzxzAH1ifPyQ/kkc=</latexit>

⇡⇣(st)

<latexit sha1_base64="dU/ZX7GtfJUbWTfGmuVQymZRsl4=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBahXkoioh6LXjxW6Bc0MWy2k3bpZhN2N0oN/R9ePCji1f/izX/jts1BWx8MPN6bYWZekHCmtG1/W4WV1bX1jeJmaWt7Z3evvH/QVnEqKbRozGPZDYgCzgS0NNMcuokEEgUcOsHoZup3HkAqFoumHifgRWQgWMgo0Ua6dxPmu0+gSVX5zVO/XLFr9gx4mTg5qaAcDb/85fZjmkYgNOVEqZ5jJ9rLiNSMcpiU3FRBQuiIDKBnqCARKC+bXT3BJ0bp4zCWpoTGM/X3REYipcZRYDojoodq0ZuK/3m9VIdXXsZEkmoQdL4oTDnWMZ5GgPtMAtV8bAihkplbMR0SSag2QZVMCM7iy8ukfVZzLmrO3Xmlfp3HUURH6BhVkYMuUR3dogZqIYokekav6M16tF6sd+tj3lqw8plD9AfW5w/zkJIn</latexit>

⇡⇣(sT )

<latexit sha1_base64="7WGSpIiEaR3Xvcsg25K+RGu3r7o=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEIglASERVPRS8eK9gPaEPYbDft0s0m7E6EGvJLvHhQxKs/xZv/xm2bg7Y+GHi8N8PMvCARXIPjfFulldW19Y3yZmVre2e3au/tt3WcKspaNBax6gZEM8ElawEHwbqJYiQKBOsE49up33lkSvNYPsAkYV5EhpKHnBIwkm9X+wFRGcn9DK7h1M19u+bUnRnwMnELUkMFmr791R/ENI2YBCqI1j3XScDLiAJOBcsr/VSzhNAxGbKeoZJETHvZ7PAcHxtlgMNYmZKAZ+rviYxEWk+iwHRGBEZ60ZuK/3m9FMIrL+MySYFJOl8UpgJDjKcp4AFXjIKYGEKo4uZWTEdEEQomq4oJwV18eZm0z+ruRd29P681boo4yugQHaET5KJL1EB3qIlaiKIUPaNX9GY9WS/Wu/Uxby1ZxcwB+gPr8wePcpMG</latexit>
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Figure 1: Overview. (A) Agent trajectory of observed states (square) and actual (green triangle)/planned (grey triangle) actions.
At each step, the agent solves optimization (2) to plan ahead but only executes the most immediate action; āt:t′ represents the
action planned at time t for time t′ ≥ t. (B) Illustration of the system, including interaction with the environment and adaptation
of optimization parameters. Each iteration of k consists of evaluating Nk (three in this case) policies sampled from the candidate
distribution. The observed rewards {Rk

j }j∈[Nk] and trajectories {sj,kt , aj,kt }j∈[Nk] are stored in some buffers, which are then used
to compute weights {νkj }j∈[Nk] and guidance signals {ϱkj }j∈[Nk] to update the distribution as in (5). (C) The two-level structure
indicates the correspondence between an optimization parameter ζ and the solution function πζ (used as policy). The upper level
objective is the expected episodic rewards (1) and the lower level objective is the objective function of (2), the extremum of
which is the policy action (see (3)). The guidance signal ϱ is computed based on the trajectory of each candidate and applied on
top of the original parameter during the update.

solution of optimization lies on a manifold implicitly defined
by a general equation (Dontchev and Rockafellar 2009). The
crux of our idea is to shape this manifold by adapting the pa-
rameters of the optimization model, while extracting insights
from trajectory data to design guidance signals (see Fig. 1 for
a detailed illustration). Key differences between our method
and well-established optimization techniques (e.g., stochastic
optimization (Powell 2020), bi-level optimization (Dempe
and Zemkoho 2020)) include:
1) we only allow access to the environment through interac-

tive samples (reward, states, etc.) but not the true dynam-
ics or reward function;

2) we make full use of the control trajectory of a Markov
decision process (MDP) to obtain a guidance signal.

While 1) is similar to the RL setup, 2) can be viewed as
an augmentation of zeroth-order search methods with in-
sights extracted from control data, which, to the best of our
knowledge, is the first of its kind. In general, zeroth-order
algorithms, such as simultaneous perturbation (Spall 2005;
Mania, Guy, and Recht 2018), evolutionary algorithms (Sali-
mans et al. 2017; Zhou, Yu, and Qian 2019), and Bayesian
optimization (Snoek, Larochelle, and Adams 2012; Frazier
2018) are natural candidates for RL and easy to implement,
but can potentially suffer scalability problems (Ghadimi and
Lan 2013). Nevertheless, the parameters of an optimization
model (i.e., variables to be learned) usually have clear inter-
pretations. Thus, we design a mechanism to leverage domain
knowledge for the design of appropriate guidance during the
search for these parameters; such guidance can be specified
as a general function of trajectory data (including observed
states and actions of an MDP). The method works well in

an online environment without an extensive training period,
which is particularly advantageous in a real-world setting
where an offline environment for model training is usually
not available. According to independent evaluations, the pro-
posed method achieved the highest performance in the re-
cent 2021 CityLearn Challenge. To demonstrate effectiveness
against existing techniques, we further validate the method
by comparing it with a range of baselines. Key contributions
are as follows:

• A framework of adaptive optimization for online control,
winning the 1st place in the 2021 CityLearn Challenge

• A novel evolutionary search (ES) algorithm with a guid-
ance function based on state-action-trajectory data

• Theoretical analysis of asymptotic convergence to global
optima with noisy function evaluations

• Empirical comparison against a range of baselines

1.1 Related work
Optimal control and stochastic optimal control are well-
known approaches to sequential decision-making problems
(Bertsekas 2019). Convex optimization is another avenue
(Agrawal et al. 2020). Most existing works assume a known
dynamic model of the system. Various large-scale stochastic
programs have been proposed in the literature to deal with
future uncertainty (Prékopa 2013; Powell 2020). The major
drawback is the computational burden of rapidly expand-
ing scenario trees in multi-stage stochastic programming.
Our method relieves computation by using plug-in estima-
tors, a.k.a., deterministic approximation of future uncertainty
within convex optimization.



Recently, RL has gained popularity in various domains
(Chen et al. 2022; Haydari and Yilmaz 2020; Nian, Liu,
and Huang 2020). To contextualize the present approach,
we make a few remarks about the relation to model-based
RL (MBRL). In particular implicit MBRL, where the entire
procedure (e.g., model learning and planning) is optimized
for optimal policy computation (Moerland, Broekens, and
Jonker 2020). However, unlike existing works (e.g., (Tamar
et al. 2016; Karkus, Hsu, and Lee 2017; Racanière et al.
2017; Guez et al. 2018; Schrittwieser et al. 2020) that build
a model based on (recurrent/convolutional) neural networks
(NNs) with primary restrictions to discrete state and action
space, our method learns how to plan by solving optimization
and adapting its parameters; hence, it is amenable to a wide
range of applications with continuous states and actions. The
present work is closely related to (Ghadimi, Perkins, and
Powell 2020; Agrawal et al. 2020), which also use convex
optimization as a policy class to handle uncertainty. In par-
ticular, convex optimization control policies are learned in
(Agrawal et al. 2020) with implicit differentiation (Agrawal
et al. 2019). We extend their method to the RL setting and
propose a novel ES algorithm for learning.

Differentiated from existing ES-based strategies (Szita
and Lörincz 2006; Salimans et al. 2017; Khadka and Tumer
2018; Gangwani and Peng 2018; Conti et al. 2018) or zeroth-
order optimization (Snoek, Larochelle, and Adams 2012; Liu
et al. 2020), our ES is augmented with a guidance function
that depends on the data collected as the policy interacts
with the environment; hence, it can be viewed as a type
of MDP-augmented ES. The guidance mechanism is also
flexible enough to allow the effective incorporation of domain
knowledge as demonstrated in CityLearn. We further provide
theoretical justification for this rather complex scheme.

