
Lecture Notes on Sum-of-Squares Optimization

Dmitriy (Tim) Kunisky

Spring 2022

Contents

List of Open Problems 4

1 Invitation to Sum-of-Squares Proofs for Computer Scientists 5
1.1 Maximum Cut and Approximation Ratios . 5
1.2 The Goemans-Williamson Relaxation . 7
1.3 Duality and Sum-of-Squares Proofs . 10
1.4 Towards Improvements . 11
1.5 What Is This Course About? . 13
Exercises . 14
Notes . 15

I General Theory 18

2 Algebraic Proof Systems 19
2.1 Obstructions and Certificates: A Simple Example 19
2.2 Hilbert’s Nullstellensatz . 20

2.2.1 Nullstellensatz Effectivization and Proof Systems 21
2.3 The Real Case . 24

2.3.1 Real Nullstellensatz . 24
2.3.2 Sums of Squares and Hilbert’s 17th Problem 25
2.3.3 Dealing with Denominators . 28
2.3.4 Positivstellensätze . 29
2.3.5 Positivstellensatz Effectivization and Proof Systems 32

Exercises . 33
Notes . 35

3 Lasserre-Parrilo Semidefinite Programming Relaxations 38
3.1 Parrilo Proof Relaxation . 38
3.2 Lasserre Pseudomoment Relaxation . 41

3.2.1 Stylized Description . 42
3.2.2 Semidefinite Program Implementation . 43
3.2.3 Goemans-Williamson Redux . 44

3.3 Duality . 46
3.4 Convergence . 47
Exercises . 47
Notes . 50

1

II Sum-of-Squares Algorithms 51

4 The Proofs-to-Algorithms Framework 52
4.1 Reasoning About Pseudoexpectations . 53
4.2 Rounding Tools . 55
Exercises . 56

5 Case Study 1: Sparse Vectors in Subspaces 57
5.1 Step 1: Polynomial Optimization Formulation . 58
5.2 Step 2: Analysis of Polynomial Optimization Problem 59
5.3 Step 3: Proofs-to-Algorithms Analysis of Sum-of-Squares Relaxation 61

5.3.1 Matrix Concentration and Proof of Lemma 5.10 63
Exercises . 67
Notes . 67

6 Case Study 2: Tensor Decomposition 68
6.1 Rotation Problem and Benefit of Higher Moments 68
6.2 Verifiability and Injective Norm . 69
6.3 Jennrich Algorithm and Variants . 71
6.4 “Boosting” with Sum-of-Squares: Method of Pseudomoments 73

6.4.1 Step 1: Nuances in Polynomial Optimization 73
6.4.2 Step 2: Baby Jennrich Algorithm with True Moments 74
6.4.3 Step 3A: Baby Jennrich Algorithm with Pseudomoments 76
6.4.4 Step 3B: SOS Version of Verifiability . 78
6.4.5 Step 3C: Full Quasipolynomial Time SOS Algorithm 80

6.5 Polynomial Time with Jennrich Algorithm . 81
Exercises . 82
Notes . 83

7 Case Study 3: Heavy-Tailed Mean Estimation 85
7.1 Scalar Mean Estimation . 85
7.2 Vector Mean Estimation . 88
7.3 Strong Median Estimator . 89
7.4 Lugosi-Mendelson Weak Median Estimator . 90
7.5 Hopkins’ Sum-of-Squares Implementation . 91

7.5.1 Certifying Centrality . 91
7.5.2 Sum-of-Squares Squared . 95

Exercises . 97
Notes . 98

III Sum-of-Squares Lower Bounds 100

8 Case Study 4: Parity/Knapsack 101
8.1 Pseudoexpectation Values From Symmetry .102
8.2 Degree 4 Lower Bound .104

2

8.3 Spectra of Matrices with Entrywise Symmetry .106
8.3.1 Representation Theory .106
8.3.2 Association Schemes .107

8.4 Full Proof Strategy for Lemma 8.3 .108
Exercises .109
Notes .110

9 Case Study 5: Constraint Satisfaction Problems 111
9.1 Background on Constraint Satisfaction Problems111
9.2 Polynomial Encoding and Main Theorem .112
9.3 Random Instances .112
9.4 Pseudoexpectation Construction .114
9.5 Proof of Theorem 9.1 .117
Notes .118

10 Case Study 6: Large Cliques in Random Graphs 119
10.1 Planted Clique Model and Information-Theoretic Threshold119
10.2 Basic Algorithms for Recovering Planted Cliques120

10.2.1 Degree Thresholding .120
10.2.2 Spectral Algorithms .121
10.2.3 The Planted Clique Hypothesis .122

10.3 Sum-of-Squares Relaxations: Introduction and Degree 2122
10.4 Feige-Krauthgamer Pseudomoments and Kelner’s Polynomial124
10.5 Pseudocalibration .127

10.5.1 Motivating Argument .128
10.5.2 Deriving Pseudocalibrated Pseudomoments128
10.5.3 Computing Fourier Coefficients .129

10.6 Adjustments to Satisfy Relaxation Constraints .130
10.6.1 Clique Constraints .131
10.6.2 Normalization Constraint .132
10.6.3 Formulating Main Lower Bound .134

Exercises .135
Notes .135

IV Miscellaneous Background 136

A Linear Algebra 137
A.1 Symmetric Matrices .137
A.2 Positive Semidefinite Matrices .137

Bibliography 138

3

List of Open Problems

1.1 Higher-degree SOS for MaxCut . 13
1.2 Non-spectral approximation algorithms for MaxCut 16

2.1 Convexity of Artin cones [AH19] . 27
2.2 Number of summands in Artin’s theorem . 27
2.3 Denominator pursuit for rational function SOS . 28
2.4 Lower bounds on rational function SOS . 29
2.5 Optimal effective Positivstellensatz . 33
2.6 Real vs. rational Archimedean property [Pow11b] 36
2.7 Power of Shor substitution . 36

3.1 Pseudomoment dual of rational SOS . 49
3.2 Exactness of Shor relaxation . 49

6.1 Hardness of tensor decomposition . 71
6.2 SOS lower bound for tensor injective norm . 71
6.3 Distinguishing Wigner and Wishart tensors . 71
6.4 Decomposition of tensors of general order . 84

7.1 Optimal constants in high-dimensional mean estimation 98

9.1 Deterministic MAX-3-XORSAT lower bounds . 118

4

1 | Invitation to Sum-of-Squares Proofs

for Computer Scientists

As we will see, SOS algorithms and proofs apply to an enormous range of problems—any
optimization problem that can be expressed in terms of polynomial constraints and a poly-
nomial objective. This generality is a big part of the power and appeal of SOS algorithms,
both in theory and in practice. However, starting in full generality can also make the whole
enterprise seem quite daunting and not as concrete as you, presumably interested in actual
algorithms to solve specific problems, might have hoped. For that reason, before moving
on to that general theory, we will start by seeing how some first hints of SOS show up in a
natural interpretation of an algorithm you may have seen before.

1.1 Maximum Cut and Approximation Ratios

That algorithm is a relaxation of the problem of finding the largest cut in a graph.

Definition 1.1 (MaxCut). A cut of a graph G = (V , E) is a subset of the edges, C ⊆ V . The size
of the cut is the number of edges {v,w} ∈ E with v ∈ C andw ∉ C . We denote by MaxCut(G)
the size of the largest cut in G.

You can check that this problem admits the following linear-algebraic encoding. We intro-
duce the graph Laplacian of G = (V , E), L = LG = 1

4(DG −AG), where DG ∈ RV×V is a
diagonal matrix with diagonal entries equal to the vertex degrees in G and AG is the ad-
jacency matrix.1 (The factor of 1

4 is not usually included but will be convenient for our
purposes.) Then, we have

MaxCut(G) = max
x∈{±1}V

x>Lx, (1.1)

because, as you can also check, x>Lx is the size of the cut where the partition of vertices is
specificed by the signs in x (see Exercise 1.1).

MaxCut has occasional practical applications (see the chapter notes), though not as many
as we sometimes pretend. Our honest reasons for studying it are mostly theoretical: MaxCut
is an NP-complete problem (one of Karp’s original list in [Kar72]) that is especially simple
to formulate and, unlike other problems like satisfiability, has the linear-algebraic flavor we
saw in (1.1). It is also maybe the simplest hard case of optimization over Boolean variables:

1When we write RV×V , {±1}V , or other similar notations, we assume the vertices of G have some implicit
ordering to identify elements of these sets with concrete matrices or vectors.

5

maximizing a linear objective function over x ∈ {±1}n is easy, but MaxCut, a special case
(since we assume a particular structure of the matrix L) of maximizing a quadratic objective
function, is already hard.

Since it is hard to compute MaxCut(G) or to find a maximizer x?, we can downgrade our
algorithmic hopes to finding approximate solutions. One can ask to approximate either the
quantity MaxCut(G), or the maximizer x?. Both problems are interesting, but the latter has
been studied more. So, given a function x̂(G) ∈ {±1}V , we say x̂ is an α-approximation of
MaxCut if, for all graphs G,

x̂(G)>Lx̂(G) ≥ α ·MaxCut(G). (1.2)

If x̂(G) is random, then we say the same if (1.2) holds with an expectation taken on the
left-hand side.2

The following is a seemingly naive benchmark. We sketch the simple proof; see Exer-
cise 1.1 for a guide to the details.

Proposition 1.2. There is a randomized polynomial-time 1
2 -approximation of MaxCut.

Proof. Choose x̂v ∼ Unif({±1}) independently at random. Then, by linearity of expectation
E[x̂(G)>Lx̂(G)] = 1

2 |E| ≥
1
2MaxCut(G).

This does not seem like a good idea: we are just choosing a uniformly random cut among all
partitions of the vertices of the graph, without using any information about G at all! A bit
less trivially, by using some information about G, we can remove the randomness from this
approximation (see Exercise 1.2) in a variation dating back to a 1967 result of Erdős [Erd67].
That is an improvement, but it is still tempting look for an α-approximation with α > 1

2 .
There were many attempts to find such algorithms. One branch of work in this direction

focused on combinatorial algorithms (similar to Erdős’ “greedy” algorithm detailed in Exer-
cise 1.2), including [Vit81, PT82, HV91, HL96]. These achieved approximations with ratios
of the form 1

2 + ε(G), but with the term ε(G)→ 0 as G grows in some suitable sense—in the
number of vertices, the maximum degree, or some similar quantity.

Another promising direction considered linear programming (LP) relaxations of MaxCut.
The most common such relaxation is the metric relaxation, which is derived as follows. We
first expand the linear-algebraic formulation of MaxCut:

MaxCut(G) = max
x∈{±1}V

x>Lx = max
x∈{±1}V

n∑
i,j=1

Lijxixj. (1.3)

We then introduce a matrix variable X ∈ Rn×n, which we think of as X = xx>, i.e., having
Xij = xixj . But, we do not impose the constraint that X have rank one, but rather only
some collection of linear constraints that must hold for allX = xx>. It turns out that there
are very many independent such constraints (exponentially many in n), and no small subset
of those suffices to describe the polytope of X that is the convex hull of the xx>. That
polytope is called the cut polytope, and if it were simple to describe, then we could solve

2As we will mention later, both of the random algorithms we consider can be derandomized to achieve
the same approximation ratio deterministically.

6

MaxCut efficiently with linear programming! See, e.g., [DL09] for lots of information about
the cut polytope and its geometry.

Instead, we choose only a small tractable subset of these constraints. For the metric
relaxation, we optimize:

LP(G) :=

maximize 〈L,X〉 =
∑
i,j LijXij

subject to −1 ≤ Xij ≤ 1 for all i, j ∈ V,
Xii = 1 for all i ∈ V,
Xij +Xjk +Xik ≥ −1 for all i, j, k ∈ V,
Xij +Xjk −Xik ≤ 1 for all i, j, k ∈ V

. (1.4)

It is less obvious, but you can convince yourself that the latter two collections of inequalities,
called triangle inequalities,3 must hold whenever Xij = xixj for x ∈ {±1}n.

Analyzing this, [BM86] showed that LP(G) is tight—solving MaxCut exactly!—for all
graphs that do not contain the complete graph on five vertices as a minor (including, for
instance, all planar graphs). However, outside this case, it remained unclear how to rea-
son. Works such as [PT94] studied how well the value of this LP relaxation approximated
the value MaxCut(G), and showed that it achieved a non-trivial approximation for dense
random graphs. But this was unsatisfactory on two counts: first, it did not consider a worst-
case approximation ratio (indeed, later work would show that the worst-case approximation
ratio of small LPs like this is again 1

2); and second, it only produced a bound on MaxCut(G),
not a good cut x̂(G).

These were the best results and algorithms known until roughly thirty years after the
greedy algorithm of [Erd67]. We next describe the breakthrough that improved dramatically
on this state of affairs.

1.2 The Goemans-Williamson Relaxation

It turns out that the key to an improved approximation is to use semidefinite programming
(SDP) instead of LP. Goemans and Williamson in [GW95] proposed starting by solving the
following SDP:

SDP(G) :=

maximize 〈L,X〉 =

∑
i,j LijXij

subject to X � 0,
Xii = 1 for all i ∈ V

 . (1.5)

Let us see a few ways of understanding what this program does and how one could derive
it from first principles. Since we are now closer to topics relevant to SOS, we will give more
precise names to these interpretations.

3There are two interpretations of the name. First, the index pairs involved form a triangle, and indeed
there are analogous larger cycle inequalities involving cycles of indices of greater length. Second, another

viewpoint on this relaxation is that ρ(i, j) = 1−xixj
2 forms a discrete metric associated to the cut defined by

x, where ρ(i, j) = 1 if i and j are on opposite sides of the cut and ρ(i, j) = 0 otherwise. This, being a metric,
must satisfy the triangle inequality ρ(i, k) ≤ ρ(i, j) + ρ(j, k), which you can check implies the second set
of triangle inequalities. When this metric interpretation is especially valuable, some work considers instead
the weaker LP relaxation not including the first set of inequalities.

7

Algebraic Interpretation The first interpretation is of the same kind as we gave for
LP(G), a straightforward way of obtaining a relaxation by discarding a rank constraint
from a linearization. As before, for any x ∈ {±1}V , X = xx> is feasible for SDP(G), and
〈L,xx>〉 = x>Lx, the size of the cut achieved by x. Conversely, ifX is feasible for SDP(G)
and also has rank one, then X = xx> for some x ∈ {±1}V . Thus SDP(G) is, suitably inter-
preted, the optimization of (1.1) adjusted to make the feasible set bigger (also making the
optimization tractable to carry out). In particular,

MaxCut(G) ≤ SDP(G). (1.6)

To come up with SDP(G) by this reasoning, you would start by rewriting

MaxCut(G) = max
x∈{±1}V

x>Lx =

maximize 〈L,X〉
subject to X � 0,

Xii = 1 for all i ∈ V,
rank(X) = 1

 , (1.7)

and then discard the rank constraint to obtain an SDP. This is the same “keep tractable
constraints” operation as for LP(G), only we have expanded our idea of what counts as
“tractable” to include the semidefinite constraint X � 0.4

Geometric Interpretation Another way to understand SDP(G) is more geometric: while
the entries of xx> for x ∈ {±1}V are (xx>)ij = xixj , forX feasible for SDP(G), there exist
some vectors vi for i ∈ V that have unit length and with Xij = 〈vi,vj〉. (See Proposition A.4
for this equivalent characterization of psd matrices.) Conversely, any such Gram matrix of
unit vectors is feasible for SDP(G); we may also without loss of generality suppose vi ∈ RV

to specify a dimension. So, SDP(G) can be seen as computing the largest vector cut of G, an
analog of a cut where each vertex is assigned not just a binary membership on one side of
the cut or the other, but a continuous membership vector:

SDP(G) =

maximize

∑
i,j Lij〈vi,vj〉

subject to vi ∈ RV ,
‖vi‖ = 1 for all i ∈ V

 . (1.8)

Probabilistic Interpretation Finally, and what will be most valuable for us later, you
might think probabilistically. Let us write M({±1}V) for the set of probability measures
over {±1}V . Then, we may “convexify” MaxCut as

MaxCut(G) = max
x∈{±1}V

x>Lx = max
µ∈M({±1}V)

E
x∼µ
[x>Lx] = max

µ∈M({±1}V)

〈
L, E

x∼µ
[xx>]

�
. (1.9)

In the first step we use that the maximum will be achieved by µ a point mass at an optimal
x, and in the second we use the linearity of expectation.5 The set of matrices in the last

4If you are wondering why we have eliminated the triangle inequalities and whether adding them back
in might be helpful—excellent question! We are just following [GW95] for now; see below in Section 1.4 for
discussion of precisely this enhancement.

5To be clear about notation, the expectation of a random matrix is the matrix of expectations of its
entries: (E[M])ij = E[Mij].

8

optimization forms the cut polytope mentioned above. Said probabilistically, we are opti-
mizing over the set of matrices of degree 2 moments of distributions over the hypercube;
since xx> is unchanged by negating x, we may also restrict our attention to µ that are
centered with Ex∼µ[x] = 0, in which case these are equivalently covariance matrices. We
may then arrive at SDP(G) by imposing some computationally-tractable collection of con-
straints we can come up with on such a matrix. Indeed, if X = Ex∼µ[xx>] for some µ, then
Xii = E[x2

i] = E[1] = 1 since x2
i = 1 for any x ∈ {±1}V . And, X � 0, as any moment matrix

must be; to see this explicitly note that a>Xa = Ex∼µ[〈a,x〉2] ≥ 0. In this last step we
perform basically the same deductions as in the algebraic interpretation; however, we will
see that the extra probabilistic language will come in handy when we try to generalize this
reasoning later.

Let us now return to the actual result of [GW95], which shows how SDP(G) helps us to
approximate MaxCut(G). The key idea is that any feasible point of GW(G) may be rounded
to a feasible point of MaxCut(G) (recall that when we discussed LP(G) we did not have this
idea in hand; we only obtained a x̂(G) when LP(G) solved MaxCut(G) exactly).

Theorem 1.3 (Goemans-Williamson rounding). For any X feasible for SDP(G), there exists
a random x̂ = x̂(X) computable from X in polynomial time such that

E[x̂>Lx̂] ≥ αGW · 〈L,X〉, (1.10)

where

αGW := 2
π

min
ρ∈[−1,1]

arccosρ
1− ρ = 0.87856+. (1.11)

If you have not seen the proof, Exercise 1.3 guides you through the analysis of the ran-
domized rounding. The idea of the construction works with the geometric interpretation of
SDP(G): we view X as corresponding to a vector cut {vi}i∈V , and from this we construct
a genuine cut by partitioning the vi in space by a random hyperplane. For this reason, the
Goemans-Williamson rounding is sometimes called hyperplane rounding.

There are two important corollaries. The first is the approximation result we have been
building up to.

Corollary 1.4 (Goemans-Williamson approximation). For any ε > 0, there is a randomized
polynomial-time (αGW − ε)-approximation of MaxCut.

Proof. Using standard SDP solvers, in polynomial time we may compute X with 〈L,X〉 ≥
SDP(G)− ε. For x̂ computed from this X , we then have

E[x̂>Lx̂] ≥ αGW(SDP(G)− ε) ≥ (αGW − ε)MaxCut(G), (1.12)

and the result follows.

As with the 1
2 -approximation from Proposition 1.2, the randomness may be removed from

the Goemans-Williamson rounding through an iterative procedure called the method of con-
ditional expectations [MR95].

The second corollary is that we may efficiently compute, in SDP(G), a fairly tight upper
bound on MaxCut(G). This is perhaps less practically useful without a rounding procedure,

9

but measuring the tightness of such bounds will be a valuable way of directly measuring
the performance of more complicated relaxation algorithms (if, say, we do not know how to
round them or how to analyze a rounding procedure).

Corollary 1.5 (Goemans-Williamson certificate). For all graphs G, we have

SDP(G) ≥MaxCut(G), (1.13)

SDP(G) ≤ 1
αGW

·MaxCut(G), (1.14)

where 1/αGW = 1.139−.

Let us introduce some more of the language we will use to talk about such algorithms: we
say that SDP certifies a bound on MaxCut, because (1.13) holds for all input graphs G—
we may take the output of SDP(G) as a certificate of such an upper bound. In principle
certification algorithms could be arbitrary so long as they obey this property, but in practice
all the ones we know are based on convex relaxation in the fashion of LP(G) and SDP(G).
For these algorithms, we call the constant in (1.14), controlling the relative error in the upper
bound, the integrality gap (because those X in SDP(G) with rank(X) = 1 are often called
the integral solutions).

1.3 Duality and Sum-of-Squares Proofs

The above sections have been a standard presentation of the Goemans-Williamson approx-
imation algorithm. Now, we move into the more idiosyncratic perspective that will lead us
to SOS algorithms. The key step is to take the dual of this SDP, which, in this case, is always
equal to the original one and thus just gives a different way of expressing SDP(G):

SDP(G) =

minimize Tr(D)
subject to D diagonal,

D � L

 . (1.15)

Let us expand the definition of the relation D � L in a particular way. This relation
meansD = L+A for someA � 0, which in turn is equivalent (see Proposition A.4) to there
existing some v1, . . . ,vN with

D = L+
N∑
a=1

vav
>
a . (1.16)

Now, let us translate this linear-algebraic equation into a polynomial equation. In general,
any symmetric matrix H ∈ Rn×nsym is uniquely determined by the associated quadratic form,
y>Hy =

∑n
i,j=1Hijyiyj , viewed as a polynomial in the entries of y—from the quadratic

form, we can read off each entry Hij as the coefficient of yij , divided by two if i ≠ j. Thus,
introducing variables y = (yi)i∈V , (1.16) is equivalent to the equation of polynomials

∑
i∈V
Diiy2

i =
∑
i,j∈V

Lijyiyj +
N∑
a=1

∑
i∈V
(va)iyi

2

. (1.17)

10

Massaging this expression a little bit more, we call va,i := (va)i, di := Dii, c :=
∑
i∈V di and

we replace diy2
i = di + di(y2

i − 1) and rearrange, obtaining

c =
∑
i,j∈V

Lijyiyj +
∑
i∈V
di(1−y2

i)︸ ︷︷ ︸
Con

+
N∑
a=1

∑
i∈V
va,iyi

2

︸ ︷︷ ︸
SOS

. (1.18)

Note here that for such an equation to hold we must have c =
∑
i∈V di by equating the

constant terms of either side.
Such a polynomial equation is what we will call a sum-of-squares (SOS) proof. We claim

that this gives a simple proof that, whenever y ∈ {±1}V , we must have
∑
i,j∈V Lijyiyj ≤ c. In

other words, such an equation proves that MaxCut(G) ≤ c. That is because, first, y ∈ {±1}V
is equivalent to 1−y2

i = 0 for all i ∈ V , and second, any real number squared is non-negative.
Therefore, whenever we evaluate above with y ∈ {±1}V we will have

Con = 0, (1.19)

SOS ≥ 0, (1.20)

and our claim follows. (The names of the two terms stand for “constraints” and “sum-of-
squares,” respectively.) Summarizing this reasoning, we reach the following fourth interpre-
tation of SDP(G), a wildly different one from the three we saw above.

Proof System Interpretation SDP(G) may be seen as optimizing upper bounds on
MaxCut(G) that are obtained within the SOS proof system where polynomial reasoning of
the above kind is available. Formally, we have

SDP(G) =

minimize c
subject to c =

∑
i,j Lijyiyj +

∑
i di(1−y2

i)+
∑
a(
∑
i va,iyi)2

for some di, va,j ∈ R

 , (1.21)

where we emphasize that the yi are symbolic indeterminate variables, and the constraint
equation must be viewed as an equality of polynomials, coefficient by coefficient. In fact,
we will see that this way of viewing SDP(G) is one of the most fruitful to try to generalize,
and most of this course will be dedicated to understanding the vastly more general family
of algorithms that resembles the proof system interpretation of SDP(G).

1.4 Towards Improvements

At the time of writing, we are coming up on the thirtieth anniversary of [GW95]—the same
amount of time it took for an improvement on the trivial 1

2 -approximation algorithm for
MaxCut to materialize. Is there reason to hope to see further improvements on Goemans
and Williamson’s αGW ≈ 0.878+-approximation?

11

On the one hand, a beautiful line of work has connected the possibility of improving
on the αGW approximation ratio to Khot’s Unique Games Conjecture (UGC), first introduced
in [Kho02]. We will not get into the details here, but this conjecture states that it is NP-
hard solve the following decision problem: for a particular form of constraint satisfaction
problem (CSP), for any ε > 0, distinguish cases where at most an ε fraction of the constraints
are satisfiable from ones where at least a 1 − ε fraction of the constraints are satisfiable.
The UGC, if true, implies limitations on approximating many other CSPs. One of its most
striking consequences is that, conditional on UGC, it is NP-hard to approximate MaxCut with
any αGW + ε approximation ratio [KKMO07]. Similar results on optimality of semidefinite
programming would also follow for other CSPs [Rag08].6

On the other hand, it is tempting to try to improve various aspects of the Goemans-
Williamson algorithm. To begin, could the analysis be improved without changing the un-
derlying algorithm? The results of [FS02] give a strong negative answer. First, they show that
there is a sequence of graphs Gn so that MaxCut(Gn)/SDP(Gn) → αGW, i.e., the Goemans-
Williamson analysis of the tightness of the bound SDP(G) on MaxCut(G) (as in Corollary 1.5)
is optimal. And second, they show that there is a sequence of graphs Gn and a sequence
of Xn optimal for SDP(Gn) so that, if Cn is the cut value achieved by the best hyperplane
rounding of Xn (not just a random one), then Cn/MaxCut(Gn) → αGW (similar but weaker
results were obtained earlier by [Kar99]).

Next, could adding some straightforward families of constraints to SDP(G) improve
the performance? In particular, we might consider adding the triangle inequalities that we
included in the metric relaxation LP(G):

SDP4(G) :=

maximize 〈L,X〉
subject to X � 0,

Xii = 1 for all i ∈ V,
Xij +Xjk +Xik ≥ −1 for all i, j, k ∈ V,
Xij +Xjk −Xik ≤ 1 for all i, j, k ∈ V

. (1.22)

You will show in Exercise 1.6 that the triangle inequalities are not automatically satisfied by
any X feasible for SDP(G) and thus that SDP4(G) < SDP(G) for some G. However, [KV05]
(the much older conference version of [KV15]; some results with a weaker approximation
ratio were also shown by [FS02]) showed that, again, there is a sequence of graphs Gn so
that MaxCut(Gn)/SDP4(Gn)→ αGW.

But the most tantalizing option of all is to pursue generalizations of our proof system
interpretation of SDP(G). Indeed, we will see in later chapters that, again using semidefinite
programming, we can optimize over a broader type of polynomial proof of a bound on
MaxCut(G), of the form

c =
∑
i,j

Lijyiyj +
∑
i

(1−y2
i) · pi(y1, . . . , yn)+

∑
a
qa(y1, . . . , yn)2, (1.23)

and that we can do this optimization in polynomial time in n so long as we fix some con-
stant polynomial degree D and enforce that that is the greatest degree of any polynomial

6One especially simple problem for which hardness of approximation would follow from UGC is the
vertex cover problem [KR08].

12

appearing in the above equation: deg(1−y2
i)pi,degq2

a ≤ D. Modulo some modest technical-
ities that you will address in Exercise 1.7, above we have discussed the simplest case D = 2.
For any larger D, essentially nothing more is known.

Open Problem 1.1 (Higher-degree SOS for MaxCut). Does optimizing over SOS proofs of any
fixed degree D improve upon the worst-case SDP integrality gap 1/αGW for MaxCut (thereby
disproving UGC) or not? Even for D = 4 the answer remains unknown!

While MaxCut is a convenient concrete problem to discuss, the state of affairs is the same
for other CSPs where the UGC implies hardness of approximation beyond a ratio achieved
by a simple SDP.

Conversely, much of the perception that SOS is such a powerful family of algorithms
stems from work showing that higher-degree SOS (still of polynomial runtime) successfully
distinguishes unique games instances that are not distinguished by other, weaker convex
programming hierarchies until super-polynomial runtime [BBH+12, OZ13, KOTZ14]. Thus,
finding integrality gap instances for higher-degree SOS matching the degree 2 gaps (a nega-
tive answer to Open Problem 1.1) should be seen as strong evidence in favor of UGC.

1.5 What Is This Course About?

We have seen in this quick overview two of the key motivations and themes that will guide
us through the rest of the course. To give you an idea of what is to come, let us pick out
these main points.

First, we will focus on how SOS is an algorithmic paradigm. If you have not seen the
Goemans-Williamson approximation algorithm before and are not used to its ideas, which
have since become fairly widespread, it likely seems—quite reasonably—ingenious. Some
earlier applications of SDP to combinatorial problems are similarly striking in their origi-
nality. Perhaps most surprising is Lovászś application of the so-called ϑ function, an SDP
relaxation of the independent set problem quite similar in flavor to our SDP(G), to deter-
mine the Shannon capacity of the 5-cycle, a long-standing open problem at the time [Lov79].
What is so surprising is that algorithms for efficient semidefinite programming did not ex-
ist when Lovász was writing, and would not for more than a decade! Lovász was thinking,
therefore, of an SDP not as an algorithm but just as a related optimization problem, in par-
ticular with objects similar to our “vector cuts” mentioned above. But, as [BKM19] recently
noticed, Lovász’s ϑ function, too, is none other than an instance of optimization over SOS
proofs. In this way, SOS optimization gives us a unified lens on many brilliant algorithmic
developments, and reduces them to the same routine construction.

Second, one of the key challenges we will be looking at is how to analyze not just degree 2
SOS but also degrees 4 and higher. The older algorithms mentioned above, for instance, cor-
respond to SOS proofs of degree 2. As we have seen, higher degree proofs give a promising
direction to search for improved algorithms and approximations. But it will gradually be-
come clear that degree 2 is quite often deceptively simple, and, alas, much less is known
about degree 4 SOS and above (as Problem 1.1 already suggests). Still, we will survey what is
known, and in particular will reach exciting recent developments that, for certain problems

13

(especially random ones where we are interested in an average-case rather than worst-case
analysis), have started to clarify the power and limitations of higher-degree SOS.

Exercises

Exercise 1.1. Show that the graph Laplacian L of a graph G = (V , E), as we have defined it,
corresponds to the quadratic form

x>Lx = 1
4

∑
{v,w}∈E

(xv − xw)2. (1.24)

Infer from this the description (1.1) of MaxCut(G) and verify the calculation in Proposition 1.2.

Exercise 1.2 ([Erd67]). Derandomize the approximation algorithm of Proposition 1.2: give a
deterministic polynomial-time 1

2 -approximation of MaxCut.

Hint: Go through the vertices one by one, in any order, choosing prudently on which side
of the cut to put each one.

Exercise 1.3 ([GW95]). Prove Theorem 1.3. Use the following choice of a random x̂: let vi for
i ∈ V be unit vectors so that Xij = 〈vi,vj〉 (the vectors of the “vector cut” in our geometric
interpretation of the Goemans-Williamson SDP). Draw a standard Gaussian random vector
g ∼N (0,I), and set x̂i := sgn(〈g,vi〉).

Hint: By linearity of expectation, it is enough to compute quantities of the form

f(v,w) = E
g
[sgn(〈g,v〉) sgn(〈g,w〉)], (1.25)

for v,w unit vectors. Reduce this to a geometric calculation in the two-dimensional plane,
carry out that calculation with some trigonometry, and use the result to complete the proof.

Exercise 1.4 (Nesterov’s approximation algorithm). We consider the same approximation
algorithm as in Theorem 1.3 and Exercise 1.3, but now with L � 0 an arbitrary psd matrix.
Again, let X be a feasible point for the Goemans-Williamson SDP in this setting.

1. Prove the matrix inequality

E[x̂x̂>] � 2
π
X . (1.26)

Use the Schur product theorem: if S,T � 0, then the matrix M with Mij = SijTij also
has M � 0.

2. Consider the little Grothendieck problem: given A � 0, we want to solve the optimiza-
tion

maximize x>Ax
subject to x ∈ {±1}n. (1.27)

14

Use the previous parts to describe a randomized polynomial-time 2
π -approximation al-

gorithm for this problem.7 Why doesn’t your algorithm give the same approximation
for arbitrary A?

Exercise 1.5 (Weak integrality gap lower bound). Compute SDP(G) explicitly for G equal to
the cycle on five vertices. Compare this with MaxCut(G) and infer a lower bound on the
integrality gap of the Goemans-Williamson SDP. Your bound should be within 0.01 of 1/αGW.

Hint: It might be easier to reason in the dual of SDP(G).

Exercise 1.6 (Power of triangle inequalities). Show that there exists a graph G and X such
that:

1. X is optimal for SDP(G), i.e., has X � 0, Xii = 1, and 〈L,X〉 = SDP(G); and

2. X does not satisfy the triangle inequalities, i.e., there are i, j, k such that Xij + Xjk +
Xik < −1; and use this to deduce that

3. SDP4(G) < SDP(G).

Hint: It suffices to consider G the complete graph on three vertices and X ∈ R3×3
�0 that is

the Gram matrix of three vectors in R2. Draw a picture of three such unit vectors. How can
you make the off-diagonal entries of such X as negative as possible?

Exercise 1.7 (Heterogeneous degree 2 SOS). Show that

SDP(G) =

minimize c
subject to c =

∑
i,j Lijyiyj +

∑
i di(1−y2

i)+
∑
a(wa +

∑
i va,iyi)2

for some di, va,j,wa ∈ R

 , (1.28)

where we allow constant terms wa in the polynomials of the “SOS term” of an SOS proof.

Notes

Other Sources The presentation in this chapter is heavily inspired by the recent survey
article [Moi20] and the earlier notes [Ban15].

Applicability of MaxCut The citation often given for applications in statistical physics
and Very Large Scale Integrated (VLSI) circuit design is [BGJR88]. However, calculating exact
ground states of spin systems is less relevant than calculating free energies and sampling
from Gibbs distributions at positive temperature in statistical physics, which in practice is
mostly done with Monte Carlo algorithms. Finding ground states is also more often done by
annealing such samplers. Also, practical VLSI optimization typically involves much more

7Note that MaxCut is a special case of the little Grothendieck problem, since any graph Laplacian is psd.
The Goemans-Williamson analysis for MaxCut uses special properties of graph Laplacians that we do not
use in the analysis outlined here, and by taking advantage of those gets the stronger 0.878+-approximation.

15

complicated constraints than MaxCut-like problems encode conveniently. On the other
hand, there are tricks for “moving” constraints into the objective function. And, recent
developments suggesting that MaxCut and its generalization to quadratic unconstrained bi-
nary optimization (QUBO)—where the matrix L can be arbitrary—can be solved efficiently
with quantum algorithms has driven more work on such methods. See [KHG+14, GKD18]
for surveys.

Greedy Algorithm While the greedy algorithm for MaxCut is clearly implicit in [Erd67],
it is sometimes (including by [GW95]) credited to [SG74]. Surprisingly, some aspects of
its performance were unknown until quite recently. In particular, [CST11] answered an
open question posed by [MS08], showing that randomizing the order in which vertices are
processed by the greedy algorithm does not improve its approximation ratio to exceed 1

2 .

More on the Approximation Ratio It is broadly interesting what kinds of algorithms can
or cannot improve on the 1

2 approximation ratio. Trevisan in [Tre12] proposed an interesting
algorithm that is a (1

2 + ε)-approximation but avoids solving an SDP, instead only working
with the spectrum of G (the Goemans-Williamson SDP is invoked only in the analysis of
the algorithm, not the algorithm itself). Several works have shown, on the other hand,
that LPs (including those stronger than LP(G)) cannot improve upon the 1

2 ratio [dlVKM07,
STT07] until they run in super-polynomial time [OS18, HST19]. There is a definite intuition
suggested by these works that some sort of “access” to the spectrum of G is needed for an
algorithm to improve on the 1

2 approximation ratio, but this has not (to my knowledge) ever
been made precise.

Open Problem 1.2 (Non-spectral approximation algorithms for MaxCut). Is there any ap-
proximation algorithm for MaxCut that achieves an approximation ratio greater than 1

2 that
does not depend on the spectrum of G or the “spectral reasoning” implicit in SDPs? If not, can
we prove a general result making that precise?

Strong Hardness of Approximation In addition to the hardness of approximation con-
ditional on UGC discussed above, it is known that it is NP-hard to approximate MaxCut with
a ratio of 16

17 ≈ 0.941 [Hås01]. See the paper for a history of such results; there are analogs
for various other problems, where the best-known approximation is conjectured optimal
under UGC while a weaker hardness result holds under P ≠ NP.

Gain Approximation There are other interesting approximation questions besides the
approximation ratio as we have defined it. One is the question of gain approximation, which,
in the context of MaxCut, asks for what f(ε) we can give an algorithm that, if G has a cut
of size (1

2 + ε)|E|, will produce a cut of size at least (1
2 + f(ε))|E|. The reason for the name

is that this question concerns how the gain over a random cut (which cuts on average 1
2 |E|

edges) differs between the optimal cut and the one an algorithm produces. The different
rounding of the Goemans-Williamson SDP given by [FL06, CW04] is known to achieve this
for f(ε) = Ω(ε/ log(ε−1)), which is optimal if UGC is true [KO06].

16

Loss Approximation Similarly, one may ask for what g(ε) we can give an algorithm that,
if G has a cut of size (1 − ε)|E|, will produce a cut of size at least (1 − g(ε))|E|. It is not a
standard name, but it seems intuitive to call this loss approximation, by analogy with gain
approximation. Here, the Goemans-Williamson algorithm achieves g(ε) = O(ε1/2), and this
is again optimal if UGC is true [MOO05].