2 Preliminaries
2.1 Problem setup
Consider an MDP (S,A,P, r), where S is the (possibly infi-
nite) state space,A is the set of actions, P : S ×A →M(S)
is the transition probability kernel withM(S) denoting the
set of all probability measures over S, and r(s, a) gives the
corresponding immediate reward (can be time-dependent).
The goal in episodic RL is to learn a policy π : S → A that
maximizes cumulative rewards over a finite time horizon:

max
π∈Π

E [R(π)] , (1)

where R(π) :=
∑T

t=0 rt
(
st, π(st)

)
is the episodic reward,

with st ∈ S ⊆ Rns denoting the state at time t and T
as the horizon. The expectation is taken over initial state
distributions and transition dynamics (under deterministic
policy π). We require access to a random sample R(π) of the
episodic reward as well as trajectory data {(st, at)}t∈[T ] to
be used to later compute the guidance signal. Here, we use
the shorthand [T ] = {1, ..., T}.

2.2 Canonical approaches and solution functions
The proposed method is based on canonical stochastic pro-
gramming methods (Powell 2020). For example, in multi-
stage stochastic programming (Pflug and Pichler 2014), the

action at state st is computed as

argmax
at∈A

(
r̃t(st, at)+ max

{at′}T
t′=t+1

Ẽ
[ T∑

t′=t+1

r̃t′
(
st′ , at′)

∣∣∣st, at
])
,

where r̃t : S ×A → R is the surrogate reward function and
Ẽ[·] is the surrogate expectation operator (e.g., model-based
scenario trees) designed to approximate the true environment.
The above formulation can also be seen as finding the solution
to a Bellman equation in dynamic programming. The main
limitations, nevertheless, are the high computational cost of
evaluating the expectation operator and the potential model
mismatch due to approximations.

A simpler yet more practically appealing method, widely
adopted in today’s industries, is to use deterministic approxi-
mations of the future and capture the dependence of future
states on prior decisions through constraints as part of the
lookahead model (Powell 2020): πζ(st) is given by

argmax
āt∈A

max
{s̄t′ ,āt′}T

t′=t+1

R̄(st, āt, {s̄t′ , āt′}Tt′=t+1; ζ)

s. t. gi(st, āt, {s̄t′ , āt′}Tt′=t+1; ζ) ≤ 0 ; ∀i ∈ I
hi(st, āt, {s̄t′ , āt′}Tt′=t+1; ζ) = 0 ; ∀i ∈ E ,

(2)

with the objective R̄(st, āt, {s̄t′ , āt′}Tt′=t+1; ζ) defined as

r̄t
(
st, āt; ζ

)
+

∑T

t′=t+1
r̄t′

(
s̄t′ , āt′ ; ζ

)
,

where {s̄t′}Tt′=t+1 and {āt′}Tt′=t are optimization variables
corresponding to the planned states and actions, r̄t is surro-
gate reward, and the feasible set is defined by {gi}i∈I and
{hi}i∈E . We denote the parameters of the objective function
and the constraints collectively by ζ ∈ Z ⊂ Rd. The depen-
dencies of future states on current and planned states/actions
are encoded as constraints in (2) as part of the lookahead
model. Many examples can be found in, e.g., (Borrelli, Bem-
porad, and Morari 2017). We remark that some optimization
parameters may be provided by predictors based on the cur-
rent state st, the parameter of which is also collected by ζ in
this case.

The policy πζ(st), a.k.a., the solution function (Dontchev
and Rockafellar 2009), provides the action at the current
state st as the optimal solution to (2). Since this function is
generally set-valued (Dontchev and Rockafellar 2009), we
make the following assumption.
Assumption 1. For each ζ ∈ Z and st ∈ S: a) the objective
function in (2) is continuous, strictly convex, gi is continuous
and convex for each i ∈ I , and hi is affine for each i ∈ E; b)
the feasible set of (2) is closed, absolutely bounded, and has
a nonempty interior.

The above assumption can be satisfied by imposing proper
conditions on the design of the surrogate model, i.e., objective
and constraints in (2). Note that in our approach, we make
no convexity assumption about the true dynamics or rewards
of the environment, which can be seen as a blackbox. The
convexity condition is only stipulated for the surrogate model
for computational efficiency. Our goal is simply to learn the



parameters of the optimization model in order to have a good
decision-making capability.1 An immediate consequence of
the above assumption is that the solution to (2) is unique;
furthermore, it implies continuity with respect to parameters.

Lemma 1. The solution function πζ(st) defined in (2) is
continuous with respect to parameter ζ for each st ∈ S.

The proof is a direct application of the Berge maximum
theorem (Berge 1997). To conclude this section, let us make
some comments on the construction of the surrogate model
in (2). By analogy to reward design (Prakash et al. 2020),
the objective function should be chosen to promote desirable
behaviors. The set of constraints introduces inductive bias
on the transition dynamics of the environment. It is benefi-
cial, though oftentimes unlikely and non-essential, that the
surrogate model matches the functional forms of true reward
or dynamics, an idea shared in model-based RL (Moerland,
Broekens, and Jonker 2020). It is, nevertheless, desirable to
ensure the computational efficiency of (2) to provide actions
quickly—hence the choice of convex programs.

3 Policy adaptation with ES under guidance
The potential mismatch between the surrogate model and the
real environment and errors due to predictions may adversely
affect the decision quality of (2). Thereby, we aim to adapt
the parameters of the surrogate model to shape the solution
function. The task of finding the optimal parameter within
the set of solution functions Π = {πζ : ζ ∈ Z} can be
compactly written as:

Υ := argmax
ζ∈Z

E

[ T∑

t=0

rt
(
st, πζ(st)

)
]
, (3)

where Υ is the set of global optima for policy parameters.
Note that ζ is not part of the true reward (which remains un-
known to the agent) but only the parameters of the surrogate
model that implicitly defines the policy in (2). Since πζ(st)
is given by an optimization (2), (3) can also be viewed as a bi-
level problem (c.f., (Dempe and Zemkoho 2020)): the outer
level aims to learn parameters to maximize rewards, while
the inner level defines policy action as a solution to (2). The
key challenge in solving (3) as a bi-level problem, however,
is that the outer level objective is not analytically revealed
(thus prohibiting any direct differentiation approach) and can
be nonconvex with respect to ζ.

3.1 Guided evolutionary search
This section discusses the proposed ES algorithm (Algo-
rithm 1), inspired by the method of generations (Zhigljavsky
2012). At each iteration k, the algorithm randomly samples
a set of Nk parameter candidates, ζk1 , · · · , ζkNk

iid∼ pk. For
each candidate j ∈ [Nk], we evaluate the corresponding

1Perhaps surprisingly, despite the fact that (2) is convex, the
policy (given by the solution function) can be highly nonconvex
with high representational capacity. In particular, the contemporary
work by (Jin et al. 2023) shows a “universal approximation” property
of the solution functions of linear programs (LPs).

Algorithm 1: Evolutionary search under guidance
Input: Hyperparameters {Nk}, uniform distribution

µ, initial point z0
1: Initialize P1(dζ) ∼ exp(∥ζ − z0∥)µ(dζ)
2: for k = 1, 2, . . . do
3: Sample Nk candidates from the distribution pk:

ζk1 , ζ
k
2 , · · · , ζkNk

iid∼ pk
4: for j = 1, . . . , Nk do
5: Deploy policy πζk

j
for one episode and observe an

episodic reward Rk
j ← R(πζk

j
)

6: Compute the guidance signal ϱkj by (4)
7: end for
8: Update the distribution pk+1 for the next iteration

according to (5).
9: end for

policy in the environment and observe an episodic reward
Rk

j ∼ R(πζk
j
), where R(πζk

j
) denotes the distribution of

episodic reward for policy πζk
j

, as well as all the state and

action pairs {sj,kt , aj,kt }t∈[T ] in the past episode. Based on
trajectory data, we compute a guidance signal

ϱkj = ϕ({sj,kt , aj,kt }t∈[T ]), (4)

where ϕ : (S ×A)T → Z ′ is a function that may have com-
plicated dependence on past states and actions with Z ′ as the
range. The design of such a guidance function is often based
on domain knowledge (to be discussed later in CityLearn).
Then, we update the distribution for the next iteration as

pk+1(dζ) =

Nk∑

j=1

νkjQk(ζ
k
j , ϱ

k
j , dζ), (5)

where

νkj =
exp(Rk

j )∑Nk

j=1 exp(R
k
j )

(6)

are the weights obtained by taking the softmax over candi-
date rewards. The probability measure Qk(ζ

k
j , ϱ

k
j , dζ) is the

transition probability given candidate ζkj and guidance signal
ϱkj . Hence, pk+1(dζ) is a mixture of distributions weighted
by observed rewards in the current iteration k, which can
be sampled by the standard superposition method: at first
the index j is sampled from the discrete distribution {νkj },
followed by sampling from Qk(ζ

k
j , ϱ

k
j , dζ). For example, in

our algorithm for CityLearn,

Qk(z, ϱ, dζ) ∼ exp(∥ζ − z − αkϱ∥/ιk)µ(dζ), (7)

where ∥·∥ is the Euclidean norm, µ(dζ) is a uniform measure
over Z , and ιk > 0 and αk ≥ 0 are such that their sum over
time is bounded. Other candidates are possible and can still
ensure convergence to global optimal, as long as certain
conditions are met; intuitively, we require that the span of Qk

decreases over time but not so rapidly that it fails to reach
a global optimum. Note that to simplify the presentation, in



the above algorithm, we assume that each candidate policy is
evaluated only on one episode; extending this to the case of
multiple episodes is straightforward (e.g., we would instead
take the average of the evaluations among the episodes in the
computation of weights (6)).