Grothendieck Problems A number of similar approximation problems have been treated
in the literature and connected to so-called Grothendieck problems. [AN04] treated approxi-
mation for problems of the form

max
x∈{±1}m
y∈{±1}n

x>Ay (1.29)

for A an arbitrary rectangular matrix. The fact that the SDP relaxation of such a problem
bounds the original problem by a constant factor independent of the dimensions m,n is
known as Grothendieck’s inequality, first discovered in [Gro56] in a more abstract functional-
analytic setting and later further explored and reformulated in our simpler matrix language
by [LP68]. Similarly, [Nes98] treated problems of the form

max
x∈{±1}n

x>Ax (1.30)

forA either arbitrary or psd. The latter is a direct generalization of the Goemans-Williamson
setting where A must further be a Laplacian matrix; this variant is known as the little
Grothendieck problem. For A � 0 the Goemans-Williamson rounding also gives an effective
approximation algorithm, while for A arbitrary [CW04] studied approximation algorithms,
albeit ones that do not achieve a constant approximation ratio.

17

Part I

General Theory

18

2 | Algebraic Proof Systems

We have seen in Chapter 1 the first glimmer of a powerful proof system that manipulates
polynomials to bound polynomial optimization problems. We have also suggested that we
may optimize over such proofs using semidefinite programming. Before proceeding to these
algorithmic applications, we will review the line of mathematical work that led to such a
proof system. In doing so, we will look at questions that basically amount to the com-
pleteness of the SOS proof system—when is it true that a certain polynomial being bounded
implies that there exists an SOS proof of that boundedness?

2.1 Obstructions and Certificates: A Simple Example

To illustrate the general structure of the kinds of statements we will look at, let us first
give a completely elementary example. Suppose we are interested in whether two integers
a,b ∈ Z have a non-trivial common divisor (one that is greater than 1). The following is a
result of elementary number theory.

Proposition 2.1 (“Weak” Bézout’s identity). Suppose a,b ∈ Z. Then, exactly one of the fol-
lowing holds:

1. There exists d > 1 with d | a and d | b.

2. There exist x,y ∈ Z with ax + by = 1.

A linear equation as in Condition 2 in integer variables is often called a linear Diophantine
equation (LDE).

We may note immediately that the two cases are mutually exclusive: if both Conditions 1
and 2 held then we would have d | 1, a contradiction to d > 1. The content of the result
is that exactly one of the two holds. We might view this as saying that the only obstruction
to the existence of a common divisor of a and b is a solution to the LDE ax + by = 1.
Alternatively, we might say that any such LDE is a refutation of a common divisor or a
simple proof that there exists no common divisor. The Proposition tells us that such a
proof system of refuting common divisors is complete: whenever a and b share no common
divisor, there is an “LDE proof” of this fact.

Thinking more algorithmically, several further questions are natural. First, are there
algorithms to efficiently search for LDE proofs? Naively, we might simply try brute force,
enumerating (x,y) ∈ Z2 in order of, say, |x|+ |y|. How long would such an approach take?
This leads us to a proof complexity question: when a and b share no divisor, do there exist

19

x,y with ax + by = 1 and |x| + |y| ≤ F(a, b) for some small value F(a, b)? What are the
a,b that achieve this bound, the “hardest” instances for LDE refutation of common divisors?

You might be aware that all of these questions have fairly simple answers in elementary
number theory (if not, see the chapter notes). But, below, we will proceed to precisely anal-
ogous questions over polynomials rather than integers, and will see that mysteries quickly
crop up.

2.2 Hilbert’s Nullstellensatz

The following foundational result of algebraic geometry, due to Hilbert in [Hil93a], may be
thought of as a direct analogue of Proposition 2.1 for polynomials.1

Theorem 2.2 (Weak Nullstellensatz). Suppose p1, . . . , pm ∈ C[x1, . . . , xn]. Then, exactly one
of the following holds:

1. The pi have a common zero: there exists z ∈ Cn with p1(z) = · · · = pm(z) = 0; or

2. 1 belongs to the ideal generated by the pi: there exist q1, . . . , qm ∈ C[x1, . . . , xn] such
that

∑m
i=1piqi = 1.

Without going too far afield, let us say a few words about the proof ideas. Like Proposi-
tion 2.1, Theorem 2.2 should be viewed as a structure theorem about the ideals in a par-
ticular commutative ring. An ideal I is a set closed under addition and “contagious” under
multiplication, so that if a ∈ I then ab ∈ I for any b in the ring in question. The typical
example is (a1, . . . , an) := {

∑n
i=1 aibi}, the set of linear combinations of some collection of

ai. A ring is Noetherian when all ideals are of this form, and this is the case for all of Z,
R[x1, . . . , xn], and C[x1, . . . , xn], the only rings we will look at.2

Proposition 2.1 treats the ring Z, whose ideals are quite simple: each one is principal,
equal to (n), the set of multiples of some number n. The stronger Bézout’s identity says
that the ideal generated by two numbers a,b is actually equal to the ideal generated by one
number, their greatest common divisor.

Proof Sketch of Nullstellensatz. The situation is not so simple for C[x1, . . . , xn], but there is
an analogous structure theorem, where common zeroes play the role of common divisors:
the maximal ideals (under inclusion) of C[x1, . . . , xn] are those equal to (x1−z1, . . . , xn−zn),
which are the polynomials that are zero at a particular z = (z1, . . . , zn). Taking this for
granted, the weak Nullstellensatz follows since, if 1 ∉ (p1, . . . , pm), then (p1, . . . , pm) ≠
C[x1, . . . , xn], so it is contained in some maximal ideal, (p1, . . . , pm) ⊆ (x1−z1, . . . , xn−zn)
for some z, and so the pi have the common zero z.

The reason for the structure theorem on maximal ideals is deeper and related to the
algebraic closedness of C (that is, the fundamental theorem of algebra). The idea is that if

1The ordinary or “strong” Nullstellensatz concerns solutions of systems with a further constraint r(z) ≠
0, but can be derived easily from the weak Nullstellensatz.

2For polynomial rings, this is a consequence of another famous commutative algebra result of Hilbert’s,
his basis theorem [Hil90].

20

I is a maximal ideal of C[x1, . . . , xn], then the quotient C[x1, . . . , xn]/I is a field.3 This field
contains C, and is finitely generated over C by the images of x1, . . . , xn under the quotient.
Moreover, crucially, one can show that these images are algebraic over C: they are roots of
some polynomial with coefficients in C. But all such polynomials have all their roots in C
already! So C[x1, . . . , xn]/I is isomorphic to C again. Then, first under the quotient and then
through this isomorphism, we may view xi as mapping to some zi ∈ C. In particular, xi−zi
maps to zero, so I contains (x1 − z1, . . . , xn − zn), which one can show is itself a maximal
ideal, and so I = (x1 − z1, . . . , xn − zn).

2.2.1 Nullstellensatz Effectivization and Proof Systems

We give a proof sketch of the Nullstellensatz as it is typically presented in commutative
algebra textbooks to emphasize why it is often called “non-constructive.” This statement
refers to the fact that, even if we are given p1, . . . , pm with no common zero, the proof
does not give us a way to construct the certificate in Condition 2 of Theorem 2.2. This is
because of the step where, assuming (p1, . . . , pm) is a proper ideal, we find a maximal ideal
containing it. In general, the fact that any proper ideal in a commutative ring is contained in
a maximal ideal requires the Axiom of Choice for its proof, and indeed is logically equivalent
to the Axiom of Choice, and therefore fundamentally cannot be made constructive.

Fortunately, for the specific ring C[x1, . . . , xn] this is not the case, and accordingly there
are alternative proofs that are constructive and correspond to algorithms for testing whether
p1, . . . , pm have a common zero. These come in two flavors.

Gröbner Basis Construction First, every ideal I has a Gröbner basis, a set of generators
satisfying certain consistency properties with respect to a fixed ordering of monomials. One
consequence of the restrictions on Gröbner bases is that they allow direct testing of whether
1 ∈ I; indeed, this is the case if and only if 1 is one of the generators in the basis. And, a
Gröbner basis can be computed using Buchberger’s algorithm, an analog for polynomials of
Euclid’s algorithm for finding LDE proofs over integers. The algorithm always terminates,
but its worst-case runtime is (maxdegpm)2

Ω(n)
. On the other hand, the runtime can be fast in

practice, and its speed can be dramatically improved by a good choice of monomial ordering,
so Buchberger’s algorithm can be practically useful. Both Gröbner bases and Buchberger’s
algorithm date to Buchberger’s 1965 thesis [Buc06]; the books [CLOS94, Stu02] are good
resources for this approach.

Linear System Refutations More relevant to the approach we will pursue, suppose we
restrict the degrees of all polynomials appearing in a Nullstellensatz refutation by degpiqi ≤
D, and ask for an equality

∑m
i=1piqi = 1. Then, by equating coefficients on either side, this

may be written as a linear system,Ax = b. While we will see that this approach is ultimately
equal in power to Buchberger’s algorithm, it is much more flexible, in the sense that even
if we have a small computational budget that would not allow Buchberger’s algorithm to

3To get some intuition, remember the case of Z: all ideals there are of the form (n) for some integer n,
and you can check that the maximal ones are (p) where p is prime. And indeed, Z/(p) is the finite field on
p elements of integers modulo p, while Z/(n) for composite n is only the ring of integers modulo n.

21

terminate, we can still try to look for a low-degree refutation, trading power in our proof
system for a faster runtime.

Example 2.3. Suppose we wish to refute the system of linear equations

p1(x,y) = x +y = 0, (2.1)

p2(x,y) = 2x + 3y − 1 = 0, (2.2)

p3(x,y) = 3x −y − 2 = 0 (2.3)

with a degree 2 Nullstellensatz certificate. Then, we would introduce nine scalar variables
(a, b, c, d, e, f , g,h, j) and the polynomials

q1(x,y) = ax + by + c, (2.4)

q2(x,y) = dx + ey + f , (2.5)

q3(x,y) = gx + hy + j (2.6)

and expand the polynomial equality,

1 = p1(x,y)q1(x,y)+ p2(x,y)q2(x,y)+ p3(x,y)q3(x,y)
= (ax + by + c)(x +y)+ (2x + 3y − 1)(dx + ey + f)+ (3x −y − 2)(gx + hy + j)
= (a+ 2d+ 3g)x2 + (b + 3e− h)y2 + (a+ 2e+ 3h)xy

+ (c − d− 2g)x + (c − e− j)y + (−f − 2j). (2.7)

Equating coefficients gives the new system

a+ 2d+ 3g = 0, (2.8)

b + 3e− h = 0, (2.9)

a+ 2e+ 3h = 0, (2.10)

c − d− 2g = 0, (2.11)

c − e− f = 0, (2.12)

−f − 2j = 1, (2.13)

or, in matrix notation,

1 0 0 2 0 0 3 0 0
0 1 0 0 3 0 0 −1 0
1 0 0 0 2 0 0 3 0
0 0 1 −1 0 0 −2 0 0
0 0 1 0 −1 −1 0 0 0
0 0 0 0 0 −1 0 0 −2

a
b
c
d
e
f
g
h
j

=

0
0
0
0
0
0
0
0
1

. (2.14)

22

We can just repeat this with ever increasing degrees D—if the initial polynomial system
has no solution, then the Nullstellensatz promises that we will eventually find a certificate
in this way. But how long will it take? And can we ever stop searching for a refutation and
be assured that the polynomial system actually does have a solution?

These questions ask for an effectivization of the Nullstellensatz in terms of the degree:
what is the largest possible degree of the lowest-degree refutation of a given polynomial
system? The following result of Hermann in 1925 was the first one to this effect.4

Theorem 2.4 ([Her98]). There exists a Nullstellensatz refutation of an infeasible polynomial
system with D = maxdegpiqi ≤ (maxdegpi)2

O(n)
.

A similar result holds for the general ideal membership problem of asking whether some
g(x) can be written as g =

∑m
i=1piqi, and in this case the doubly-exponential bound is

unfortunately optimal [MM82]. However, the following improvement holds for the weak
Nullstellensatz.

Theorem 2.5 ([Bro87, Kol88]). There exists a Nullstellensatz refutation of an infeasible poly-
nomial system with D = maxdegpiqi ≤ (maxdegpi)n.

This latter bound was also shown by [Kol88] to be optimal. So, in principle, we may find
Nullstellensatz refutations by solving sufficiently large linear systems, where “large” is ex-
ponential in the number of variables and polynomial in the underlying degree.

Example 2.6 (Nullstellensatz refutation of MaxCut). Consider encoding MaxCut, as we consid-
ered in Chapter 1, in such a polynomial system. It is most convenient to encode the statement
“there is a cut of size k in G,” which is equivalent to there being a x ∈ C|V | that satisfies the
system

x2
i − xi = 0 for all i ∈ V, (2.15)

n∑
i,j=1

Lijxixj − k = 0 (2.16)

where L is the graph Laplacian as usual. Here, all polynomials are quadratic and the number
of variables is |V |, so Theorem 2.5 says that it suffices to consider certificates of degree D =
2|V |. A polynomial of degree D in n variables has θ(nD) coefficients, so these would be linear
systems of |V |2|V | equations in roughly as many variables—completely impractical to solve!

For other interesting combinatorial problems the general bounds from Theorem 2.5 are
equally useless.

For this reason, more recently, another line of work sought, for specific polynomial sys-
tems of interest, often encoding computational or combinatorial problems, to prove upper
or lower bounds on the degree required for Nullstellensatz refutations. These are just a
weaker (though computationally cheaper) version of SOS proofs, so we will not get into the
details here, but some important references are [BIK+96, GV01] and Chapter 6 of [FKP19]
gives a thorough survey. Besides being a natural stop on the way to SOS proofs, this research
direction fits into a much broader and longer story about proof complexity and restricted
logical proof systems, which we discuss in the chapter notes.

4See the cited translation for some discussion of Hermann’s remarkable reasoning, which has a quite
algorithmic quality despite coming decades before the development of the general theory of computation.

23

2.3 The Real Case

A natural follow-up question to the Nullstellensatz is whether we can say something similar
for real polynomials, p1, . . . , pm ∈ R[x1, . . . , xn]. We can immediately see that, even when
n = 1, the Nullstellensatz proof system is no longer complete: the polynomial p(x) = 1+x2

has no real zeros, but nor is there any q(x) so that p(x)q(x) = 1. Thus in the real case there
must be some other obstruction to polynomials having zeros besides the “ideal obstruction”
from the Nullstellensatz.

2.3.1 Real Nullstellensatz

Indeed, generalizing the 1+ x2 example, we see that any 1+
∑
si(x)2 for si ∈ R[x1, . . . , xn]

will be a polynomial having no zeroes. We may therefore add this as a new obstruction in
the real case.

Definition 2.7 (SOS polynomials). SOS ⊂ R[x1, . . . , xn] (with the dependence on n left im-
plicit) is the set of

∑m
i=1 si(x)2 for some m ∈ N. We also say that p is SOS when p ∈ SOS.

A stronger refutation of a shared zero of p1, . . . , pm is then an equality of the form

m∑
i=1

pi(x)qi(x) = 1+
p∑
i=1

si(x)2︸ ︷︷ ︸
∈SOS

. (2.17)

It turns out that a proof system based on this kind of refutation is in fact complete for
systems of real algebraic equations.

Theorem 2.8 (Weak real Nullstellensatz). Suppose p1, . . . , pm ∈ R[x1, . . . , xn]. Then, exactly
one of the following holds:

1. The pi have a common zero: there exists z ∈ Rn with p1(z) = · · · = pm(z) = 0; or

2. 1 + SOS intersects the ideal generated by the pi: there exist q1, . . . , qm, s1, . . . , sp ∈
R[x1, . . . , xn] such that

∑m
i=1piqi = 1+

∑p
j=1 s

2
j .

In fact, historically this result (as well as a “strong” real Nullstellensatz) arose, first in the
work of Krivine [Kri64] and later more explicitly in that of Stengle [Ste74], only as a special
case of much more general Positivstellensatz results that we will discuss below, where we
also allow inequality constraints qi(x) ≥ 0 in the system we seek to refute. Before getting
to those results, let us step back and first review some results that considered the simpler
question of whether, as we have implicitly suggested above, sum-of-squares polynomials
adequately represent all non-negative polynomials. This will prepare us for the several
different strengths of Positivstellensatz available under different assumptions, which are
useful to varying extents for certification of bounds on polynomial optimization problems.

24

2.3.2 Sums of Squares and Hilbert’s 17th Problem

We consider a similar, but not quite identical, question to the case m = 1 of the weak real
Nullstellensatz. Suppose p ∈ R[x1, . . . , xn]. The difference is just that we suppose only
p ≥ 0 rather than p > 0, and ask, does p belong to SOS?

We can give a few positive results in special cases.

Proposition 2.9 (Univariate polynomials). Suppose p ∈ R[x] has p(x) ≥ 0 for all x ∈ R.
Then, p is SOS.

Proof 1. |p(x)| → ∞ as x →∞ and as x → −∞, so the minimum of p(x) is achieved at some
c ∈ R. Let t = p(c) ≥ 0 and let q(x) = p(x) − t ≥ 0. q(x) then has a zero of even order
at c, say of order 2k. Thus q(x) = (x − c)2kr(x) for some r(x) with deg r < degp and
r ≥ 0. We then have p(x) = (x − c)2kr(x) + t, and repeating this inductively gives an SOS
decomposition.

A more careful proof also shows that only two squares suffice.

Proof 2. The leading coefficient of p must be positive, so we may factor this out and assume
without loss of generality that p is monic. Let r1, . . . , rm be the distinct real roots of p and
a1±b1i, . . . , an±bni be the complex roots of i, counted with multiplicity, which must come
in conjugate pairs. Each ri must be a root of even order, say some 2ki. Then, we have

p(x) =
m∏
i=1

(x − ri)2ki
n∏
j=1

(x − aj − bji)(x − aj + bji) (2.18)

Let us write s1(x) =
∏m
i=1(x − ri)ki and s2(x)+ is3(x) =

∏n
j=1(x − aj − bji) upon grouping

real and complex coefficients. We then have

p(x) = s1(x)2(s2(x)+ is3(x))(s2(x)− is3(x))
= s1(x)2(s2(x)2 + s3(x)2)
= (s1(x)s2(x))2 + (s1(x)s3(x))2, (2.19)

completing the proof.

Proposition 2.10 (Quadratic forms). Suppose p ∈ R[x1, . . . , xn] is homogeneous of degree 2
and has p(x) ≥ 0 for all x ∈ Rn. Then, there exist s1, . . . , sn ∈ R[x1, . . . , xn] with p =

∑n
i=1 s

2
i .

Proof. Since p is homogeneous, we may express it as p(x) = x>Ax for some A ∈ Rn×nsym . By
the spectral theorem, there are λ1, . . . , λn ∈ R and an orthonormal basis v1, . . . ,vn of Rn so
that A =

∑n
i=1 λiviv

>
i , whereby p(x) =

∑n
i=1 λi〈vi,x〉2. Then, p ≥ 0 if and only if λi ≥ 0 for

all i ∈ [n], and in this case we have an SOS representation p(x) =
∑n
i=1(

√
λi〈vi,x〉)2.

In Exercise 2.2 you will show that the same holds under the weaker condition degp ≤ 2,
with no homogeneity assumption.

A result of Hilbert settled all remaining cases: just other one degree and arity leads to
SOS and non-negative polynomials being equivalent, while all others do not.

Theorem 2.11 (Hilbert [Hil88]). The following hold:

25

1. Every non-negative polynomial of degree 4 in 2 variables is SOS.

2. If n ≥ 3 and d ≥ 4 or n = 2 and d ≥ 6, for even d, there exists a non-negative
polynomial of degree d in n variables that is not SOS.

(Note that there do not exist non-negative polynomials of odd degree, since such polynomi-
als will have a leading term that is negative and dominates the others going to infinity along
a suitable ray from the origin.)

Hilbert’s proof of the second part was not constructive, and it took many years for con-
crete examples to materialize, though simple ones exist. The best-known example is the
following.5

Theorem 2.12 (Motzkin’s polynomial [Mot67]). The polynomial p(x,y) = x4y2+x2y4+1−
3x2y2 is non-negative for all (x,y) ∈ R2, but is not SOS.

Proof. To see that p(x,y) ≥ 0, we apply the arithmetic-geometric mean inequality:

x4y2 + x2y4 + 1 ≥ 3(x6y6)1/3 = 3x2y2. (2.20)

To see that p is not SOS, suppose we have p =
∑m
i=1 s

2
i . No monomial with a power of x or y

greater than or equal to 3 cannot occur in any si, or else p would have a leading term with at
least a sixth power. Similarly, the monomial x2y2 cannot occur in any si, or else x4y4 would
appear in p, then by the same argument the monomials x2 and y2 cannot occur in any si,
and then the monomials x and y cannot occur either. The only remaining monomials that
can appear in each si are x2y , xy2, xy , and 1. But then, the coefficient of x2y2 in p must be
non-negative (since it can only come from squared xy terms), which is a contradiction.

Thus to fully represent all non-negative polynomials we must somehow expand our no-
tion of sums of squares. Hilbert proposed such an expanded definition, asking in the 17th
problem of his famous 1900 address to the International Congress of Mathematicians: is
every non-negative polynomial a sum of rational squares? Hilbert had already showed that
this is the case for bivariate polynomials (with n = 2) in [Hil93b], generalizing the quartic
case from Theorem 2.11. Artin soon resolved the rest of the problem in the affirmative.

Theorem 2.13 (Artin [Art27]). Suppose p ∈ R[x1, . . . , xn] with p ≥ 0. Then, there exist
r1, . . . , rm, s1, . . . , sm ∈ R[x1, . . . , xn] such that p =

∑m
i=1(ri/si)2.

As you will show in Exercise 2.5, the conclusion is equivalent to p being a quotient of SOS
polynomials, which is to say to there existing q ∈ SOS such that pq ∈ SOS.

Example 2.14. Motzkin’s polynomial can be written as a sum of four rational squares as
follows:

x4y2 + x2y4 + 1− 3x2y2 = (1+ x
2 +y2)x2y2(x2 +y2 − 2)2 + (x2 −y2)2

(x2 +y2)2
, (2.21)

which gives an SOS representation upon distributing in the numerator.

5While it is the example most often given, there is a misconception that the Motzkin polynomial is a very
special and “finely tuned” example. That is not so: we show that it can be “perturbed” in Exercise 2.4 and
discuss other, unrelated examples in the chapter notes.

26

A few mysteries persist surrounding Artin’s result. The following question highlights the
inconvenience of variable denominators in Artin’s theorem, which we will discuss further in
the next section.

Open Problem 2.1 (Convexity of Artin cones [AH19]). Given r ,d,n ≥ 1, let C be the cone
of homogeneous p ∈ R[x1, . . . , xn] so that degp = 2d and there exists a homogeneous q ∈
R[x1, . . . , xn] that is SOS and has degq = 2r so that pq ∈ SOS. (In words, C is the cone of
quotients of SOS polynomials with homogeneous numerator and denominator of fixed degree.)
Is C convex for all choices of r ,d,n?

There is also the following striking bound on how many summands are needed. Perhaps
surprisingly, it depends only on the number of variables.

Theorem 2.15 (Pfister [Pfi67]). m = 2n suffices in Theorem 2.13.

One part of Pfister’s argument is particularly charming and worth highlighting: there are
classical formulas, starting with

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad− bc)2, (2.22)

showing that sums of 1 (trivially), 2, 4, and 8 squares are closed under multiplication, where
the terms getting squared on the right-hand side are bilinear in the variables showing up
in the two sums of squares on the left-hand side (as above).6 These have a connection to
division algebras equipped with well-behaved norms, corresponding to the multiplicativity
of the squared norm for real numbers, complex numbers, quaternions, and octonions, re-
spectively. A classical result of Hurwitz shows that such a formula cannot hold for any
other number of squares [Hur98]. However, Pfister showed the surprising result that such a
formula holds for any number of squares that is a power of two—provided we allow rational
functions on the right-hand side! See [Ben17] for more discussion, Conrad’s notes [Con] for
an exposition of this part of Pfister’s argument, or [Pfi95] for a book-length treatment.

One may ask if this is optimal. For n = 1 it is because the polynomial 1+x2 requires two
squares, while for n = 2 it is because the Motzkin polynomial requires four squares—though
this latter is a non-trivial result of [CEP71].

Open Problem 2.2 (Number of summands in Artin’s theorem). For n ≥ 3, what is the maxi-
mum number of rational square summands needed to express a non-negative polynomial of
R[x1, . . . , xn]? The best known general lower bound is n+ 1 (see Exercise 2.8), while the best
known upper bound is 2n from Theorem 2.15.

Relatedly, [DLV04] proved lower bounds on the complexity of rational SOS representations
in terms of both the number of summands and circuits computing the polynomials getting
squared.

6The cases of four squares, for instance, may be used to reduce Lagrange’s famous theorem that every
non-negative integer is a sum of four integer squares to the special case of primes.

27

2.3.3 Dealing with Denominators

When we later consider SOS optimization more formally, given p(x), we will be interested
(in the simplest case) in solving problems of the form

minimize c
subject to c − p(x) = s(x),

s(x) ∈ SOS
(2.23)

subject to degree constraints. This will prove a global bound p(x) ≤ c. We will see that this
is possible with semidefinite programming.

Motivated by Artin’s theorem, we might be tempted instead to try to solve a problem of
the form

minimize c
subject to s(x)(c − p(x)) = t(x),

s(x), t(x) ∈ SOS,
(2.24)

again subject to degree constraints.7 However, this kind of problem, where both c and s
are variables to be optimized over, can no longer be solved with semidefinite programming
(and more generally is not convex), since we now have a nonlinear constraint involving the
product c · s(x).

There are two reasonable ways around this. First, for the given type of problem, we could
solve feasibility SDPs repeatedly for a fixed c and perform binary search to try to minimize
c. On the other hand, it also seems that, so long as we are solving many SDPs, many search
iterations might be saved by sometimes letting s be fixed and minimizing c.

Open Problem 2.3 (Denominator pursuit for rational function SOS). Investigate the effi-
cacy of algorithms that, in the setting of (2.24), alternate solving feasibility problems over
(s(x), t(x)) with varying c and minimizing over (c, t(x)), especially as compared to binary
search over c.

Alternatively, we can take advantage of an interesting class of results on uniform de-
nominators in Artin’s theorem. These results state that, under some assumptions, Artin’s
theorem still holds with a specific form of denominator shared among all terms, and, in
effect, suggest a specific class of s(x) that we might use above.

The following is the earliest result on uniform denominators.

Theorem 2.16 (Pólya [Pól28]). Suppose that p ∈ R[x1, . . . , xn] has p(x) > 0 for all x ≠ 0, p is
homogeneous, and p even, i.e. p(−x) = p(x). Then, for all sufficiently large N , (

∑n
i=1x

2
i)N ·

p(x) has only positive coefficients (and therefore is a sum of squares of monomials).

Later, [PR01] made Pólya’s theorem effective, describing how large N may be taken.
Using Pólya’s theorem, the following gives a direct proof of a result close to the full

power of Artin’s theorem.

7As mentioned earlier, while the theorem expresses polynomials as sums of quotients of squares, this
is equivalent to an expression as a quotient of sums of squares, as invoked here. Exercise 2.5 asks you to
prove this.

28

Theorem 2.17 (Habicht [Hab39]). Suppose that p ∈ R[x1, . . . , xn] has p(x) > 0 for all x ≠
0 and p is homogeneous of even degree. Then, there exist r , s ∈ R[x1, . . . , xn] that are
homogeneous of even degree and have only positive coefficients (therefore each being sums
of squares of monomials) such that p = r/s.

This result is of some historical interest, as it admits, through Pólya’s theorem (which has
an elementary proof), a proof without the complicated machinery of ordered fields involved
in Artin’s theorem.

Finally, the strongest and most directly useful of these results is the following more
recent one. See also the citation for quantitative bounds on N in terms of properties of the
polynomial p.

Theorem 2.18 (Reznick [Rez95]). Suppose that p ∈ R[x1, . . . , xn] has p(x) > 0 for all x ≠ 0
and p is homogeneous of even degree. Then, there exists N ∈ N and q ∈ SOS homogeneous
so that p = q/(

∑n
i=1x

2
i)N .

This combines useful features of Pólya’s and Habicht’s theorems: like Pólya’s theorem it
has a uniform denominator, while like Habicht’s theorem it does not need the restrictive
assumption that p be an even polynomial.

In any case, to the best of my knowledge almost nothing is known about the kinds of
lower bounds we will look at later in the course when we look at rational function SOS proofs
rather than polynomial ones.

Open Problem 2.4 (Lower bounds on rational function SOS). Investigate the power of SOS
with low-degree rational functions or quotients of low-degree sums of squares for any SOS
degree lower bounds proved on polynomial problems in the computer science literature.

The formulation is slightly facetious—there are a few exceptions, like the results of [BGP16]
for symmetric functions on the hypercube—but for less structured problems I believe this
question is wide open.

The work of [AH19] proposes hierarchies of numerical methods, similar to the “stan-
dard” SOS hierarchy we introduce in Chapter 3, based on Pólya’s and Reznick’s uniform
denominator theorems as well. The one based on Pólya’s theorem is especially intriguing
since it does not require any convex optimization but rather only computing and checking
the signs of coefficients in polynomial products. It remains unclear how these compare to
other SOS methods for concrete problems, however.

2.3.4 Positivstellensätze

We now return to the weak real Nullstellensatz mentioned earlier, and describe a further
broad class of results to which it belongs, the Positivstellensätze.8 We will see that while
these results in their most general form resemble the weak real Nullstellensatz, in fact they
also have corollaries that are useful for certifying positivity and non-negativity in the way of
the results on SOS representations above.

8Satz is German for theorem, and sätze is German for theorems.

29

Theorem 2.19 (Krivine-Stengle “weak” Positivstellensatz [Kri64, Ste74]). Let p1, . . . , pm ∈
R[x1, . . . , xn]. Then, exactly one of the following holds:

1. There exists z ∈ Rn such that pi(z) ≥ 0 for all i ∈ [m].

2. There exist qS ∈ SOS for each S ⊆ [m] such that∑
S⊆[m]

qS(x)
∏
i∈S
pi(x) = −1. (2.25)

A set defined by a collection of polynomial inequalities is called a semialgebraic set. Thus
the Krivine-Stengle weak Positivstellensatz gives a condition for the non-emptiness of a
semialgebraic set, in the same way that the Nullstellensatz gives a condition for the non-
emptiness of a complex variety and the weak real Nullstellensatz gives a condition for the
non-emptiness of a real variety.

Actually, a real variety is just a special case of a semialgebraic set, and so, as promised,
the weak real Nullstellensatz is an easy consequence of the weak Positivstellensatz.

Proof of Theorem 2.8. Apply Theorem 2.19 with the polynomials ±pi. Then, Condition 1 is
equivalent to pi(z) = 0 for all i ∈ [m], which is Condition 1 of Theorem 2.8. Since any
polynomial is a difference of two SOS polynomials (for example, p = 1

4(1+p)2 −
1
4(1−p)2),

Condition 2 is equivalent to there existing some q1, . . . , qm ∈ R[x1, . . . , xn] and q0 ∈ SOS so
that

q0(x)+
m∑
i=1

pi(x)qi(x) = −1, (2.26)

rearranging which gives Condition 2 of Theorem 2.8.

More generally, by including both ±p for some polynomial p in the constraints, Theo-
rem 2.19 allows for refuting systems with some polynomial equalities and some polynomial
inequalities.

We can also derive sufficient forms of certificates for the positivity and non-negativity
of a polynomial over a semialgebraic set. Traditionally these are called ordinary or “strong”
Positivstellensätze, though the naming is misleading because they follow from the weak
Positivstellensatz (as for the weak and strong Nullstellensatz).

Corollary 2.20 (Krivine-Stengle Positivstellensatz). Suppose that p1, . . . , pm ∈ R[x1, . . . , xn]
and define the sets

K := {x ∈ Rn : pi(x) ≥ 0 for all i ∈ [m]},

S :=

 ∑
S⊆[m]

qS(x)
∏
i∈S
pi(x) : qS ∈ SOS

 .
Let r ∈ R[x1, . . . , xn] be a further polynomial. Then, the following hold:

1. r(x) > 0 for all x ∈ K if and only if there exist s1, s2 ∈ S such that s1r = 1+ s2.

2. r(x) ≥ 0 for all x ∈ K if and only if there exist s1, s2 ∈ S and a ∈ N such that
s1r = r 2a + s2.

30

Actually, the second result is only a corollary of a slightly expanded Krivine-Stengle weak
Positivstellensatz, which we do not include here. We mention this result just because, with
its inclusion, Artin’s theorem is an easy further corollary of this corollary.

Proof of Theorem 2.13. We take m = 1 and set p1 = 1. Then, K = Rn and S = SOS. So,
Result 2 of Corollary 2.20 says that, if r(x) ≥ 0 for all x ∈ Rn, then for some a ∈ Z and
s1, s2 ∈ SOS, we have r = (r 2a + s2)/s1, which upon applying Exercise 2.5 gives the desired
representation.

It is best to think of all of the results on real-valued certificates and refutations we have
seen so far (except those on uniform denominators) as being mostly of historical interest.
The Krivine-Stengle weak Positivstellensatz is really the “mother theorem” that captures all
of these in one statement.

While the strong Positivstellensatz results move us away from refuting systems and to-
wards certifying bounds, they are still results about “rational SOS” involving denomina-
tors (s1 above), which we have seen present some challenges and ambiguities when imple-
menting algorithms. Fortunately, there is also a branch of Positivstellensatz results about
“denominator-free SOS,” which will be the most relevant to our future pursuits.

The general idea of these results to keep in mind is that the price of denominator-free
SOS certificates is the assumption of compactness of the underlying semialgebraic set.

Theorem 2.21 (Schmüdgen Positivstellensatz [Sch91]). Let p1, . . . , pm ∈ R[x1, . . . , xn] and
K and S be as in Corollary 2.20. Suppose further thatK is compact. If r ∈ R[x1, . . . , xn] has
r(x) > 0 for all x ∈ K, then r ∈ S. That is, there exist qS ∈ SOS for each S ⊆ [m] such that

r(x) =
∑

S⊆[m]
qS(x)

∏
i∈S
pi(x). (2.27)

It is worth noting that the compactness assumption is very often satisfied in practice, espe-
cially for applications in computer science and combinatorial optimization. That is because,
in those cases, we are usually optimizing over xi Boolean variables, typically encoded as
x2
i − 1 = 0 (forcing x ∈ {±1}n) or x2

i − xi = 0 (forcing x ∈ {0,1}n).
The remaining frustration for applications is the summation over S ⊆ [m], having 2m

terms, in the description of our certificates. In the above Boolean setting, for instance, we
will have at least one constraint per variable and thus m ≥ n, so if we want to optimize
over qS(x) as SDP variables, then we will have Ω(2n) such variables, a prohibitively fast
rate of growth. Fortunately, under a stronger “explicit compactness” assumption called the
Archimedean property we may actually allow for a restriction to only those S with |S| ≤ 1
in the certificate.

Theorem 2.22 (Putinar Positivstellensatz [Put93]). Let p1, . . . , pm ∈ R[x1, . . . , xn], let K be
as in Corollary 2.20, and define

S(0) :=

q0(x)+
m∑
i=1

qi(x)pi(x) : q0, . . . , qm ∈ SOS

 . (2.28)

31

Suppose that, for some R > 0, we have the Archimedean property

R −
n∑
i=1

x2
i ∈ S(0). (2.29)

Then, if r ∈ R[x1, . . . , xn] has r(x) > 0 for all x ∈ K, then r ∈ S(0). That is, there exist
q0, . . . , qm ∈ SOS such that

r(x) = q0(x)+
m∑
i=1

qi(x)pi(x). (2.30)

By the same token as compactness, the Archimedean property will also be satisfied auto-
matically for many of the problems we look at later.

2.3.5 Positivstellensatz Effectivization and Proof Systems

Finally, let us again discuss how to make the abstract Positivstellensatz results “effective”
in a way that is useful for algorithms. The ways to do this again come in two flavors, which
exactly parallel the two approaches to Nullstellensatz effectivization from Section 2.2.1.

Cylindrical Algebraic Decomposition Developed by Collins in [Col75], cylindrical al-
gebraic decomposition (CAD) is in a very rough sense a real-valued analog of Gröbner bases
and Buchberger’s algorithm. CAD computes, given a sequence of polynomials p1, . . . , pm ∈
R[x1, . . . , xn], a decomposition of Rn into “cells” Ci ⊆ Rn where for every i and j ∈ [m],
pj is either strictly positive, strictly negative, or identically zero on Ci. The cells must also
satisfy a certain consistency property with respect to projections to coordinate subspaces
of Rn, which, crucially, makes it tractable to answer whether a cell is empty or not. Thus
using such a decomposition we can determine emptiness or non-emptiness of semialgebraic
sets, just like with Positivstellensatz certificates. In fact, the algorithm implementing CAD
can do much more, as it allows for quantifier elimination, allowing us to describe sets like

{z ∈ Rn : for all x ∈ Rn, there exists y ∈ Rn such that F(x,y,z) ≥ 0} (2.31)

for any polynomial F . This is a subject unto itself related to the logical properties of the
axioms of R; see [BPR06] for a standard reference. Like Buchberger’s algorithm, CAD can
be useful but has very slow (doubly exponential in n) worst-case runtime. And, as in the
complex-valued case, if one tries CAD and it grinds to a halt, it is useful to have a more
flexible option that lets us trade proof system power for a faster algorithm.

Semidefinite Programming As with the Nullstellensatz, we may also consider constrain-
ing the degrees of all polynomials involved and trying to solve the resulting system of equa-
tions. It is no longer obvious how to do this, since even though we are left with finitely many
degrees of freedom we also have a system involving constraints of the form “q ∈ SOS,”
which does not boil down to merely a linear constraint on the coefficients of q. Not worry-
ing about this yet, we start again by asking in general how large of a degree is necessary.
The answer, alas, is even more disappointing than for the Nullstellensatz.