4 Theoretical analysis
We now analyze the convergence property of the sequence
generated by Algorithm 1. The following notations are
used: f(ζ) = E[R(πζ)] is the expected episodic reward
of policy πζ , Υ = argmaxζ∈Z f(ζ) is the set of global
maximizers (may not be unique), f∗ = maxζ∈Z f(ζ) is
the global maximum, and λ(dζ) is some measure over Υ;
B(ζ, ϵ) = {ζ ′ ∈ Z : ∥ζ ′ − ζ∥ ≤ ϵ} is a ball centered at ζ
with radius ϵ, B∗(ϵ) = {ζ ∈ Z : minζ′∈Υ ∥ζ ′− ζ∥ ≤ ϵ} is a
set of points that are ϵ away from the optimal solution set Υ;
δζ(dz) is the probability measure concentrated at the point ζ .
We use⇒ to denote the weak convergence of measures. We
can consider ∥ · ∥ as any norm (e.g., Euclidean norm).

The measures pk+1(dζ), k ∈ N defined in (5) are distribu-
tions of random points ζk+1

j , for any j ∈ [Nk+1], conditional
on the results of preceding evaluations of {Rk

j }j∈[Nk] and
realizations of {ζkj , ϱkj , ξkj }j∈[Nk]. Let Pk(dζ1, ..., dζNk

) rep-
resent their unconditional joint distributions at iteration k,
and

P̃k(dζ) =

∫

ZNk−1

Pk(dζ, dz2, ..., dzNk
)

is the unconditional marginal distribution (note that we intro-
duce z for ζ as the need arises in integration).

The formalism of the guidance signal requires some basics
of random process and measure theory (details can be found
in the appendix). Essentially, the guidance signal ϱkj ∈ Z ′

is a random variable (adapted to the σ-algebra generated
by the trajectory within an episode) with probability mea-
sure Mk(ζ

k
j , dϱ). Note that Mk(ζ

k
j , dϱ) is dependent on ζkj

because the stochastic process that generates the trajectory
depends on policy πζk

j
, but Mk(ζ

k
j , dϱ) is conditionally inde-

pendent of all other candidates {ζkj′}j′ ̸=j . For analysis, we
make the following assumptions.

Assumption 2. The followings hold:

(a) Rk
j = f(ζkj ) + ξkj , where ξkj

iid∼ Fk(dξ) for any k ∈ N
are independent with distribution Fk(dξ) bounded on a
finite interval [−cξ, cξ] and E exp(ξkj ) = 1;

(b) |f(ζ)| ≤ cf for all ζ ∈ Z and Z is compact;
(c) there exists ϵ > 0 such that f is continuous on B∗(ϵ);
(d) Qk(z, ϱ, dζ) = qk(z, ϱ, ζ)µ(dζ), with

supz,ϱ,ζ∈Z qk(z, ϱ, ζ) ≤ Lk < ∞ for all k ∈ N,
where µ is a probability measure on Z such that
µ(B∗(ϵ)) > 0 for any ϵ > 0; for any z ∈ Z , the
sequence of probability measures Qk(z, ϱ, dζ) weakly
converges to δz(dζ);

(e) {Nk} is a sequence of natural numbers Nk ∈ N such
that Nk →∞ for k →∞;

(f) supz,ϱMk(z, dϱ) <∞ for all k ∈ N;
(g) P̃1(B(ζ, ϵ)) > 0 for all ϵ > 0 and ζ ∈ Z;

(h) for any ϵ > 0, there are δ > 0 and a natural k̄ such that
P̃k(B∗(ϵ)) ≥ δ for all k ≥ k̄.

Let us comment on the assumptions above. Condition
(a) requires that the evaluation noise be independent and
bounded; the expectation requirement can be satisfied for
truncated log-normal distributions (Thompson 1950). The iid
requirement can be relaxed to mixing processes at the cost
of more complex analysis (Doukhan 2012); the boundedness
condition, on the other hand, seems necessary to keep iter-
ates in the vicinity of global maximum if they are already
there. Condition (b) is non-restrictive for practical problems.
Condition (c) is natural since πζ is continuous by Lemma 1,
and can be satisfied if the true reward functions rt are contin-
uous for all t ∈ [T ]. Assumptions (d), (e), (f), (g), and (h)
formulate necessary requirements on the parameters of the
algorithm. Intuitively, conditions (d), (e), and (f) stipulate
that the search becomes more “focused” over time in order
to concentrate on the global optima; however, conditions (g)
and (h) indicates that the decrease of span cannot be too
fast in order not to miss the global optima. Condition (f)
on the guidance function ϕ can be met by proper smooth-
ing if needed. Condition (e) can be relaxed to Nk = N for
some finite integer N for all k ∈ N, but the convergence will
only be towards the vicinity of Λ due to the finite sample
effect (see Lemma 4 in the appendix, which states the rate
to be on the order N−1/2). Unlike (c), (d), (e), (f), and (g),
condition (h) is not constructive; hence, we provide some
verifiable conditions sufficient for (h) to hold in Corollary 1
(also see Corollary 2 in the appendix). Next, we analyze the
update rule of Algorithm 1.
Lemma 2. The probability distribution
Pk+1(dζ1, ..., dζNk+1

) can be written in terms of the
distribution Pk(dζ1, ..., dζNk

) as:

∫

ΩNk

χk(dωNk
)

Nk+1∏

j=1

{
β(ωNk

)

Nk∑

i=1

Λ(zi, ϱi, ξi, dζj)

}
, (8)

where Ω = Z × Z ′ × [−cξ, cξ],
ωNk

= {z1, ..., zNk
, ϱ1, ..., ϱNk

, ξ1, ..., ξNk
} ∈ ΩNk ,

χk(dωNk
) = Pk(dz1, ..., dzNk

)

Nk∏

j=1

Fk(dξj)Mk(zj , dϱj),

β(ωNk
) =

1
∑Nk

j=1 exp(f(zj) + ξj)
, and

Λ(z, ϱ, ξ, dζ) = exp(f(z) + ξ)Qk(z, ϱ, dζ).

The proof is immediate by recognizing that the bracket
term in (8) is the conditional distribution pk+1(dζj) defined
in (5) and the integration is over the distribution from the pre-
ceding iteration. We take the product over Nk+1 candidates
since they are drawn iid from pk+1.

Now, we provide the main result on the convergence of
P̃k(dζ) to some distribution λ(dζ) over the global optima.
Theorem 1. Suppose that Assumption 2 holds true, and let
{P̃k} be the sequence of unconditional marginal distributions
determined by Algorithm 1. Then, the distribution sequence



weakly converges to some measure λ over the optimal set,
i.e., P̃k ⇒ λ as k →∞.

The key stage of proof is to show that there exists a subse-
quence in {P̃k} that weakly converges to

ϑm(dζ) =
exp(mf(ζ))κ(dζ)∫
exp(mf(z))κ(dz)

for some measure κ, wherem is the index of the subsequence.
The above distribution is effectively a softmax function over
function values and converges to the extrema as m→∞.

All the conditions in Assumption 2 are natural with the
exception of (h), which requires some further justification. In
the following, we present a sufficient condition for (h) with
a proper design of Qk(z, ϱ, dζ), which applies to the case
of noisy function evaluations; see the appendix for another
example in the case of noiseless function evaluations.