32

Theorem 2.23 (Effective Artin’s theorem [LPR14]). If p ∈ R[x1, . . . , xn] has p ≥ 0, then there
exist r , s ∈ SOS with p = r/s and deg r ,deg s ≤ D for

D = 222(degp)
4n

. (2.32)

The same work proves a similar, though slightly more complicated, bound for the polynomi-
als appearing in a Krivine-Stengle weak Positivstellensatz certificate (in particular the bound
is again a tower of five exponentials).

Open Problem 2.5 (Optimal effective Positivstellensatz). What is the optimal degree bound
(in terms of the height of the tower of exponentials) of an effective Artin’s theorem or Pos-
itivstellensatz? The best known lower bound is the singly-exponential 2Ω(n), while the best
known upper bound, from Theorem 2.23, is a tower of five exponentials.

This is an interesting but quite theoretical question—for any remotely practical pur-
poses, we are again in the position of bounding the degrees by some small number and try-
ing to solve the resulting system. Perhaps surprisingly, despite the challenging “q ∈ SOS”
constraints, it is often possible to do this efficiently. Historically, after the Nullstellensatz
proof system had been intensely studied for some years, the Positivstellensatz proof sys-
tem was proposed as an enhancement in [GV01] in the proof complexity literature without
mention of algorithms. But, very soon thereafter, Parrilo and Lassere [Par00, Las01], both
working in the quite separate optimization literature, concurrently realized that it is in fact
possible to “automatize” the search for such proofs using SDP. We leave a detailed descrip-
tion of these developments to Chapter 3, since those SDPs will be our focus in the rest of
the course.

Exercises

Exercise 2.1 (1969 Putnam Competition, Problem A1). Find a bivariate polynomial whose
range is (0,+∞). Conclude that p > 0 does not imply p ≥ c for some c > 0.9 Give an explicit
weak real Nullstellensatz certificate for your polynomial.

Hint: Two variables suffice, and you can choose your polynomial to be a sum of squares
(though that does not constitute a real Nullstellensatz certificate!).

Exercise 2.2. Extend Proposition 2.10 to arbitrary, not necessarily homogeneous polynomials
of degree 2.

Exercise 2.3. Show the following results illustrating that the nuance in Motzkin’s “encoding”
of the arithmetic mean–geometric mean inequality is necessary.

1. f(x,y, z) = x3 +y3 + z3 − 3xyz is not non-negative on R3.

2. f(w,x,y, z) = w4 + x4 +y4 + z4 − 4wxyz is non-negative on R4, but is also SOS.

9I learned of this exercise from this MathOverflow question. Only look if you want the answer!

33

https://mathoverflow.net/questions/38019/zeros-of-gradient-of-positive-polynomials

Exercise 2.4 (Better than Motzkin [Sch12]). Let f(x,y) = x4y2 + x2y4 + 1 − x2y2. Show
that f(x,y) ≥ 26

27 > 0 for all (x,y) ∈ R2, but, mimicking the proof of Theorem 2.12, show
that f is not SOS.

Exercise 2.5. Let p ∈ R[x1, . . . , xn]. Show that there exist r1, . . . , rm, s1, . . . , sm ∈ R[x1, . . . , xn]
such that p =

∑m
i=1(ri/si)2 if and only if there exist R, S ∈ SOS such that p = R/S.

Exercise 2.6. Find qi(x) for i ∈ [3] and x = (x1, x2, x3) such that

x1x2 + x2x3 + x1x3 + 1 ∈ q1(x)(x2
1 − 1)+ q2(x)(x2

2 − 1)+ q3(x)(x2
3 − 1)+ SOS. (2.33)

Recall that these correspond to inequalities we included in the metric LP relaxation of MaxCut,
but which were omitted from the Goemans-Williamson relaxation. This problem shows that a
sufficiently high degree SOS relaxation (degree 4 will suffice) does automatically satisfy these
inequalities.

Exercise 2.7 (Schmüdgen but not Putinar). Devise constraints p1, . . . , pm so that the semial-
gebraic setK is compact, but the constraints do not satisfy the Archimedean property.

Hint: Work backwards from knowing that Putinar’s Positivstellensatz must fail to hold for
such constraints. A very small example should suffice!

Exercise 2.8. Show that 1+x2
1 +· · ·+x2

n is not a sum of n squares in R(x1, . . . , xn), proving
the lower bound cited in Open Problem 2.2.

Hint: Start by substituting xi = yi/yn+1 and multiply by y2
n+1 to homogenize. Then, clear

the denominator in a rational SOS expression and consider terms on either side.

Exercise 2.9 (Certificates by hand). Suppose that p ∈ R[x1, . . . , xn] satisfies that p(x) ≥ 0
for all x ∈ {±1}n. Without using Putinar’s Positivstellensatz, show how, from p, you could
compute q1, . . . , qn, s1, . . . , sm ∈ R[x1, . . . , xn] so that p(x) =

∑n
i=1 qi(x)(x

2
i −1)+

∑m
i=1 si(x)2

for all x ∈ {±1}n (that is, show that such exist and describe how you would actually construct
them).

Hint: At least for the most straightforward solution, you will need to know a few facts
about “Boolean Fourier analysis.” At this level, it is just the observation that every function
on the hypercube agrees with a unique multilinear polynomial. See Chapter 1 of [O’D14] if
this is not familiar.

Exercise 2.10 (Shor substitution [Sho87b]). Suppose that there exists a Putinar Positivstellen-
satz refutation of the system of inequalities {p1(x) ≥ 0, . . . , pm(x) ≥ 0} over x ∈ Rn, i.e.,
q0(x), q1(x), . . . , qm(x) ∈ SOS such that

− 1 = q0(x)+ q1(x)p1(x)+ · · · + qm(x)pm(x), (2.34)

with the degree of any term appearing being at most D. Show that the same also holds for the
system of equalities {p1(x) − y2

1 = 0, . . . , pm(x) − y2
m = 0} over (x1, . . . , xn, y1, . . . , ym) ∈

Rn+m. How small can you make the degree of the latter refutation in terms of D?

34

Notes

Other Sources The field we have briskly surveyed, often called real algebraic geometry,
is vast, has deep historical roots, and has very many written treatments from different
perspectives. Some directly relevant book-length treatments include [Mar08, PD13, Pow21],
the second being remarkable for its careful treatment of history and bibliography. The
survey [Pow11a] is also useful. The survey [Tau70], while older, gives a broad overview
of the role of all kinds of sum-of-squares expressions throughout mathematics (including
Pfister’s results and the connection to normed division algebras).

LDE Proofs Linear Diophantine equations are straightforward to solve using Euclid’s algo-
rithm and its extensions, which amounts to repeatedly performing division with remainder.
Both the outputs and all intermediate data are also integers not exceeding the size of the
input, so the algorithm is tractable and simple to analyze. The worst-case number of itera-
tions in Euclid’s algorithm is, in a delightful twist, achieved by the Fibonacci numbers and
related to the continued fraction expansion of the golden ratio, as discussed in, e.g., [HW79].

History and Hilbert’s Motivations The reader might notice that the chronology of
results does not coincide with the conceptual progression we are suggesting: in reality,
Hilbert’s early results on sums of polynomial squares precede even the Nullstellensatz.
Hilbert seems to have had several simultaneous motivations. As detailed in [PD13], the
sum of polynomial squares results (Theorem 2.11) were motivated by a problem posed in
Minkowski’s dissertation and thesis defense, for which Hilbert was an examiner. But the
17th problem—with its sums of rational squares—seems to have come up not as a gener-
alization of these results but rather in a quite different question of what lengths can be
constructed geometrically using a straightedge and, instead of a compass, a “scale” or a
marked unit interval on the straightedge (sometimes also called a “gauge”). The Nullstellen-
satz belongs to another strand of work concerning the structure of ideals in commutative
rings. The synthesis of these results as all being “about algebraic proofs” implicit here and in
much recent discussion of these topics is therefore probably more of a modern perspective.

Concrete Non-Negative Non-SOS Polynomials After Motzkin’s example, many further
non-negative polynomials that are not SOS appeared in the literature. One nice example,
given in [LL78], is the polynomial

5∑
i=1

∏
j≠i

(xi − xj). (2.35)

Remarkably, only for exactly 5 variables is this polynomial both non-negative and not SOS!
See [Rez00] for a history of examples, Chapter 3 of [Pow21] for the “Gram matrix method”
sometimes used to show that polynomials are not SOS, and also [Rez07] for a deeper recon-
sideration of Hilbert’s method for Theorem 2.11 yielding many more examples.

Rational Coefficients The question of Positivstellensatz certificates having rational co-
efficients for polynomial systems also having rational coefficients is natural to ask, especially

35

if one is interested in using SOS and Positivstellensatz refutation as a computational proof
assistant, in which case it is important to be able to verify certificates symbolically rather
than just numerically. Artin’s result, part of which we cite in Theorem 2.13, actually ap-
plies to fields other than R, and in particular proves the same statement with R replaced
by Q throughout. On the other hand, without denominators, [Sch16] showed that there
are polynomials with coefficients in Q that are SOS over R but not SOS over Q. For the
Positivstellensatz, [Pow11b] developed analogs of Schmüdgen’s and Putinar’s versions over
Q. That work raises the following intriguing question about the applicability of Putinar’s
Positivstellensatz in the real and rational cases.

Open Problem 2.6 (Real vs. rational Archimedean property [Pow11b]). Let p1, . . . , pm ∈
Q[x1, . . . , xn], letK be as in Corollary 2.20, and define

S(0)F :=

q0(x)+
m∑
i=1

qi(x)pi(x) : q0, . . . , qm ∈ F[x1, . . . , xn]∩ SOS

 (2.36)

for F ∈ {Q,R}. If for some R ∈ R with R > 0 we have

R −
n∑
i=1

x2
i ∈ S

(0)
R , (2.37)

then do we necessarily have for some R′ ∈ Q with R′ > 0 that

R′ −
n∑
i=1

x2
i ∈ S

(0)
Q ? (2.38)

Finally, computational aspects of finding Q-valued SOS proofs with and without denomina-
tors are treated in [PP08, KLYZ12]. Chapter 11 of [Pow21] is useful for an overview of all of
these matters.

Shor Substitution In Exercise 2.10, you showed that applying the transformation pi(x) ≥
0 � pi(x) = y2

i for a new variable yi to inequality constraints makes a system of algebraic
constraints essentially no more difficult to refute with Positivstellensätze (while, of course,
representing the same semi-algebraic set). This may seem like a minor difference, but ac-
tually, there is an example known where making this transformation allows a much lower-
degree refutation of a system. The example comes from the Motzkin-Straus formulation of
the stability number of a graph; see [DKP02, LV22]. We propose the general power of this
transformation as an open problem.

Open Problem 2.7 (Power of Shor substitution). Characterize for what infeasible systems of
polynomial inequalities {p1(x) ≥ 0, . . . , pm(x) ≥ 0} that satisfy Putinar’s Positivstellensatz
applying the transformation pi(x) ≥ 0 � pi(x) = y2

i reduces the minimum degree of a
Positivstellensatz refutation. Does some property of the system govern the amount of this
decrease?

36

More on Proof Complexity Measuring the difficulty of proving various propositions in
various proof systems is the main question of the field of proof complexity. We have seen two
proof systems: Nullstellensatz and Positivstellensatz proofs. Both belong to the subclass
of algebraic proof systems, where we use polynomial manipulations to prove statements.
Other proof systems that work this way include the Sherali-Adams, Lovász-Schrijver, Cutting
Planes, and Ideal Proof systems. A further class of logical proof systems work instead over
logical formulas and manipulate them using various permissible Boolean manipulations.
These include the Resolution and Frege proof systems.

There is also a distinction between static and dynamic proof systems. In a static system
we write a proof as a single derivation that combines initial axioms, e.g. as a single poly-
nomial sentence in the Nullstellensatz or Positivstellensatz. In a dynamic system, more like
writing proofs in real life, we write a proof sequentially and can accumulate a “supply” of
statements we have proved already (e.g. polynomials that must be zero or non-negative) that
we can then reuse without rewriting their proofs every time. This lets dynamic proofs be
shorter than equivalent static proofs in some situations. The dynamic versions of Nullstel-
lensatz and Positivstellensatz proofs are called Polynomial Calculus and Positivstellensatz
Calculus, respectively.

Finally, the impetus behind much of the work in proof complexity from computer sci-
entists is the seminal work [CR79], which described a general class of sound and complete
propositional proof systems for Boolean formulas. If any such system had polynomially short
proofs of all propositional tautologies (with proof “length” having a suitable technical mean-
ing) it would follow that NP = coNP, an equivalence of complexity classes generally believed
to be false. Thus, proving super-polynomial lower bounds against different, increasingly
powerful proof systems gives evidence for NP ≠ coNP, and this is a useful approach since
this non-equality itself is believed to be a hard problem on par with P ≠ NP.

We present this laundry list just to give an idea of the great variety of ideas present in
this field; see the beginning of [FKP19] for much more discussion and bibliography.

37

3 | Lasserre-Parrilo Semidefinite

Programming Relaxations

We now finally discuss how to implement the search for SOS proofs with concrete convex op-
timization algorithms. We will also see a dual formulation of hese programs that generalizes
the original Goemans-Williamson SDP from Chapter 1 in its “probabilistic interpretation.”

For the sake of simplicity, we will limit our discussion to the kinds of SOS proofs handled
by Putinar’s Positivstellensatz—this is not the only choice or even necessarily the best one,
but other variants can be handled with straightforward adjustments of what we present,
and this choice is most typical of the computer science literature. We also focus on certifi-
cates of bounds on optimization problems rather than refutations of systems of polynomial
inequalities, again because this will be most relevant in applications. Thus: concretely, we
will study bounds on an optimization problem of the form

Opt :=

maximize p(x)
subject to x ∈ Rn,

fi(x) = 0 for all i ∈ [a],
gj(x) ≥ 0 for all j ∈ [b],

 (3.1)

where p, fi, gj ∈ R[x1, . . . , xn]. As we have seen, it is not necessary to distinguish equality
and inequality constraints, but we include this distinction because often the problems we
look at later will only have equality constraints, so it will be convenient to describe them
explicitly.

3.1 Parrilo Proof Relaxation

The first relaxation we consider, written in algebraic language, is the following degree D
sum-of-squares relaxation:

ParrD :=

minimize c

subject to c − p(x) (p)=
∑a
i=1 fi(x)qi(x)+ r0(x)+

∑b
j=1 gj(x)rj(x),

qi ∈ R[x1, . . . , xn],
deg fiqi ≤ D,
rj ∈ SOS ⊂ R[x1, . . . , xn],
deggjrj ≤ D

. (3.2)

38

That such a program could be written as an SDP was partly recognized in the early pub-
lications [Sho87b, Nes00], but was fully developed by Parrilo in his dissertation and early
publications [Par00, Par03], and is usually attributed to him.

Writing this as an SDP is not difficult, but rather notationally heavy. However, we will be
quite explicit about this rewriting to make sure the reader is convinced that one can, with
some work but without confusion, write a program translating a problem specified with
polynomials into input that can be taken by a convex optimization solver (see Exercise 3.3
for a challenge to this effect).

Definition 3.1 (Multisets). We write
((
S
k

))
for the multisets of k elements from the set S. These

may be identified with those a ∈ NS with
∑
ai = k. We also write

((
S
≤k

))
for the multisets

of between 0 and k elements from S. Likewise, we write
((
n
k

))
:=

∣∣(([n]
k

))∣∣ and
((
n
≤k

))
:=∣∣(([n]

≤k

))∣∣. Finally, we call the lexicographical ordering on multisets of N the ordering that
first orders multisets by size, and then lexicographically among multisets of a fixed size.

Definition 3.2 (Monomial vector). For x ∈ Rn, write x⊗≤d for the vector of xS over all S ∈((
[n]
≤d

))
, taken in lexicographical order.

After a suitable reordering, this is just the concatenation of certain subsets of elements of
x⊗0,x⊗1, . . . ,x⊗d—hence the notation.1 For example, if n = 2, then

x⊗≤3 =

1
x1

x2

x2
1

x1x2

x2
2

x3
1

x2
1x2

x1x2
2

x3
2

, (3.3)

where the lines separate the terms of each degree (0, 1, 2, 3).

Definition 3.3 (Coefficient vector). For a polynomial p ∈ R[x1, . . . , xn] with degp ≤ D, let

v(p,D) ∈ R
((
[n]
≤D

))
be the vector of coefficients of p with indices in lexicographical order.

The coefficient vector is also the unique vector satisfying the property

p(x) (p)= 〈v(p,D),x⊗≤D〉. (3.4)

With this tool in hand, we begin to start expressing polynomial operations in terms of
matrix and vector operations. We do not give proofs of results like the below; you may verify
them as an exercise if you are not convinced.

1x⊗≤d is also a subset of the entries of (1,x)⊗d, where (1,x) denotes a concatenation of the extra entry 1
to the beginning of x.

39

Proposition 3.4 (Polynomial multiplication). For a polynomial p ∈ R[x1, . . . , xn] and D ≥
degp, there is a matrix M (p,D) such that, for any q ∈ R[x1, . . . , xn] with degq ≤ D − degp,
M (p,D)v(q,D−degp) = v(pq,D).

Using this device, the polynomial equation

c − p(x) =
a∑
i=1

fi(x)qi(x)+ r0(x)+
b∑
j=1

gj(x)rj(x) (3.5)

is equivalent to the vector equation

v(c,D) − v(p,D) =
a∑
i=1

M (fi,D)v(qi,D−deg fi) + v(r0,D) +
b∑
j=1

M (gj ,D)v(rj ,D−deggj). (3.6)

(Note that v(c) views c as a constant polynomial, so we just have v(c) = ce∅.)
We now turn to the issue of handling the property “belongs to SOS,” which is more

complicated. First, besides vectors of coefficients, we also introduce matrices representing
polynomials.

Definition 3.5. Let D ≥ 2 be even and p ∈ R[x1, . . . , xn] with degp ≤ D. We say that

S ∈ R
((
[n]
≤D/2

))
×
((
[n]
≤D/2

))
represents p if

p(x) (p)= x⊗≤D/2>Sx⊗≤D/2. (3.7)

The following is the key relationship between polynomials belonging to SOS and matrices
being psd that drives the SDP formulation of SOS.

Proposition 3.6. p ∈ SOS if and only if there exists a S representing p such that S � 0.2

Proof. Suppose degp ≤ D where D is even. Suppose first that p ∈ SOS. Write p(x) =∑m
i=1 si(x)2. Then, deg si ≤ D/2 for each i. We have

p(x) =
m∑
i=1

si(x)2

=
m∑
i=1

〈v(si,D/2),x⊗≤D/2〉2 (by (3.4))

=
m∑
i=1

x⊗D/2
> (
v(si,D/2)v(si,D/2)

>)
x⊗≤D/2

= x⊗D/2>
 m∑
i=1

v(si,D/2)v(si,D/2)
>

x⊗D/2> , (3.8)

and the matrix in parentheses is a psd matrix representing p.
For the converse, if S � 0 represents p, then expanding S =

∑m
i=1 viv

>
i and reversing the

steps in the manipulation above shows that p ∈ SOS.

2Recall that S � 0 means that S is also necessarily symmetric.

40

Finally, we will need the following result allowing us to translate between a matrix rep-
resenting a polynomial and the coefficient vector of the polynomial.

Definition 3.7. For A ∈ Rm×n, write vec(A) ∈ Rmn for the vector formed by concatenating
the columns of A.

Proposition 3.8. Suppose D ≥ 2 is even. Then, there exists a matrix V (D) such that, whenever

S ∈ R
((
[n]
≤D/2

))
×
((
[n]
≤D/2

))
represents p(x) ∈ R[x1, . . . , xn], then V (D)vec(S) = v(p,D).

Combining all these tools, we reach the following semidefinite programming formulation
of ParrD. The proof should be clear as a combination of the above Propositions.

Theorem 3.9 (Parrilo proof relaxation SDP). For any p, f1, . . . , fa, g1, . . . , gb ∈ R[x1, . . . , xn]
and D ≥ 2 even with degp,deg fi,deggj ≤ D,

ParrD =

minimize c
subject to ce∅ − v(p,D) =

∑a
i=1M

(fi,D)v(qi,D−deg fi)

+V (D)vec(R0)
+
∑b
j=1M

(gj ,D)V (D−deggj)vec(Rj),

v(qi,D−deg fi) ∈ R

((
[n]

≤D−deg fi

))
for each i ∈ [a],

R0 ∈ R
((
[n]
≤D/2

))
×
((
[n]
≤D/2

))
,

Rj ∈ R

((
[n]

≤b(D−deggj)/2c

))
×
((

[n]
≤b(D−deggj)/2c

))
for each j ∈ [b]

R0, . . . ,Rb � 0

. (3.9)

Let us point out a few features of this SDP that are especially salient for computational
purposes. Below we think of n large and D fixed when we use O(·) notation (see Exercise 3.1
for justification of the bounds).

First, each inequality constraint gi(x) ≥ 0 “costs” us one psd variable of dimension
nO(D), while each equality constraint fi(x) = 0 only costs one vector variable of dimension
nO(D). Thus inequality constraints are especially costly, and it is important to treat equality
constraints separately if you are worried about runtime.

Second, the total number of linear constraints is nO(D). Linear constraints are again
typically expensive for SDP solvers in practice. For this reason many of the most direct
optimizations of solving SOS programs involves taking advantage of any redundancy or
sparsity in the system of linear constraints that must be enforced.

Finally, these practicalities aside, the SDP in (3.9) involves (a + b)nO(D) scalar variables
and nO(D) linear constraints, so, for D constant and a,b polynomial in n, we would expect
to be able to solve the SDP in polynomial time in n. However, even this very coarse claim
is not obvious and sometimes is simply false—we will not cover that issue here, but see
[O’D17, RW17] for details.

3.2 Lasserre Pseudomoment Relaxation

We saw back in Chapter 1 that SDP duality was an important tool for fully understanding
all the possible interpretations of the Goemans-Williamson SDP. Thus it is natural to con-
sider the dual of the SDP we have formed in Theorem 3.9. Actually, this admits an entirely

41

separate general interpretation of SOS that we have not yet encountered, so, before writing
out the dual SDP formulation, let us give this more “stylized” description. This will be a
generalization to arbitrary polynomial optimization problems of the “probabilistic interpre-
tation” of the Goemans-Williamson SDP from Chapter 1. This formulation is due to Lasserre
[Las01], developed concurrently with Parrilo’s. Laurent’s survey [Lau09] is also very useful
for an overview of this perspective.

3.2.1 Stylized Description

The key object behind the Lasserre description of SOS is the following, which, as we will see
later, is in some sense the correct “dual object” to an SOS proof. As in, for example, the
duality between functions and measures in classical analysis, it is then not surprising that
this dual object is something that “takes in” a polynomial and produces a number.

Definition 3.10 (Pseudoexpectation). A function Ẽ : R[x1, . . . , xn]≤D → R is called a degree D
pseudoexpectation for the family of constraints {fi(x) = 0}ai=1, {gj(x) ≥ 0}bj=1 if the follow-
ing properties hold:

1. Ẽ is linear.

2. Ẽ[1] = 1.

3. Ẽ[fi(x)q(x)] = 0 for all i ∈ [a] and q with deg fiq ≤ D.

4A. Ẽ[s(x)2] ≥ 0 whenever deg s2 ≤ D.

4B. Ẽ[gj(x)s(x)2] ≥ 0 for all j ∈ [b] and s with deggjs2 ≤ D.

The degree D Lasserre relaxation of our polynomial optimization problem is then

LassD :=
{

maximize Ẽ[p(x)]
subject to Ẽ is a degree D pseudoexpectation

}
. (3.10)

This looks simpler than the Parrilo relaxation, but this is of course only a superficial conse-
quence of our having moved the complicated constraints into the definition of a pseudoex-
pectation.

The idea behind this relaxation is precisely along the lines of the probabilistic interpre-
tation of the Goemans-Williamson SDP. Let us set

K :=
{
x ∈ Rn : fi(x) = 0 for all i ∈ [a], gj(x) ≥ 0 for all j ∈ b

}
, (3.11)

which is the semialgebraic set defined by our constraints. Then, letting M(K) denote the
set of probability measures supported on K, we may convexify our initial problem by opti-
mizing over these measures instead of points inK:{

maximize p(x)
subject to x ∈ K

}
=
{

maximize Eµ[p(x)]
subject to µ ∈M(K)

}
, (3.12)

42

where Eµ is the expectation operator with respect to a measure µ. A pseudoexpectation
with respect to the constraints defining K is then just a relaxation of the convex set {Eµ :
µ ∈ M(K)}: clearly the Conditions 1, 2, 3, 4A, and 4B are satisfied by any such Eµ. Indeed,
any such Eµ would satisfy these conditions for arbitrary functions qi and sj ; in contrast,
a pseudoexpectation only needs to satisfy these conditions for evaluations on low-degree
polynomials.

3.2.2 Semidefinite Program Implementation

Let us now see how to implement the Lasserre relaxation as an SDP, as we did with the
Parrilo relaxation. First, we observe that, because of the linearity property (Condition 1),
a pseudoexpectation is specified by its pseudomoment sequence. We view this as being

encoded in a vector m ∈ R
((
[n]
≤D

))
, with

mS = Ẽ[xS]. (3.13)

In particular, for p(x) ∈ R[x1, . . . , xn]≤D, we may expand p(x) =
∑
S∈
((
[n]
≤D

)) v(p,D)S xS by the

definition of the coefficient vector. Thus, pseudoexpectations may be evaluated as

Ẽ[p(x)] = Ẽ

 ∑
S∈
((
[n]
≤D

))v(p,D)S xS

=

∑
S∈
((
[n]
≤D

))v(p,D)S Ẽ[xS] (linearity of Ẽ)

=
∑

S∈
((
[n]
≤D

))v(p,D)S mS

= 〈v(p,D),m〉. (3.14)

Using this, we may reformulate the remaining conditions in the definition of a pseudo-
expectation in terms of m. Condition 1 is the simplest, and amounts just to

〈v(1,D),m〉 =m∅ = 1. (3.15)

For Condition 2, it is convenient to use our description of polynomial multiplication through
matrix multiplication from Proposition 3.4: since v(fiq,D) =M (fi,D)v(q,D−deg fi), we may write
the condition as

0 = 〈M (fi,D)v,m〉 = 〈v,M (fi,D)>m〉 for all v ∈ R

((
n

D−deg fi

))
. (3.16)

But, having this hold for all v just amounts to the vector equation

M (fi,D)>m = 0. (3.17)

As for the Parrilo SDP, it is the positivity constraints, Conditions 4A and 4B, that are
trickier to implement. The main extra device we will need is a means of converting moment
sequences into moment matrices, which we can constrain to be psd to enforce these condi-
tions. Moment matrices constructed from the pseudomoment sequence are referred to as
pseudomoment matrices.

43

Definition 3.11. For m ∈ R
((
[n]
≤D

))
for some D even, let mmatD(m) ∈ R

((
[n]
≤D/2

))
×
((
[n]
≤D/2

))
sym have

entries
mmatD(m)ST =mS+T , (3.18)

where S + T denotes the union of multisets (keeping repetitions, so that |S + T | = |S| + |T |).

We will also need the following more precise description of the vectors appearing above
in our treatment of Condition 2.

Proposition 3.12. Suppose that m is the moment sequence of Ẽ. Then, (M (g,D)>m)S =
Ẽ[g(x)xS] for all S ∈ R

((
[n]

D−degg
))
.

Combining these two claims, it follows by the same reasoning as we have used before that
Conditions 4A and 4B are, respectively, equivalent to having

mmatD(m) � 0, (3.19)

mmat2b(D−deggj)/2c(M
(gj ,D)>m) � 0 for all j ∈ [b], (3.20)

where the expression 2b(D − deggj)/2c is just D − deggj if this quantity is even and D −
deggj − 1 if it is odd.

Combining all these tools, we reach the following semidefinite programming formulation
of LassD. As for the Parrilo SDP, we do not give the proof, which just combines the previous
observations.

Theorem 3.13 (Lasserre pseudomoment relaxation SDP). For any p, f1, . . . , fa, g1, . . . , gb ∈
R[x1, . . . , xn] and D ≥ 2 even with degp,deg fi,deggj ≤ D,

LassD =

maximize 〈v(p,D),m〉
subject to m ∈ R

((
[n]
≤D

))
,

m∅ = 1,
M (fi,D)>m = 0 for all i ∈ [a],
mmatD(m) � 0,
mmat2b(D−deggj)/2c(M (gj ,D)>m) � 0

. (3.21)

3.2.3 Goemans-Williamson Redux

Before proceeding, since the Lasserre SDP is at this point entirely new to us, let us pause to
collect some intuition. First, let us see how the Goemans-Williamson SDP is none other than
the Lasserre SDP for the MaxCut problem with D = 2.

Recall that MaxCut, written as a polynomial problem, is

maximize x>Lx
subject to x2

i − 1 = 0 for all i ∈ [n], (3.22)

where L ∈ Rn×nsym is the graph Laplacian but for our purposes now can be any symmetric
matrix. We formulate the degree 2 Lasserre relaxation below.

44

Our decision variable will be indexed by
((
[n]
≤2

))
, having entries m∅ = 1 for degree 0,

m{1}, . . . ,m{n} for degree 1, and m{i,j} for degree 2, where 1 ≤ i ≤ j ≤ n and we allow
i = j, viewing the braces as defining a multiset. The linear constraints are easier to decode
in terms of the pseudoexpectation operator: since the degree of x2

i − 1 is 2, the constraints
just impose that

0 = Ẽ[x2
i − 1] = Ẽ[x2

i]− 1 =m{i,i} − 1, (3.23)

or that m{i,i} = 1, for all i.
There are no inequality constraints, so there will be just one psd constraint, with a

pseudomoment matrix indexed by
((
[n]
≤1

))
, i.e., indexed by∅, {1}, . . . , {n}. This constraint is:

0 �

m∅ m{1} m{2} · · · m{n}
m{1} m{1,1} m{1,2} · · · m{1,n}
m{2} m{1,2} m{2,2} · · · m{2,n}

...
...

...
. . .

...
m{n} m{1,n} m{2,n} · · · m{n,n}

 (3.24)

which, substituting in the linear constraints, we can rewrite as

=

1 m{1} m{2} · · · m{n}
m{1} 1 m{1,2} · · · m{1,n}
m{2} m{1,2} 1 · · · m{2,n}

...
...

...
. . .

...
m{n} m{1,n} m{2,n} · · · 1

 , (3.25)

and we introduce a bit of notation,

=:

[
1 y>

y Y

]
, (3.26)

where y is the vector of degree 1 pseudomoments and Y the matrix of degree 2 pseudomo-
ments.

Finally, the objective function is

Ẽ[x>Lx] = 〈L, Ẽ[xx>]〉 = 〈L,Y 〉. (3.27)

Thus, writing the Lasserre relaxation in these terms, we find something quite close to the
Goemans-Williamson SDP:

L2 =

maximize 〈L,Y 〉
subject to y ∈ Rn,

Y ∈ Rn×nsym ,
Yii = 1 for all i ∈ [n],[

1 y>

y Y

]
� 0.

. (3.28)

To identify this with the original Goemans-Williamson SDP, it suffices to note that the psd
constraint above implies Y � 0, and conversely if Y � 0 with Yii = 1, then we may set

45

y = 0 so that Y appears in the lower right block of a feasible point. Thus, the y variable is
superfluous and we have

L2 =

maximize 〈L,Y 〉
subject to Y ∈ Rn×nsym ,

Yii = 1 for all i ∈ [n],
Y � 0

 = SDP(G), (3.29)

recovering the Goemans-Williamson SDP.

3.3 Duality

One may check, as a rather tedious exercise, that the SDPs given in Theorems 3.9 and 3.13
are duals in the ordinary sense of SDP duality. On the other hand, the weak duality inequality
between them is easy to check using the SOS proof and pseudoexpectation interpretations.

Theorem 3.14 (Weak duality). For any D ≥ 2 even, LassD ≤ ParrD.

Proof. Suppose c, q1(x), . . . , qa(x), r1(x), . . . , rb(x) form a feasible point for ParrD, which
we recall means that rj ∈ SOS and we have

c − p(x) (p)=
a∑
i=1

fi(x)qi(x)+ r0(x)+
b∑
j=1

gj(x)rj(x). (3.30)

Suppose also that Ẽ is a feasible point for LassD. Applying Ẽ to either side of (3.30) and
applying all the conditions in the definition of a pseudoexpectation, we have

c − Ẽ[p(x)] =
a∑
i=1

Ẽ[fi(x)qi(x)]︸ ︷︷ ︸
=0

+ Ẽ[r0(x)]+
b∑
j=1

Ẽ[gj(x)rj(x)]︸ ︷︷ ︸
≥0

≥ 0, (3.31)

whereby Ẽ[p(x)] ≤ c.

There is are various straightforward condition for equality to hold between general dual
SDPs, a property called strong duality, though this does not always hold for SDPs (unlike
LPs). It is natural to ask how this plays out for the specific SDPs appearing in SOS. In fact,
here the Archimedean property that we already saw as the main condition for Putinar’s
Positivstellensatz reappears.

Theorem 3.15 (Strong duality [JH16]). Let D ≥ 2 be even. Suppose that the system of con-
straints {fi(x) = 0}ai=1, {gj(x) ≥ 0}bj=1 satisfies the degree D Archimedean property: there
exists R > 0, q1, . . . , qa ∈ R[x1, . . . , xn], and s0, s1, . . . , sb ∈ SOS such that

R −
n∑
i=1

x2
i =

a∑
i=1

fi(x)qi(x)+ s0(x)+
b∑
j=1

gj(x)sj(x), (3.32)

where each term on the right-hand side has degree at most D: deg fiqi,deg s0,deg sjgj ≤ D.
Then, LassD = ParrD.

46

This is a useful general tool, though often generic results for SDP duality, in particular
Slater’s condition, clearly apply upon writing out concrete SDPs for an SOS program (the
result of [JH16] applies in some cases where Slater’s condition does not, however). In any
case, when strong duality holds, we adopt the agnostic notation

SOSD := LassD = ParrD. (3.33)

3.4 Convergence

We note also that, combined with Putinar’s Positivstellensatz, the Archimedean property
implies the following further desirable property.

Theorem 3.16 (Convergence of SOS SDPs). Suppose that the system of constraints {fi(x) =
0}ai=1, {gj(x) ≥ 0}bj=1 satisfies the Archimedean property. Then,

lim
D→∞

SOSD = Opt =

maximize p(x)
subject to x ∈ Rn,

fi(x) = 0 for all i ∈ [a],
gj(x) ≥ 0 for all j ∈ [b]

 . (3.34)

Proof. LetK denote the semialgebraic set satisfying the constraints,

K :=
{
x ∈ Rn : fi(x) = 0 for all i ∈ [a], gj(x) ≥ 0 for all j ∈ b

}
. (3.35)

Then, for any ε > 0, p(x) < Opt + ε for all x ∈ K. By Putinar’s Positivstellensatz, this
statement admits an SOS proof, so for sufficiently large D we have Opt ≤ ParrD ≤ Opt + ε.
This holds for any ε > 0, so the result follows. (We note also that by strong duality we have
LassD = ParrD for all sufficiently large D.)

An interesting further question is when there exists a finite D such that SOSD = Opt,
a property called finite convergence. In early literature on the Lasserre relaxations, it was
noticed that this often held in numerical experiments, but for about 10 years no general
theoretical justification of this was known [HL03, HL05]. Finally, Nie [Nie14] showed that,
in general, so long as the Archimedean condition is satisfied, finite convergence holds for
“almost all” collections of constraint polynomials fi, gj ; specifically, it holds for coefficients
of such polynomials avoiding a particular algebraic surface.

Exercises

Exercise 3.1 (Multisets). Prove the identities((
n
k

))
=
(
n+ k− 1

k

)
= nO(k), (3.36)((

n
≤ k

))
=
(
n+ k
k

)
= nO(k), (3.37)

where the O(·) bounds refer to k fixed while n→∞.

47

Exercise 3.2 (Matrices representing polynomials). Let D ≥ 2 be even and p ∈ R[x1, . . . , xn]
with degp ≤ D. Let S = {S ∈ R

((
[n]
≤D/2

))
×
((
[n]
≤D/2

))
: S represents p}.

1. Show that S is an affine subspace of R
((
[n]
≤D/2

))
×
((
[n]
≤D/2

))
.

2. What (in terms of quantities related to p) is the dimension of S?

Let Ssym := S ∩R
((
[n]
≤D/2

))
×
((
[n]
≤D/2

))
sym .

3. Show that Ssym ≠∅.

4. Show that Ssym is an affine subspace of R

((
[n]
≤D/2

))
×
((
[n]
≤D/2

))
sym .

5. When (in terms of quantities related to p) is there only one matrix in Ssym?

6. Show that, whenever there is more than one matrix in Ssym and p ∈ SOS, then there
exists S ∈ Ssym such that S 6� 0.

Exercise 3.3. If you know a programming language that has (1) a library for symbolic manip-
ulation of polynomials and (2) an interface to an SDP solver (say, CVX and variants thereof),
write a small “glue library” that takes an optimization problem specified with polynomials
and a degree D and feeds the corresponding Parrilo or Lasserre SDP into the solver.3

Note: If you experiment, you will find that a naive implementation of a general library of
this kind is very slow to construct concrete SDPs (e.g., higher degree relaxations of MaxCut),
much slower than constructing them by hand. This is because a naive implementation will
not take advantage of various sparsity and redundancy structure in your constraints—
making choices about how to handle this structure automatically and generally remains
an important and largely open engineering problem.

Exercise 3.4. Suppose P represents p(x) and Q represents q(x) (in the sense of Defini-
tion 3.5). What operation of P and Q gives a matrix representing the product p(x)q(x)?