Corollary 1. Under Assumption 2 (except (h)), and let the
transition probability Qk(z, ϱ, dζ) be

Qk(z, ϱ, dζ) = ck(z, ϱ)ψ((ζ − z − αkϱ)/ιk)µ(dζ), (9)

where ck(z, ϱ) = (
∫
ψ((ζ − z − αkϱ)/ιk)µ(dζ))

−1 is the
normalization term, ψ is a continuous symmetrical finite
density, and

ιk > 0,

∞∑

k=1

ιk <∞, αk ≥ 0,

∞∑

k=1

αk <∞.

Then, there exists a sequence of natural numbers {Nk} such
that {P̃k} weakly converges to λ.

Our analysis accounts for the effect of trajectory-based
guidance, which is a novel contribution to the ES literature.
By examining the proof, we can relax the condition that∑∞

k=1 αk < ∞, i.e., continue applying the guidance with-
out the need to diminish its impact in the long run, as long
as the guidance signal “approximately” points to the global
optima in the proximity (see the appendix for exact condi-
tions). However, such guidance can be difficult to design or
even verify in practice; thus, it is still advisable to relinquish
human knowledge and let data drive the decision, eventually.

5 Results from the CityLearn Challenge
Challenge overview. The competition has an online setup with
a simulation period of 1 or 4 years, where agents exploit the
best policies to optimize the coordination strategy. The goal
of each agent is to minimize environmental costs, such as
ramping costs, peak demands, 1-load factor, and carbon emis-
sions. The state space contains information such as daylight
hours, outdoor temperature, storage device state of charge
(SOC), net electricity consumption of the building, carbon
intensity of the power grid, among a total of 30 continuous
states. The agent is allowed to control the charging/discharg-
ing actions of storage devices for domestic hot water (DHW),
chilled water, and electricity (i.e., 3 continuous actions per
building). The environment is seen as a blackbox to the agent
as a standard RL setup, where the transition dynamics depend
on the responses of various devices (e.g., air-to-water heat

ZO-iRL (ours) ICD-CA IDLab Breakfast Club

Total score 0.944 1.070 1.070 1.130
Coord. score 0.915 1.107 1.098 1.095

Table 1: Total and coordination scores of the top 4 teams in
2021 CityLearn Challenge.

pumps, electric heaters) as well as the energy loads of build-
ings, which include space cooling, dehumidification, DHW
demand, and solar generation.

Evaluation. The submission of each team is evaluated on a
set of metrics, including: (1) ramping:

∑ |et−et−1|, where e
is the net electricity consumption at each time step; (2) 1-load
factor: average net electricity load divided by maximum elec-
tricity load; (3) average daily peak demand; (4) maximum
peak electricity demand; (5) total electricity consumed; (6)
carbon emissions. The competition evaluates performance by
computing the ratio of costs with respect to a rule-based con-
troller (RBC)—lower ratios indicate better performances.2
The average of the above metrics for the full simulated period
is the total score, while the average of the metrics (1)-(4) is
coordination score. The performance of the top 4 teams is
listed in Table 1. Refer to (Vazquez-Canteli et al. 2020) for
more details on the contest.

ZO-iRL: zeroth-order implicit RL. 3 As our method
is designed for single-agent episodic RL, we first reduce
the original task that consists of a single period of 1 or 4
years into episodes of 24 hours. We use the per-step reward
−max(0, et)

3 as recommended by (Vazquez-Canteli et al.
2020), where et is the net electricity consumption (or genera-
tion if et < 0). This reward favours consumption patterns that
are smoothly averaged without demand peaks, aligned with
multiple metrics used in the evaluation, such as the 1-load
factor and peak electricity demand. Another reduction is from
multi-agent RL to single-agent RL, where each building’s
policy is updated independently, reducing the problem to
decentralized control with additive rewards; such a reduction
is computationally efficient for large-scale problems (De Nijs
et al. 2021). We omit the notational dependence on candidate
j and iteration k when presenting the method.

Optimization planner. We instantiate the optimization in
(2) as follows. The planned states s̄t consist of state variables
such as net electricity consumption and SOCs of storage
devices; the action āt ∈ A is the action of the MDP; the
surrogate reward

r̄t(s̄t; ζ) = −|et − et−1| − θtet
is a combination of the negated ramping cost and the “vir-
tual” electricity cost, where ζ = {θt ∈ [0, 5]}t∈[24] can
be viewed as virtual electricity prices to be learned to en-
courage desirable consumption patterns (e.g., load flattening

2Note that the RBC controller is ubiquitous in traditional build-
ing control systems and is a simple form of “take action ah in hour
h,” where ah is a constant independent of current states except for
the hour of the day (h ∈ [24]).

3We name our method ZO-iRL because the policy is implicitly
determined by solving an optimization problem and the learning
algorithm is zeroth-order in an RL setting.



Figure 2: Learning curves of ZO-iRL and baselines. We perform 10 runs on each baseline to obtain performance plots with
standard deviations for Climate Zones 1 to 5.

SAC A2C DDPG DQN PPO TD3 MARLISA ZO-iRL
ramping cost 1.145 (0.015) 1.189 (0.002) 1.174 (0.029) 1.302 (0.008) 1.638 (0.005) 1.178 (0.026) 1.022 (0.010) 0.781 (0.005)
1-load factor 1.158 (0.002) 1.146 (0.002) 1.143 (0.007) 1.159 (0.003) 1.168 (0.003) 1.142 (0.004) 1.026 (0.006) 1.010 (0.008)
avg. daily peak 1.180 (0.002) 1.184 (0.008) 1.195 (0.011) 1.212 (0.002) 1.242 (0.001) 1.193 (0.006) 1.015 (0.001) 0.996 (0.001)
peak demand 1.077 (0.008) 1.088 (0.007) 1.100 (0.010) 1.115 (0.009) 1.132 (0.006) 1.098 (0.013) 1.000 (6e-5) 0.962 (0.005)
net electric. peak 0.995 (0.001) 0.994 (0.002) 0.997 (8e-4) 0.997 (1e-4) 1.003 (7e-5) 0.997 (7e-4) 1.000 (5e-4) 1.006 (2e-4)
carbon emissions 1.000 (0.001) 1.000 (0.002) 1.003 (7e-4) 1.005 (1e-4) 1.009 (7e-5) 1.004 (7e-4) 1.001 (5e-4) 1.007 (2e-4)
total score 1.092 (0.003) 1.101 (0.003) 1.102 (0.008) 1.132 (0.002) 1.199 (0.001) 1.102 (0.006) 1.011 (0.002) 0.962 (0.001)

Table 2: Comparison with baselines: SAC (Kathirgamanathan et al. 2020) and MARLISA (Vazquez-Canteli, Henze, and Nagy
2020) have been officially implemented for CityLearn; other baselines are implemented by (Raffin et al. 2019). The reported
values are the average and standard deviation (in brackets) across 10 independent runs on Climate Zone 1 data.

and smoothing). Intuitively, a higher value of θt discourages
planned electricity consumption in the corresponding hour t.

The inequalities are grouped into technological constraints
(e.g., maximum/minimum cooling power) and constraints on
states and actions. The equalities are grouped into physics
accounting for energy balances (i.e., consumption equal to
supply) and technology (e.g., SOC update rules). Further
details are provided in the appendix. Note that to set up
the optimization (2), we also need to provide predictions of
energy demands and solar generation. For simplicity, our
predictors are based on a simple averaging scheme that takes
the average in the corresponding hours of the last 2 weeks of
data; thus, there are no specific parameters to learn.

Transition and guidance. We use (7) as the transition prob-
ability, with variance ιk = 0.4/k2 that is initialized to 0.4
and decreases by k2 in each iteration. The guidance signal
ϱ is computed as follows. By the end of each episode, we
examine the net electricity usage in the past 24 hours, et for
t ∈ [24] and find the top 2 hours with the most electricity
usage, denoted by t1 and t2. Then, the guidance signal ϱt is
0.02 if t ∈ {t1, t2} and −0.04/22 otherwise. Note that we
have centered the signal (

∑
t ϱt = 0) by assigning negative

values for hours other than peaks. We choose αk = 1 for all
k over the entire 4-year period, as there is no training phase
in the CityLearn Challenge and we prefer to adapt quickly
during the test phase; this is not a violation of our theory, as
we can choose to diminish αk after a while to still satisfy the
condition

∑∞
k=1 αk <∞.

Results. For baselines, we use the implementation of (Raf-
fin et al. 2019) with the default ADAM optimizer, where the
policy is an NN architecture with tanh activation and two lay-
ers of 256 units each. From Table 2, we see that ZO-iRL has
achieved the lowest cost ratios (i.e., best scores) of all, which
is consistent with the official result of the competition (Table
1). In particular, as shown in Fig. 3, ZO-iRL is able to find a
good policy in the first few months, while baselines seem to
struggle; we speculate that more samples would eventually
improve the performance of baselines, and all methods may
benefit from schemes to handle the potentially nonstationary
environment due to seasonal patterns.

6 Conclusion and future directions
We presented a novel adaptive optimization framework that
has been shown to be very effective for energy storage man-
agement. Using solution functions as policies offers a promis-
ing way to introduce data-driven algorithms into the real
world where convex optimization has been widely adopted.
To adapt the optimization parameters, we developed an evo-
lutionary search algorithm that can incorporate insights from
control trajectory data as guidance for parameter updates.
The method outperforms several baselines and ranked first
in the latest 2021 CityLearn Challenge. Some potential fu-
ture directions could be to extend the proposed framework to
other methods such as Bayesian optimization or first-order
methods such as actor-critic.
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A Proof of results in the main paper
A.1 Formalism of the guidance signal
The formalism of the guidance signal requires some basics from random process and measure theory (interested readers are
referred to (Hajek 2015)). We keep our presentation minimal but sufficient enough to carry out the analysis. Consider a stochastic
process (Sj,k

t , Aj,k
t )t∈[T ] defined by policy πζk

j
interacting with the MDP environment, where Sj,k

t andAj,k
t are random variables

representing the state and action at time t. Let It = (S ×A)t be the set of possible histories up to time step t within an episode,
and Ij,kt := (Sj,k

1 , Aj,k
1 , ..., Sj,k

t , Aj,k
t ) ∈ It is a random vector taking values in It containing all state-action pairs observed up

to step t. Denote by F j,k
t a non-decreasing sequence of σ-algebra (a filtration) generated by Ij,kt . Then, the guidance signal

ϱkj ∈ Z ′ is a random variable adapted to the filtration F j,k
T , i.e., ϱkj is F j,k

T -measurable, with probability measure Mk(ζ
k
j , dϱ)

associated with a properly defined probability space, the existence of which is ensured by the Ionescu-Tulcea theorem. Note
that the distribution of ϱkj depends on ζkj , since the stochastic process Ij,kt is determined by the policy πζk

j
, but is conditionally

independent of all other candidates ζkj′ for j′ ̸= j.

A.2 Proof of Lemma 1
Let Φ(st, ζ) represent the feasible set of (2). By Assumption 1, Φ(st, ζ) is convex for fixed st and ζ and has a nonempty interior.
This implies that Φ(st, ζ) is continuous in st and ζ (Rockafellar and Wets 2009, example 5.10). Hence, by Berge maximum
theorem (Berge 1997), πζ(st) is upper hemicontinuous in ζ for fixed st ∈ S. However, we know that πζ(st) contains a single
point due to the strict convexity of the objective function. Thus, for fixed st ∈ S , πζ(st) is a single-valued function continuous in
its parameter ζ.

A.3 Proof of Theorem 1
Select from {P̃k} a weakly convergent subsequence {P̃ki}, which is possible due to Prohorov’s theorem (Billingsley 2013, Ch.
6), and denote the limit by κ(dζ). By Lemma 4, we have that

P̃k+1(dζ) =

(∫
P̃k(dz) exp(f(z))

)−1 ∫
P̃k(dz) exp(f(z))

(
Qk(z, ϱ, dζ)Mk(z, dϱ) + ∆Nk

(dζ)
)
. (10)

By Assumption 2 (d) and (h), it follows that the subsequence {P̃ki+1} weakly converges to the distribution ϑ1(dζ) =

c1 exp(f(ζ))κ(dζ), where c1 is the normalization constant. Similarly, the subsequence {P̃ki+m} weakly converges to the
distribution

ϑm(dζ) =
exp(mf(ζ))κ(dζ)∫
exp(mf(z))κ(dz)

,

which, by Lemma 3, converges to λ. Thus, by the standard diagonalization argument (Billingsley 2013), we can show that there
exists a subsequence {P̃kj

} that weakly converges to λ. Applying Lemma 4 again yields that {P̃kj+1} converges to the same
limit. Thus, any subsequence of {P̃k} converges to this limit, and the same holds for the sequence itself.

A.4 Proof of Corollary 1
Under Assumption 2 (except (h)), the distributions (16) have continuous densities with respect to the Lebesgue measure. Let
A(ϵ) = {ζ ∈ Z : f(ζ) ≥ f∗ − ϵ}. By (9) and Lemma 2, we have that P̃k(dζ) > 0 for any k ∈ N. Fix an arbitrary δ > 0. We
shall choose {Nk} such that for any k ≥ kn and ϵ > 0, the following holds

P̃k+1(A(ϵ+ ϵk)) ≥ (1− δk)P̃k(A(ϵ)), (11)

where
0 < δk < 1 for k ∈ N,

∑

k∈N
δk <∞, (12)

and ϵk ≥ 0 are determined in terms of ιk, αk, and the sizes of the support of density ψ,
∞∑

k=1

ϵk ≤ constant

∞∑

k=1

ιk <∞. (13)

Such sequence of {Nk} and kn exist by Lemma 2, the finiteness of ψ, and the condition that
∑∞

k=1 αk < ∞. Next, select
ko ≥ kn such that

∞∑

k=ko

ϵk <
1

2
δ,



and let δ1 = P̃ko(A(δ/2)). Then, for any k ≥ ko, we have

P̃k+1(A(δ)) ≥ P̃ko(A(δ/2 +

k∑

i=ko

δi))

k∏

i=ko

(1− δi)

≥ δ1
∞∏

i=ko

(1− δi)

> 0

where the last inequality is implied by (12). The proof is complete.
Remarks on the guidance signal. From the proof of Corollary 1, it can be observed that we can relax the condition that∑∞
k=1 αk <∞ as long as the guidance signal αkϱ

k is chosen in such a way that (11), (12), and (13) are satisfied. This means
that we can continue applying the guidance signal without the need to diminish its impact in the long run. However, (11) is
difficult to ensure, as it requires designing a guidance that always points to the global optimal. Therefore, in practice, it is
recommended to diminish the effect of guidance and eventually let the data drive the decision.

A.5 An example of transition probability with noiseless function evaluations
Corollary 2. Under Assumption 2 (except for (h)), and further assume that f can be evaluated without noise (i.e., ξ = 0). Let
the transition probability Qk(z, ϱ,A) be defined by

Qk(z, ϱ,A) =

∫
1{ζ∈A,f(z)≤f(ζ)}Tk(z, ϱ, dζ)

+ 1{z∈A}

∫
1{f(ζ)<f(z)}Tk(z, ϱ, dζ), (14)

where {Tk(z, ϱ, dζ)} weakly converges to δz(dζ) for all z, ϱ ∈ Z . Then, there exists a sequence of natural numbers Nk such
that the sequence of distributions {P̃k} weakly converges to λ for k →∞.

Proof. By Assumption 2 (c) and (g), we have that P̃1(B∗(ϵ)) > 0 for any ϵ > 0. By (14), we have that

P̃k(B∗(ϵ)) ≥ · · · ≥ P̃1(B∗(ϵ)) > 0

for all k ∈ N. Hence, Assumption 2 (h) is satisfied. By Theorem 1, the claim is proved.

Remarks. To implement the transition of (14), one first needs to sample a variable ζ according to Tk(z, ϱ, dζ) and observe its
reward value f(ζ); then, the output is ζ if f(ζ) ≥ f(z) and z otherwise. Such a scheme depends crucially on a reliable way of
comparing candidates (e.g., noiseless evaluation).

A.6 Supporting lemmas
Lemma 3. Under Assumption 2 (b), (c), and (d), the sequence of distributions

exp(kf(ζ))µ(dζ)∫
exp(kf(z))µ(dz)

⇒ λ(dζ),

i.e., weakly converges to λ(dζ) for k →∞.