Exercise 3.5 (Locally consistent probability distributions). Let Ẽ be a degree D pseudoexpec-
tation for the hypercube constraints, {x2

i − 1 = 0}ni=1. Show that, for any subset S ⊆ [n] with
|S| ≤ D/2, there is a probability distribution µ over {±1}S that agrees with Ẽ: setting x|S to
contain those indices of x that belong to S, for all polynomials p(x|S) with degp ≤ D,

Ẽ[p(x|S)] = Ey∼µ[p(y)]. (3.38)

Hint: Use the result of Exercise 2.9.

Exercise 3.6 (Testing membership in SOS). Describe a feasibility SDP that determines whether,
given p ∈ R[x1, . . . , xn], there exist s1, . . . , sa ∈ R[x1, . . . , xn] such that p(x) =

∑a
j=1 sj(x)2

and deg sj(x)2 ≤ D. Give a dual SDP and an intuitive description of the dual in terms of
pseudoexpectations.

3For example, in Python it is not too hard to do this using sympy for polynomials and cvxpy for solvers.

48

Hint: It is possible to view this as a special case of the SDPs described in this chapter
without having to rederive those formulations.

A variant of this exercise actually leads to an intriguing direction that I do not believe
has been studied before (though it is so natural that I might just be unaware of the right
reference).

Open Problem 3.1 (Pseudomoment dual of rational SOS). Investigate the “pseudomoment-
style” duals of feasibility semidefinite programs encoding rational SOS, asking if there exist
r1, . . . , ra, s1, . . . , sb ∈ R[x1, . . . , xn] such that p(x) = (

∑a
i=1 ri(x)2)/(

∑b
j=1 sj(x)2) and having

deg ri(x)2,deg sj(x)2 ≤ D. Can you prove any interesting degree lower bounds by construct-
ing such pseudomoments?

Exercise 3.7 (Shor relaxation [Sho87a]). Write down explicitly the degree 2 Lasserre SDP for
the quadratically constrained quadratic program given by

minimize x>Wx+ 2〈w,x〉
subject to x>Aix+ 2b>i x+ ci = 0 for i ∈ [m],

x ∈ Rn,
(3.39)

with W ,Ai ∈ Rn×nsym ,w,bi ∈ Rn, ci ∈ R.

This simple example in fact contains a very rich collection of phenomena. It remains,
for example, an open problem to fully characterize (if that is even possible in any concise
form) when this relaxation is exact, and these characterizations can lead to quite intricate
geometric objects. See, e.g., [CHS20, CAPT22] and the extensive literature review in [LR24].

Open Problem 3.2 (Exactness of Shor relaxation). Characterize those problem instances
(W ,w,Ai,bi, ci) for which the Shor relaxation, the SDP you derived in Exercise 3.7, is ex-
act (i.e., has value equaling the value of the original optimization problem (3.39)). For the
other problem instances, characterize the integrality gap of the Shor relaxation (the differ-
ence between its value and that of the original problem).

Exercise 3.8 (All SDPs are SOS). Consider an arbitrary semidefinite program in standard
form,

minimize 〈C,X〉
subject to 〈Ai,X〉 = bi for i ∈ [m],

X � 0,
X ∈ Rn×nsym .

(3.40)

Write polynomial optimization problem and aD ∈ 2N so that the degree-D Lasserre relaxation
of that problem has value equal to (3.40).

Hint: Consult Exercise 3.7.

49

Notes

Software As SOS developed to be an increasingly practical tool starting in the 2000s,
various software packages appeared for formulating and solving SOS programs as SDPs
more or less “automatically” from polynomial descriptions. Some packages that include
such functionality are YALMIP, SOSTOOLS, GloptiPoly (all in MATLAB), and, more recently,
SumOfSquares.jl (in Julia) and SumsOfSquares.m2 (in Macaulay2, a more specialized
computer algebra system). A helpful summary of how to use various packages for basic SOS
tasks is given at this link.

Convergence Rates A recent line of work considers a more precise and practically rel-
evant variant of finite convergence, asking with what rate SOSD will converge to Opt for
various constraint sets. For example, the results of [DW12, FF20] show that Opt − SOSD =
O(n2/D2) when the only constraint is the spherical constraint

∑n
i=1x

2
i = 1 and when the

maximum and minimum of the objective polynomial on the sphere are bounded. (In fact,
Reznick’s work on uniform denominators in [Rez95] used some similar ideas, as the latter
paper discusses.) Even more recently, [SL22] study similar questions over the hypercube, in
the regime D ∝ n.

Putinar vs. Schmüdgen In the presence of inequality constraints, different branches of
the literature made different choices about which Positivstellensatz to base their SDP relax-
ations on: Parrilo’s initial work used Schmüdgen’s Positivstellensatz while Lasserre’s used
Putinar’s Positivstellensatz. As we have noted, the Putinar version is more common in the
computer science literature, though this too is not universal; there is a bit of discussion in,
e.g., [OZ13]. It is known that Schmüdgen certificates of a given bound can have much lower
degree than Putinar certificates; this is shown in, e.g., Table 1 of [Mag15]. However, I am
not aware of especially clean examples illustrating this, and the details of these tradeoffs,
especially at low degree, remain unclear.

50

https://sums-of-squares.github.io/sos/

Part II

Sum-of-Squares Algorithms

51

4 | The Proofs-to-Algorithms

Framework

We now proceed to somewhat more advanced applications of SOS optimization. In particu-
lar, we will study several problems which are not, on the face of it, polynomial optimization
problems, whereby it is not clear that SOS can be useful. However, we will see a general
scheme by which we can take advantage of SOS tools to help us solve such problems, and—
what is particularly convenient when working with SOS—to prove that the resulting algo-
rithms work well.

The broad proof strategy that these problems share is sometimes called the proofs to
algorithms approach (see, e.g., the survey [BS14]). This is a bit of a misnomer: what really
happens is a conversion from purely mathematical proofs to other proofs that SOS algo-
rithms work well. The following concise and accurate summary appears in [Hop18b] (which
we will discuss later):

“SOS SDPs in statistical settings are amenable to an analysis strategy which con-
verts proofs of statistical identifiability into analysis of an SDP-based algorithm
by phrasing the identifiability proof as a dual solution to the SDP.”

To elaborate on this, generally speaking, we proceed by the following steps.

1. Formulate a polynomial optimization problem related to the task we are trying to
perform. Generically, this will look like our usual

Opt :=

maximize p(x)
subject to x ∈ Rn,

fi(x) = 0 for all i ∈ [a],
gj(x) ≥ 0 for all j ∈ [b]

 . (4.1)

2. Prove that, if we could solve the polynomial optimization problem, then the optimal
point x? or its value p(x?) would help us in our task.

3. Convert the above proof into a proof that if we can solve an SOS relaxation of the
problem from Step 1, then the optimal pseudoexpectation Ẽ? or its objective value
Ẽ?[p(x)] will still help us in our task.

A little more specifically, often there is some “hidden” information in the data we are
given to work with that we seek to recover (especially in problems with a more statistical

52

flavor). We, the algorithm analysts, can measure how well x? recovers this information by
evaluating how large some polynomial q(x?) is. However, in the coefficients of q(x?) there
is information that is not directly available to the algorithm itself, which is using p as a
proxy for q.

In such a situation, Step 2 of the plan will be a proof that if p(x?) is large and x? is
feasible for the problem Opt, then q(x?) is also large. This deduction will look like:

p(x?) large, fi(x) = 0 for all i ∈ [a], gj(x) ≥ 0 for all j ∈ [b]w�
q(x?) large.

(4.2)

The main point is that, if such a proof only uses fairly routine manipulations of polynomials
or, as we will see below, even slightly more complicated algebraic operations on x? and
polynomials thereof, then we can show that Ẽ? admits a parallel deduction:

Ẽ?[p(x)] large, Ẽ? satisfies Lasserre constraints for Optw�
Ẽ?[q(x)] large.

(4.3)

Once we have this kind of result, we can round Ẽ? to extract an actual point x̂ which is
almost as good as x? for our purposes. And, if (4.3) is satisfied by Ẽ? of low degree, then x̂
can be efficiently computed, giving us a useful algorithm.

There are two difficulties in executing this plan. The first is an exercise in reducing proof
complexity: we want to encode the deduction of (4.2) in such a simple series of steps that
those steps may be reproduced exactly in (4.3). Many useful analytic tools may be reformu-
lated in this kind of “SOS-friendly” way; as the authors of [FH14], where such representations
of several well-known inequalities are presented, write,

“...if the inequality f ≥ 0 is ‘classical’ and ‘famous’ enough, then f usually turns
out to be representable as a sum of squares, although such a representation is
not always easy to find.”

The second, quite different, difficulty is the matter of how exactly to round to extract a
useful point that looks enough like a sample from the “pseudodistribution” underlying
a pseudoexpectation—concretely, a random point whose moments mimic the pseudomo-
ments in some useful way. Below we present some general tools for these two tasks that
will be useful in the sequel. In the remainder of this part of the course, we will examine
several case studies of the proofs-to-algorithms framework.

4.1 Reasoning About Pseudoexpectations

In the three results below, we let a(x),b(x) ∈ R[x1, . . . , xn]N≤D. In words, these are vectors
in N coordinates, where each coordinate is a polynomial of degree at most D.

53

Proposition 4.1 (SOS Cauchy-Schwarz inequality). If Ẽ is a pseudoexpectation of degree at
least 2D, then

Ẽ[〈a(x),b(x)〉] ≤
(
Ẽ[‖a(x)‖2

2]
)1/2 (

Ẽ[‖b(x)‖2
2]
)1/2

. (4.4)

Proof. By dividing by the terms on the right-hand side, we may without loss of generality
suppose that Ẽ[‖a(x)‖2

2] = Ẽ[‖b(x)‖2
2] = 1. Under this assumption, we have

0 ≤ Ẽ
[

1
2
‖a(x)− b(x)‖2

2

]
= 1− Ẽ[〈a(x),b(x)〉], (4.5)

and the result follows after rearranging.

Corollary 4.2 (SOS Jensen inequality). Let p(x) ∈ R[x1, . . . , xn]≤D and Ẽ be a pseudoexpec-
tation of degree at least 2D. Then,

Ẽ[p(x)2] ≥ (Ẽ[p(x)])2. (4.6)

Proof. Apply the SOS Cauchy-Schwarz inequality withN = 1 to the polynomials a(x) = p(x)
and b(x) = 1.

Below, we write a(x)◦k for the polynomial vector given by raising each entry of a(x) to
the kth power. Note also that in the two proofs below, unlike the first one above, we do not
appeal to any direct SOS proofs! Instead, we use the properties of pseudoexpectations we
have built up already to derive further properties.

Proposition 4.3 (SOS Hölder inequality). If Ẽ is a pseudoexpectation of degree at least 4D,
then

Ẽ[〈a(x),b(x)◦3〉] ≤
(
Ẽ[‖a(x)‖4

4]
)1/4 (

Ẽ[‖b(x)‖4
4]
)3/4

. (4.7)

Proof. We use the Cauchy-Schwarz inequality twice:

Ẽ[〈a(x),b(x)◦3〉] ≤
(
Ẽ[〈a(x)◦2,b(x)◦2〉]

)1/2
·
(
Ẽ[‖b(x)‖4

4]
)1/2

≤
(
Ẽ[‖a(x)‖4

4]
)1/4 (

Ẽ[‖b(x)‖4
4]
)1/4

·
(
Ẽ[‖b(x)‖4

4]
)1/2

=
(
Ẽ[‖a(x)‖4

4]
)1/4 (

Ẽ[‖b(x)‖4
4]
)3/4

, (4.8)

completing the proof.

Proposition 4.4 (SOS L4 Minkowski inequality). If Ẽ is a pseudoexpectation of degree at least
4D, then (

Ẽ[‖a(x)+ b(x)‖4
4]
)1/4

≤
(
Ẽ[‖a(x)‖4

4]
)1/4

+
(
Ẽ[‖b(x)‖4

4]
)1/4

. (4.9)

Proof. We start by expanding,

Ẽ[‖a(x)+ b(x)‖4
4]

= Ẽ

 N∑
i=1

(ai(x)+ bi(x))4

= Ẽ

 N∑
i=1

ai(x)(ai(x)+ bi(x))3
+ Ẽ

 N∑
i=1

bi(x)(ai(x)+ bi(x))3

54

and, using the SOS Hölder inequality on each term, we find

≤
((
Ẽ[‖a(x)‖4

4]
)1/4

+
(
Ẽ[‖b(x)‖4

4]
)1/4

)(
Ẽ[‖a(x)+ b(x)‖4

4]
)3/4

, (4.10)

and rearranging this gives the result.

The reference [FH14] gives some more systematic development of these kinds of results,
albeit working purely in terms of SOS proofs rather than the pseudoexpectation language
we use here.

4.2 Rounding Tools

For now we give just one broadly useful rounding approach. This is perhaps the most naive
method possible: we just match as many pseudomoments as we possibly can using a simple
actual distribution.

Proposition 4.5 (Gaussian rounding). If Ẽ is a pseudoexpectation on (x1, . . . , xn) (of any de-
gree at least 2), then there exists a measure µ on Rn that matches Ẽ on moments of degree at
most 2: for each p ∈ R[x1, . . . , xn] with degp ≤ 2, we have

E
x∼µ
[p(x)] = Ẽ[p(x)]. (4.11)

Proof. We will take the Gaussian distribution µ = N (Ẽ[x], Ẽ[xx>] − Ẽ[x]Ẽ[x]>). Clearly
this will satisfy the condition claimed, so long as the “pseudocovariance matrix” Ẽ[xx>] −
Ẽ[x]Ẽ[x]> is psd so that the Gaussian distribution is well-defined. To check this, we com-
pute

v>(Ẽ[xx>]− Ẽ[x]Ẽ[x]>)v = Ẽ[〈v,x〉2]− Ẽ[〈v,x〉]2 ≥ 0, (4.12)

the inequality following by the SOS Jensen inequality (Corollary 4.2).

As a point of reference, the Goemans-Williamson rounding scheme from Chapter 1 is ac-
tually (at least in its first step) a special case of this. Recall that the Goemans-Williamson SDP
may be viewed as the degree 2 SOS relaxation (in the Lasserre formulation) of the MaxCut
problem. In this equivalence, the decision variable X is X = Ẽ[xx>] and, as we saw in
Section 3.2.3, we may assume without loss of generality that Ẽ[x] = 0 in this relaxation.1

In our original description of the Goemans-Williamson rounding, we computed V ∈ Rr×n

such that X = V >V (the “geometric description” of the relaxation), and then rounded X
to x̂ = sgn(V >g) for g ∼ N (0,Ir). However, the distribution of the random vector V >g
is none other than N (0,V >V) = N (0,X) = N (Ẽ[x], Ẽ[xx>] − Ẽ[x]Ẽ[x]>). Thus, the
“hyperplane rounding” of Goemans-Williamson may equivalently be viewed as the Gaussian
rounding followed by taking the sign to obtain a hypercube point.

A small variation on this will also be useful: often, we will show that Ẽ[xx>] is “close”
to a rank one matrix vv> in some sense, and we will want to recover an estimate of the

1Generally, whenever both the objective function and the constraints of the underlying polynomial opti-
mization problem are invariant under the negation map x , −x, we may assume without loss of generality
that all odd pseudomoments are zero.

55

vector v. It is then natural to use as an estimator the top eigenvector of Ẽ[xx>]; however,
to analyze such rounding procedures, we will need a perturbation inequality that lets us
convert distances between Ẽ[xx>] and vv> to distances between the top eigenvector of
Ẽ[xx>] and v. The following inequality gives precisely such a guarantee; it is a special case
of the Wedin or Davis-Kahan theorems.

Proposition 4.6 ([DK70, Wed72, YWS15]). SupposeM � 0, and ∆ has the same dimensions as
M with ‖∆‖ < λ1(M)−λ2(M). Let v be the top eigenvector ofM and ṽ the top eigenvector
of M +∆. Then,

〈v, ṽ〉2 ≥ 1−
(‖∆‖
λ1(M)− λ2(M)− ‖∆‖

)2

. (4.13)

Exercises

Exercise 4.1 (Eigenvector perturbation bound). In this exercise, you will prove Proposition 4.6.
Recall the setting: suppose M � 0, and ∆ has the same dimensions as M with ‖∆‖ <
λ1(M)− λ2(M). Let v be the top eigenvector of M and ṽ the top eigenvector of M +∆ (so
that both are unit vectors). You will show the perturbation inequality

〈v, ṽ〉2 ≥ 1−
(‖∆‖
λ1(M)− λ2(M)− ‖∆‖

)2

. (4.14)

Follow these steps:

1. Show that λ1(M)− λi(M +∆) ≥ λ1(M)− λ2(M)− ‖∆‖ for all i ≥ 2.

2. Using Step 1, show that ‖∆v‖ ≥ (λ1(M)− λ2(M)− ‖∆‖) · ‖(I − ṽṽ>)v‖.

3. Complete the proof.

56

5 | Case Study 1: Sparse Vectors in

Subspaces

The first problem we will attack with the proofs-to-algorithms framework is that of recover-
ing a sparse vector in a random subspace.

Definition 5.1. We write ‖x‖0 for the number of non-zero entries in x, and call x s-sparse if
‖x‖0 ≤ s.

We will consider the following setting. Suppose v1, . . . ,vk,x? ∈ Rn are unit vectors,
where the vi are orthonormal and x? is s-sparse. Define

V := span(v1, . . . ,vk), (5.1)

W := span(v1, . . . ,vk,x?). (5.2)

We also introduce for later the notation

V :=

 v1 v2 . . . vk

 . (5.3)

Though this last condition can be relaxed, we will also assume that x? is orthogonal to all
of the v1, . . . ,vk:

〈vi,x?〉 = 0 for all i ∈ [k]. (5.4)

The subspace V and the vector x? will be unknown to us; we will observe W (through, say,
an arbitrary basis) and our job will be to try to recover x?. Finally, we will assume that V
is uniformly random, by, say, taking v1, . . . ,vk to be uniformly random vectors on the unit
sphere in Rk. This specific choice is also not essential; as we will see, our algorithm will
work for any V that is “generic enough” in a particular technical sense. The idea is just that
V should not contain any sparse or nearly-sparse vectors in order for us to have some hope
of recovering x? from W , in which x? will then be the only sparse vector.

We make one last definition to start formulating optimization problems associated to
this statistical problem.

Definition 5.2. For a subspace V ⊂ Rn, we write PV ∈ Rn×nsym for the matrix of the orthogonal
projection to V .

57

In particular, the constraint “x ∈ V” may be encoded as a polynomial constraint PVx = x,
or equivalently (I −PV)x = PV⊥x = 0.

As foreshadowed in Chapter 4, the first thing to notice is that recovering x? is not
a polynomial optimization problem in any obvious way. While we would like to solve a
problem like

minimize ‖x‖0

subject to PWx = x,
(5.5)

‖x‖0 is not a polynomial of x, and the set {x : x is s-sparse} is not a semialgebraic set.
Therefore, we need some proxy polynomial optimization problem that approximates the
above.

5.1 Step 1: Polynomial Optimization Formulation

The way we will encode our task in a polynomial optimization problem is by comparing
other, better behaved, `p norms of x.1 Generally, if ‖x‖2 is fixed, then ‖x‖p is larger for
sparse vectors when p > 2, and smaller for sparse vectors when p < 2. As a sanity check
to convince yourself of this, note that when ‖x‖0 = 1 then all of these norms equal 1, while
when x ∈ {±n−1/2}n, the “least sparse” possible vectors even in any approximate sense and
having ‖x‖0 = n, we have

‖x‖p =
(
n−p/2 ·n

)1/p
= n1/p−1/2. (5.6)

The simplest such proxy problem that is convenient to encode as polynomial optimiza-
tion is to fix the `2 norm and maximize the `4 norm. We thus define

Opt :=

maximize ‖x‖4

4 =
∑n
i=1x

4
i

subject to ‖x‖2
2 =

∑n
i=1x

2
i = 1,

PWx = x

 . (5.7)

This is not a perfect approximation of minimizing the sparsity of x, since “nearly sparse”
vectors with some very small non-zero entries will still have `4-norm about as large as
exactly sparse vectors. But, if x? is essentially unique even among nearly sparse vectors in
W , this will suffice to recover x?.

Before proceeding, let us also record the objective value that x? has for this problem.
As you can check, among s-sparse vectors with fixed `2 norm, the `4 norm is maximized by
those with s non-zero entries that are all equal in magnitude, and therefore equal to s−1/2.
Thus we have

‖x?‖4
4 =

n∑
i=1

(x?i)
4 ≥ (s−1/2)4 · s = 1

s
. (5.8)

1As a side note, while we use norm notation for ‖x‖0, it is in fact not a norm, as you can check that it
fails the triangle inequality.

58

5.2 Step 2: Analysis of Polynomial Optimization Problem

Following the outline from Chapter 4, the first order of business is to show that solutions
x to Opt having large objective value will have a high correlation with x?. Note that x?

itself is a feasible point, so we may safely assume that the optimizer x of Opt will have
‖x‖4 ≥ ‖x?‖4.

As mentioned earlier, we will need some sort of quantitative regularity condition on V .
It turns out that the following is the notion that is useful here.

Definition 5.3 (Mixed matrix norms). For M ∈ Rn×nsym , we define the p → q norm of M as

‖M‖p→q := max
v∈Rn\{0}

‖Mv‖q
‖v‖p

. (5.9)

For V ⊂ Rn a subspace, we write

‖V‖p→q := ‖PV‖p→q = max
v∈V\{0}

‖v‖q
‖v‖p

. (5.10)

The reason for the name is that ‖ · ‖p→q is an operator norm when the domain space Rn is
endowed with the `p norm and the range space Rn with the `q norm.

Not surprisingly, it is the 2 → 4 norm that will be relevant for our purposes. The follow-
ing is the key technical claim showing that Opt is a good approximation of the problem of
recovering x?.

Lemma 5.4. For any V , for all x ∈ W with ‖x‖2 = 1 and ‖x‖4 ≥ ‖x?‖4, we have

|〈x,x?〉| ≥ 1− ‖V‖2→4

‖x‖4
≥ 1− ‖V‖2→4

‖x?‖4
. (5.11)

Proof. Since we assume x? is orthogonal to V , we have

x = 〈x,x?〉x? +PVx. (5.12)

Taking `4 norms on either side and using the triangle inequality (Minkowski’s inequality),

‖x‖4 ≤ |〈x,x?〉| · ‖x?‖4 + ‖PVx‖4

≤ |〈x,x?〉| · ‖x‖4 + ‖V‖2→4, (5.13)

and rearranging gives the result.

To apply this to our particular situation, we must also control the 2→ 4 norm of V when
it is random.

Lemma 5.5 (Corollary of Theorem 7.1 of [BBH+12]). For an absolute constant C > 0, if k =
o(n1/2), then P[‖V‖2→4 ≤ C/n1/4]→ 1.

Corollary 5.6. For an absolute constant C > 0, for V uniformly random, if k = o(n1/2), then
with high probability, for any x ∈ W with ‖x‖2 = 1 and ‖x‖4 ≥ ‖x?‖4 we have

|〈x,x?〉| ≥ 1− C
(
s
n

)1/4
. (5.14)

59

Let us give the proof of Lemma 5.5, not worrying for the moment about our future
goal of making this “SOS-compatible” but rather applying the most immediately appealing
technique. We will use the following technical tool.

Proposition 5.7 (ε-nets of the sphere). For an absolute constant C > 0, for any n ∈ N and
ε > 0, there exists a subset S ⊂ Sn−1 such that:

1. |S| ≤ exp(Cn/ε), and

2. For any x ∈ Sn−1, there exists y ∈ S so that ‖x− y‖2 ≤ ε.

Proof Sketch of Lemma 5.5. Fix ε ∈ (0,1). Let S be an ε-net of Sk−1 as in Proposition 5.7. We
consider the “discretization” of the 2→ 4 norm over V S:

M := max
y∈S
‖V y‖4, (5.15)

and compare to the 2→ 4 norm itself:

‖V‖2→4 = max
z∈Sk−1

‖V z‖4. (5.16)

For any z ∈ Sk−1, there exists y ∈ S so that ‖y − z‖2 ≤ ε. For this y, we have by the reverse
triangle inequality∣∣‖V y‖4 − ‖V z‖4

∣∣ ≤ ‖V y −V z‖4 = ‖V (y − z)‖4 ≤ ‖V‖2→4‖y − z‖2 ≤ ε‖V‖2→4. (5.17)

Thus M is a multiplicative approximation of ‖V‖2→4:

‖V‖2→4 ≤ M + ε‖V‖2→4, (5.18)

and in particular

‖V‖2→4 ≤
1

1− εM. (5.19)

So, it suffices to fix, say, ε := 1
2 , in which case |S| ≤ exp(Ck) for some C > 0, and to

bound M with high probability. We then apply a union bound:

P[M ≥ t] = P[‖V y‖4 ≥ t for some y ∈ S]

and, since for any fixed y the vector V y is just a uniformly random unit vector in Rn, writing
v for such a vector we have

≤ |S| · P[‖v‖4 ≥ t]

= exp(Ck) · P
 n∑
i=1

v4
i ≥ t4

 . (5.20)

Now we make a few heuristic leaps to avoid technicalities, but give the idea of the rest
of the argument: let us view v ∼ N (0, 1

nIn), a Gaussian vector whose expected norm is
E‖v‖2

2 = 1. We then have Ev4
i = 3/n2, so we certainly must have t4 Ý n−1, or t Ý n−1/4, for

the remaining probability to decay at all as n→∞. If t ≥ Kn−1/4 for a large constant K, then,

60

since the v4
i random variables are heavy-tailed, the probability above is dominated by some

one v4
i being large. Neglecting terms of sub-leading order and constants in the exponents,

we have

P

 n∑
i=1

v4
i ≥ t4

 � P
[
v4

1 ≥ t4
]
� P [|v1| ≥ t] Ü exp(−nt2) Ü exp(−

√
n). (5.21)

Thus the probability bound is

P[M ≥ t] Ü exp(Ck−
√
n), (5.22)

which tends to zero since we assume k = o(√n).

5.3 Step 3: Proofs-to-Algorithms Analysis of

Sum-of-Squares Relaxation

Finally, to finish executing the plan from Chapter 4, we revisit the proof above and make
each step “SOS-effective,” showing that analogs of Lemma 5.4 and Lemma 5.5 hold in ways
that apply to low-degree pseudoexpectations over the Opt constraints.

First of all, we will need to work not just with bounds on the 2 → 4 norm, but on such
bounds that are certifiable by SOS. We therefore make the following definition.

Definition 5.8 (SOS 2→ 4 norm). For V ⊂ Rn a subspace, we define

‖V‖SOS
2→4 =

(
min

{
K ∈ R : K‖PVx‖4

2 − ‖PVx‖4
4 ∈ SOS

})1/4
. (5.23)

This is just a natural degree 4 SOS relaxation of computing the 2→ 4 norm of V ; in particu-
lar, we will always have

‖V‖2→4 ≤ ‖V‖SOS
2→4 (5.24)

In fact, this problem and its higher-degree analogs are themselves quite important in the SOS
literature, because of connections to the Unique Games Conjecture and related problems.
This connection was first explored by [BBH+12], whose major technical result (which we give
below) [BKS14] repurposed for the analysis of the planted sparse vector problem.

Lemma 5.9 (SOS version of Lemma 5.4). For any V , for any pseudoexpectation Ẽ of degree at
least 4 that respects the constraints of Opt and has Ẽ[‖x‖4

4] ≥ ‖x?‖4
4, we have

Ẽ[〈x,x?〉2] ≥ 1− 8
‖V‖SOS

2→4

(Ẽ[‖x‖4
4])1/4

≥ 1− 8
‖V‖SOS

2→4

‖x?‖4
. (5.25)

Lemma 5.10 (SOS version of Lemma 5.5; Theorem 7.1 of [BBH+12]). For an absolute constant
C > 0, if k = o(n1/2), then P[‖V‖SOS

2→4 ≤ C/n1/4]→ 1.

From these, combined with a straightforward rounding scheme, our main result follows.

61

Theorem 5.11. For C > 0 an absolute constant, if k = o(n1/2) and x? is s-sparse, there
exists a polynomial-time randomized algorithm outputting x̂ that, with high probability over
V , satisfies

E〈x̂,x?〉2 ≥ 1− C
(
s
n

)1/4
. (5.26)

Proof. Let Ẽ? be the optimizer of the degree 4 SOS relaxation of Opt. Since x? is a feasible
point for Opt, this satisfies Ẽ?[‖x‖4

4] ≥ ‖x?‖4
4. So, Lemma 5.9 applies to Ẽ?. Applying it,

using Lemma 5.10 to bound ‖V‖SOS
2→4, and using that if x? is s-sparse then ‖x?‖4 ≥ s−1/4 then

shows that, with high probability over V , we have

Ẽ?[〈x,x?〉2] ≥ 1− C
(
s
n

)1/4
. (5.27)

Lastly, using Proposition 4.5 on Gaussian rounding, there is a Gaussian law µ for x̂ whose
moments match the pseudomoments of Ẽ? to degree at most 2. In particular, we have

E
x̂∼µ
[〈x,x?〉2] = Ẽ?[〈x,x?〉2] ≥ 1− C

(
s
n

)1/4
, (5.28)

as claimed.

Proof of Lemma 5.9. We start by mimicking our original proof of Lemma 5.4 almost verba-
tim, using tools we developed for pseudoexpectations in Section 4.1 as needed.

Since we assume x? is orthogonal to V , we have the polynomial equality

x
(p)= 〈x,x?〉x? +PVx+ (I −PW)x. (5.29)

We consider summing fourth powers on either side and applying Ẽ that satisfies the Opt
constraints. (

Ẽ[‖x‖4
4]
)1/4

=
(
Ẽ[‖〈x,x?〉x? +PVx+ (I −PW)x‖4

4]
)1/4

and, expanding, using that Ẽ[((I − PW)x)iq(x)] = 0 for any q(x) with degq ≤ 3 and then
combining back into a fourth power of a norm, we find that we can drop the last term,

=
(
Ẽ[‖〈x,x?〉x? +PVx‖4

4]
)1/4

and, by the SOS L4 Minkowski inequality (Proposition 4.4),

≤
(
Ẽ[‖〈x,x?〉x?‖4

4]
)1/4

+
(
Ẽ[‖PVx‖4

4]
)1/4

=
(
Ẽ[〈x,x?〉4]

)1/4
‖x?‖4 +

(
Ẽ[‖PVx‖4

4]
)1/4

≤
(
Ẽ[〈x,x?〉4]

)1/4 (
Ẽ[‖x‖4

4]
)1/4

+ ‖V‖SOS
2→4. (5.30)

Rearranging then gives (
Ẽ[〈x,x?〉4]

)1/4
≥ 1− ‖V‖SOS

2→4(
Ẽ[‖x‖4

4]
)1/4 . (5.31)

62

If the right-hand side is negative then the statement of the Lemma is trivial, so we may
suppose the right-hand side is between 0 and 1. In this case, taking fourth powers and
bounding powers of the second term gives

Ẽ[〈x,x?〉4] ≥ 1− 8
‖V‖SOS

2→4(
Ẽ[‖x‖4

4]
)1/4 . (5.32)

Finally, note that since x? is a unit vector, we have x?x?
> � In, whereby

‖x‖2
2 − 〈x,x?〉2 = x>(I −x?x?

>
)x ∈ SOS. (5.33)

Thus we also have
‖x‖2

2〈x,x?〉2 − 〈x,x?〉4 ∈ SOS, (5.34)

and since Ẽ respects the constraint ‖x‖2
2 = 1 of Opt, applying Ẽ on either side gives

Ẽ[〈x,x?〉2] ≥ Ẽ[〈x,x?〉4] ≥ 1− 8
‖V‖SOS

2→4(
Ẽ[‖x‖4

4]
)1/4 , (5.35)

completing the proof.

We note that the gymnastics at the end, though they may seem insignificant on the surface,
are actually quite important for the general plan of the proof of Theorem 5.11: we need to
obtain a degree 2 measurement of correlation with x? (not a degree 4 one) so that we can
control the same expectation when we replace the pseudoexpectation with an expectation
over a Gaussian distribution.

5.3.1 Matrix Concentration and Proof of Lemma 5.10

We now move on to the proof of Lemma 5.10, which is the most technical step of the argu-
ment. Before giving (most of) a careful proof, let us make some preliminary calculations. To
bound ‖V‖SOS

2→4, we will want to prove an SOS membership of the form

C
n
‖PVx‖4

2 − ‖PVx‖4
4 ∈ SOS. (5.36)

As a first convenience, we note (you may check this as an exercise) that this is equivalent to
a memberhsip, for y = (y1, . . . , yk), of the form

C
n
‖y‖4

2 − ‖V y‖4
4 ∈ SOS, (5.37)

where we are just reparametrizing the enumeration of vectors in V from PVx = V V >x for
x ∈ Rn to V y for y ∈ Rk.

We will convert this into a linear algebra problem. For this special case of degree 4
homogeneous polynomials, let us slightly reformulate our notion of a matrix representing a
polynomial: for p ∈ R[y1, . . . , yk] homogeneous of degree 4, we sayA ∈ Rk

2×k2

sym represents p

63

if p(y) = y⊗2>Ay⊗2. Then, the above is equivalent (by a minor variation on Proposition 3.6)
to there existing A representing ‖y‖4

2 and B representing ‖V y‖4
4 such that

B � C
n
A. (5.38)

Let us try making the most natural choices of B and A. Conveniently, we may take
A := Ik2 , since y⊗2>Ik2y⊗2 = ‖y⊗2‖2

2 = ‖y‖4
2. For B, we note that, if r1, . . . ,rn ∈ Rk are the

rows of V , then (V y)i = 〈wi,y〉, and thus

‖V y‖4
4 =

n∑
i=1

(V y)4i =
n∑
i=1

〈wi,y〉4 = y⊗2>

 n∑
i=1

w⊗2
i w

⊗2>
i

y⊗2, (5.39)

so it seems reasonable to take

B :=
n∑
i=1

w⊗2
i w

⊗2>
i . (5.40)

Recall that we previous approximated the law of the vi as independent N (0, 1
nIn) vectors,

so, following the same approximation, we may view the wj as independent N (0, 1
nIk) vec-

tors. Taking instead h1, . . . ,hn ∼ N (0,Ik) independent, we have that the law of B is then
equivalently

B := 1
n2

n∑
i=1

h⊗2
i h

⊗2>
i . (5.41)

The bound we want is then equivalent to

1
n

n∑
i=1

h⊗2
i h

⊗2>
i︸ ︷︷ ︸

=:Hi

� CIk2 , (5.42)

which is just a bound on the largest eigenvalue of the left-hand side.
Since the left-hand side is an average of i.i.d. random matrices, it is natural to hope that

it would converge in some sense to the expectation, EH1. Supposing this happens, let us
see if we at least have EH1 � CIk2 , or equivalently ‖EH1‖ ≤ C . The matrix EH1 will have

64

the following form, illustrated here with k = 4:

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

11 3 1 1 1

12 1 1

13 1 1

14 1 1

21 1 1

22 1 3 1 1

23 1 1

24 1 1

31 1 1

32 1 1

33 1 1 3 1

34 1 1

41 1 1

42 1 1

43 1 1

44 1 1 1 3

(5.43)

To process this: the rows and columns are indexed by pairs (i, j) ∈ [k]2. The submatrix with
rows and columns indexed by equal pairs (i, i) will have non-zero entries, with E[(h1)4i] = 3
on the diagonal and E[(h1)2i (h1)2j] = 1 on the off-diagonal—these are the circled entries.
The rest of the diagonal will also be non-zero and equal 1. Finally, the entry indexed by
pairs (i, j) and (j, i) will also equal 1—these are the entries marked with squares.

What is the largest eigenvalue of such a matrix? Let us write

EH1 = Ik2 +S1 +S2 + T , (5.44)

where S1 is a “blown up” version of the matrix Ik and S2 the same for 1k1
>
k , both supported

only on the submatrix indexed by (i, i) pairs (that is, S1 has a 1 everywhere where EH1 has
a 3, and S2 has a 1 in every circled entry), and where T consists of the entries in squares.
We have ‖Ik2‖ = 1 and likewise ‖S1‖ = 1. Since T has only one non-zero entry per row, by
the Gershgorin circle theorem ‖T ‖ ≤ 1. However, we have λmax(S2) = λmax(1k1>k) = k, so in
fact we find, to our dismay, that

λmax(EH1) � k. (5.45)

What went wrong? Here, we need to remember that our choice of representing matrices
for ‖y‖4

2 and ‖y‖4
4 was not unique. We could try to adjust either A or B; it is a little easier

to work with A. Indeed, it is useful to calculate what polynomial the “problematic” matrix
S2 above represents:

y⊗2>S2y
⊗2 =

k∑
i=1

k∑
j=1

y2
i y

2
j = ‖y‖4

2. (5.46)

Thus, we may circumvent this challenge by making a different choice of A, including a
“barricade” in A against the term S2 that is making EH1 exceed the identity in psd order.

65

For example, we can take

A := 1
2
Ik2 + 1

2
S2. (5.47)

For sufficiently large C (e.g., C = 6 suffices), we will then have EH1 � CA, so at least in
expectation the bound we want will hold.

Thus it is enough to show that, with high probability, a bound holds of the form

1
n

n∑
i=1

Hi � C · EH1. (5.48)

Equivalently, multiplying on the left and right by (EH1)−1/2, we may “whiten” this expres-
sion and, setting Ĥi := (EHi)−1/2Hi(EHi)−1/2, which satisfies EĤi = Ik2 , it suffices to
show

λmax

 1
n

n∑
i=1

Ĥi

 ≤ C. (5.49)

To show that this holds with high probability, we appeal to tools from the literature on
matrix concentration inequalities. Specifically, we will use the following result.

Theorem 5.12 (Corollary of matrix Chernoff inequality; Theorem 5.1.1 of [Tro15]). Suppose
that H1, . . . ,Hn ∈ Rm×msym are i.i.d. random matrices that satisfy 0 �Hi � LIm with probabil-
ity 1. Then, for all t ≥ e,

P

λmax

 1
n

n∑
i=1

EHi

 ≥ t · λmax(EH1)

 ≤m exp
(
−λmax(EH1)

L
nt log

(
e
t

))
. (5.50)

To apply this properly, we would need to repeat our analysis with hi having bounded
norm, making them uniformly random vectors of norm exactly

√
k rather than N (0,Ik)

vectors. Heuristically making this adjustment, we will have ‖Ĥi‖ ≤ ‖Hi‖ = ‖hi‖4
2 = k2, so

we may take L = k2. We are working in dimensionm = k2. And lastly, we have λmax(EĤ1) =
1 and it suffices for our purposes to take t a constant. So, we will have

P

λmax

 1
n

n∑
i=1

Ĥi

 ≥ C
 ≤ k2 exp

(
−C n
k2

)
. (5.51)

Thus, we need to take n Ý k2 logk to make this tend to zero.
That is a bit weaker than what Lemma 5.10 promises—it should suffice to take n� k2.

In fact, the original work [BBH+12] uses a more specific tool for controlling the norm of the
sum of i.i.d. rank one matrices, so long as the underlying vectors satisfy strong regularity
assumptions. We do not get into this improvement here, but the reference where these
bounds were first developed is [ALPTJ11].

Remark 5.13 (Nets to nets). It is interesting to note that the proof of [ALPTJ11] again uses the
technique of discretizing over ε-nets and taking a union bound! Thus, in a rather roundabout
way, we have actually constructed a genuine SOS version of our ε-net proof of Lemma 5.5.
However, to do this we have had to solve the “matrix design” problem of choosing good
representing matrices A and B, and only then could we prove (via the calculations done for
us in [ALPTJ11]) the requisite matrix inequality by discretizing.

66

Exercises

Exercise 5.1 (2 → 4 norm and small set expansion). Let G = (V , E) be a d-regular graph
with adjacency matrix A. Fix some α ∈ [0,1], and let U be the subspace spanned by all
eigenvectors of A with eigenvalue at least αd. Let S ⊆ V .

Suppose we draw x ∼ Unif(S) and then y a uniformly random neighbor of x. We then
define

Φ(S) := P[y ∉ S], (5.52)

a measure of the expansion of S. Show that

Φ(S) ≥ 1−α− ‖U‖2
2→4

√
|S|. (5.53)

Hint: First, show that ‖U‖2→4 = ‖P ‖2→4 = ‖bP‖4/3→2, where P is the projection matrix
to U . Then, let v be the indicator vector of S, vi = 1{i ∈ S}. Express Φ(S) in terms of a
quadratic form with v and A, and consider the decomposition of v into components in U
and U⊥.

This shows that when the 2→ 4 norm of the top eigenspace of a graph is small then the graph
is a small set expander, i.e., sufficiently small subsets of vertices have large expansion. In fact,
a converse is also true, which has been used to show that a good approximation of the 2 → 4
norm would refute the Small Set Expansion Hypothesis, which states, roughly speaking, that
it is hard to distinguish good small set expanders from bad ones. This gives some evidence
that it should be hard to approximate the 2 → 4 norm (and other similar quantities) in the
worst case. See [BBH+12] for more details.

Notes

Other Sources Our treatment is quite close to that in Section 7.2 of the lecture notes
[BS16], though we fill in some more details, especially in the analysis of the matrix concen-
tration problem that arises at the end. As mentioned above, these results originate with
[BKS14], who in this part of the paper were mostly finding a new application of earlier work
of [BBH+12] when combined with their new ideas about rounding SOS relaxations.

67

6 | Case Study 2: Tensor Decomposition

The next application of SOS we will consider is that of decomposing low-rank tensors into
components. Let a1, . . . ,ar ∈ Rn be unit vectors. We then observe the tensor

T :=
r∑
i=1

a
⊗p
i (6.1)

and are interested in recovering the ai. This is a much more subtle problem than the first
one we saw, and the use of SOS in solving it is less obvious, so we will proceed slowly: first
we will see when this problem is possible to solve and why using both some exact results
and some heuristics, and then will understand how we can adapt the proofs-to-algorithms
paradigm to help us solve it.

6.1 Rotation Problem and Benefit of Higher Moments

Let us consider the simplest case p = 2. Here, the problem is in fact generically not solvable:
computational considerations aside, the ai are simply not determined uniquely by T . In this
case, T may be viewed as a matrix, given by T = AA> where A ∈ Rn×r has the ai as its
columns.

Suppose that we further assume the ai are orthonormal. Then, T is the orthogonal
projection matrix to the subspace spanned by the ai. However, this subspace has many
different bases, which can be completely uncorrelated with the ai. Any ai forming an or-
thonormal basis for the same subspace would yield the same observation T . In matrix
language, whenever Q ∈ O(r) is orthogonal, we have

T =AA> =AQ(AQ)>, (6.2)

so we cannot distinguishA from any suchAQ on the basis of the observation T . This issue
is sometimes called the rotation problem in the statistics literature.

Working with p > 2 has benefits and drawbacks: on the one hand, as we will see, this kind
of “spectral obstruction” no longer appears, and for sufficiently small r the ai are uniquely
determined by T . On the other hand, we no longer have spectral tools at our disposal
(like eigenvalue or singular value decompositions), so we must invent more sophisticated
algorithms to try to recover the ai.

Before proceeding, let us heuristically compute how large we might expect to be able to
take r while being able to recover the ai “information-theoretically” or without computa-
tional constraints. Note that the ai have roughly rn degrees of freedom, while the number

68

of observations we make is roughly np, the number of entries in T (ignoring that T is sym-
metric, which will not affect the calculation at the level of precision we are interested in). A
naive guess to the information-theoretic recoverability threshold might then be those r such
that the number of degrees of freedom is at most the number of observations, rn ≤ np or

r ≤ np−1. (6.3)

Perhaps surprisingly, this very rough argument is correct once p ≥ 3. In [BCO14] this is
shown in a quite strong way: one consequence of their results is that, for a small constant
c and sufficiently large n, whenever r ≤ cnp−1 then a “generic” low-rank tensor T ∈ (Rn)⊗p
uniquely identifies its components (for example, the set of T failing this has measure zero).

6.2 Verifiability and Injective Norm

Next, let us try to make a guess as to the growth of the rank r for which we might expect
polynomial-time algorithms to be able to recover the ai. For this, we will adopt the average-
case setting that our algorithms will operate in as well, assuming that the ai are independent
and uniformly distributed on the unit sphere.

The algorithms we will look at later will proceed by estimating one of the ai, and then
(roughly speaking) repeating the process for a tensor T ′ where the ai direction has been
“projected away.” For this reason, an important proxy problem is that of verifying a tensor
component: given x ∈ Rn another unit vector, can we check whether x ≈ ai for some i?

A natural way to do this is to define

p(x) = pT (x) := T [x, . . . ,x] = 〈T ,x⊗p〉 =
r∑
i=1

〈ai,x〉p. (6.4)

We might hope that p(ai) ≈ 1 for each i, while p(x) � 1 when x is not highly correlated
with any of the ai. This in turn is similar to, though a bit stronger than, asking that the
injective norm of T is close to 1.

Definition 6.1 (Injective norm). The injective norm of a symmetric tensor T is ‖T ‖inj =
maxx∈Sn−1 T [x, . . . ,x].

Even this question is rather tricky. As we can see from the form of p(x), we have to
consider the cases of even and odd p separately: for any fixed x, the quantities 〈ai,x〉 are
random, independent, and of magnitude about n−1/2, but the behavior of their sum will
depend on whether there are cancellations due to random signs or not. When p is even,
then we will have

p(ai) ≈ 1+
r∑
i=1

(n−1/2)p = 1+ r
np/2

, (6.5)

p(x) ≈ r
np/2

for x fixed. (6.6)

Thus we are led to expect the algorithmic threshold

r � np/2. (6.7)

69

Indeed, a straightforward formalization of this argument yields the following, for p both
even and odd, which we will use later in our algorithms.

Proposition 6.2. If r ≤ np/2/polylog(n), then, for any ε > 0, with high probability we have

sup
x∈Sn−1

∣∣∣∣p(x)− r
max
i=1
〈ai,x〉p

∣∣∣∣ ≤ ε. (6.8)

In words and more roughly, so long as r � np/2, the only way that p(x) can be large is for
x to be close to a tensor component.

When p is odd, a stronger claim holds, but to identify it we must carefully consider what
drives large values of the sum we obtain in evaluating p(x). Consider just the case of x fixed
(as we saw above, the value of p(ai) will behave like this same sum plus 1). The quantities
n1/2〈ai,x〉 =: gi behave like independent standard Gaussians, so we have

p(x) = n−p/2
r∑
i=1

gpi . (6.9)

While before it sufficed to just consider the mean value of p(x), here we must more carefully
consider the fluctuations in this random variable. Consider, therefore, the probability that
p(x) ≥ t for some constant t, or equivalently P[

∑r
i=1 g

p
i ≥ tnp/2]. We may then plug this

into a union bound over an epsilon net of Sn−1, so we are interested in whether or not this
probability is of order exp(−Ω(n)).

The standard approach to analyzing this kind of probability is to use a Chernoff-type
bound, which would involve computing E[exp(λgpi)]. Note, however, that the gpi are i.i.d.
random variables with a density that behaves like exp(−|x|2/p) (these are sometimes called
stretched exponential densities), so these “exponential moments” are actually infinite. Thus
the classical large deviations theory for sums of i.i.d. light-tailed random variables based
on Chernoff bounds (and yielding, for instance, Cramér’s large deviations theorem) does not
apply. Fortunately, adjustments of that theory for this kind of random variable were derived
by [Nag69a, Nag69b].

Let t̂ := tnp/2. The basic idea of these results is that there are two regimes of t̂, for
which the deviation probability behaves differently. When t̂ Ü rp/(2p−2), then the “light-
tailed” behavior holds:

∑r
i=1 g

p
i behaves (after rescaling away a constant) like a Gaussian

N (0, r), so P[
∑r
i=1 g

p
i ≥ t̂] ≈ exp(−t̂2/r), and this large deviation is driven by many terms

in the sum being moderately large. When t̂ Ý rp/(2p−2), then a “heavy-tailed” behavior takes
over, where a large deviation of

∑r
i=1 g

p
i is driven by one huge term dominating the sum.

In this case, P[
∑r
i=1 g

p
i ≥ t̂] ≈ P[gp1 ≥ t̂] ≈ exp(−t̂2/p). Note that, as expected, the bounds

match at the claimed threshold t̂ = rp/(2p−2).
Since we are interested in t constant, this threshold is when np/2 ∼ rp/(2p−2), or r ∼ np−1,

precisely the information-theoretic threshold of tensor decomposition! We then find that, so
long as r � np−1, we have P[p(x) ≥ t] ≤ exp(−Ω(n)) and we expect (being informal about
our union bound) that it should be possible to verify a tensor component and we expect to
have ‖T ‖inj = 1+o(1) with high probability. (This may indeed be proved with a more careful
analysis.)

We might then expect that, for odd p, tensor decomposition is possible all the way up
to the information-theoretic threshold r ∼ np−1. However, in a phenomenon that remains

70

somewhat mysterious, the threshold r ∼ np/2 from the case of p even appears to be correct
for p odd as well.

Open Problem 6.1 (Hardness of tensor decomposition). Give evidence of the computational
hardness of order p tensor decomposition in the regime np/2 � r � np−1 when p is odd.

As we will see in Section 6.4.4, in fact it is a stronger property than the tensor injective norm
just being small that will matter for us—we will also need for SOS to be able to certify that
smallness. This too remains an open problem, which would be a more concrete way to give
SOS-based evidence for the above.

Open Problem 6.2 (SOS lower bound for tensor injective norm). Show that, for p odd, low-
degree SOS cannot certify the bound ‖T ‖inj ≤ 1+ o(1) in the regime np/2 � r � np−1.

One natural direction for showing this kind of hardness addresses the simpler problem
of for what values of r we can distinguish a random rank r tensor from a simpler ran-
dom tensor with i.i.d. entries calibrated to have the same low-degree moments. While this
seems too strong a notion of hardness to give evidence for the above claims, it remains an
interesting problem that has received some attention independently.

Open Problem 6.3 (Distinguishing Wigner and Wishart tensors). Consider two distributions
of random tensors, T (1) = 1√

r
∑r
i=1a

⊗p
i for ai ∼ N (0,In) and T (2) ∈ (Rn)⊗p with T (2)i1···ip ∼

N (0,E(T (1)i1···ip)2) drawn independenly up to permutations of the indices. For what regimes
of r are these distributions information-theoretically or computationally (in polynomial time)
distinguishable as n→∞?

The case that is better understood is p = 2, in which case we are asking about the distin-
guishability of the Wishart and Wigner random matrix distributions. Here, [BDER16] showed
both that when r � n3 then T (1) and T (2) are information-theoretically indistinguishable,
and that when r � n3 then a simple test examining the correlations of signs of “triangles”
of entries in the matrices with high probability distinguishes the two (indeed, their motivation
was studying random graph models formed as functions of these Gaussian constructions).

For the tensor case p ≥ 3, less is known. [NZ21, Mik20] have shown that if r � n2p−1 then
T (1) and T (2) are information-theoretically indistinguishable (by proving quantitative bounds
on the distance between their distributions). This should be tight, but I am not aware of any
results on detection algorithms, or whether we should or should not expect a statistical-to-
computational gap.

6.3 Jennrich Algorithm and Variants

Returning to the proofs-to-algorithms paradigm, let us familiarize ourselves with one kind of
algorithm that can be used to decompose tensors with p > 2. For the sake of simplicity, let
us consider p = 3. The basic idea is to use the tensor input to formulate a tractable spectral
problem over matrices whose solution helps us identify the components ai. The algorithm
we describe is attributed to Jennrich in the social science literature [Har70, LRA93], where it
remained in relative obscurity until being rediscovered more recently.

71

The algorithm proceeds by drawing g ∼N (0,In) and forming the matrix

Mg := T [g, ·, ·] =
n∑
i=1

〈ai,g〉aia>i , (6.10)

where T [g, ·, ·] denotes a “contraction” of T with g along one of its tensor “axes.” If, as in
our example from before, the ai are orthonormal, then we can recover them by diagonalizing
this matrix, since with probability 1 the 〈ai,g〉 will be distinct and thus the eigendecompo-
sition of Mg will be unique.

But, what is more surprising, we can complete the decomposition even if the ai are only
linearly independent. Let Dg ∈ Rn×n be the diagonal matrix with diagonal entries 〈ai,g〉
and let A ∈ Rn×n have the ai as its columns, so that Mg =ADgA>. Let Mh be formed the
same way with an independent h ∼N (0,In). Then, we observe that

MgM
−1
h = (ADgA

>)(ADhA
>)−1 =A(DgD

−1
h)A

−1, (6.11)

and, while this is no longer a symmetric matrix, we can still recover A by computing its
eigendecomposition, since the (DgD

−1
h)ii =

〈ai,g〉
〈ai,h〉 are again distinct with probability 1, so

the ai are the unique left eigenvectors of M−1
g Mh.

Theorem 6.3. If the ai are linearly independent unit vectors, then Jennrich algorithm recovers
them (with probability 1) from T =

∑r
i=1a

⊗3
i .

For ai random in Sn−1 or in general position, this shows that we can recover the ai, when
p = 3, for r ≤ n.

Remark 6.4. It is reasonable to worry about numerical issues in Jennrich’s algorithm; these
are addressed by [BCMV14], who study the sensitivity of this procedure and show that, under
a smoothed analysis model, the Jennrich algorithm indeed succeeds in recovering the ai.

We can also formulate a straightforward variant of this algorithm that, given higher
degree moments, can recover the components for larger r .

Corollary 6.5. If the a⊗ki are linearly independent for unit vectors ai, then the adjusted Jen-
nrich algorithm recovers them from T =

∑r
i=1a

⊗p
i with p = 2k+ 1.

Proof. We again compute T [g, ·, . . . , ·], now with 2k free coordinates, but by grouping the
free coordinates into two groups of k view the output as the matrix

Mg =
r∑
i=1

〈ai,g〉a⊗ki a⊗k
>

i . (6.12)

We may then repeat the same argument from Jennrich’s algorithm, using that the a⊗ki are
linearly independent, to recover the a⊗ki . Given these it is then straightforward to obtain
the ai, since, for example, from a⊗ki we may recover all ratios (ai)j/(ai)k by taking ratios of
suitable entries of the tensor.

For ai random or in general position, this shows that we can recover the ai for

r ≤ nk = n(p−1)/2. (6.13)

This threshold for r is lower than our prediction of the algorithmic threshold above by a
factor of n1/2. We are left with the natural question: is it possible to close this gap?

72

6.4 “Boosting” with Sum-of-Squares: Method of

Pseudomoments

We now move towards a beautiful algorithmic idea of [BKS15], later elaborated on by [GM15,
MSS16] and others. The idea is to use an SOS program to imagine or hallucinate higher
degree moments than the ones we are actually given. Indeed, this is precisely the kind of
data that comes with a high-degree SOS pseudoexpectation! We may then try to run the
Jennrich algorithm and variants thereof on these imaginary moments, and hope to achieve
the same performance these algorithms would have on higher degree moments. In a sense,
in this strategy we trade computing time—needed to solve high-degree SOS relaxations—for
data, and show that if we are willing to pay enough time, we can build “surrogate” moment
data that, for our purposes, works just as well as “real” moment data.

We will focus on the case p = 3. Recall that in this case when ai are random, Jennrich’s
algorithm recovers the ai in polynomial time and with high probability when r Ü n. We
will outline how it is possible to achieve the same when r � n3/2 instead. This setup was
treated by [GM15]’s sharpened analysis of an algorithm of [BKS15], giving a quasipolynomial
time (i.e., time nO(logn)) algorithm, and later improved by [MSS16] to a truly polynomial time
algorithm.

6.4.1 Step 1: Nuances in Polynomial Optimization

Before advancing to this elaborate algorithmic idea, let us see why simpler applications
of proofs-to-algorithms would not work. To try to recover one of the ai, it might seem
reasonable to try to solve the polynomial optimization problem

Opt :=
{

maximize p(x) = T [x,x,x]
subject to ‖x‖2 = 1

}
, (6.14)

the same problem defining the injective tensor norm.
In the case of the planted sparse vector problem (from Chapter 5), we could show that

the output of the analogous problem was directly useful, being highly correlated with the
object we wanted to recover. Here, we have to think a little more carefully—for ai random,
we do not expect the maximizer of this problem to be unique; indeed, we expect each of the
a1, . . . ,ar to (approximately) maximize the objective.

On the surface, that still does not seem like a problem—if we could solve this optimiza-
tion problem exactly, then the output would be one of the ai, just as we hoped. But this
argument will not quite apply to SOS. To see why not, recall that the Lasserre formulation
of SOS begins by convexifying the problem Opt itself to measures over the feasible set:

Opt =
{

maximize p(x) = T [x,x,x]
subject to ‖x‖2 = 1

}
=
{

maximize Ex∼µ p(x)
subject to µ ∈M(Sn−1)

}
. (6.15)

It is again helpful to compare with planted sparse vector: there, even after this step, we
could show that any µ with high objective function value would have to mostly be concen-
trated on vectors close to the one we wanted to recover, and access to such µ amounts to

73

access to a good estimator of that vector. Here, in contrast, since there are several approx-
imate optimizers a1, . . . ,ar , a µ with a high objective function value will only need to be
supported on the set {a1, . . . ,ar}; roughly speaking, we may assume the optimizer is of the
form µ? =

∑r
i=1 λiδai for some λi ∈ [0,1] with

∑r
i=1 λi = 1.

Would access to such a measure help us to find one of the ai? It is not obvious that
it would! Remember that, to make an argument we might convert to an SOS argument, we
should use “polynomial reasoning,” which in this setting amounts to information about the
moments of µ?. How can we use the moments of µ? to recover one or all of the ai?

The key insight is to observe that this is just another tensor decomposition problem,
albeit one where we have access to more moments than we started with in T . Namely, for
any q, even q� p, under the above simplifications we can compute

E
x∼µ?

x⊗q =
r∑
i=1

λia
⊗q
i . (6.16)

For sufficiently large odd q, the a
⊗(q−1)/2
i will be linearly independent, so, for instance, the

modified Jennrich algorithm would recover the ai.
Considering how to turn this into an SOS algorithm, we are led to the plan of using

“imaginary moments” mentioned above, sometimes called (e.g. in [Shi19]) the method of
pseudomoments: instead of computing a true measure µ?, we will find a suitable pseudoex-
pectation Ẽ and apply a Jennrich-type algorithm to Ẽ[x⊗q] for some large q.

6.4.2 Step 2: Baby Jennrich Algorithm with True Moments

Following the proofs-to-algorithms plan, we now analyze a variant of Jennrich’s algorithm
in the above context assuming we receive an exact solution; that is, assuming that we have
access to high-degree moments of some µ? as above. For the sake of simplicity, suppose µ?

is the most balanced possible output, i.e.,

µ? = 1
r

r∑
i=1

δai . (6.17)

We call the algorithm we analyze the “baby Jennrich” algorithm (in [BS16] this is also re-
ferred to as the “brute data” algorithm since, as we will see, it succeeds at tensor decompo-
sition provided we input very high-degree moments). We work with a tensor T̃ = Ex∼µ?x⊗D

for some large D, which we assume is even. The algorithm is similar to Jennrich’s algorithm,
but contracts many of the axes of T̃ with several different Gaussian random vectors.

Definition 6.6 (Baby Jennrich algorithm). Given a tensor T̃ ∈ (Rn)⊗D for D even, we de-
fine the randomized algorithm BJ(T̃) to output the top eigenvector (that with largest eigen-
value, and having unit norm1) of the matrix M := T̃ [g1,g1, . . . ,gD/2−1,gD/2−1, ·, ·] where
g1, . . . ,gD/2−1 ∼N (0,In) independently.

Proposition 6.7. BJ(T̃) runs in time nO(D).
1This eigenvector is only unique up to a sign flip; if v is one of these two vectors, to be fully precise we

may output a uniform choice of v or −v here.

74

As we will use later, the baby Jennrich algorithm can be applied to any tensor, but let us
consider specifically the case T̃ = Ex∼µ?x⊗D. The matrix we form in computing BJ(T̃) may
then be written

M =
r∑
i=1

W(ai)2aia>i (6.18)

where

W(x) =
D/2−1∏
j=1

〈gj,x〉. (6.19)

The idea is then that, with small probability but one that is bounded below, we have M
is close to a multiple of some aia

>
i , thanks to the gj being unusually aligned with this

particular ai. We can then repeatedly try such random choices of gj until we successfully
identify a component ai.

Remark 6.8. One way to view the baby Jennrich rounding algorithm is that it tries many
random “tiltings” or reweightings of the measure µ?, giving weights W(ai)2 to component ai.
While most of the time these weights will be close to the same and the tilted measure will still
look uniform over the ai, occasionally we will accidentally tilt the measure to strongly favor
one component.

To analyze the algorithm, we identify an event on which W(a1)2 � W(ai)2 for all i ≥ 2.
Namely, we have:

P[W(a1)2 ≥ 2D−1] ≥ P
[
|〈gj,a1〉| ≥ 2 for all j ∈ [D/2− 1]

]
= P[|〈g1,a1〉| ≥ 2]D/2−1

= e−O(D), (6.20)

since 〈g1,a1〉 has the law N (0,1), so the remaining probability is just some small fixed
positive number. On the other hand, one may show that, conditional on this rare event, the
remaining W(ai)2 are still small: for a small δ > 0,

P
[
max
2≤i≤r

W(ai)2 ≤ (2− δ)D−1

∣∣∣∣W(a1)2 ≥ 2D−1
]
≥ 1− re−O(D). (6.21)

We would like the probability e−O(D) of our event to be only polynomially small in n, so
that in polynomially many trials we expect to observe this event at least once. We thus take
D proportional to logn.

Lemma 6.9. Suppose r ≤ n3/2/polylog(n). Then, for any ε > 0, there is a C > 0 and an
algorithm that terminates in nO(logn) with high probability (with C and the algorithm runtime
depending only on ε and the polynomial bound on r) that, given T =

∑r
i=1a

⊗3
i and T̃ =

Ex∼µ?x⊗D for D = C logn, outputs â satisfying 〈â,ai〉2 ≥ 1− ε for some i ∈ [r].

We note that the algorithm runtime of nO(D) = nO(logn) comes just from the cost of, e.g.,
looking at every entry of T̃ .

75

Proof. Let us choose C large enough so that, for some B > 0 and some 0 < a < A with
nA−a� r , (6.21) implies that

P
[
W(a1)2 ≥ nA and max

2≤i≤r
W(ai)2 ≤ na

]
≥ n−B. (6.22)

On this event, we have

‖W(a1)2a1a
>
1 ‖

‖M‖ ≥ nA

nA + rna = 1− o(1). (6.23)

Thus, taking â to be the top eigenvector of M , on this event we have that 〈â,a1〉2 ≥ 1 − ε
by Proposition 4.6.

On the other hand, given any estimator â, we may check whether 〈â,ai〉 ≥ 1 − ε for
some i by thresholding T [â, â, â] (by the “verifiability” property from Proposition 6.2, since
r ≤ n3/2/polylog(n)). Thus, the algorithm that repeatedly samples random W and checks
whether â satisfies this property satisfies the stated conditions, since in, e.g., n2B trials at
least one will with high probability satisfy the event above.

Remark 6.10. The result is intentionally suboptimal: in principle, we could use T̃ for the
“verification” step, in which case we could make this algorithm work for a much larger r .
Indeed, in this setting via T̃ we are allowing ourselves access, in effect, to

∑r
i=1a

⊗D
i , so this

is to be expected. However, in formulating the result as above we are anticipating that, in
formulating the SOS version of the claim below, we will only be able to make much weaker
assumptions on T̃ , so we will only be able to use T itself for the verification step.

6.4.3 Step 3A: Baby Jennrich Algorithm with Pseudomoments

To produce an SOS algorithm matching the performance discussed above, we will replace
T̃ given by Ex∼µ?x⊗D with a tensor of pseudomoments coming from Ẽ? the optimizer of a
high-degree SOS relaxation of Opt:

T̃ := Ẽ?[x⊗D]. (6.24)

Towards analyzing this idea, we first revisit the above argument about the baby Jennrich
algorithm and give a version of it for pseudomoments. The main issue that needs to be
addressed is that the above argument used that µ? was supported precisely on {a1, . . . ,ar}.
When working with pseudomoments, we do not have access to such reasoning (we do not
even have access to a genuine measure!), so we need to make a softer assumption. Review-
ing the argument, we find that most of the structure of µ? is irrelevant, and that the baby
Jennrich rounding procedure will work just as well for any µ that (1) is supported on Sn−1

and (2) has a sufficiently large fraction of its mass on (or even near) some ai. These condi-
tions are amenable to working with SOS pseudomoments, and indeed we have the following
general result about applying the baby Jennrich algorithm to pseudomoments.

Lemma 6.11 (Baby Jennrich rounding; Theorem 5.1 of [BKS15]). Suppose Ẽ is a degree D
pseudoexpectation (for D even) over the constraint ‖x‖2 = 1 and satisfying Ẽ〈a,x〉D ≥
exp(−εD) for some a ∈ Sn−1, where D ≥ (1/ε) log(1/ε). Then,

P[〈BJ(Ẽ[x⊗D]),a〉2 ≥ 1−O(ε)] ≥ exp(−Oε(D)). (6.25)

76

Proof Sketch. Let us again writeW(x) :=
∏D/2−1
j=1 〈gj,x〉. The matrixM formed in computing

BJ(Ẽ[x⊗D]) may then be expressed in terms of Ẽ as

M = Ẽ[W(x)2xx>]. (6.26)

In particular, we have M � 0 and

Tr(M) = Ẽ[W(x)2‖x‖2] = Ẽ[W(x)2], (6.27)

since Ẽ respects the constraint ‖x‖2 = 1. By Proposition 4.6, it suffices to show that
a>Ma ≥ (1 −O(ε))Tr(M) with the stated probability, which is equivalent to the relation
of pseudoexpectations

Ẽ[W(x)2〈x,a〉2] ≥ (1−O(ε))ẼW(x)2. (6.28)

Following the reasoning in the argument in Section 6.4.2, let E be the event that 〈gj,a〉 ≥
K for all j ∈ [D/2 − 1], for some large K = K(ε) to be fixed. As before, we have P[E] ≥
exp(−Oε(D)). Thus it suffices to show our original claim conditional on the event E.

In this proof sketch, we will only show that the expectations conditional on E of (6.28)
holds; the full proof in [BKS15] requires a more intricate second moment calculation as well.
Let us define

C := E
g∼N (0,In)

[〈g,a〉2 | 〈g,a〉 ≥ K]− 1 = E
g∼N (0,1)

[g2 | g ≥ K]− 1. (6.29)

Clearly C = C(K) is a strictly increasing function. We have

E[gjg>j | E] = E[((In − aa>)+ aa>)gjg>j ((In − aa>)+ aa>) | E]

and, since conditioning on E only affects gj in the a direction, we have (In − aa>)gj is
centered and independent of aa>gj , so the cross terms cancel and we find

= E[〈gj,a〉2 | E]aa> + In − aa>

= Caa> + In. (6.30)

Let us write expectations over W as a shorthand for expectations over all g1, . . . ,gD/2−1.
By linearity of the pseudoexpectation, we then have for the expectation on the right-hand
side of (6.28),

(RHS) = E
W

[
Ẽ[W(x)2] | E

]
= Ẽ E

W
[W(x)2 | E]

where we emphasize that the expectation is over the coefficients in W , and so, by indepen-
dence,

= Ẽ
D/2−1∏
j=1

E[〈gj,x〉2 | E]

77

and using the above calculation

= Ẽ
(
C〈x,a〉2 + ‖x‖2

)D/2−1

= Ẽ
(
C〈x,a〉2 + 1

)D/2−1
. (6.31)

Similarly on the left-hand side we have

(LHS) = E
W

[
Ẽ[W(x)2〈x,a〉2] | E

]
= Ẽ

[
〈x,a〉2

(
C〈x,a〉2 + 1

)D/2−1
]

This is now effectively a pseudoexpectation over the single scalar indeterminate 〈x,ai〉. We
recall that any degree D polynomial inequality in one variable admits a degree D SOS proof
(see Proposition 2.9). In this case, we will use the univariate inequality t2(Ct2 + 1)D/2−1 ≥
(1 − 2

C)(Ct
2 + 1)D/2−1 − (C − 1)D/2−1 for all t ∈ R, which may be checked by considering

t2 ≥ 1− 2
C and t2 ≤ 1− 2

C separately. This gives:

≥ Ẽ
[(

1− 2
C

)(
C〈x,a〉2 + 1

)D/2−1
− (C − 1)D/2−1

]
=
(

1− 2
C

)
(RHS)− (C − 1)D/2−1. (6.32)

To finish the calculation, we make a series of estimates. We have:

(C − 1)D/2−1 = CD/2−1(1− C−1)D/2−1

≤ CD/2−1e−D/C

= CD/2−1e−(1/C−ε)De−εD

and, by the hypothesis of this Lemma,

≤ CD/2−1e−(1/C−ε)DẼ〈a,x〉D

≤ CD/2−1Ẽ〈a,x〉D−2

≤ e−(1/C−ε)D(RHS). (6.33)

Thus we find

(LHS) ≥
(

1− 2
C
− e−(1/C−ε)D

)
(RHS). (6.34)

Taking, e.g., C = 1/2ε then gives the result, where rearranging our assumption that D ≥
(1/ε) log(1/ε) we have e−εD ≤ ε.

6.4.4 Step 3B: SOS Version of Verifiability

The remaining ingredient of the analysis that we are missing is the following, which is in
some sense an SOS analog of the “verifiability” property from Proposition 6.2.

78

Lemma 6.12. For every ε > 0, there exists C > 0 such that the following holds. Let Ẽ be a
degree 4D pseudoexpectation withD = C logn satisfying the constraints ‖x‖2 = 1 and p(x) ≥
1 − 1/polylog(n). Then, with high probability, there exists i ∈ [r] such that Ẽ[〈ai,x〉D] ≥
exp(−εD).

Intuitively, we should think of Ẽ = Ẽ? the optimizer of the degree 4D Lasserre relaxation of
Opt; we will explain below why the result needs to be stated slightly differently to facilitate
a proof.

The crux of the matter is the following: since the objective value of Ẽ? must be at least
p(ai) ≈ 1, we must have Ẽ?[p(x)] = Ẽ?[

∑r
i=1〈ai,x〉3] Ý 1. The difficulty is to show that

this also implies, via an SOS proof, that Ẽ?[
∑r
i=1〈ai,x〉D] Ý 1. If we could do this, then by

linearity there would exist some i ∈ [r] for which Ẽ?[〈ai,x〉D] Ý 1/r ≥ e−O(logn), as desired.
This is perhaps the subtlest point of the analysis of [GM15], so we will not fully treat the

details, but will give the main ideas. The tool at our disposal is the Hölder-like inequality of
Exercise 6.1, which gives that, for (k− 2) | D and kD/(k− 2) an even number,

‖v‖DD
(
‖v‖2

2

) D
k−2 −

(
‖v‖kk

) D
k−2 ∈ SOS. (6.35)

Writing A for the matrix whose columns are the ai, we are interested in such an inequality
with v =A>x. Making this substitution and taking pseudoexpectations, we find something
close to what we want if we take k = 3 and D a large even number:

Ẽ?

 r∑
i=1

〈ai,x〉D
(‖A>x‖2

2

)D ≥ Ẽ?

 r∑
i=1

〈ai,x〉3
 D
k−2
 ≥

Ẽ?
 r∑
i=1

〈ai,x〉3
 D

k−2

, (6.36)

the latter operation being by the SOS Jensen inequality.
The only problem is the remaining term on the left-hand side: we have ‖A>x‖2

2 =
x>AA>x, and for A random under our model we expect AA> ≈ r

nIn. Thus on the right-
hand side we will have an extra factor of poly(n)D = nΩ(logn), thwarting our efforts.

To get around this, [GM15] go one step further: instead of evaluating (6.35) with v =
A>x, they evaluate it with the coordinatewise square of this vector. That gives, by the same
manipulations,

Ẽ?

 r∑
i=1

〈ai,x〉2D
 r∑

i=1

〈ai,x〉4
D
 ≥

Ẽ?
 r∑
i=1

〈ai,x〉6
 D

k−2

. (6.37)

Now, at least at an intuitive level, the situation is better: when r � n3/2, we also have r � n2

and r � n3, so by the result of Proposition 6.2 for p = 4,6, we expect that for Ẽ? having
Ẽ?
∑r
i=1〈ai,x〉3 ≈ 1 we should also have Ẽ?

∑r
i=1〈ai,x〉4, Ẽ

∑r
i=1〈ai,x〉6 ≈ 1, as we hope.

To actually implement this as an SOS argument requires a little bit more care: at this
point, as we have done in the statement of Lemma 6.12, it is useful to adjust the optimization
problem Opt to add

∑r
i=1〈ai,x〉3 ≥ 1− γ for some small γ as an additional constraint. That

way, it suffices to produce SOS proofs deriving, from this constraint and ‖x‖2
2 = 1, bounds

79

of the form

1− γ′ ≤
r∑
i=1

〈ai,x〉4 ≤ 1+ γ′, (6.38)

1− γ′ ≤
r∑
i=1

〈ai,x〉6 ≤ 1+ γ′ (6.39)

for some other small γ′. This is the main technical step in [GM15], using some rather
intricate matrix concentration arguments. These are in the vein of, though more complicated
than, what we have seen in Chapter 5; we will not give any more details here.

6.4.5 Step 3C: Full Quasipolynomial Time SOS Algorithm

We now put together the pieces of our putative algorithm.

Theorem 6.13. Consider the following algorithm that takes T as input and outputs â ∈
Sn−1: first, for a large absolute constant C , let Ẽ? be the optimizer of the degree 4D Lasserre
relaxation of Opt. Then, repeatedly set â := BJ(Ẽ[x⊗D]) until p(â) = T[â, . . . , â] ≥ 0.99.
Suppose r ≤ n3/2/polylog(n). Then, this algorithm has the following properties:

1. With high probability, it terminates in quasipolynomial time nO(logn).

2. With high probability, its output â has 〈â,ai〉 ≥ 0.9 for some i ∈ [r].

The proof follows easily by combining our previous results.

Proof of Theorem 6.13. First, note that solving the requisite Lasserre relaxation takes time
nO(logn). Plugging Lemma 6.12 into Lemma 6.11, we find that, with high probability over the
randomness in T , there exists i ∈ [r] such that

P[〈BJ(Ẽ?[x⊗D]),ai〉2 ≥ 0.999] ≥ n−B (6.40)

for some B > 0, where this probability is over the randomness in the computation of BJ(·).
Thus, in poly(n) trials of computing â := BJ(Ẽ?[x⊗D]), each of which also takes time
nO(logn), we will find some â with T [â, â, â] ≥ 0.99 by Proposition 6.2, giving the desired
result.

We note that the algorithm actually relies both on the original verifiability property, Propo-
sition 6.2, and on its SOS variant, Lemma 6.12.

This algorithm has three apparent defects: first, it only runs in quasipolynomial rather
than polynomial time; second, it only outputs one component â rather than a full tensor
decomposition; and third, the â it outputs is only weakly correlated to an actual tensor
component. The first issue takes significant further work to resolve, and we will discuss it
in the next section. The latter two issues are easier to handle; we will not give a detailed
analysis here, but let us sketch the basic ideas.