Proof. By the definition of weak convergence, it suffices to show that for any function Ψ(ζ) continuous on Z , it holds that

lim
k→∞

ck

∫
exp(kf(ζ))Ψ(ζ)µ(dζ) =

∫
Ψ(ζ)λ(dζ), (15)

where ck = 1/
∫
exp(kf(z))µ(dz). To proceed, Let Bi = B(ϵi) = {ζ ∈ Z : minζ′∈Λ ∥ζ ′ − ζ∥ ≤ ϵi} and Di = {ζ ∈ Z :

minζ′∈Λ ∥ζ ′ − ζ∥ ≥ ϵi}, for i = 0, 1, 2 and some ϵ0, ϵ1, and ϵ2 to be determined. For any δ > 0, by continuity of Ψ, there exists
ϵ0 > 0 such that |Ψ(z)−

∫
Ψ(ζ)λ(dζ)| ≤ δ for all z ∈ B0. Choose some ϵ1 > 0 such that ϵ1 < ϵ0. Then, we have

∣∣∣∣ck
∫

exp(kf(ζ))Ψ(ζ)µ(dζ)−
∫

Ψ(ζ)λ(dζ)

∣∣∣∣

≤ ck
∫

B1

exp(kf(z))

∣∣∣∣Ψ(z)−
∫

Ψ(ζ)λ(dζ)

∣∣∣∣µ(dz) + ck

∫

D1

exp(kf(z))

∣∣∣∣Ψ(z)−
∫

Ψ(ζ)λ(dζ)

∣∣∣∣µ(dz)

≤ δ ck
∫

B1

exp(kf(z))µ(dz)

︸ ︷︷ ︸
(i)

+2∥Ψ∥∞ ck

∫

D1

exp(kf(z))µ(dz)

︸ ︷︷ ︸
(ii)

,



where the first inequality is due to triangle inequality, and the second inequality is due to the choice of ϵ1 (also, recall that
∥Ψ∥∞ = sup |Ψ(z)|). Hence, the lemma is proved if we can show that (i)→ 1 and (ii)→ 0 as k →∞.

To this end, let C1 = supζ∈D1
f(ζ). By Assumption 2 (c), there exists ϵ2 such that 0 < ϵ2 < ϵ1, and

C2 = inf
ζ∈B2

f(ζ) > C1.

For any k > 0, we have
∫

B1

exp(kf(z)− kC1)µ(dz) >

∫

B2

exp(kf(z)− kC1)µ(dz) ≥
∫

B2

exp(k(C2 − C1))µ(dz).

Thus, ∫
D1
µ(dz)∫

B2
exp(k(C2 − C1))µ(dz)

≥
∫
D1

exp(kf(z))µ(dz)∫
B1

exp(kf(z))µ(dz)
︸ ︷︷ ︸

(iii)

≥ 0.

By driving k →∞ to the limit and using the sandwich theorem, we have that (iii)→ 0. This immediately implies that (i)→ 1
and (ii)→ 0 as k →∞, hence concluding the proof.

Lemma 4. Let Assumption 2 (a), (b), and (d) be fulfilled. Then, the marginal distributions can be written as

P̃k+1(dζ) =

(∫
P̃k(dz) exp(f(z))

)−1 ∫
P̃k(dz) exp(f(z))Qk(z, ϱ, dζ)Mk(z, dϱ) + ∆Nk

(dζ), (16)

where the signed measures ∆Nk
(dζ) converge to zero in variation for Nk →∞ with the rate Nk

−1/2.

Proof. For notational simplicity, we use N for Nk throughout the proof. By Assumption 2 (a) and Lemma 2, the marginal
distribution P̃k+1(dζ) is given by:

P̃k+1(dζ) =

∫

ΩN

χk(dωN )

{
β(ωN )

N∑

i=1

Λ(ζi, ϱi, ξi, dζ)

}

=

N∑

i=1

∫

ΩN

χk(dωN )β(ωN )Λ(ζi, ϱi, ξi, dζ)

=

∫

ΩN

χk(dωN ) {Nβ(ωN )}Λ(ζ1, ϱ1, ξ1, dζ).

which can be represented in the form of (16) with

∆N (dζ) =

∫

ΩN

χk(dωN )Λ(ζ1, ϱ1, ξ1, dζ)

{
Nβ(ωN )−

(∫
P̃k(dz) exp(f(z))

)−1
}

+

(∫
P̃k(dz) exp(f(z))

)−1 {∫

ΩN

χk(dωN )Λ(ζ1, ϱ1, ξ1, dζ)−
∫

Ω

P̃k(dz) exp(f(z))Qk(z, ϱ, dζ)Mk(z, dϱ)

}

= (i) + (ii)

We shall show that (i)→ 0 in variation for N →∞ and (ii) = 0. Due to Assumption 2 (d), the convergence of (i) is equivalent
to the fact that

∫
|vN (ζ)|µ(dζ)→ 0, where

vN (z) =

∫

ΩN

χk(dωN ) exp(f(ζ1) + ξ1)qk(ζ1, ϱ1, z)

{
Nβ(ωN )−

(∫
P̃k(dz) exp(f(z))

)−1
}
.

To proceed, let γN = 1
N

∑N
i=1 exp(f(ζi) + ξi) and ψ(z) = exp(f(ζ1) + ξ1)qk(ζ1, ϱ1, z). Due to the symmetrical dependence

of random elements ζ1, ..., ζN and ϱ1, ..., ϱN , as well as the independence of ξ1, ..., ξN , the random variables γN converge in
mean for N →∞ to some random variable γ in dependent of all γi(ωi), yi = f(ζi) + ξi, for i ∈ N, and

Eγ = E exp(yi) =

∫
exp(f(ζ) + ξ)P̃k(dζ)Fk(dξ).



Equivalently, for any δ1 > 0, there exists Nγ(δ1) ≥ 1 such that E|γN − γ| < δ1 for all N ≥ Nγ(δ1). Then,

|vN (z)| =
∣∣∣∣E

(
ψ(z)

γN

)
− Eψ(z)

Eγ

∣∣∣∣ (17)

=
1

Eγ

∣∣∣∣E
(
ψ(z)γ

γN

)
− Eψ(z)

∣∣∣∣ (18)

≤ exp(cf )

∣∣∣∣E
(
ψ(z)|γ − γN |

γN

)∣∣∣∣ (19)

≤ exp(2cf )∥ψ∥∞E|γ − γN | (20)
≤ Lk exp(3cf + cξ)E|γ − γN |, (21)

where the second equality is due to the independence of γ from γN and ψ, the first and second inequalities are due to
γ, γN ≥ exp(−cf ) (by Assumption 2 (b)), and the last relation is due to ∥ψ∥∞ ≤ exp(f(ζ) + ξ))Lk ≤ Lk exp(cf + cξ). In
order to show that

∫
|vN (z)|µ(dz) → 0, we need to prove that for any δ > 0 and z ∈ Z , there exists N⋆(δ, z) such that for

N ≥ N⋆(δ, z), there holds |vN (z)| ≤ δ. This can hold if one takes δ1 = δL−1
k exp(−3cf − cξ) and N⋆(δ, z) = Nγ(δ1).

Now, by (21), we have that
∫
|vN (ζ)|µ(dζ) ≤ Lk exp(3cf + cξ)E|γ − γN |. From the central limit theorem for symmetrically

dependent random variables (see (Blum et al. 1958)), it follows that E|γ − γN | = O(N−1/2). Consequently, we have shown
that

∫
|vN (ζ)|µ(dζ) = O(N−1/2).

To show that (ii) = 0, note that
∫

ΩN

χk(dωN )Λ(ζ1, ϱ1, ξ1, dζ)−
∫

Ω

P̃k(dz) exp(f(z))Qk(z, ϱ, dζ)Mk(z, dϱ)

=

∫

Z
P̃k(dz) exp(f(z))Qk(z, ϱ, dζ)Mk(z, dϱ)

{∫
exp (ξ)Fk(dξ)− 1

}
,

which is 0 by Assumption 2 (a). Hence, we have concluded the proof.

B Additional details for the CityLearn Challenge
B.1 Details of optimization model
We refer the reader to (Vazquez-Canteli et al. 2020) and the corresponding online documentation4 for the detailed setup of
the contest. We will focus only on our strategy in this document. In particular, we provide details on the construction of the
optimization model in 2. Denote the hourly index by r ∈ {1, 2, · · · , T}, where T = 24. Suppose we are at the beginning of the
hour r. Then we need to plan for the actions for the future hours until the end of the day and execute the plan for the next hour r,
a.k.a., rolling-horizon planning. Next, we describe hyperparameters, variables, objective, and constraints in 2.