To handle the second issue, instead of just producing one approximate tensor compo-
nent, we assemble a listA⊂ Sn−1. While solving the Lasserre relaxation to find a new vector

80

to add to A, we add the constraints {〈a,x〉2 ≤ δ}a∈A to the relaxation, for some small
constant δ > 0. At the end,A = {â1, . . . , âr} (provided we show that it is possible to repeat
this procedure successfully for r steps) where, with high probability, T[âi, . . . , âi] ≥ 0.99
for each i ∈ [r] and 〈âi, âj〉2 ≤ δ′ for all i ≠ j for some other small, though larger than δ,
constant δ′ > 0 (which also requires proof but should be intuitive). And to handle the third
issue, there is a different fast algorithm for “refining” a weak estimate achieving some fairly
large correlation (0.9 in our case) with the true tensor components to an estimate achiev-
ing an arbitrarily large correlation. This algorithm, analyzed by [AGJ14] in our setting, is a
tensor variant of power iteration for matrices, and sets

âi := T [âi, âi, ·]
‖T [âi, âi, ·]‖

(6.41)

for each i ∈ [r] repeatedly. Essentially, this work and related ones (see the chapter notes)
imply that the main challenge of tensor decomposition is to find an initial “warm start” ap-
proximation as Theorem 6.13 provides; from there, straightforward local algorithms suffice
to improve the approximation and converge to the true decomposition.

6.5 Polynomial Time with Jennrich Algorithm

Finally, let us sketch how the subsequent work of [MSS16] improved the quasipolynomial
time algorithm we have given to a genuinely polynomial time one. The key idea is to use
a rounding procedure much closer to the actual Jennrich algorithm rather than the baby
Jennrich algorithm. They do not quite use the full Jennrich procedure we outlined, but
rather the following slight variant.

Definition 6.14 (Spectral Jennrich algorithm). Given a tensor T̃ ∈ (Rn)⊗2d+1, we define the
randomized algorithm SJ(T̃) to output the top eigenvector of the matrixM := T̃ [g, ·, . . . , ·] ∈
Rn

d×nd (where we reshape the partially contracted tensor appropriately) where g ∼N (0,In).

This is just the higher-order variant of the Jennrich algorithm, adjusted to only build one
matrix M and optimistically output the top eigenvector, assuming that enough bias will be
introduced by the contraction with g that this eigenvector will be close to one of the ai. The
basic plan is again to repeatedly attempt this rounding â := SJ(Ẽ?[x⊗(2d+1)]) until a good
estimate (verifying by finding that p(â) is large) is obtained; it turns out that, in this scheme,
it suffices to take d = O(1), and correspondingly each rounding takes only polynomial time,
and as before polynomially many rounding attempts suffice with high probability.

The more relevant issue, however, is that, even before forming an SOS relaxation, it is
not the case that this rounding applied to high degree moments of a distribution achieving
a large objective value in Opt will necessarily output a vector close to one of the ai. For the
sake of simplicity, we illustrate this with low degree, but it is straightforward to show that
the same issue persists for higher degrees.

Proposition 6.15. Let a1 = e1, . . . ,ar = er for r = n − 1. Then, there exists a probability
measure µ ∈M(Sn−1) satisfying the following properties:

1. Ex∼µ
∑r
i=1〈ai,x〉3 = 1− o(1).

81

2. With probability at least 1−exp(−nδ) for some δ > 0, â = SJ(Ex∼µ[x⊗3]) has 〈â,ai〉2 =
o(1) for all i ∈ [r].

Proof. We may take µ = Unif({
√

1− ε2ei + εen}n−1
i=1). Then, loosely speaking, M typically

has Θ(rε3) mass on ene>n and only O(1) in any other direction. Thus, since r ∼ n, taking,
e.g., ε = n−1/4 will give the desired behavior.

In order for the spectral Jennrich algorithm to work well, we in fact need a kind of “spec-
tral uniformity” property on µ. That the example above will cause problems, for example,
may be ascribed to its having ‖Ex∼µxx>‖ � 1

r , while µ uniform over a1, . . . ,ar , which would
still achieve Condition 1, would have ‖Ex∼µxx>‖ = 1

r as well, and would not exhibit the
same behavior.

In [MSS16], this kind of property is referred to as high “spectral entropy” of µ, and
it is shown that the spectral Jennrich rounding works well on measures of high spectral
entropy when the tensor components are close to orthonormal. When translating the same
idea to an SOS-based algorithm, the issue arises of how to enforce high spectral entropy on
pseudomoment matrices. Fortunately, the flexibility of semidefinite programming helps us:
to impose constraints of the form

‖Ẽ[x⊗kx⊗k>]‖ ≤ C, (6.42)

we may simply add the semidefinite constraints

− CI � Ẽ[x⊗kx⊗k
>
] � CI (6.43)

to the SOS semidefinite program, a further semidefinite constraint on a principal submatrix
of our decision variable. Implementing this idea, [MSS16] produce an improved version of
our Theorem 6.13 that gives polynomial runtime.

Exercises

Exercise 6.1. Show that the following inequalities admit SOS proofs.

1. (AM-GM inequality) Prove that, for any n ≥ 1,

x2n
1 + · · · + x2n

n

n
− x2

1 · · ·x2
n ∈ SOS. (6.44)

2. (Hölder inequality variant) Suppose that (k − 2) | D with kD/(k − 2) an even integer.
Show that

‖x‖DD
(
‖x‖2

2

) D
k−2 −

(
‖x‖kk

) D
k−2 ∈ SOS. (6.45)

(This is an SOS-friendly rearrangement of the Hölder inequality ‖x‖k ≤ ‖x‖1−2/k
1 ‖x‖2/k

2 ≤
‖x‖1−2/k

D ‖x‖2/k
2 , where the latter holds since ‖x‖1 ≤ ‖x‖D for any D ≥ 1.)

82

Hint: For Part 1, let Sn denote the permutations of [n], and write σ(i) for i ∈ [n] and
σ ∈ Sn as the image of i under σ . Define pk(x) := 1

n!

∑
σ∈Sn x

2(n−k)
σ(1) x2

σ(2) · · ·x2
σ(2+k−1) for

k = 0, . . . , n − 1. Show that the left-hand side above is p0(x) − pn−1(x), and show that
pk−1(x)− pk(x) ∈ SOS for each k ∈ [n− 1]. For Part 2, use Part 1.

Notes

Other Sources As mentioned before, we have followed the refined analysis of [GM15] of
[BKS15] in this chapter. A high-level overview of the same is included in [BS16] and [Moi20];
more details, especially on the improvement to a polynomial-time algorithm from [MSS16],
may be found in Shi’s thesis [Shi19].

Applications Perhaps the main application of tensor decomposition algorithms is to the
method of moments, a common paradigm in statistics. We might, for example, observe sam-
ples of some µ = 1

r
∑r
i=1 δai , y1, . . . ,ym ∼ µ, use this to form an empirical approximation

of the moment tensor of µ, Ex∼µx⊗p = 1
r
∑r
i=1a

⊗p
i ≈ 1

m
∑m
j=1 y

⊗p
j , and then apply tensor

decomposition to this estimate to try to identify the ai. This requires a generalization
of our analysis to the situation where we are given not T =

∑r
i=1a

⊗p
i , but a perturbation

T + ∆ where ∆ is “small” in some suitable sense. See, e.g., [BKS15] for such an applica-
tion to dictionary learning, [Hop18a] for a similar approach to Gaussian mixture models, or
[AGH+14, AGJ15] to “latent variable” statistical models. (These applications have different
names in the statistics literature and slightly different assumptions and settings, but when
formulated mathematically are ultimately very similar.)

Other Tensor Decomposition Algorithms Many algorithms other than SOS-based ones
have been proposed in the literature for tensor decomposition. As mentioned in the main
text, [AGJ14] analyzed tensor power iteration and showed that it successfully finds a good
decomposition from a sufficiently “warm” initialization close to the true components. In-
deed, the same holds for naive gradient descent; [GM17] (albeit only for 4-tensors) that in
the region where

∑r
i=1〈ai,x〉4 is slightly greater than the typical value of a random x ∈ Sn−1,

the only local optima of this function of x are near ±ai.
There are also some more elaborate variants of the idea of Jennrich’s algorithm, such

as the “FOOBI algorithm” specifically for p = 4 developed by [DLCC07] and achieving the
r � np/2 = n2 threshold in this case; see also [MSS16] for discussion of how FOOBI may be
thought of within the SOS framework.

In a different line of work, [HSSS16] adapted the analysis of SOS to produce a spec-
tral algorithm for tensor decomposition, that builds a large matrix whose top eigenvec-
tor gives a good estimate of a tensor component. However, this result only worked for
r ≤ n4/3/polylog(n); more recently, [DdL+22] improved this approach to the optimal r ≤
n3/2/polylog(n) by adjusting the construction of the requisite matrix.

Tensor Order Dependence There is an unpleasant ad hoc dependence of some of the
results we have seen on the tensor order p: the results of [GM15] only concern p = 3, the

83

results of [MSS16] concern p = 3 for the model of ai random but p = 4 for the smoothed
analysis model, the results of [GM17] on the optimization landscape and gradient descent
only study p = 4 for the sake of convenience, and so forth. We would of course like a more
unified picture for all p, but there appear to be many technical obstacles to doing this for
the near-optimal SOS and spectral algorithms.

Open Problem 6.4 (Decomposition of tensors of general order). Unify and generalize the
analyses and algorithms cited above to arbitrary tensor orders p ≥ 3.

84

7 | Case Study 3: Heavy-Tailed Mean

Estimation

The last problem for which we will consider SOS algorithms is an extension of a very basic
task in statistics, that of estimating the mean of an unknown distribution. As recent litera-
ture has shown, however, even this simple problem holds some interesting surprises, and we
will see how SOS is useful for solving this problem effectively even for very poorly-behaved
distributions.

7.1 Scalar Mean Estimation

The simple setting of the problem we consider is as follows: suppose ρ ∈ M(R) with
Ex∼ρ[x2] <∞ and denote

µ := Ex∼ρ[x], (7.1)

σ 2 := Varx∼ρ[x]. (7.2)

Suppose that x1, . . . , xn ∼ ρ independently. We are interested in estimating µ from these
observations, i.e., in producing an estimator µ̂ : Rn → R so that µ̂(x1, . . . , xn) that is typically
close to µ.1

The simplest, oldest, and most standard idea for accomplishing this is the empirical
mean estimator :

µ̂emp := 1
n

n∑
i=1

xi. (7.3)

This estimator also comes with a well-known asymptotic theory: by the central limit theo-
rem, we have that

√
n(µ̂emp − µ) converges in distribution toN (0, σ 2), and in particular

lim
n→∞

P
[
|µ̂emp − µ| ≥ t√

n

]
= P
g∼N (0,σ2)

[|g| ≥ t] ≤ 2 exp

(
− t2

2σ 2

)
. (7.4)

Often this asymptotic relation is used as justification for confidence intervals for an estimate
of µ: if we ignore the limit, then the above suggests that, with probability 1 − δ, we should
have

µ ∈
µ̂emp −

√
2σ 2 log(1/δ)

n
, µ̂emp +

√
2σ 2 log(1/δ)

n

 . (7.5)

1For us, “an estimator” is always actually a series of estimators for different sample sizes n.

85

However, the central limit theorem alone does not actually guarantee that this is the
case. It is therefore of interest in statistics to ask what sizes of confidence intervals various
estimators do actually achieve, a non-asymptotic question. The following terminology is not
standard (as far as I know) but will be helpful.

Definition 7.1. We say that an estimator µ̂ has width t = t(n, δ) if, for all n ≥ 1 and δ > 0,

P
[
|µ̂(x1, . . . , xn)− µ| > t(n,δ)

]
≤ δ. (7.6)

We note that, in the special case of ρ a centered Gaussian distribution, the central limit
theorem actually holds exactly for all n, so (7.5) indeed holds with probability at least 1−δ.
In fact, any subgaussian distribution shares the same behavior. For the sake of simplicity,
from now on we assume σ 2 = 1 (and likewise for subgaussian variance proxies), but the
dependence of various widths we discuss on σ 2 is easy to recover.

Proposition 7.2. If ρ is 1-subgaussian, then µ̂emp has width

t Ü
√

log(1/δ)
n

. (7.7)

Proof. If ρ is 1-subgaussian, then µ̂emp is (1/n)-subgaussian. In particular, we have the tail
bound

P[|µ̂emp − µ| ≥ t] ≤ 2 exp

(
−nt

2

2

)
, (7.8)

and rearranging gives the result.

For this reason, we call (7.7) the subgaussian width.
It is natural to ask if we can achieve the same under weaker assumptions—indeed, the

central limit theorem that motivated us holds so long as Ex∼ρ[x2] < ∞, so it is reasonable
to consider this much weaker condition.

Proposition 7.3. If σ 2 = 1, then µ̂emp has width

t Ü
√

1/δ
n
. (7.9)

Proof. If σ 2 = 1, then Var[µ̂emp − µ] = 1/n. In particular, by Chebyshev’s inequality,

P[|µ̂emp − µ| ≥ t] ≤ 1
nt2

, (7.10)

and rearranging gives the result.

In Exercise 7.1 you will show that this is optimal under the second moment assumption.
Surprisingly, however, this is not the end of the story. With the important caveat that we

allow µ̂ to depend on the error probability δ, it is actually possible to do much better.

Theorem 7.4 ([Cat12]). There is an estimator µ̂mom = µ̂mom
δ having subgaussian width for any

ρ with σ 2 = 1. Moreover, µ̂mom may be computed from x1, . . . , xn in linear time O(n).

86

It is known to be necessary that the estimator depend on δ for such an improvement; see
[Cat12].

Definition 7.5. The median-of-means estimator µ̂mom = µ̂mom
k is defined as follows. For the

sake of simplicity, suppose k | n, and setm := n/k. Partition [n] into B1, . . . , Bk with |Bi| =m.
Then, we take

µ̂mom := med

 1
m

∑
j∈Bi

xj

k

i=1

 , (7.11)

where med(·) is the median.

In our situation we will take k = k(δ), producing the dependence on δ mentioned above.
The following is the main property of the median that we will use. We isolate it because,

while in one dimension up to inconsequential “tie-breaking” changes this property uniquely
characterizes the median, later we will be interested in higher-dimensional generalized me-
dians, which admit subtle variations while still respecting a similar rule.

Proposition 7.6 (Majority property of median). Let y1, . . . , yk ∈ R and ν := med(y1, . . . , yk).
The following then hold:

1. If at least 1
2k of the yi have yi ≥ s, then ν ≥ s.

2. If at least 1
2k of the yi have yi ≤ s, then ν ≤ s.

3. If at least 1
2k of the yi have |yi − s| ≤ t, then |ν − s| ≤ t.

Proof. The first two follow because, by definition of the median, at least 1
2k of the yi must

have yi ≤ ν and at least 1
2k must have yi ≥ ν . The third follows from the first two since

|a− s| ≤ t is equivalent to a ≥ s − t and a ≤ s + t.

Proof of Theorem 7.4. Let yi := 1
m
∑
j∈Bi xj for i ∈ [k]. The main idea of the proof is that,

while a few of the Bi might contain “outlier” samples from the tails of ρ that cause yi to be
poor estimates of µ, most of the yi are good estimates.

More precisely, first, by the same Chebyshev’s inequality calculation as in Proposition 7.3,

P[|yi − µ| ≥ t] ≤
1
mt2

. (7.12)

Note that these events are independent. Thus, we have

P[|µ̂mom − µ| ≥ t] ≤ P
[

at least
k
2

of the yi have |yi − µ| ≥ t
]

(Proposition 7.6)

≤ P
N∼Bin(k,1/mt2)

[
N ≥ k

2

]

and, so long as 1/mt2 is bounded away from 1
2 , e.g., so long as t ≤

√
4/m =

√
4k/n, we have

by Hoeffding’s inequality

= exp(−Ω(k)). (7.13)

87

Now, choosing k = C log(1/δ) for a suitable C makes the last line equal δ, whereby we
achieve a width of

t ≤
√

4k
n
Ü
√

log(1/δ)
n

, (7.14)

as desired. Exercise 7.2 shows that µ̂mom can be computed in linear time as well.

While there are some interesting more intricate questions left to consider about the
scalar case (see the chapter notes), this is the end of the basic story. We now move on to the
higher-dimensional case, where the situation is far subtler.

7.2 Vector Mean Estimation

The adjustment of our setting to d dimensions is straightforward: suppose ρ ∈M(Rd) with
Ex∼ρ[‖x‖2] <∞ and denote

µ := Ex∼ρ[x]. (7.15)

Generalizing our assumption above that σ 2 = 1, let us make an isotropy assumption to
lighten the notation, supposing that

Covx∼ρ[x] = Ex∼ρ[xx>]−µµ> = Id. (7.16)

Suppose that x1, . . . ,xn ∼ ρ are i.i.d.; we then want to estimate µ from these observations.
The standard estimator is again

µ̂emp = µ̂emp(x1, . . . ,xn) =
1
n

n∑
i=1

xi. (7.17)

To identify the analog of the subgaussian rate in this setting, consider ρ =N (0,Id). We
have µ = 0, so

P[‖µ̂emp −µ‖ ≥ t] = P[‖µ̂emp‖ ≥ t]
= P[‖µ̂emp‖ ≥ E‖µ̂emp‖ + (t − E‖µ̂emp‖)]

and, viewing ‖µ̂emp‖ as a function of the dn i.i.d. Gaussian random variables (x1, . . . ,xn), we
have that this is a 1√

n -Lipschitz function (see Exercise 7.3), whereby by Gaussian Lipschitz
concentration we find

≤ exp(−2n(t − E‖µ̂emp‖)2). (7.18)

Noting that, by Jensen’s inequality and since the law of µ̂emp isN (0, 1
nId),

E‖µ̂emp‖ ≤ (E‖µ̂emp‖2)1/2 =
√
d
n
, (7.19)

we find that the width of µ̂emp in the Gaussian case is

t Ü E‖µ̂emp‖ +
√

log(1/δ)
n

≤
√
d+

√
log(1/δ)
√
n

. (7.20)

88

We note that this is identical to the one-dimensional subgaussian width, only with the
√
d in

the numerator representing the cost of higher dimensionality.
As in the one-dimensional case, it is possible with a bit more care to derive the same

width for a natural definition of “subgaussian vectors.” It is also the case that the above
fails for heavy-tailed ρ. We will not go into these details here, and instead proceed directly
to trying to achieve subgaussian width under general assumptions.

7.3 Strong Median Estimator

How can we generalize the one-dimensional median-of-means estimator to higher dimen-
sions? It is natural to again form buckets B1, . . . , Bk of the xi, to take means yi := 1

m
∑
j∈Bi xj ,

and to look for a suitable notion of “the median of the yi.”
Reviewing our proof of Theorem 7.4, we see that the only property of the median we

actually used was Property 3 of Proposition 7.6:

“If at least 1
2k of the yi have |yi − s| ≤ t, then |med(y1, . . . , yk)− s| ≤ t.”

Not only that, but while for the one-dimensional median this holds for all t, we actually only
needed to use that this property holds for a specific t chosen in our algorithm—thanks to
the dependence of the algorithm on the confidence level δ. That motivates the following
high-dimensional median.

Definition 7.7. We say that ν is a t-median of y1, . . . ,yk ∈ Rd if, for strictly more than 1
2k of

the yi, we have ‖yi − ν‖ ≤ t.

While t-medians are not unique, they cannot be too far from one another.

Proposition 7.8. If ν,ν′ are both t-medians of y1, . . . ,yk, then ‖ν − ν′‖ ≤ 2t.

Proof. By the pigeonhole principle, there is some yi such that ‖ν−yi‖ ≤ t and ‖ν′−yi‖ ≤ t.
The result then follows by the triangle inequality.

In one dimension, a softer version of our argument for Theorem 7.4 goes as follows: on
the one hand, med(y1, . . . , yk) is a t-median of y1, . . . , yk. On the other hand, we showed
that with high probability µ itself is a t-median of y1, . . . , yk. Thus, with the same probability
|µ −med(y1, . . . , yk)| ≤ 2t.

The benefit of rephrasing the argument in this way is that we may repeat it essentially
verbatim to get a result in higher dimensions, albeit one with suboptimal width.

Theorem 7.9. Let µ̂ output a t-median y1, . . . ,yk if one exists, or an arbitrary point (say, 0) if
not. Then, for any isotropic ρ, this estimator achieves width

t Ü

√
d log(1/δ)
√
n

. (7.21)

89

Proof. By Chebyshev’s inequality, we have

P[‖yi −µ‖ ≥ t] ≤
d
mt2

. (7.22)

As in Theorem 7.4, we choose k ∼ log(1/δ) and t ∼
√
d/m ∼

√
d log(1/δ)/n to make this

probability at most, say, 1/4. Then, for a suitable choice of the constants above we have

P[µ is a t-median] ≥ P
[

more than
k
2

of the yi have ‖yi −µ‖ ≤ t
]
≥ 1− δ. (7.23)

Whenever µ is a t-median then µ̂ is also a t-median, since some t-median (namely µ) exists.
In this case, by Proposition 7.8, ‖µ̂−µ‖ ≤ 2t, completing the proof.

Finally, while it may not be immediately obvious, we note that, up to constants, it is
possible to efficiently compute such an estimator.

Proposition 7.10. There is an estimator µ̂′ that achieves the same (up to constants) width as
that of µ̂ and can be computed in time O(n+ k2) = O(n2).

Proof. We take µ̂′ to search for a 2t-median among the y1, . . . ,yk themselves, which only
requires scanning through the k × k matrix of their mutual distances once. If one exists,
then µ̂′ outputs it, and otherwise outputs an arbitrary point.

Whenever a t-median ν exists, then any yi with ‖yi − ν‖ ≤ t is a 2t-median, since for
any yj with ‖yj − ν‖ ≤ t we have ‖yi − yj‖ ≤ 2t by triangle inequality. Thus, whenever µ is
a t-median of y1, . . . ,yk, then in particular a t-median exists, so µ̂′ outputs a 2t-median. On
the other hand, in this same case µ is also a 2t-median, so ‖µ̂′ −µ‖ ≤ 4t.

However, this estimator does not quite achieve subgaussian width. Can we do better?

7.4 Lugosi-Mendelson Weak Median Estimator

At the cost of computational tractability, [LM19] showed that this is indeed possible. The
key is to loosen our notion of high-dimensional t-median so that Proposition 7.8 still holds,
but so that µ is a t-median for smaller t. We follow the interpretation of this definition given
in [Hop18b], where it is credited to Jerry Li.

Definition 7.11. We say that ν is t-central for y1, . . . ,yk ∈ Rd if, for all u ∈ Sd−1, for strictly
more than 1

2k of the yi, we have |〈yi − ν,u〉| ≤ t.

We emphasize the order of the quantifiers: for a t-median, there must exist a single set
S ⊆ [n] with |S| > k

2 so that ‖yi−ν‖ ≤ t for all i ∈ S, and thus in particular |〈yi−ν,u〉| ≤ t
for all i ∈ S and u ∈ Sd−1. On the other hand, for a t-central point, there only needs to exist
S(u) ⊆ [n] with |S(u)| > k

2 , possibly a different set for different u, so that |〈yi − ν,u〉| ≤ t
for all i ∈ S(u). Accordingly, every t-median is t-central, but not vice-versa.

90

Theorem 7.12 ([LM19]). Let µ̂LM output a t-central point for y1, . . . ,yk if one exists, or an ar-
bitrary point (say, 0) if not. Then, for any isotropic ρ, this estimator achieves the subgaussian
width

t Ü
√
d+

√
log(1/δ)
√
n

. (7.24)

The proof follows the same outline as before. The main difficulty is in showing that µ is
t-central for t with the subgaussian width scaling with probability 1 − δ, which is difficult
because this t is much smaller than the smallest t for which µ is a t-median. However, once
this is established, the result follows as before from the following.

Proposition 7.13. If ν,ν′ are both t-central for y1, . . . ,yk, then ‖ν − ν′‖ ≤ 2t.

Proof. Consider u = (ν − ν′)/‖ν − ν′‖. The sets S(u) of “close” points for ν and ν′ in this
direction again share some i ∈ [n] by the pigeonhole principle. We then have

‖ν − ν′‖ = 〈ν − ν′,u〉 ≤ |〈ν − yi,u〉| + |〈ν′ − yi,u〉| ≤ 2t, (7.25)

as desired.

Unfortunately, unlike for the case of t-medians, it looks hard to find a t-central point,
since it is no longer the case that one of the yi must be O(t)-central when a t-central point
exists. It even seems hard to check whether a given ν is t-central, since this involves quan-
tifying over the infinitely many u ∈ Sd−1, or, in practice, an exponential-size discretization
of the possible u. These difficulties notwithstanding, we will see that we may use SOS to
produce an effective version of the Lugosi-Mendelson estimator.

7.5 Hopkins’ Sum-of-Squares Implementation

We now present the SOS-based algorithm devised by Hopkins in [Hop18b]. Hopkins proceeds
in two steps. First, and what is not so difficult, he shows that it is in fact possible to
effectively certify centrality using SOS; indeed, it is possible to do so using degree 2 SOS,
giving a fairly simple SDP. (“Effectively” here means that we may certify that µ is t-central for
t the subgaussian width.) Second, in a surprising twist, these SOS certificates are themselves
embedded into another SOS program to search for “certifiably central” points. This allows
us to apply the proofs-to-algorithms paradigm to the crucial result of Proposition 7.13, and
to treat this problem following the same type of argument we have seen before.

7.5.1 Certifying Centrality

We first formulate centrality as a polynomial optimization problem. It will be useful to
work with a slightly more restrictive definition of centrality, where we replace the majority
condition in Definition 7.11 with a quantitative bound.

Definition 7.14. We say that ν is (t, ε)-central for y1, . . . ,yk ∈ Rd if, for all u ∈ Sd−1, for at
least (1− ε)k of the yi, we have |〈yi − ν,u〉| ≤ t.

91

Proposition 7.15. Suppose y1, . . . ,yk ∈ Rd, t > 0 is fixed, and z ∈ Rd. Then, the smallest
ε such that z is (t, ε)-central for y1, . . . ,yk is given by either of the following equivalent
polynomial optimization problems:

Opt(z, t,y1, . . . ,yk) :=

maximize 1

k
∑k
i=1 bi

subject to b2
i − bi = 0 for all i ∈ [k],∑d
j=1u

2
j = 1,

bi〈yi − z,u〉 ≥ bit for all i ∈ [k]

=

maximize 1

k
∑k
i=1 bi

subject to b2
i ≤ 1 for all i ∈ [k],∑d
j=1u

2
j ≤ 1,

bi〈yi − z,u〉 ≥ bit for all i ∈ [k]

 . (7.26)

Proof. The first optimization problem may be equivalently rewritten

Opt(z, t,y1, . . . ,yk) =

maximize #{i ∈ [k] : bi = 1}/k
subject to bi ∈ {0,1} for all i ∈ [k],

u ∈ Sd−1,
〈yi − z,u〉 ≥ t for all i ∈ [k] with bi = 1

=
{

maximize #{i ∈ [k] : 〈yi − z,u〉 ≥ t}/k
subject to u ∈ Sd−1

}
, (7.27)

and in this last form this is by definition the smallest ε for which z is (t, ε)-central. The
second form of the problem in the statement is equivalent to the first since if bi ∈ [−1,1]
then we may replace every negative bi with 0 and every positive bi with 1, still have a feasible
point, and only increase the objective function. Likewise if ‖u‖ ≤ 1, then we may replace u
with u/‖u‖ and only increase the objective function.

With this in hand, we may address the question of certifying centrality by asking whether
low-degree SOS proofs of centrality exist, in the form of SOS proofs of bounds on Optt(z).
Let us define the shorthand

t? :=
√
d+

√
log(1/δ)
√
n

. (7.28)

Lemma 7.16. For any ε > 0, there exists C = C(ε) > 0 such that, for any δ > 0,

P
[
there is a degree 2 SOS proof that Opt(µ, Ct?,y1, . . . ,yk) ≤ ε

]
≥ 1− δ. (7.29)

Proof Sketch. Unlike most of our arguments about SOS algorithms, where we exhibited di-
rect SOS proofs of desirable statements and thus only relied on weak duality between the
Lasserre and Parrilo formulations, here we will use strong duality, the statement that the
values of the Lasserre and Parrilo relaxations of Opt(z, t,y1, . . . ,yk) are equal (as follows
from Theorem 3.15). In particular, letting SOS2(µ, t,y1, . . . ,yk) be the value of the degree 2

92

SOS relaxation of Opt(µ, t,y1, . . . ,yk), we have

SOS2(µ, t,y1, . . . ,yk) =

maximize 1
k
∑k
i=1 bi

subject to

 1 b> u>

b B W
x W > U

 � 0,

Bii ≤ 1 for all i ∈ [k],
Tr(U) ≤ 1,
e>iW (yi −µ) ≥ tbi for all i ∈ [k]

. (7.30)

We first address the question of concentration of this quantity around its mean. We note
that, as a function of y1, . . . ,yk, SOS2 satisfies the following bounded differences property:

|SOS2(µ, t,y1, . . . ,yi−1,yi,yi+1, . . . ,yk)− SOS2(µ, t,y1, . . . ,yi−1,y′i,yi+1, . . . ,yk)| ≤
1
k
,

(7.31)
where y′i ∈ Rd is an arbitrary vector. This is because, from a feasible point of one relaxation,
we may form a feasible point of the other by setting bi, the ith row of W , and the off-
diagonal terms in the ith row and column of B all to zero, which changes the objective
function by at most 1

k . Since the yi are independent, the bounded differences concentration
inequality implies that

P[|SOS2(µ, t,y1, . . . ,yk)− ESOS2(µ, t,y1, . . . ,yk)| ≥ ε] ≤ exp(−kε2) = δ (7.32)

for a suitable choice of k∝ log(1/δ).
It remains to show that ESOS2(µ, t,y1, . . . ,yk) is not too large. First, we note that, ap-

plying the last constraint to the objective function, for any feasible point we have

1
k

k∑
i=1

bi ≤
1
kt

k∑
i=1

e>iW (yi −µ) =
1
kt
〈W ,Y 〉, (7.33)

where Y has the yi −µ as its rows. We may thus bound by the simpler SDP

SOS2(µ, t,y1, . . . ,yk) ≤
1
kt

maximize 〈Y ,W 〉

subject to

[
B W
W > U

]
� 0,

Bii ≤ 1 for all i ∈ [k],
Tr(U) ≤ 1

. (7.34)

This is a natural SDP relaxation of the 2→ 1 norm of Y ,

‖Y ‖2→1 := max
‖u‖2≤1

‖Y u‖1 = max
‖u‖2≤1,
b∈{±1}k

b>Y u. (7.35)

The square of this norm is actually an instance of a hypercube optimization problem similar
to what we have seen in Chapter 1:

‖Y ‖2
2→1 = max

b∈{±1}k
b>(Y Y

>
)b. (7.36)

93

Now, in Exercise 1.4 you showed that the integrality gap of the degree 2 SOS SDP for this
optimization problem, which is the same as the Goemans-Williamson SDP, is at most π/2.
Thus, though we will not show it carefully, it is not surprising that the integrality gap of the
SDP in (7.34) as an approximation of ‖Y ‖2→1 is at most

√
π/2. We thus find

ESOS2(µ, t,y1, . . . ,yk) ≤
√
π
2

1
kt
E‖Y ‖2→1. (7.37)

To analyze the remaining expectation, we expand it and again extract an expectation and
a fluctuation, as follows: letting yi := yi −µ,

E‖Y ‖2→1 = E sup
‖u‖=1

k∑
i=1

|〈yi,u〉|

≤ E sup
‖u‖=1

k∑
i=1

(|〈yi,u〉| − E|〈yi,u〉|)+ k sup
‖u‖=1

E|〈y1,u〉|. (7.38)

The second term is easy to analyze: by Jensen’s inequality,

sup
‖u‖=1

E|〈y1,u〉| ≤
√

sup
‖u‖=1

E〈y1,u〉2

=
√

sup
‖u‖=1

u> Cov(y1)u

=
√
‖Cov(y1)‖

=
√
k
n
, (7.39)

since y1 is an average of m = n/k i.i.d. isotropic random vectors, so Cov(y1) = k
nId. In the

first term, at an intuitive level, the centering makes the sum comparable to the same sum
with random signs to each term:

E sup
‖u‖=1

k∑
i=1

(|〈yi,u〉| − E|〈yi,u〉|) Ü E
si∼Unif({±1})

E
yi

sup
‖u‖=1

k∑
i=1

si〈yi,u〉

= E
si∼Unif({±1})

E
yi

∥∥∥∥∥∥
k∑
i=1

siyi

∥∥∥∥∥∥
Ü
√
k · E‖y1‖

=
√
k ·

√
TrCov(y1)

=
√
k ·

√
k
n
d

= k
√
d
n
. (7.40)

One may verify this part more carefully by applying a symmetrization argument and then
using some general concentration inequalities; see [Hop18b] for more details.

94

Putting the pieces together, we find

ESOS2(µ, t,y1, . . . ,yk) Ü
1
kt

k
√
k
n
+ k

√
d
n

 =
√
k+
√
d√

n

t
= t

?

t
, (7.41)

thus taking t = Θ(t?/ε) we may ensure that ESOS2(µ, t,y1, . . . ,yk) = O(ε), as desired.

7.5.2 Sum-of-Squares Squared

So far, we have only shown that SOS can certify centrality, in particular for the special point
µ ∈ Rd, with a low-degree proof. It is not immediately clear how this helps us use SOS to
find a central point given the y1, . . . ,yk as input.

Definition 7.17. We say that z ∈ Rd is certifiably (t, ε)-central for y1, . . . ,yk if there is a
degree 2 SOS proof that Opt(z, t,y1, . . . ,yk) ≤ ε, i.e., if there exist αi, βi, γ ≥ 0 and S ∈ SOS
such that the following holds as a polynomial equality over R[b1, . . . , bk, u1, . . . , ud]:

εk−
k∑
i=1

bi
(p)=

k∑
i=1

αibi(〈yi − z,u〉 − t)+
k∑
i=1

βi(1− b2
i)+ γ(1− ‖u‖2)+ S(b,u). (7.42)

In this language, Lemma 7.16 just says that µ is certifiably (Oε(t?), ε)-central for any ε > 0
with probability 1− δ.

The idea of [Hop18b] is then to search for a central point by solving an SOS relaxation of
the polynomial constraint (7.42). That is, we solve an SOS relaxation of a polynomial system
expressing the existence of an SOS proof.

To be more specific, we first note that, for any S(b,u) ∈ SOS of degree 2, we may write

S(b,u) =
d+k+1∑
i=1

〈si, (1 b u)>〉2 (7.43)

for some s1, . . . ,sd+k+1 ∈ Rd+k+1. We will search for a degree D pseudoexpectation Ẽ over
the variables

x1, . . . , xd; α1, . . . , αk, β1, . . . , βk, γ; (sij)d+k+1
i,j=1 , (7.44)

which satisfies the constraints

εk−
k∑
i=1

bi
(p)=

k∑
i=1

αibi(〈yi −x,u〉 − t)+
k∑
i=1

βi(1− b2
i)+ γ(1− ‖u‖2) (7.45)

+
d+k+1∑
i=1

〈si, (1 b u)>〉2,

αi, βi, γ ≥ 0, (7.46)

where the first constraint is interpreted as a system of polynomial constraints in the vari-
ables in (7.44) coming from equating coefficients when the left- and right-hand sides are
viewed as polynomials in b,u.

The following statement is the idea of the remaining claim; as we will mention below, it
is not quite correct and requires a substantial but purely technical adjustment to obtain a
truly correct version.

95

Lemma 7.18 (“Morally correct” SOS version of Proposition 7.13). For an absolute constant
D0 ∈ 2N, if z ∈ Rd is certifiably (t, ε)-central and Ẽ is a degree D0 pseudoexpectation over
the variables and constraints described above, then

Ẽ‖x− z‖2 Ü t2. (7.47)

Indeed, as the name suggests, the Lemma states that a sufficiently high-degree pseudoex-
pectation over certifiably central points satisfies the key “closeness property” from Proposi-
tion 7.13.

Corollary 7.19. There is an estimator µ̂ having subgaussian width for any ρ ∈M(Rd) whose
covariance is the identity.

Proof. Fix some small ε > 0, say ε = 1
100 . Then, by Lemma 7.16, for some C > 0, with

probability at least 1− δ, µ is certifiably (Ct?, 1
100)-central.

Let µ̂ be the result of applying the Gaussian rounding of Proposition 4.5 to the x vari-
ables in a pseudoexpectation Ẽ as above. Taking z = µ in Lemma 7.18, we find by the
moment property of the Gaussian rounding and Jensen’s inequality that E‖µ̂−µ‖ = O(t?),
and the result follows.

Let us sketch just the main ideas behind Lemma 7.18 and the necessary adjustments to
the SOS program to actually make such a statement technically correct. This will be mostly
a hand-waving discussion.

Of course, what we would like to do is to implement the “shared inlier” or “majority”
argument from the proof of Proposition 7.13 in the SOS proof system. Unfortunately, such
arguments using tools like the pigeonhole principle are precisely the kinds of arguments not
directly expressible with SOS.

Let us recall the proof idea of Proposition 7.13 and start writing it in terms of certifiably
central points and their certificates. Suppose z,z′ ∈ Rd are two certifiably (t, ε)-central
points for some small ε > 0. This means that we have polynomial equations in indetermi-
nates b,u of the form

εk−
k∑
i=1

bi
(p)=

k∑
i=1

αibi(〈yi − z,u〉 − t)+
k∑
i=1

βi(1− b2
i)+ γ(1− ‖u‖2)+ SOS, (7.48)

εk−
k∑
i=1

bi
(p)=

k∑
i=1

α′ibi(〈yi − z′,u〉 − t)+
k∑
i=1

β′i(1− b2
i)+ γ′(1− ‖u‖2)+ SOS. (7.49)

The proof of Proposition 7.13 amounts to setting u := (z − z′)/‖z − z′‖ and using that,
with this choice, there would have to exist a common bi = 0 at optimality in the original
problems Opt(z, t,y1, . . . ,yk) and Opt(z′, t,y1, . . . ,yk).