Hyperparameters. Hyperparameters are required to instantiate an optimization and are not part of the optimization variables
to be solved by an optimization algorithm.

• The hyperparameters to be set by prior knowledge include: (1) electric heater: efficiency ηehH, nominal power EehH
max; (2)

heat pump: technical efficiency ηhp
tech, target cooling temperature thp

c , nominal power Ehpc
max; (3) electric battery: rate of decay

Cf bat, capacity Cpbat, efficiency ηbat
t ; (4) heat storage: rate of decay CfHsto, capacity CpHsto, efficiency ηHsto

t ; (5) cooling
storage: rate of decay CfCsto, capacity CpCsto, efficiency ηCsto

t .
• The hyperparmeters provided by the predictors include: (1) hourly coefficient of performance (COP) of heat pump

COPC
t = ηhp

tech
thp
c +273.15

tempt−thp
c

, where tempt is the predicted outside temperature for hour t; (2) solar generation EPV
t ; (3)

electricity non-shiftable load ENS
t ; (4) heating demand Hbd

t ; and (5) cooling demand Cbd
t . At hour r, the above predictions

are required for hour r ≤ t ≤ T . In our algorithm, predictions are provided by simply averaging the last 2 weeks of data in
the corresponding hour.

• The hyperparameters to be learned by Algorithm 1 are the virtual electricity price {θt}t=1,...,24 for 24 hours. These values
are bounded between [0, 10].

Optimization variables. The variables for the optimization at hour r include:

1. Net electricity grid import: Egrid
t , T ≥ t ≥ r

2. Heat pump electricity usage: EhpC
t , T ≥ t ≥ r

3. Electric heater electricity usage: EehH
t , T ≥ t ≥ r

4link: https://sites.google.com/view/citylearnchallenge



4. Electric battery state of charge: SOCbat
t , T ≥ t ≥ r

5. Heat storage state of charge: SOCH
t , T ≥ t ≥ r

6. Cooling storage state of charge: SOCC
t , T ≥ t ≥ r

7. Electrical storage action: abat
t , T ≥ t ≥ r

8. Heat storage action: aHsto
t , T ≥ t ≥ r

9. Cooling storage action: aCsto
t , T ≥ t ≥ r

The actions of the policy at hour r are abat
r , aHsto

r , and aCsto
r . The remaining variables are considered auxiliary variables for

planning.
Objective function. The objective function is given by:

|Egrid
t − Egrid

t−1|+ θtE
grid
t +

T∑

t′=t+1

(
|Egrid

t′ − E
grid
t′−1|+ θt′E

grid
t′

)
. (22)

Note that we use et for Egrid
t in the main text. Also, the above objective is used in a standard minimization problem; to make it

consistent with the maximization problem in (2), we can take the negation of the value.
Constraints. The constraints include both energy balance constraints and technology constraints.
Energy balance constraints:

• Electricity balance for each hour t ≥ r:
EPV

t + Egrid
t = ENS

t + EhpC
t + EehH

t + abat
t Cbat

p

• Heat balance for each hour t ≥ r:
EehH

t = aHsto
t CHsto

p +Hbd
t

• Cooling balance for each hour t ≥ r:
EhpC

t COPC
t = aCsto

t CCsto
p + Cbd

t

Heat pump technology constraints:

• Maximum cooling for each hour t ≥ r:
EhpC

t ≤ EhpC
max

• Minimum cooling for each hour t ≥ r:
EhpC

t ≥ 0

Electric heater technology constraints:

• Maximum limit for each hour t ≥ r:
EehH

t ≤ EehH
max

• Minimum limit for each hour t ≥ r:
EehH

t ≥ 0

Electric battery technology constraints:

• Initial SOC:
SOCbat

r = (1− Cbat
f SOCbat

r−1) + abat
r ηbat

• SOC updates for each hour t ≥ r:
SOCbat

t = (1− Cbat
f )SOCbat

t−1 + abat
t ηbat

• Action limits for each hour t ≥ r:
−1 ≤ abat

t ≤ 1

• Bounds of SOC or each hour t ≥ r:
0 ≤ SOCbat

t ≤ 1

Heat storage technology constraints:

• Initial SOC:
SOCH

r = (1− CHsto
f SOCH

r−1) + aHsto
r ηHsto

• SOC updates for each hour t ≥ r:
SOCH

t = (1− CHsto
f )SOCH

t−1 + aHsto
t ηHsto

• Action limits or each hour t ≥ r:
−1 ≤ aHsto

t ≤ 1



• Bounds of SOC or each hour t ≥ r:
0 ≤ SOCH

t ≤ 1

Cooling storage technology constraints:

• Initial SOC:
SOCC

r = (1− CCsto
f SOCC

r−1) + aCsto
r ηCsto

• SOC updates for each hour t ≥ r:
SOCC

t = (1− CCsto
f )SOCC

t−1 + aCsto
t ηCsto

• Action limits or each hour t ≥ r:
−1 ≤ aCsto

t ≤ 1

• Bounds of SOC or each hour t ≥ r:
0 ≤ SOCC

t ≤ 1

The above optimization can be formulated as a linear program and solved efficiently. For more implementation details, please
refer to our code (submitted as supplementary materials).

C Additional experimental results
C.1 Official results for the 2021 CityLearn Challenge

ZO-iRL ICD-CA IDLab Breakfast Club

total score 0.944 1.070 1.070 1.130
total last year 0.942 1.052 1.077 1.067
coord. score 0.915 1.107 1.094 1.195
coord. score last year 0.918 1.074 1.098 1.095
carbon emissions 1.003 1.000 1.028 1.003

Table 3: Official results for the 2021 CityLearn Challenge (Nagy et al. 2021). Here, the total score is the average of all 6 cost
metrics considered in the competition. The coordination score is the average of the first 4 metrics (see the main paper for these
metrics). Last year scores are calculated based on the performance of the last year within the total 4-year simulation period.

C.2 Hyperparameters of ZO-iRL and baselines

Parameter Value
# of parameter candidates Nk 3
Initial variance ι1 0.4
Guidance signal ρ specified in the main text
Guidance rate αk 1
Duration of one episode (hours) 24
Range of virtual electricity price [0, 5]
State-action trajectory buffer size (days) 7

Table 4: Hyperparameters for ZO-iRL.

Parameter Value
DDPG DQN PPO TD3 A2C SAC

Learning rate 1e-3 1e-4 3e-4 1e-3 7e-4 3e-4
# of epochs NA NA 10 NA 5 NA
Buffer size 1e6 1e6 NA 1e6 NA 1e6
Batch size 100 32 64 100 NA 256
Discount factor 0.99 0.99 0.99 0.99 0.99 0.99

Table 5: Parameter values used for RL baselines. NA means not applicable. ADAM optimizer is used for each baseline, where
the policy is given by the NN architecture with a tanh activation function and two layers of 256 units each.



C.3 Results for all climate zones
Here, we provide results for all climate zones. Note that ZO-iRL performs some random parameter exploration in the first few
weeks, which results in worse performance. However, over time, performance improves due to the guided ES, as shown in Fig. 3.

Method SAC A2C DDPG PPO TD3 ZO-iRL
ramping cost 1.244 (0.196) 2.714 (0.186) 1.327 (0.181) 2.718 (0.079) 1.500 (0.228) 0.750 (0.010)
1-load factor 1.162 (0.026) 1.265 (0.012) 1.192 (0.034) 1.273 (0.022) 1.279 (0.120) 1.028 (0.001)
avg. daily peak 1.195 (0.047) 1.413 (0.024) 1.218 (0.033) 1.371 (0.018) 1.351 (0.121) 0.994 (0.003)
peak demand 1.081 (0.001) 1.149 (0.045) 1.119 (0.041) 1.419 (0.082) 1.195 (0.161) 0.950 (0.020)
net electric. peak 0.992 (0.001) 1.011 (0.002) 0.993 (0.004) 1.013 (0.001) 1.099 (0.2066) 1.008 (2e-4)
carbon emissions 0.998 (0.001) 1.017 (0.002) 0.999 (0.004) 1.023 (0.002) 1.104 (0.203) 1.010 (1e-4)
total score 1.112 (0.044) 1.428 (0.042) 1.141 (0.047) 1.469(0.026) 1.255 (0.141) 0.957 (0.004)

Table 6: Comparison of ZO-iRL and baselines for Climate Zone 2. The reported values are the average and standard deviation
(in brackets) across 10 independent runs.

Method SAC A2C DDPG PPO TD3 ZO-iRL
ramping cost 1.098 (0.011) 2.986 (0.223) 1.367 (0.182) 3.154 (0.066) 1.263 (0.127) 0.775 (0.004)
1-load factor 1.140 (0.002) 1.272 (0.009) 1.188 (0.040) 1.375 (0.038) 1.240 (0.136) 1.043 (0.001)
avg. daily peak 1.169 (0.002) 1.441 (0.024) 1.242 (0.063) 1.439 (0.025) 1.277 (0.177) 1.010 (0.003)
peak demand 1.182 (0.001) 1.272 (0.043) 1.199 (0.022) 1.472 (0.084) 1.259 (0.127) 0.952 (0.014)
net electric. peak 0.994 (0.002) 1.013 (0.003) 0.996 (0.004) 1.010 (0.001) 1.099 (0.206) 1.006 (3e-4)
carbon emissions 1.000 (0.002) 1.019 (0.003) 1.002 (0.004) 1.020 (0.001) 1.104 (0.203) 1.007 (1e-4)
total score 1.097 (0.002) 1.501 (0.047) 1.166 (0.048) 1.578(0.025) 1.207 (0.152) 0.966 (0.003)

Table 7: Comparison of ZO-iRL and baselines for Climate Zone 3. The reported values are the average and standard deviation
(in brackets) across 10 independent runs.

Method SAC A2C DDPG PPO TD3 ZO-iRL
ramping cost 1.024 (0.006) 2.814 (0.468) 1.566 (0.230) 3.070 (0.108) 1.310 (0.072) 0.739 (0.003)
1-load factor 1.117 (0.003) 1.229 (0.024) 1.185 (0.036) 1.449 (0.019) 1.187 (0.038) 1.013 (0.006)
avg. daily peak 1.126 (0.002) 1.411 (0.072) 1.249 (0.070) 1.429 (0.015) 1.262 (0.051) 1.003 (0.001)
peak demand 1.134 (1e-4) 1.238 (0.069) 1.155 (0.036) 1.444 (0.061) 1.205 (0.099) 0.999 (0.026)
net electric. peak 0.987 (0.002) 1.010 (0.006) 0.995 (0.004) 1.007 (0.002) 0.990 (0.003) 1.007 (4e-4)
carbon emissions 0.994 (0.002) 1.017 (0.006) 1.000 (0.004) 1.015 (0.001) 0.996 (0.004) 1.009 (8e-4)
total score 1.064 (0.001) 1.453 (0.103) 1.192 (0.060) 1.569(0.032) 1.158 (0.042) 0.962 (0.003)

Table 8: Comparison of ZO-iRL and baselines for Climate Zone 4. The reported values are the average and standard deviation
(in brackets) across 10 independent runs.



Method SAC A2C DDPG PPO TD3 ZO-iRL
ramping cost 1.245 (0.162) 2.603 (0.158) 1.320 (0.161) 2.673 (0.047) 1.385 (0.144) 0.789 (0.005)
1-load factor 1.241 (0.055) 1.314 (0.011) 1.212 (0.033) 1.332 (0.032) 1.253 (0.043) 1.045 (0.011)
avg. daily peak 1.172 (0.049) 1.347 (0.025) 1.197 (0.043) 1.346 (0.021) 1.221 (0.044) 1.004 (0.002)
peak demand 1.285 (0.097) 1.356 (0.021) 1.203 (0.035) 1.535 (0.184) 1.231 (0.066) 1.014 (0.022)
net electric. peak 0.989 (0.002) 1.003 (0.002) 0.990 (0.006) 1.003 (8e-4) 0.993 (0.003) 1.004 (0.001)
carbon emissions 0.995 (0.002) 1.009 (0.002) 0.997 (0.007) 1.015 (7e-4) 0.999 (0.002) 1.005 (0.001)
total score 1.154 (0.057) 1.438 (0.032) 1.153 (0.041) 1.484(0.042) 1.180 (0.049) 0.977 (0.005)

Table 9: Comparison of ZO-iRL and baselines for Climate Zone 5. The reported values are the average and standard deviation
(in brackets) across 10 independent runs.

Figure 3: Learning curves of ZO-iRL and baselines for Climate Zones 2–5. Note that ZO-iRL is the only method that consistently
achieves a cost below 1 across different runs in different climate zones.



C.4 Visualization of parameter evolution
In this section, we visualize the evolution of parameters under ZO-iRL for some buildings. We also juxtapose the corresponding
patterns of empirical peak counts, net electricity use, electricity demand, heating demand, and cooling demand. The empirical
count is calculated for each hour as the number of times the corresponding hour has the top 2 net electricity usage in a week. The
higher the empirical counts, the more frequent the corresponding hour has peak usage. We also note that electricity usage is
higher than electricity demand due to the additional energy demand for heating and cooling.
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Figure 4: Visualization of (a) parameter learning, (b) net electricity use (c) electric loads, (d) empirical counts of peaks, (e)
heating demand, and (d) cooling demand for Building 1. It can be observed that Building 1 continues to increase the virtual
electricity prices for hours around 16–18 in response to consistently observed peaks in those hours. Due to storage controls, the
net electricity usage pattern is smoother (spreading throughout the day) than the demand patterns, as observed in all buildings.
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Figure 5: Similar patterns can be observed for Building 3. Note that for this building, there is no heating demands.
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Figure 6: Visualization of (a) parameter learning, (b) net electricity demand, (c) electric loads, (d) empirical counts of peaks,
(e) heating demand, and (f) cooling demand for Building 8. It can be observed that Building 8 increases the virtual electricity
price during hours 17–23 in response to high electricity peaks. As peak issues are mitigated, virtual electricity prices eventually
decline, as can be seen after week 30.
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Figure 7: Similar patterns can be observed for Building 6, where virtual electricity prices rise in response to electricity peaks. For
this building, the peaks are more dispersed throughout the day.
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Figure 8: Similar patterns are observed for Building 8.



C.5 Sensitivity analysis
In this section, we perform sensitivity analysis of ZO-iRL for different parameters/design choices.

Initial variance of the transition distribution. Initial variance ι1 determines how much randomness we inject during each
evolutionary update. Note that in each iteration, we reduce the variance by 1/k2. We can observe from Table 10 that the ZO-iRL
algorithm is robust to the initial variance of the transition probability.

initial variance
0.1 0.3 0.5

total score 0.960 (5e-4) 0.961 (7e-4) 0.962 (0.001)

Table 10: Performance of ZO-iRL for different initial variance values.

Number of parameter candidates. Here, we examine the number of candidates sampled for each update, Nk ∈ {3, 5, 7}. In
general, the performance on ZO-iRL is robust to this parameter. There is a trade-off between the number of candidates used in
each update and the frequency of updates; as we increase Nk, we can expect to find a better candidate in the larger pool; however,
we may also decrease the frequency of updates as the evaluation of each candidate takes one week in an online setting. As a
result, it appears that increasing the number of candidates sampled does not help improve performance.

number of candidates
3 5 7

total score 0.959 (0.001) 0.964 (0.002) 0.965 (0.002)

Table 11: Performance of ZO-iRL for different numbers of sampled candidates per update.

Guidance signal. We report the sensitivity of the ZO-iRL algorithm to guidance signal parameters. We consider variants of
the guidance signal with respect to 1) number of hours of top electricity use in the past day; 2) incremental value. We keep the
guidance learning rate fixed at αk = 1. In the main text, we consider the top-2 hours of electricity usage to be assigned a value of
0.02 (the rest hours are adjusted accordingly so that the sum over all hours of the guidance signal is 0). Here, we consider the
following variants: (a) top-1 electricity hour to be assigned values of 0.02; (b) top-2 electricity hour to be assigned values of
0.04; (c) top-3 electricity hour to be assigned values of 0.04; (d) top-6 electricity hour to be assigned values of 0.02. We can see
from Table 12 that the proposed algorithm is robust to these variants.

guidance parameters
top-1 top-2 top-3 top-6

total score 0.962 (2e-4) 0.963 (0.003) 0.963(0.002) 0.975 (0.002)

Table 12: Performance of ZO-iRL for variants of guidance signals.