What reflection of this fact can we see in just the certificates (7.48) and (7.49)? One
tool we may use is complementary slackness: recall that the αi in (7.48) are, in the original
degree 2 SOS relaxation of Opt(z, t,y1, . . . ,yk), Lagrange multipliers of constraints coming
from the polynomial constraint bi〈yi − z,u〉 ≥ bit. In particular, αi > 0 only when this
associated constraint is “active” at optimality, so that the constraint is actually an equality
This can happen either when bi = 0 at optimality, so that yi is an inlier for z in the worst

96

possible direction u, or when 〈yi−z,u〉 = t, so that yi is on the threshold between an inlier
and an outlier. In any case, very roughly speaking, we may take αi to be some measurement
of how much yi is an inlier for z over nearly worst-case directions u, and likewise for α′i
and z′.

Another, more formal observation is that we would like to combine the certificates (7.48)
and (7.49) in such a way that the dependence on the yi will go away, so that we are left with
only some relation between z and z′.

Combining these two ideas, we try the following: let v := (z − z′)/‖z − z′‖. Evaluate
(7.48) with u = −v and bi = α′i/(αi + α′i); evaluate (7.49) with u = v and bi = αi/(αi + α′i);
and finally, add together the results. Using the non-negativity of the last three terms in each
certificate with these choices, we find

− (1− 2ε)k ≥
k∑
i=1

αiα′i
αi +α′i

(‖z − z′‖ − 2t) , (7.50)

and rearranging this gives something close to what we want,

‖z − z′‖ ≤ 2t (1+∆) , (7.51)

where

∆ = k

2t
∑k
i=1

αiα′i
αi+α′i

=
t · 1

k

k∑
i=1

2
1
αi
+ 1
α′i

−1

. (7.52)

To parse this equation, note that each term in the sum is a harmonic mean of αi and α′i,
which we may think of as a proxy for min{αi, α′i}. Also, by considering the coefficients of
bi on either side of the certificates (7.48) and (7.49), we see that we expect αi and α′i to be
roughly on the scale Θ(1/t). Thus, having ∆ not too large amounts to having the average
t ·min{αi, α′i} not too small. With our previous intuition, this is precisely a measurement of
z and z′ having a shared inlier in the v direction!

Unfortunately, to actually implement this idea as an SOS proof, we need to have some
control over the “regularity” of the αi. To do this, [Hop18b] just changes the underlying
program: it turns out that a stronger version of Lemma 7.16 holds; not only is µ certifiably
central, but the αi in its certificate may be chosen to be somewhat “flat” without too many
unusually large or small entries. Adjusting the SOS relaxation of certifiable centrality to only
allow such certificates then allows us to prove a rigorous version of Lemma 7.18.

Exercises

Exercise 7.1 (Second moment width). For any δ > 0 and n ∈ N, show that there exists a
centered ρ ∈M(R) with variance 1 such that, when x1, . . . , xn ∼ ρ are i.i.d.,

P

|µ̂emp(x1, . . . , xn)| ≥
√

1/δ
n

 ≥ 1−O(δ). (7.53)

Exercise 7.2 (Median-of-medians algorithm). Describe an algorithm that, given x1, . . . , xn ∈
R and k ∈ [n], finds the kth largest of the xi in time O(n).

97

Hint: Show that by forming small “buckets” of the xi and computing the median of the
medians of each bucket, you may find a good “pivot” element xp: one where a fairly large
fraction of elements is larger than xp and a fairly large fraction is smaller. Use this to
produce a divide-and-conquer algorithm.

Exercise 7.3 (Lipschitz constant of empirical mean norm). Let f : Rdn → R be given by
f(x) = ‖ 1

n
∑n−1
i=0 (xdi+1, xdi+2, . . . , xdi+d)>‖. Show that the Lipschitz constant of f is at most

1/
√
n.

Hint: Form a d×n matrix from x and think in terms of matrix norms.

Notes

Tukey Medians The notion of a t-central point is somewhat similar to that of a Tukey me-
dian, a point z that maximizes the minimum over u ∈ Sd−1 of the smaller of the number of
i ∈ [k] with 〈yi−z,u〉 positive or negative. This is perhaps a more honest high-dimensional
generalization of the median than those we work with, since it does not involve the fixed
scale t and does not require the median to be close in any direction to the yi, but rather only
for it to have a rank statistic close enough to 1

2k in all directions.

Hodges-Lehmann Estimators and Sharp Constants A variant of the median-of-means
estimator in one dimension that has appeared in the literature is the Hodges-Lehmann esti-
mator and its generalizations, which take the form

µ̂ = med

 1
m

∑
j∈B
xj

B∈([n]m)

 . (7.54)

Here, instead of taking the median of means over a fixed partition of [n], we consider
means over all subsets of a given size (the original Hodges-Lehmann estimator considered
only m = 2). Interestingly, as shown in the recent paper [Min22], this kind of estimator can
improve the constants in the width achieved by our µ̂mom in the scalar case.

Open Problem 7.1 (Optimal constants in high-dimensional mean estimation). Investigate op-
timal constants in the subgaussian width in high-dimensional mean estimation. Are Hodges-
Lehmann estimators still a good idea in high dimension?

Adversarial and Contaminated Models A stronger requirement of robustness might
ask that our algorithm work not only under poorly-behaved distributions ρ, but also when
some of our data does not come from ρ, but is contaminated either by data from another,
unrelated distribution, or, worse yet, can be provided by an adversary. Adaptations of
semidefinite programming methods and other algorithms (developed after [Hop18b]) to this
kind of setting are studied in, e.g., [DKP20, HLZ20, DL22].

98

Privacy Algorithmic approaches that are robust to outliers or poorly-behaved input dis-
tributions seem to also be amenable to being made private, not “leaking” very much infor-
mation about individual samples. A few recent results in this direction are [KMV21, HKM21].

99

Part III

Sum-of-Squares Lower Bounds

100

8 | Case Study 4: Parity/Knapsack

We have seen in the previous part of the course that SOS is a powerful tool for algorithm
design in various settings. Next, we will look at some results in the opposite direction,
showing that SOS requires high degree (and thus long runtime) to solve certain problems.
These results will come in two types:

1. Sometimes, limitations associated specifically to the SOS proof system will make it
difficult for SOS to certify polynomial inequalities that are (to us, from outside the
limited proof system) obviously true. These are easy problems that SOS cannot solve,
and they tell us about faults in the SOS proof system.

2. Other times, we will show that SOS cannot solve problems that we have some other
reason to believe are hard to solve (e.g., lower bounds against other algorithms). These
are (conjecturally) hard problems that SOS cannot solve, and we use SOS lower bounds
as a form of evidence for their hardness.

Not surprisingly, the first class of lower bound is usually much simpler. We will therefore
start our study of SOS lower bounds with a simple example of a deterministic problem that
SOS requires high degree to solve.

This problem will be formulated as an optimization problem over the hypercube {±1}n,
as in the setting of Chapter 1:

Opt :=
{

maximize p(x)
subject to x2

i − 1 = 0 for all i ∈ [n]

}
. (8.1)

You have seen in Exercise 2.9 that the degree 2n relaxation solves any such problem ex-
actly—at this degree, the relaxation of the hypercube is not a relaxation anymore, and every
pseudoexpectation of this degree is an actual expectation with respect to a probability mea-
sure over the hypercube.

We will now show a converse result, giving a simple choice of p(x) for which degree
at least n is required to obtain a tight bound, due to [Gri01a, Lau03]. In fact, as [Lau03]
conjectured and [FSP16] proved, the tightness of the degree 2n relaxation is suboptimal,
and the degree n+1{n is odd} relaxation is already exact; this result is substantially harder
than the argument from Exercise 2.9, however.

In one sense, at least a lower bound of degree d = Ω(n) is to be expected, since looking
at p(x) = x>Lx for L the class of graph Laplacian matrices encodes the NP-complete
MaxCut problem in this class of polynomial optimization problems, and the exponential
time hypothesis implies that time exp(Ω(n)) is required to solve MaxCut in the worst case.

101

But, we will actually show that a very simple specific example of a graph Laplacian gives our
lower bound.

Namely, let G = Kn be the complete graph on n vertices. We have |E(G)| =
(
n
2

)
, and may

compute

MaxCut(G) = 1
4
(n2 − 1{n is odd}). (8.2)

We may manipulate the MaxCut objective function as follows:

x>LGx =
1
4

∑
1≤i<j≤n

(xi − xj)2 =
n(n− 1)

4
− 1

2

∑
1≤i<j≤n

xixj =
n2

4
− 1

4

 n∑
i=1

xi

2

. (8.3)

Thus, we will consider Opt as above with p(x) = (
∑n
i=1xi)2:

Opt :=
{

maximize (
∑n
i=1xi)2

subject to x2
i − 1 = 0 for all i ∈ [n]

}
. (8.4)

Theorem 8.1 ([Gri01a, Lau03]). If n is odd, then the value of the degree n− 1 SOS relaxation
of Opt is zero.

In contrast, clearly
∑n
i=1xi is a non-zero integer for any x ∈ {±1}n, so we have Opt = 1. It is

also straightforward to show that this gives an integrality gap for MaxCut(G = Kn), showing
that the degree n− 1 relaxation has value n2

4 >
n2−1

4 .

Example 8.2 (n = 3). In this case, Theorem 8.1 says that degree 2 SOS cannot certify the
true inequality Ẽ(x1 + x2 + x3)2 ≥ 1. Setting X := Ẽ[xx>] and rearranging, we see that
this is equivalent to X12 + X23 + X13 ≥ −1, which is precisely one of the triangle inequalities
that Exercise 1.6 shows are not satisfied by degree 2 SOS (which is the same as the Goemans-
Williamson relaxation). Indeed, we may take Ẽ[x] = 0 and

Ẽ[xx>] =

 1 −1
2 −1

2

−1
2 1 −1

2

−1
2 −1

2 1

 , (8.5)

in which case Ẽ(x1 + x2 + x3)2 = 1>X1 = 0, as Theorem 8.1 claims.

8.1 Pseudoexpectation Values From Symmetry

To prove the result, we need to build a degree n − 1 pseudoexpectation Ẽ satisfying the
hypercube constraints and having Ẽ(

∑n
i=1xi)2 = 0. We simplify our task repeatedly by

making some simple observations.
First, by linearity it suffices to specify the pseudoexpectations of monomials. Moreover,

since Ẽ[x2
i p(x)] = Ẽ[p(x)], it suffices to specify the pseudoexpectations of multilinear

monomials xS for S ⊂ [n] with |S| ≤ n− 1.
Next, given Ẽ a pseudoexpectation over the hypercube constraints, we observe that Ẽ′

defined by Ẽ′[p(x)] := 1
2(Ẽ[p(x)] + Ẽ[p(−x)]) is also a pseudoexpectation over the hy-

percube constraints, which has Ẽ′(
∑n
i=1xi)2 = Ẽ(

∑n
i=1xi)2. This pseudoexpectation also

102

satisfies Ẽ′xS = 0 for all sets S of odd size. Thus, by performing this symmetrization, we
may assume without loss of generality that ẼxS = 0 for S having odd size.

Similarly, Ẽ′[p(x)] := 1
n!

∑
σ∈Sn Ẽ[p(xσ(1), . . . , xσ(n))] is a pseudoexpectation over the

hypercube constraints and has the same objective value as Ẽ (here Sn is the symmetric
group of permutations of [n]). This Ẽ′ has the important property that Ẽ′xS depends only
on the cardinality |S|. Thus we may also assume without loss of generality that ẼxS = f(|S|)
for some f : N→ R with f(k) = 0 for all odd k.

Finally, suppose |S| ≤ n−2. We note that by the SOS Cauchy-Schwarz inequality, splitting
S = S1 t S2 with |S1| = b|S|/2c ≤ (n− 3)/2 and |S2| = d|S|/2e ≤ (n− 1)/2, we have∣∣∣∣∣∣Ẽ

 n∑
i=1

xi

xS
∣∣∣∣∣∣ =

∣∣∣∣∣∣Ẽ
 n∑

i=1

xi

xS1 ·xS2

∣∣∣∣∣∣ ≤
Ẽ

 n∑
i=1

xi

2

1/2

= 0 (8.6)

by our assumption. On the other hand, we may expand by the previous observation

0 = Ẽ

 n∑
i=1

xi

xS
 = |S|f(|S| − 1)+ (n− |S|)f (|S| + 1), (8.7)

and rearranging and reindexing this gives the recurrence

f(k+ 2) = − k+ 1
n− k− 1

f(k). (8.8)

Combined with Ẽ[1] = f(0) = 1, this specifies all values of f(k), and thus our entire
pseudoexpectation! Remarkably, the many symmetries of this problem imply that there is
only one plausible pseudoexpectation that we need to consider for our lower bound.

We may also give a closed form for these values,

ẼxS = f(|S|) = 1{|S| even}(−1)|S|/2
|S|/2−1∏
i=0

2i+ 1
n− 2i− 1

, (8.9)

with the first few non-zero values given by

Ẽ[1] = 1, Ẽ[xixj] = −
1

n− 1
, Ẽ[xixjxkx`] =

3
(n− 1)(n− 3)

. (8.10)

We may also check that the condition on the objective function is indeed satisfied:

Ẽ

 n∑
i=1

xi

2

= nf(0)+n(n− 1)f (2) = n−n(n− 1)
1

n− 1
= 0. (8.11)

All other conditions on Ẽ except for positivity are automatically satisfied by our construc-

tion. Thus, defining the pseudomoment matrix Y ∈ R(
[n]

≤(n−1)/2)×([n]
≤(n−1)/2) to have entries

YS,T := Ẽ[xS ·xT] = Ẽ[xS4T] = f(|S4T |), (8.12)

the following will occupy our attention for the rest of the chapter.

Lemma 8.3. Y � 0.

Clearly, Theorem 8.1 follows immediately from our construction and Lemma 8.3.

103

8.2 Degree 4 Lower Bound

To introduce the main ideas of the analysis, let us consider just the first non-trivial subma-
trix of Y , that indexed by sets of size 0, 1, and 2. Abusing notation for this section, let
us also call this matrix Y . Divided into blocks according to sets of these three sizes, this
submatrix looks like

Y =

 1 0 − 1
n−11

>

0 Y (2) 0

− 1
n−11 0 Y (4)

 , (8.13)

where Y (2) ∈ Rn×n and Y (4) ∈ R(
[n]
2)×([n]2) have entries

Y (2)ij =
{

1 if i = j,
− 1
n−1 if i ≠ j

}
, (8.14)

Y (4)ST = f(|S4T |) =

1 if |S4T | = 0,
− 1
n−1 if |S4T | = 2,

3
(n−1)(n−3) if |S4T | = 4

 . (8.15)

We observe that, after permuting the rows and columns, Y is the direct sum of Y (2) with
the matrix indexed by the subsets of size 0 and 2. We have

Y (2) =
(

1+ 1
n− 1

)
In −

1
n− 1

11> = n
n− 1

In −
n

n− 1
1̂1̂> � 0, (8.16)

where 1̂ = 1/
√
n, a unit vector. Thus it suffices to consider the remaining direct summand,[

1 − 1
n−11

>

− 1
n−11 Y (4)

]
?
� 0. (8.17)

By the Schur complement reduction, it furthermore suffices to consider the matrix

Y (4) − 1
(n− 1)2

11>
?
� 0. (8.18)

To this end, we will try to understand the spectrum of Y (4). More generally, we will see
that our reasoning will also describe the matrix of any Z ∈ R(

n
2)×(n2) whose entries are given

by
ZS,T = g(|S4T |), (8.19)

as is the case both for Y (4) and for the whole left-hand side of (8.18).
We will first take a very hands-on approach, and then will discuss how our calculations

generalize in several fruitful directions. We are interested in finding eigenvectors v ∈ R(
[n]
2)

of Z as above. We compute

(Zv){i,j} = g(0)v{i,j} + g(2)
∑

k∉{i,j}
(v{i,k} + v{j,k})+ g(4)

∑
{k,`}∩{i,j}=∅

v{k,`}
?= λv{i,j}. (8.20)

We first observe that if v = 1 then this eigenvector equation indeed holds, with eigen-
value given by counting the nubmer of terms in each sum above,

λ0 := g(0)+ (n− 2)g(2)+
(
n− 2

2

)
g(4). (8.21)

104

Now, suppose 〈v,1〉 = 0 (as must be the case for every other eigenvector). Using this, we
may reduce the eigenvector equation, removing the last sum:

(Zv){i,j} = (g(0)− g(4))v{i,j} + (g(2)− g(4))
∑

k∉{i,j}
(v{i,k} + v{j,k})+ g(4)

∑
{k,`}

v{k,`}︸ ︷︷ ︸
=〈v,1〉=0

. (8.22)

The next step is not so obvious, but we propose considering v{i,j} = ui+uj for some u ∈ Rn.
In order to have 〈v,1〉 = 0, we must have 〈u,1〉 = 0. For such v, we have

(Zv){i,j} = (g(0)− g(4))(ui +uj)+ (g(2)− g(4))
∑

k∉{i,j}
(ui +uj + 2uk)

= (g(0)+ (n− 2)g(2)− (n− 1)g(4))(ui +uj)+ 2(g(2)− g(4))
∑

k∉{i,j}
uk

= (g(0)+ (n− 2)g(2)− (n− 1)g(4))(ui +uj)− 2(g(2)− g(4))(ui +uj)
= (g(0)+ (n− 4)g(2)− (n− 3)g(4))v{i,j}, (8.23)

so indeed any such v is an eigenvector with eigenvalue

λ1 := g(0)+ (n− 4)g(2)− (n− 3)g(4). (8.24)

Let us write V1 for the span of these vectors, which has dimension dim(V1) = n− 1 (due to
the constraint that 〈u,1〉 = 0).

Finally, suppose v ∈ (1⊕ V1)⊥ = 1⊥ ∩ V⊥1 . We further simplify the eigenvector equation
using that v ∈ V⊥1 . Namely, let w ∈ R(

n
2) have w{i,j} = ui +uj for u = ei + ej . We then have

w{k,`} = |{i, j} ∩ {k, `}|. We have

0 = 〈w,v〉 = 2v{i,j} +
∑

k∉{i,j}
(v{i,k} + v{j,k}). (8.25)

Applying this in the eigenvector equation (starting with our previous reduction), we have

(Zv){i,j} = (g(0)− g(4))v{i,j} − 2(g(2)− g(4))v{i,j} = (g(0)− 2g(2)+ g(4))v{i,j}, (8.26)

so that any such vector is an eigenvector with eigenvalue

λ2 := g(0)− 2g(2)+ g(4). (8.27)

Let us write V2 for the span of these vectors, which has dimension dim(V2) = dim((1 ⊕
V1)⊥) =

(
n
2

)
−n.

We thus arrive at the following general linear-algebraic fact.

Lemma 8.4. Suppose that Z ∈ R(
[n]
2)×([n]2) with entries given by ZS,T = g(|S4T |). Then, Z

has at most three distinct eigenspaces V0 = span(1), V1, V2 as described above, with associated
eigenvalues

λ0 = g(0)+ (n− 2)g(2)+
(
n− 2

2

)
g(4), (8.28)

λ1 = g(0)+ (n− 4)g(2)− (n− 3)g(4), (8.29)

λ2 = g(0)− 2g(2)+ g(4). (8.30)

105

Lemma 8.3 follows from Lemma 8.4 by a straightforward calculation that we leave as an
exercise. In particular, applying Lemma 8.4 to Y (4) itself (where g = f) and using that 1
is an eigenvector of Y (4), it suffices to check that, with λ0, λ1, λ2 computed with g = f , we
have

λ0 ≥

(
n
2

)
(n− 1)2

, (8.31)

λ1 ≥ 0, (8.32)

λ2 ≥ 0. (8.33)

8.3 Spectra of Matrices with Entrywise Symmetry

It likely seems rather magical that we were able to obtain a result like Lemma 8.4. To
somewhat demystify our calculations, let us indicate two ways in which our approach can
be considerably generalized.

8.3.1 Representation Theory

Suppose that G is a finite group acting on a finite set X. Then, G also acts on RX by per-
mutation matrices: the action of G on X may be identified with a group homomorphism
φ : G → S|X|, and likewise RX may be identified with R|X| (in both cases fixing an ordering of
X), in which case g ∈ G acts as the permutation matrix of φ(g), which we denote Πφ(g).

Suppose also that we have a matrix Z ∈ RX×Xsym that commutes with this action, which
may be written in equivalent ways as having, for all g ∈ G,

Πφ(g)Z = ZΠφ(g) a Πφ(g)ZΠ>φ(g) = Z (8.34)

a Zφ(g)(x),φ(g)(y) = Zx,y for all x,y ∈ X. (8.35)

Our setting was a special case of this setting. We had G = Sn, so that the homomorphism
φ was just the identity, and had X =

(
[n]
2

)
, where for S = {i, j} ∈ X and g ∈ Sn we had the

action g(S) := {g(i), g(j)}. Any Z with ZS,T = g(|S4T |) then satisfies the invariance (8.35)
(indeed, one may show that the invariance (8.35) is equivalent to Z having this form for
some f).

The representation theory of finite groups provides us with a structure theory of such
matrices Z (in addition to treating many further generalizations of this setup). In particular,
it shows that the eigenspaces of such Z are invariant subspaces of the action of G: these
subspaces V ⊂ RX must have gv ∈ V for every g ∈ G and v ∈ V . (One may check that the

subspaces V0, V1, V2 from our example satisfy this property for the action of Sn on R(
[n]
2).)

Representation theory also describes the possible decompositions of RX into invariant
subspaces; in the language of representation theory, the above setup makes RX (equipped
with the Sn action) a representation of G, and any invariant V ⊂ RX is a subrepresenta-
tion (which, by invariance, is itself a representation), while a minimal invariant subspace
is an irreducible subrepresentation. There is a rich combinatorial theory characterizing

106

the irreducible representations of Sn in particular, allowing analogs of the decomposition
R(

[n]
2) = V0 ⊕ V1 ⊕ V2 to be computed in many cases.
Some standard mathematical references are [Ful97, FH04], while [Dia88] gives a more

down-to-earth treatment with a particular focus on G = Sn.

8.3.2 Association Schemes

There is another approach to understanding matrices like Z, which generalizes to a differ-
ent, usually narrower, class of matrices, but has the advantage of sometimes allowing us to
understand the eigenvalues of Z without a detailed understanding of the eigenspaces.

Definition 8.5. An association scheme is a set of matrices A1,A2, . . . ,Am ∈ {0,1}N×Nsym satis-
fying the following properties:

1. A1 = IN ,

2.
∑m
i=1Ai = 11>,

3. AiAj =
∑m
k=1 cijkAk for some cijk ∈ R and all i, j ∈ [m].

We may view each Ai as a relation on [N]× [N], where for every a,b ∈ [N], (a, b) belongs
to exactly one relation among those specified byA1, . . . ,Am. Often it is a useful intuition to
view the unique i for which (Ai)ab = 1 to be a “distance” between a and b specified by the
association scheme.

The case we saw earlier was the association scheme with N =
(
n
2

)
, where (Ai/2+1)S,T =

1{|S4T | = i} for i = 0,2,4 (and thusm = 3). One may check that Condition 3 above indeed
holds for this example. The Z we considered had

Z = g(0)A1 + g(2)A1 + g(4)A2. (8.36)

This, and its generalizations to larger subsets of [n], are called Johnson schemes and are
among the best-studied examples of association schemes.

The most restrictive property of association schemes is Condition 3 above, which, along
with Condition 1, may be seen as imposing that the Ai generate a subalgebra of RN×Nsym . One
consequence is that the Ai commute:

AiAj = (AjAi)> =
 m∑
k=1

cjikAk

> = m∑
k=1

cjikAk =AjAi. (8.37)

Thus the Ai are simultaneously diagonalizable, explaining why we could find a simultane-
ous collection of eigenspaces for any Z in the Johnson scheme, and explaining why the
eigenvalues λi were linear functions of the entry values g(k).

It turns out that, knowing the cijk (called the intersection numbers of the scheme) it is
often possible to describe these functions giving the eigenvalues without explicitly describ-
ing the eigenspaces. A basic version of this observation is tricky but elementary to derive;
we present it in Exercise 8.2.

Some references on further aspects of this theory are [Del73, BCN89, Sei91, GS06], and
some uses of association schemes in simplifying semidefinite programs and SOS arguments
are discussed in [GR99, MW13], the latter of which is part of a long line of work we will study
in Chapter 10.

107

8.4 Full Proof Strategy for Lemma 8.3

We have only shown, already with some difficulty, the part of Lemma 8.3 concerning a small
submatrix of our original Y . Let us outline the ideas behind the proof of the full result.

First, note that we may always decompose Y into a direct sum of two principal sub-
matrices, those with set indices S having even and odd size, respectively. For the sake of
simplicity, let us just consider the case of |S| even; similar reasoning applies to the other
submatrix as well.

Based on our strategy for handling the submatrix of Y indexed by |S| ∈ {0,2}, the
following strategy seems appealing: let Y (0) = [1],Y (4),Y (8), . . . be the diagonal blocks of

Y , with Y (4k) ∈ R(
[n]
4k)×([n]4k). Consider repeatedly taking the Schur complement in Y with

respect to the smallest diagonal block remaining, and let Ỹ (4k) be the submatrix indexed by(
[n]
4k

)
×
(
[n]
4k

)
after having taken k such Schur complements. For example, from our argument

above, we have

Ỹ (0) = [1], (8.38)

Ỹ (4) = Y (4) − 1
(n− 1)2

11>. (8.39)

By the Schur complement characterization of positive semidefiniteness, it suffices to
show that each Ỹ (4k) � 0. Moreover, the computation of iterated Schur complements only
requires the inversion of each Ỹ (4k), along with some (substantial) bookkeeping. Laurent
in [Lau03] mentions that a natural proof strategy could be based on proving the following
observation.

Lemma 8.6. For all k ≥ 0, Ỹ (4k) belongs to the Johnson scheme on R(
[n]
2k)×([n]2k) (and likewise

for the analogous statement for the submatrix of Y with |S| odd).

This would at least imply that there is a relatively straightforward algebraic way to perform
the necessary inversion and to complete this inductive proof. Unfortunately, Laurent was
not able to prove Lemma 8.6; it was only proved more recently by [KM22] as part of a
complete description of the spectrum of Y .

Instead, Laurent used the following trickier approach. Note that, since as we showed

above Ẽ[(
∑n
i=1xi)p(x)] = 0 for any p, Y ∈ R(

[n]
≤(n−1)/2)×([n]

≤(n−1)/2) has a kernel of dimension

at least
(

n
≤(n−1)/2−1

)
. Thus, by Cauchy’s interlacing theorem, it suffices to identify a strictly

positive definite principal submatrix of Y of dimension
(

n
≤(n−1)/2

)
−
(

n
≤(n−1)/2−1

)
=
(

n
(n−1)/2

)
.

Laurent identifies such a submatrix as the one indexed by
(
[n−1]
(n−1)/2

)
∪
(

[n−1]
(n−1)/2−1

)
. A few

observations are in order. First, this submatrix indeed has the correct dimension, since a
basic binomial coefficient identity gives(

n− 1
(n− 1)/2

)
+
(

n− 1
(n− 1)/2− 1

)
=
(

n
(n− 1)/2

)
. (8.40)

Second, this submatrix itself decomposes as the direct sum of the two submatrices indexed
by

(
[n−1]
(n−1)/2

)
and

(
[n−1]

(n−1)/2−1

)
, as (n− 1)/2 and (n− 1)/2− 1 have opposite parity. Third, it is

reasonable to expect these submatrices to be strictly positive definite, since they correspond

108

to evaluations of Ẽ on the restricted space of polynomials R[x1, . . . , xn−1], where we omit
xn, and thus the “problematic” linear form

∑n
i=1xi that generates elements of the kernel

of Y does not belong to this space. Finally, each of these two submatrices belong to a
suitable Johnson scheme since they involve set indices of fixed size, so their eigenvalues can
be computed explicitly. Laurent’s proof of Lemma 8.3 in [Lau03] (and likewise Grigoriev’s
proof of a similar statement in [Gri01a]) computes these eigenvalues, and uses some rather
elaborate manipulations of sums of binomial coefficients to show that they are positive.

Exercises

Exercise 8.1. Follow the steps below to give an alternate motivation for the Grigoriev-Laurent
pseudoexpectation Ẽ.1

1. Show the binomial coefficient identity

2k∑
`=0

(
m
`

)(
m

2k− `

)
(−1)` =

(
m
k

)
(−1)k. (8.41)

2. Suppose n is even, and let µ = Unif({x ∈ {±1}n :
∑n
i=1xi = 0}). Let S ⊆ [n]. Compute

Ex∼µ[xS], simplified using the result of Part 1 to a closed form in terms of binomial
coefficients.

3. Now, suppose n is odd. Describe a formal extension of binomial coefficients to frac-
tional inputs, in particular making sense of coefficients of the form

(
n/2
k

)
when n is odd,

so evaluating the result of Part 2 with odd n and this formal extension recovers the
Grigoriev-Laurent values of Ẽ[xS] as in (8.9).

Exercise 8.2. Recall the definition of an association scheme generated by IN =A1, . . . ,Am ∈
{0,1}N×Nsym from Definition 8.5 The definition implies that the Ai commute, and so are si-
multaneously diagonalizable. That is, there exist projection matrices P1, . . . ,Pd to mutually
orthogonal subspaces of RN and some λij such that

Ai =
d∑
j=1

λijPj, (8.42)

so that λi1, . . . , λid are the eigenvalues of Ai. In this problem we will show how one can find
the λij from the cijk.

1. Show that the Ai are linearly independent.

2. Show that ifA is a symmetric matrix andP is the orthogonal projection to the eigenspace
of an eigenvalue λ, then P is a polynomial in A. Conclude that we may take d = m
above (i.e., the number of distinct eigenspaces of each Ai is at most the total number of
Ai in the scheme, as we saw in the Johnson scheme example in class), and that in this
case the Pj are a basis for the span of the Ai.

1I learned of this argument from Cristopher Moore, who credits it to Robert Kleinberg.

109

3. Show that λikλjk =
∑d
`=1 cij`λ`k.

4. Let E ∈ Rm×m have Eij = λji. Let Li ∈ Rm×m have (Li)kj = cijk. Show that E is
non-singular, and that

ELiE
−1 = diag(λi1, . . . , λim). (8.43)

That is, the distinct eigenvalues of Ai ∈ RN×Nsym are the eigenvalues of Li ∈ Rm×m,
usually a much smaller matrix.

Notes

Other Sources We have mostly followed Laurent’s paper [Lau03], as well as some further
elaboration mentioned in [KM22]. Our explicit treatment of spectrum of Y in the degree 4
case is mentioned in [DM15] (for a different problem).

Other Proofs Several other proofs of the Grigoriev-Laurent lower bound have appeared
in the literature. The approaches of [KLM16, Pot17] give techniques for simplifying the
proof of positivity for the “natural” pseudomoments for problems having sufficient degrees
of symmetry. For the specific case of optimization over the hypercube, [BGP16] gives a
powerful approach that also allows the treatment of rational SOS proofs. This approach,
using representation theory of the action of Sn on polynomials over {±1}n, was also adapted
in [KM22] to give a detailed analysis of the matrix Y from the original proofs that we worked
with in this chapter.

110

9 | Case Study 5: Constraint

Satisfaction Problems

We now proceed to a more complicated lower bound, where we will use random instances
of a problem rather than deterministic ones. We will study constraint satisfaction problems
(CSPs); we first recall some basic notions used in formulating such problems.

9.1 Background on Constraint Satisfaction Problems

CSPs are formulated over Boolean variables x1, . . . , xn ∈ {0,1}, where we equate 0 with
“False” and 1 with “True.” We call a choice of such values an assignment. Under these
interpretations, we write ¬xi for the negation of x, ∧ for the Boolean AND operation, ∨ for
the Boolean OR operation, and ⊕ for the Boolean XOR operation.

We will consider the following CSPs:

1. 3-SAT : For xab ∈ {x1, . . . , xn} and x̃ab ∈ {xab,¬xab}, find an assignment x that makes
the following formula true:

(x̃11 ∨ x̃12 ∨ x̃13)∧ · · · ∧ (x̃m1 ∨ x̃m2 ∨ x̃m3). (9.1)

2. MAX-3-SAT : In the above setting, find an assigment x that makes as many of the
clauses x̃i1 ∨ x̃12 ∨ x̃13 true as possible.

3. 3-XORSAT : For xab ∈ {x1, . . . , xn} and b1, . . . , bm ∈ {0,1}, find an assignment x that
makes the following formula true:

(x11 ⊕ x12 ⊕ x13 ⊕ b1)∧ · · · ∧ (xm1 ⊕ xm2 ⊕ xm3 ⊕ bm). (9.2)

4. MAX-3-XORSAT : In the above setting, find an assignment x that makes as many of the
clauses xi1 ⊕ xi2 ⊕ xi3 ⊕ bi true as possible.

3-SAT and MAX-3-SAT are well-known to be NP-hard; the same is known for MAX-3-
XORSAT as well. It turns out that 3-XORSAT is actually easy to solve. The key insight is
that the XOR operation is the same as addition on {0,1} modulo 2, i.e., in the finite field F2

(that is why we use the ⊕ notation). In particular, the general instance in (9.2) is the same
as the system of linear equations over F2 given in matrix form by Ax = b, where x ∈ Fn2
is an indeterminate, b ∈ Fm2 consists of the bi, and A ∈ Fm×n2 has entries Aij = 1 if xj

111

participates in clause i and Aij = 0 otherwise. Whether such a system has a solution or not
can be determined by Gaussian elimination (as in the maybe more familiar case from real-
or complex-valued linear algebra), but this algorithm is “fragile” in the sense that it can only
determine exact satisfiability of a 3-XORSAT formula, but not, e.g., the satisfiability of 99%
of the clauses.

9.2 Polynomial Encoding and Main Theorem

We will study whether, for unsatisfiable CSPs, low-degree SOS can produce a proof of un-
satisfiability (also called refuting satisfiability). To do this, we need to formulate CSPs as
polynomial systems. Let us work over the x ∈ {±1}n hypercube; we may encode this with
the constraints

x2
i − 1 = 0 for all i ∈ [n]. (9.3)

For 3-SAT, letting sij = 1 if x̃ij = xij and sij = −1 if x̃ij = xij , we have the equivalence

x̃i1 ∨ x̃i2 ∨ x̃i3 a si1xi1 + si2xi2 + si3xi3 ≥ −1. (9.4)

For 3-XORSAT, letting ci := (−1)bi ∈ {±1}, we have the equivalence

xi1 ⊕ xi2 ⊕ xi3 ⊕ bi a xi1xi2xi3 = ci. (9.5)

Theorem 9.1 ([Gri01b, Sch08]). For arbitrarily large n, there exist unsatisfiable 3-SAT (respec-
tively, 3-XORSAT) formulas on n variables and degree Ω(n) pseudoexpectations that satisfy
the constraints {x2

i = 1}ni=1 and the constraints of (9.4) (respectively, (9.5)) for each clause of
the formula.

Moreover, as we will see, these instances can be taken to be “very unsatisfiable”: the optimal
value of MAX-3-SAT or MAX-3-XORSAT on them is some δm for δ ∈ (0,1) nearly as small
as possible, while the value of an SOS relaxation of these optimization problems is m until
degree Ω(n) of the SOS hierarchy. Thus, Theorem 9.1 also gives quantitative integrality gaps
for the MAX versions of these CSPs.

9.3 Random Instances

We will construct the “hard” instances for Theorem 9.1 by simply taking random instances
of the appropriate CSP, having m = αn clauses for some large constant α.

Definition 9.2 (Random formulas). We define canonical distributions for 3-SAT and 3-XORSAT
formulas. For 3-SAT, we sample from this distribution by taking the support of each clause
{xi1, xi2, xi3} to be a uniformly random subset of {x1, . . . , xn} of size three. We then draw
tij ∼ Unif({0,1}) and take x̃ij := tij ⊕xij ; the sij used in writing the instance as a polynomial
problem are then sij = (−1)tij . For 3-XORSAT, we draw the xij in the same way, and then
draw bj ∼ Unif({0,1}).

112

Proposition 9.3. For either 3-SAT or 3-XORSAT, there is an α0 ∈ R such that, whenever
α ≥ α0, with high probability (as n → ∞) a random instance drawn from the appropriate
canonical distribution is unsatisfiable.

Proof. Let F be a random formula. Consider a fixed x ∈ {0,1}n. Let γ be the probability
that x satisfies the first clause of the formula. This is easily computed to be

γ =
{

1/2 for 3-XORSAT,
7/8 for 3-SAT. (9.6)

Since the clauses are drawn independently, P[x satisfies F] = γm. Thus, by a union bound,

P[F is satisfiable] ≤ 2n · γm = (2γα)n, (9.7)

and, since γ < 1, for sufficiently large α the quantity being raised to the nth power is smaller
than 1.

Indeed, a similar argument using a Hoeffding inequality shows that, with high probability,
the value of MAX-3-SAT or MAX-3-XORSAT is with high probability at most (γ+oα→∞(1))m,
as we have suggested above.

We next show that it suffices to consider only 3-XORSAT; the result from 3-SAT will
follow automatically.

Proposition 9.4. There is a distribution over pairs of formulas (F, F ′), each on n variables and
m clauses, where F is a 3-XORSAT formula, F ′ is a 3-SAT formula, the marginal distribution
of each is the appropriate canonical distribution, and F ⇒ F ′ (i.e., whenever x satisfies F , x
also satisfies F ′).

Proof. Let F ′ be built as in Definition 9.2, where the tij are the indicators of whether xij is
negated. Then, let F have clauses of the form

xi1 ⊕ xi2 ⊕ xi3 ⊕ (1⊕ ti1 ⊕ ti2 ⊕ ti3︸ ︷︷ ︸
=:bi

). (9.8)

Note that, since tij ∼ Unif({0,1}), the law of bi is Unif({0,1}) as well, so the law of F is the
canonical 3-XORSAT distribution.

On the other hand, recalling that in constructing F ′ we have x̃ij = tij ⊕xij , note that the
above formula is satisfied if and only if

(ti1 ⊕ xi1)⊕ (ti2 ⊕ xi2)⊕ (ti3 ⊕ xi3) = x̃i1 ⊕ x̃i2 ⊕ x̃i3 = 1. (9.9)

But, whenever this holds, at least one of the x̃ij must be true; that is, the above clause
implies x̃i1 ∨ x̃i2 ∨ x̃i3. Thus, whenever x satisfies F it also satisfies F ′, as desired.

Corollary 9.5. Suppose that Theorem 9.1 holds with high probability for random 3-XORSAT
formulas with sufficiently large α. Then, it also holds with high probability for random 3-SAT
formulas with sufficiently large α.

113

Proof. Let (F, F ′) be drawn as in Proposition 9.4. Suppose α is large enough that F ′ is
unsatisfiable with high probability and that Theorem 9.1 applies. Since F ⇒ F ′ under this
joint distribution, F is also unsatisfiable with high probability.

Suppose Ẽ is a degree Ω(n) pseudoexpectation satisfying the constraints generated by F
(a 3-XORSAT formula). We then claim that Ẽ also satisfies the constraints generated by F ′.
It suffices to show the implication clause by clause, which amounts to showing that there is
an SOS proof of x +y + z ≥ −1 (the expression of a 3-SAT clause being satisfied) under the
constraints xyz − 1 = x2 − 1 = y2 − 1 = z2 − 1 = 0 (the expression of the corresponding
3-XORSAT clause being satisfied, plus the hypercube constraints).

There is in fact a degree 8 SOS proof. Recall from Exercise 2.6 on the triangle inequalities
that there exist q1, q2, q3 ∈ R[x,y, z] and s ∈ SOS such that deg(qi),deg(s) ≤ 2

xy +yz + xz + 1 = (x2 − 1)q1 + (y2 − 1)q2 + (z2 − 1)q3 + s. (9.10)

Multiplying either side by xyz and applying the constraint xyz−1 = 0 then leaves x+y +
z+1 on the left-hand side, and a term generated by the constraints plus s on the right-hand
side.

Justified by this result, we will only look at the case of 3-XORSAT from now on. Let
us revise our notation to make this slightly simpler. Let S1, . . . , Sm ∼ Unif(

(
[n]
3

)
), and

c1, . . . , cm ∼ Unif({±1}), all independently. Then, to prove Theorem 9.1, it suffices to show
that there exists a pseudoexpectation Ẽ of degree D ≥ εn for some ε > 0 respecting the
constraints

x2
i − 1 = 0 for all i ∈ [n], (9.11)

xSj − cj = 0 for all j ∈ [m]. (9.12)

(Recall the notation xSj =
∏
a∈Sj xa.)

9.4 Pseudoexpectation Construction

Unlike the situation Chapter 8, we do not have enough constraints and symmetry to force
us to pick a single highly symmetric Ẽ satisfying these constraints. Instead, we will make
the “simplest possible” choice after making sure that all immediate consequences of the
constraints are satisfied. Note that, as before, it suffices to specify the multilinear pseudo-
moments ẼxS for S ∈

(
[n]
≤D

)
. We do this by the following iterative process.

1. Define Ẽx∅ = Ẽ1 := 1.

2. Define ẼxSj := cj for all j ∈ [m].

3. While it is possible to do so, make an arbitrary choice of S, T ∈
(
[n]
≤D

)
such that ẼxS and

ẼxT have both been defined, but ẼxS4T has not yet been defined and has |S4T | ≤ D.
Then, set ẼxS4T := (ẼxS)(ẼxT) ∈ {±1}.

4. For all remaining S ∈
(
[n]
≤D

)
not yet defined, set ẼxS := 0.

114

This is a natural choice since all of the definitions made in Step 3 have SOS proofs based
on multiplying some of the constrained xSj together and then removing repeated powers
using the hypercube constraints x2

i = 1 repeatedly. (It turns out that we do not need to
worry about whether these SOS proofs actually have degree smaller than D; it will not be a
problem for us to enforce more of these constraints than we strictly need to.)

What could go wrong with this construction? The main issue is that the procedure in Step
3 does not a priori produce a unique Ẽ: different orderings of processing the assignments
in Step 3 could yield different Ẽ. Indeed, if it is possible to derive different values of some
ẼxS by short sequences of this procedure, then SOS proves a contradiction derived from
the constraints, in which case SOS would refute satisfiability, since there could not exist Ẽ
satisfying the constraints! Thus to show our lower bound it is important that we exclude
this possibility.

To do this, we will reason in more logical terms, describing how a value of ẼxS is “de-
rived” from the constraints in Step 3 above. Instead of keeping track of the sets A for
which ẼxA gets defined in this process, we keep track of the subsets of constraints that are
involved in each step of the derivation.

Definition 9.6. A D-derivation of S is a sequence T0, T1, . . . , Tt ⊆ [m] satisfying the following
properties:

1. T0 = ∅;

2. for all i ≥ 1, either |Ti| = 1 or Ti = Tj4Tk for some 0 ≤ j, k ≤ i− 1;

3. |4a∈Ti Sa| ≤ D for all 0 ≤ i ≤ t; and

4. 4a∈Tt Sa = S.

The following is the key result making Ẽ well-defined.

Lemma 9.7. With high probability, all S ⊆ [n] with |S| ≤ D having any D-derivation have
the same final constraint set Tt in all D-derivations of S.

If this is true then, clearly, ẼxS is defined in Step 3 if and only if there exists a D-derivation
of S, and if T0, . . . , Tt is such a derivation, then the unique value assigned is ẼxS :=

∏
a∈Tt ca.

We introduce the following bookkeeping mechanism that will be useful for proving
Lemma 9.7.

Definition 9.8. The variable-constraint graph G = (V , E) of our formula is the bipartite graph
with n vertices on the left side of the bipartition denoted L ⊂ V and identified with [n],
m vertices on the right side denoted R ⊂ V and identified with [m], and an edge {i, j}
connecting i ∈ L = [n] to j ∈ R = [m] if and only if i ∈ Sj (i.e., if and only if xi participates
in the jth clause of the 3-XORSAT formula).

In our setup, G is a random bipartite graph that is “right-3-regular,” i.e., having deg(v) = 3
for all v ∈ R.

We note that Lemma 9.7 has nothing to do with the “right-hand sides” cj of the 3-XORSAT
clauses; it only makes a statement about G. It turns out that its statement is closely related
to expansion in G.

115

Definition 9.9. We say a bipartite graph G as in Definition 9.8 is a (β, γ)-expander if, for all
T ⊆ R with |T | ≤ βm, we have |∂T | ≥ γ|T |, where ∂T ⊆ L is the set of neighbors of T .

Lemma 9.10. For all α > 0 and 0 < γ < 2, there exists β = β(α,δ) > 0 such that the random
bipartite graph G associated to the random 3-XORSAT formula on n variables and m = αn
clauses is with high probability a (β, γ)-expander.

We note that, by considering T = ∂x for a “typical” x ∈ L, we have |∂T | Ü 2|T | since all
vertices of T have a common neighbor in x and each has at most two other neighbors, so
γ < 2 is a necessary restriction.

Proof of Lemma 9.10. Let β̃ := αβ, so that βm = β̃n We rewrite

P[G is not a (β, γ)-expander]

= P[there exist S ⊆ L, T ⊆ R with |S| ≤ β̃γn, |T | ≤ β̃n, S = ∂T]

and, bounding this by the number of ways to choose S, multiplied by the number of ways to
choose β̃n neighborhoods of size 3 inside S, multiplied by the probability that some T ⊆ R
has exactly those neighborhoods gives

≤
(
n
β̃γn

)
·

(
β̃γn

3

)β̃n
(β̃n)!

·
 m(

n
3

)
β̃n

Using that k! ≥ (k/e)k and (n/k)k ≤
(
n
k

)
≤ (en/k)k, we further bound

≤
(
en
β̃γn

)β̃γn(
eβ̃3γ3n3

β̃n

)β̃n (
27α
n2

)β̃n

=
(

27eγ+1γ3α
γγ

β̃2−γ
)β̃n

.

Since γ < 2, for sufficiently small β̃ > 0 (achieved by choosing sufficiently small β > 0) the
quantity in parentheses is smaller than 1, giving the result.

Proof of Lemma 9.7. Suppose that there are two different D-derivations∅, T (1)1 , . . . , T (1)t1 and

∅, T (2)1 , . . . , T (2)t2 of the same set S, and, for the sake of contradiction, suppose T (1)t1 ≠ T (2)t2 .
On the other hand, we must have4a∈T (1)t1 Sa = S = 4a∈T (2)t2 Sa. Consider then the concate-

nation of these two derivations, with a final step added at the end:

(∅, T1, . . . , Tt) := (∅, T (1)1 , . . . , T (1)t1 , T
(2)
1 , . . . , T (2)t2 , T

(1)
t1 4T

(2)
t2), (9.13)

so that t = t1 + t2 + 1. By the above observations, we must have Tt ≠ ∅, and 4a∈Tt Sa = ∅.
Thus, this is a non-trivial D-derivation of ∅.

The general plan of the rest of the proof is to derive a contradiction as follows. First,
we show that Tt must be large. Note that, since 4a∈Tt Sa = ∅, every vertex in ∂Tt must be
incident to at least two elements of Tt . Since there are 3|Tt| edges leaving Tt , we find that

116

|∂Tt| ≤ 3
2 |Tt|. Now, let β be small enough that G is with high probability a (β/α, 7

4) expander
by Lemma 9.10. Choose ε = 1

100β and set D = εn = 1
100βn. Since Tt has small expansion, we

must have

|Tt| ≥
β
α
m = βn = 100D. (9.14)

Next, we note that since either |Ti| = 1 or |Ti| ≤ |Tj|+|Tk| for some j, k < i, the maximum
size of the |Ti| encountered thus far at most doubles at each step in the derivation. At an
intuitive level, the Ti must grow fairly slowly. In particular, suppose i is the smallest index
for which |Ti| ≥ 10D. Then, in fact Ti must be of “intermediate” size, having

10D ≤ |Ti| ≤ 20D. (9.15)

From the right-hand inequality, we have |Ti| ≤ 1
5βn, so the expansion property applies to Ti,

and we have |∂Ti| ≥ 7
4 |Ti|.

Finally, we will show that this large expansion means that |4a∈Ti Sa| must be large. Let
k be the number of vertices of ∂Ti ⊆ L that have exactly one neighbor in Ti. Since each
corresponding variable occurs only once in the symmetric difference, |4a∈Ti Sa| ≥ k. Thus
to derive a contradiction it suffices to show that k > D.

Since the total number of edges leaving Ti is 3|Ti|, we have k + 2(|∂Ti| − k) ≤ 3|Ti|, or
k ≥ 2|∂Ti| − 3|Ti| ≥ 2 · 7

4 |∂Ti| − 3|Ti| = 1
2 |Ti| ≥ 5D, as desired.

9.5 Proof of Theorem 9.1

We are now ready to proceed to our proof of the main lower bound.

Proof of Theorem 9.1. Choose α sufficiently large that with high probability a random 3-
XORSAT formula on n variables and m = αn clauses is unsatisfiable, and choose D = εn
sufficiently small as in the proof of Lemma 9.7. We will work on the event that the random
formula is unsatisfiable, and that the variable-clause graph G is an expander as needed in
the proof of Lemma 9.7.

On this high probability event, consider Ẽ as constructed above. This Ẽ respects the
hypercube constraints x2

i − 1 = 0 by construction. Consider one of the other constraints
xSj−cj = 0. To show that Ẽ respects this constraint, it suffices to show that Ẽ[(xSj−cj)xT] =
0 for all |T | ≤ D − 3, which is equivalent to showing

ẼxSj4T
?= cjẼxT = (ẼxSj)(ẼxT) (9.16)

If ẼxSj4T is set to a non-zero value in our construction, then Ẽx(Sj4T)4Sj = ẼxT must
also be set to ẼxT = (ẼxSj4T)(ẼxSj). Conversely, if ẼxT is set to a non-zero value, then we
must also set ẼxSj4T = (ẼxSj)(ẼxT). Thus, ẼxSj4T ≠ 0 if and only if ẼxT ≠ 0, and if both
hold then (9.16) also holds. On the other hand, if neither hold, then both sides of (9.16) are
zero, so it still holds. Thus Ẽ respects the clause constraints xSj − cj = 0 as well.

It remains to show positivity. Consider the pseudomoment matrix Y ∈ R(
[n]
≤D/2)×([n]≤D/2). It

is tempting to argue that, whenever YS,T = ẼxSxT = ẼxS4T ≠ 0, then YS,T = (ẼxS)(ẼxT), so
that Y is rank one and positive semidefinite. But this is not quite correct—indeed, it cannot

117

be correct, since if Y were rank one then it would be an integral point, corresponding to an
actual satisfying assignment for the 3-XORSAT formula, which does not exist!

The issue is that we may have ẼxS = 0 or ẼxT = 0 while still having YS,T = ẼxS4T ≠ 0,
since S4T can be derived in other ways than deriving S and T and then taking their sym-
metric difference. We thus make the following more nuanced argument. Define the relation
S ∼ T if YS,T = ẼxS4T ≠ 0. It is straightforward to check that this is an equivalence relation,
with transitivity following from the symmetric difference identity (R4S)4(S4T) = R4T .
Let C1t· · ·tCk =

(
[n]
≤D/2

)
be the decomposition into equivalence classes under this relation.

Note that then Y decomposes as a direct sum of the principal submatrices indexed by each
Ci; call this matrix Y (i).

We will show that each Y (i) is a rank one positive semidefinite matrix. Note that all
entries of this submatrix are non-zero. Let us fix some Ai ∈ Ci, and suppose S, T ∈ Ci.
Then, we have S4T = (S4Ai)4(T4Ai). By the definition of the equivalence relation, both
ẼxS4Ai ≠ 0 and ẼxT4Ai ≠ 0. So, by Lemma 9.7, we must have ẼxS4T = (ẼxS4Ai)(ẼxT4Ai),
completing the proof.

Notes

Derandomizing It is interesting to ask whether a similar result to Theorem 9.1 can be
achieved without relying on random instances. Randomness plays two roles in the construc-
tion: first, the randomness of the variable-clause graph G is used to ensure expansion, and
second, the randomness of the right-hand side values cj is used to ensure unsatisfiability.
One might hope to find explicit graphs G satisfying the expansion property in Lemma 9.10;
however, as far as I know, deterministic such expander graphs with the amount of flexibility
our argument needs have not been constructed. It is, however, possible to produce deter-
ministic unsatisfiable 3-XORSAT instances that admit similar SOS lower bounds using Tseitin
tautologies on (non-bipartite) expander graphs, as [Gri01b] also showed. However, these are
not “very unsatisfiable” in the way that our random instances here are; these results do not
show large integrality gaps for SOS relaxations of MAX-3-XORSAT. More recently, achieving
the best of both worlds, [DFHT20] gave a construction of a deterministic instance based
on high-dimensional expanders that does achieve a constant MAX-3-XORSAT integrality gap.

Their work leaves an interesting open problems: they only treat SOS degree D = O(
√
logn),

so it remains to improve these results to polynomial or linear degrees.

Open Problem 9.1 (Deterministic MAX-3-XORSAT lower bounds). Find explicit sequences of
3-XORSAT formulas on n variables andm clauses (withm,n→∞) such that at most (1

2+ε)m
clauses are satisfiable by any assignment, while SOS of degree D = Ω(n) fails to refute
satisfiability.

118

10 | Case Study 6: Large Cliques in

Random Graphs

To conclude our study of SOS lower bounds, we will look at a more elaborate example from
this literature, which introduced the important technique of pseudocalibration that has since
been used for many other lower bounds. Pseudocalibration was developed to prove SOS
lower bounds on relaxations of the clique number of random graphs. We recall the basic
definitions below.

We write G(n,p) for the Erdős-Rényi random graph distribution on graphs with n ver-
tices, where each edge is present independently with probability p. For the sake of brevity,
we write G := G(n, 1

2), as this is the only case we study in detail here. A clique in a graph is a
complete subgraph. The clique number, denoted ω(G), is the size of the largest clique. We
will be interested in the behavior of ω(G) when G ∼ G.

Proposition 10.1. For any ε > 0, for G ∼ G, with high probabilityω(G) ∈ [(2−ε) log2n, (2+
ε) log2n.

Proof. We only give the proof of the upper bound using the first moment method; the lower
bound follows by a similar but more involved calculation using the second moment method.
By the union bound followed by standard estimates, we have

P[ω(G) ≥ k] ≤
(
n
k

)(
1
2

)(k2)
≤ nk2−k2/2 = 2k log2 n−k2/2. (10.1)

When k ≥ (2 + ε) log2n, then this is at most 2−Ω(k) = n−Ω(1) and thus goes to zero as
n→∞.

10.1 Planted Clique Model and Information-Theoretic

Threshold

While the problem we ultimately study will only involve bounding ω(G) when G ∼ G, the
study of this problem is motivated by and turns out to be related to the following other
random graph distribution.

Definition 10.2 (Planted clique model). We write Pk = Pk(n) for the random graph distribu-
tion where G ∼ Pk is sampled by sampling H ∼ G, choosing C? ∼ Unif(

(
[n]
k

)
), and letting G

equal the union of H with the clique on the vertices of C?. This special clique on C? in Pk is
called the planted clique.

119

The following statistical question was posed by [Jer92] and [Kuč95]:

“For what k can we detect or recover the planted clique in Pk?”

To detect means, given either G ∼ G or G ∼ Pk, to determine which distribution G was
sampled from; in our case, this just means to tell whether a clique has been planted in G ∼ G
or not. To recover means, given G ∼ Pk, to return Ĉ = Ĉ(G) ∈

(
[n]
k

)
with Ĉ ≈ C?. (In more

traditional statistics language, these are hypothesis testing and estimation, respectively.)
Without computational constraints on these procedures, it is natural to expect that

the threshold or critical value of k around which the possibility of detection and recovery
changes is kstat ≈ 2 log2n, the typical value of ω(G) under G ∼ G. (The subscript indicates
that this is the statistical threshold of this problem, sometimes also called an information-
theoretic threshold, as opposed to the computational threshold discussed below.) Indeed,
this is the case as the following results show.

Proposition 10.3 ([CX16]). If k ≤ (2− ε) log2n, then both detection and recovery are impos-
sible (there is no f : G , {0,1} so that f(G) = 0 with high probability under G ∈ G and
f(G) = 1 with high probability under G ∼ Pk, and there is no Ĉ(G) such that Ĉ = C? with
high probability under G ∼ Pk).

This result was likely folklore before the reference given; we will see an argument for the
negative part later.

Proposition 10.4. If k ≥ (2+ε) log2n, then the estimator Ĉ outputting the largest clique in G
equals C? with high probability under G ∼ Pk, and a hypothesis test thresholding ω(G) (say,
at 2+ ε/2) distinguishes G and Pk with high probability.

This second result is just a direct corollary of Proposition 10.1 and the fact that ω(G) ≥ k
with probability 1 when G ∼ Pk.

However, computingω(G) or finding its maximizer (a maximum clique in G) are NP-hard
problems. So, the existence of this test and estimator does not address the more relevant
algorithmic question: what is the threshold kcomp so that, when k Ý kcomp, then an efficient
(say, polynomial time) algorithm can detect or recover a planted clique? In fact, we will see
that there is much evidence that, for this problem, kcomp � kstat, a phenomenon called a
statistical-to-computational or information-computation gap.

10.2 Basic Algorithms for Recovering Planted Cliques

To predict how we expect kcomp to behave, let us consider two relatively simple classes of
algorithms, focusing here on recovery of a planted clique.

10.2.1 Degree Thresholding

The first, quite simple, algorithmic idea, observed by [Kuč95], is that adding the clique C?

to a random graph increases the degree of the vertices involved in the clique. Thus we may
try to estimate C? by just finding the highest-degree vertices in the graph and outputting
those. The following establishes when this works.

120

Theorem 10.5 ([Kuč95]). There is a constant C > 0 such that, if k ≥ C
√
n logn, then, letting

Ĉ(G) output the set of the k vertices of highest degree in G, with high probability under
G ∼ Pk, Ĉ(G) = C?.

Proof Sketch. For any fixed i ∈ [n], the law of deg(i) when H ∼ G is Bin(n − 1, 1
2). In

particular, these have mean ≈ n
2 and variance ≈

√
n

2 and are O(n)-subgaussian. Thus the

maximum degree in H ∼ G is, with high probability, O(
√
n logn). The same then applies for

the maximum degree of all i ∉ C? under G ∼ Pk, and the result follows.

10.2.2 Spectral Algorithms

It is then natural to ask if this simple idea is optimal or not. A different, more sophisticated

approach shows that we may in fact remove the
√
logn factor that the degree thresholding

algorithm requires.
The idea of this improved algorithm is to reason not in terms of the graph structure but

in terms of the spectral properties of the adjacency matrix. Let us derive an approximate
description of A ∈ Rn×nsym , the adjacency matrix of G ∼ Pk. First, consider A(0) the adjacency
matrix of H ∼ G. Separating it into the mean and the centered fluctuations and ignoring the
diagonal, we have

A(0) = EA(0) + (A(0) − EA(0)︸ ︷︷ ︸
=:∆

) ≈ 1
2
11> +∆, (10.2)

where ∆ has i.i.d. entries above the diagonal distributed as Unif({±1
2}).

Now, we may view the addition of C? to H as adding (ignoring both the diagonal and
repeated edges) an all-ones submatrix to A(0) indexed by C?. Letting x? have x?i = 1{i ∈
C?}, we then have

A ≈A(0) +x?x?> ≈ 1
2
11> +x?x?> +∆. (10.3)

We may then try to estimate x? by computing the top eigenvector (that with largest
eigenvalue) of A − 1

211
> ≈ x?x?> + ∆. By the eigenvector perturbation bound of Proposi-

tion 4.6, this should give us a good estimate when ‖x?x?>‖ = k � ‖∆‖. Random matrix
theory gives us tools for understanding this remaining norm.

Theorem 10.6 ([FK81, AGZ10]). Suppose ∆ ∈ Rn×nsym has ∆ii = 0 and ∆ij ∼ ρ independently
for i < j, where Ex∼ρ[x] = 0 and Ex∼ρ[etx] < ∞ for some t > 0. Let σ 2 := Ex∼ρ[x2]. Then,
‖∆‖/√n→ 2σ in probability. In particular, with high probability ‖∆‖ = O(√n).

Reasoning very loosely, one may guess this scaling as follows: we have E‖∆‖2
F = O(n2) =

E
∑n
i=1 λi(∆)2. Thus, we might expect the typical eigenvalue to have λi(∆)2 = O(n), and if

the extreme eigenvalues also have this scaling then indeed ‖∆‖ = O(√n).
Thus we see that this estimator should succeed when k�√n. In fact, even when k ∼ √n,

it is possible to start with this spectral estimator and then refine it with a combinatorial
procedure to recover C?, as the following result showed.

Theorem 10.7 ([AKS98]). There is a constant C > 0 and a polynomial-time algorithm such
that, if k ≥ C√n and (C?, G) ∼ Pk, then the algorithm returns C? with high probability.

121

10.2.3 The Planted Clique Hypothesis

The best algorithms we have seen, recovering the planted clique when k Ý √n, are still very
far from the statistical threshold kstat ∼ logn. However, it is believed that the behavior of
the spectral algorithm above is essentially optimal.

Conjecture 10.8. There is no polynomial-time algorithm that, when k�√n, either achieves
detection between G and Pk or recovery under Pk.

Already some evidence for this conjecture was given by Jerrum in [Jer92], who showed
that a natural algorithm based on Markov Chain Monte Carlo does not succeed in quickly
recovering the planted clique in this regime. However, for a long time after his work this
was the only evidence available for Conjecture 10.8, so the claim was plausible but not
overwhelmingly convincing—it seemed just as likely that more powerful algorithms might
improve on the performance of spectral algorithms. In the rest of this chapter, we will see
that constant-degree SOS relaxations cannot improve on spectral algorithms, giving much
stronger evidence for the Conjecture.

10.3 Sum-of-Squares Relaxations: Introduction and

Degree 2

When discussing SOS relaxations of the planted clique problem, we will focus on using them
for detection or distinguishing between G and Pk. First, notice that ω(G) may be written as
the polynomial optimization problem

ω(G) =

maximize

∑n
i=1xi

subject to x2
i − xi = 0 for all i ∈ [n],
xixj = 0 for all i 6∼G j

 , (10.4)

where ∼G is the adjacency relation in G. We note that i 6∼G j is equivalent to Aij = 0,
which will be a useful way to interpret this constraint later. This is a correct formulation
because the first constraint imposes xi ∈ {0,1}, while the second imposes that those i for
which xi = 1 must form a clique in G. Let us write SOSD(G) for the value of the degree D
relaxation of this problem.

Since SOSD(G) is indeed a relaxation, when G ∼ Pk, we must have SOSD(G) ≥ k. Thus,
we have the following simple observation.

Proposition 10.9. Suppose k = k(n) ∈ N is increasing and ε > 0. If when G ∼ G we have
SOSD(G) ≤ (1− ε)k with high probability as n → ∞, then an algorithm computing SOSD(G)
and thresholding its value can distinguish G and Pk with high probability.

When we talk about “lower bounds against SOS for the detection problem,” we are really
talking about showing that this kind of algorithm does not succeed. Thus, it will suffice to
show that SOSD(G) Ý

√
n, say for any fixed D and with high probability as n→∞.

122

Let us consider the first of these relaxations, the case D = 2. You may verify that, in the
Lasserre form, this program may be written in the form

SOS2(G) =

maximize
∑n
i=1xi

subject to X :=
[

1 x>

x M

]
� 0,

x ∈ Rn,M ∈ Rn×nsym ,
Mii = xi for all i ∈ [n],
Mij = 0 for all i 6∼G j

. (10.5)

The final constraint may be viewed as stating that M has the same “sparsity pattern” as
A: Mij is allowed to be non-zero only when Aij is non-zero. In Exercise 10.1, you will
show that this SDP is the same as the Lovász ϑ function bounding ω(G) that you may have
encountered before.

Theorem 10.10 ([FK00]). When G ∼ G, with high probability SOS2(G) Ý
√
n.

Proof. We build our pseudomoment matrix X to be as naive as possible, satisfying the
linear constraints but taking all degree 1 pseudomoments equal, and all non-zero degree 2
pseudomoments equal. Such matrices are, for some a,b ∈ R,

X =
[

1 a1>

a1 aIn + bA

]
. (10.6)

The objective value of such a matrix is an, so we want to show that it is possible to have
X � 0 with a Ý 1/

√
n.

By the Schur complement condition, X � 0 if and only if

aIn − a211> + bA � 0. (10.7)

Moreover, using our decomposition forA into the mean and centered fluctuation and being
slightly more careful, we have

A = EA+ (A− EA︸ ︷︷ ︸
=:∆

) = 1
2
11> − 1

2
In +∆. (10.8)

Substituting and rearranging, it suffices to show that(
b
2
− a2

)
11> +

(
a− b

2

)
In + b∆ � 0. (10.9)

Using that ∆ � −‖∆‖In = −C
√
nIn for some C > 0 by Theorem 10.6 and grouping the last

two terms together, it suffices to have

1
2
b ≥ a2, (10.10)

a ≥ 3
2
bC
√
n. (10.11)

We may achieve this taking a ∼ 1/
√
n and b ∼ 1/n with suitable constants, completing the

proof.

123

10.4 Feige-Krauthgamer Pseudomoments and Kelner’s

Polynomial

It is natural to try to continue in the same spirit as our degree 2 lower bound for larger
degrees D, defining

ẼxS := 1{S is a clique in G}f(|S|) (10.12)

for some f : N → R. To derive the “right” values of f , it is helpful to suppose that we aug-
ment the underlying polynomial problem with the constraint

∑n
i=1xi = k and search for any

pseudoexpectation satisfying this additional constraint, rather than maximizing Ẽ[
∑n
i=1xi].

(This is a stronger version of the SOS relaxation that many papers in this literature worked
with.) In this case, we may calculate roughly

ka = Ẽ

 n∑
i=1

xi

a (10.13)

which we suppose is dominated by a-cliques,

≈ #{a-cliques in G} · a! · f(a), (10.14)

and since, by the calculation in the proof of Proposition 10.1, we expect the number of
a-cliques to be roughly

(
n
a

)
2−(

a
2) ∼ na for small a, we have

∼ naf(a). (10.15)

Thus we expect the scaling

ẼxS � 1{S is a clique in G}
(
k
n

)|S|
. (10.16)

Indeed, this is the scaling that we saw in the proof of Theorem 10.10, where k ∼ √n and
Ẽxi ∼ n−1/2 and Ẽxixj ∼ n−1 for all i ∼ j. This choice of pseudomoments (with some small
adjustments) was studied by Feige and Krauthgamer in [FK03], who showed that it gives tight
lower bounds in the weaker Lovász-Schrijver hierarchy of semidefinite programs. For this
reason we call these the FK pseudomoments, and write Ẽ = ẼFK for the pseudoexpectation
defined by (10.16).

Another interpretation of this choice is that it “pretends” to behave like an expectation
under G ∼ Pk. Indeed, we have(

k
n

)|S|
≈ P
(C?,G)∼Pk

[S ⊆ C?] = E
(x?,G)∼Pk

[(x?)S]. (10.17)

Starting from this and “brutely” applying the clique constraints by multiplying by the indi-
cator in (10.16) is another way to build the FK pseudomoments.

However, it turns out that there is a problem with using the FK pseudomoments for
higher-degree SOS relaxations, whose discovery is attributed to Kelner (see, e.g., discussion

124

in [Hop18c]). Let us write ẼFK
G for the FK pseudomoments built from a given graph G. Note

that the above observations may be written in the form

E
G∼G

ẼFK
G [x

S] ≈ E
(x?,G)∼Pk

[(x?)S], (10.18)

since in taking the expectation over G on the left-hand side we only introduce a further
factor of P[S is a clique in G] = 2−(

|S|
2), which is of constant order for low-degree SOS.

We will to conditions of the form (10.18), which play a crucial role in the pseudocalibra-
tion construction to come, but for now we just notice first that, if (10.18) holds for all xS

with |S| ≤ D, then by linearity it also holds for all p(x) with deg(p) ≤ D. But moreover,
if we want ẼFK

G to “pretend” to take an expectation over Pk, we might expect the same to
hold when p depends on G as well. Let us view G as encoded in its ±1 adjacency matrix
G ∈ {±1}n×nsym with Gii := 1 by convention. Then, if we have some p(x,G) with degx(p) ≤ D
and degG(p) small as well, then we might expect to have

E
G∼G

ẼFK
G [p(x,G)] ≈ E

(x?,G)∼Pk
[p(x?,G)]. (10.19)

We give further reasoning for why this is desirable in the next section, but let us take it for
granted for the moment to identify a “bad” p(x,G).

We consider Kelner’s polynomial

p(x,G) :=
n∑
i=1

 n∑
j=1

Gijxj

4

= ‖Gx‖4
4 =

n∑
i,j,k,`,m=1

GijGikGi`Gimxjxkx`xm (10.20)

Consider (10.19) evaluated with this polynomial. On the right-hand side, we have by condi-
tioning on C? first

E
(x?,G)∼Pk

[GijGikGi`Gimx?j x
?
kx

?
` x

?
m] = E

C?
1{j, k, `,m ∈ C?} E

G∼Pk
[GijGikGi`Gim | C?]

and, since conditional on C? the Gij are independent and are either 1 with probability 1 if
i, j ∈ C? or i = j, or distributed as Unif({±1}) otherwise, we find

= E
C?

1{j, k, `,m ∈ C?}1{i ∈ C?}

= E
C?

1{i, j, k, `,m ∈ C?}, (10.21)

and thus, summing over all i, j, k, `,m ∈ [n], since |C?| = k we have

E
(x?,G)∼Pk

[p(x?,G)] = k5. (10.22)

On the other hand, on the left-hand side upon expanding we have

E
G∼G

ẼFK
G [GijGikGi`Gimxjxkx`xm]

≈
(
k
n

)|{j,k,`,m}|
E
G∼G

[
GijGikGi`Gim1{{j, k, `,m} are a clique in G}

]

125

where the indicator in the expectation is independent of the remaining terms, so we may
factor out P[{j, k, `,m} are a clique in G], which is only of constant order, so we ignore it
in our approximation, finding

≈
(
k
n

)|{j,k,`,m}|
E
G∼G
[GijGikGi`Gim]. (10.23)

If i ∉ {j, k, `,m}, then the remaining expectation is 1 if each index among j, k, `,m occurs
an even number of times, and 0 otherwise. If i ∈ {j, k, `,m}, say i = j, then GijGikGi`Gim =
GjkGj`Gjm, so again the expectation is 1 if one of k, `,m equals j and the other two of
k, `,m are equal, and zero otherwise. Thus in either case the expectation can only be non-
zero if each index among j, k, `,m occurs an even number of times.

Putting things together, the left-hand side scales as

E
G∼G

ẼFK
G [p(x,G)] Ü n

(
n2
(
k
n

)2

+n
(
k
n

))
= O(k2n), (10.24)

where the outer factor of n corresponds to the summation over i and the inner terms count
the contributions from |{j, k, `,m}| = 2 and |{j, k, `,m}| = 1, respectively.

Finally, comparing the left- and right-hand sides, we see that (10.19) is violated once
k2n� k5, or

k� n1/3. (10.25)

That is, we might expect the FK pseudomoments to fail to be feasible for some low degree of
SOS for clique sizes smaller than k = n1/3 � n1/2, and in particular the FK pseudomoments
should not prove the tight lower bound we are interested in.

The following shows that, using Kelner’s polynomial, we may in fact show that the FK
pseudomoments fail to satisfy a concrete inequality of pseudoexpectations admitting a low-
degree SOS proof.

Lemma 10.11. For any Ẽ of degree at least 6 satisfying the clique constraints on a graph G,
Ẽ‖Gx‖4

4 ≥ Ẽ(
∑n
i=1xi)5.

Proof. Note that we have the identity

1− xi = (1− xi)2 − (x2
i − xi), (10.26)

and thus for any s(x) ∈ SOS with deg(s) ≤ 4, we have

0 ≤ Ẽ[(1− xi)s(x)] = Ẽ[s(x)]− Ẽ[xis(x)], (10.27)

or
Ẽ[xis(x)] ≤ Ẽ[s(x)]. (10.28)

Now, expanding the pseudoexpectation we are trying to bound and applying this, we
have

Ẽ‖Gx‖4
4 =

n∑
i=1

Ẽ

 n∑
j=1

Gijxj

4

≥
n∑
i=1

Ẽ

xi
 n∑
j=1

Gijxj

4

126

and, expanding fully now,

=
n∑

i,j,k,`,m=1

GijGikGi`GimẼ[xixjxkx`xm]

where the pseudoexpectation is non-zero only if {i, j, k, `,m} form a clique in G, in which
case Gij = Gik = Gi` = Gim = 1, so we have

=
n∑

i,j,k,`,m=1

Ẽ[xixjxkx`xm]

= Ẽ

 n∑
i=1

xi

5

,

completing the proof.

With some more technicalities, degree 6 can also be lowered to degree 4. With a slightly
more careful analysis, one may show the following.

Corollary 10.12. For k = k(n)� n1/3, any pseudomoments ẼFK
G satisfying the scaling (10.16)

are with high probability (as n→∞ and under G ∼ G) not feasible for degree 4 SOS.

These pseudomoments do show that SOS4(G) ≥ n1/3/polylog(n) with high probability,
as was first shown by [DM15]. Moreover, the best bound lower bound on degree D SOS
that can be proved with the FK pseudomoments scales as SOSD(G) ≥ n1/(D/2+1)/polylog(n)
(for D constant as n → ∞), as shown by [HKP15]. On the other hand, it is possible to
improve on the FK pseudomoments at least for degree 4—[HKP15] found a somewhat ad
hoc adjustment of these pseudomoments to deal with Kelner’s polynomial and similar ob-
structions, and showed that their adjusted pseudomoments do give the essentially optimal
bound SOS4(G) ≥ n1/2/polylog(n). Next, we will discuss the seminal improved pseudomo-
ment construction that allowed this bound to be extended to all constant D.

10.5 Pseudocalibration

Let us revisit the condition (10.19) that we proposed above, which we repeat below: for a
pseudoexpectation ẼG constructed from a graph G to achieve a strong lower bound over
G ∼ G, we claimed that we might expect to have

E
G∼G

ẼG[p(x,G)] ≈ E
(x?,G)∼Pk

[p(x?,G)]. (10.29)

Why and for what p should we expect such a “calibration” property to hold?

127

10.5.1 Motivating Argument

Let us step back and remember the broader context: we are interested in whether solving
the SOSD(G) program can distinguish G ∼ G and G ∼ Pk; Conjecture 10.8 tells us that, for
k� n1/2 and D constant, we expect this to be impossible.

Suppose ẼG is the optimizer of SOSD(G). (We should expect our lower bound construc-
tion to be close to the optimizer if we are to prove a tight lower bound!) Previously we
restricted our attention to using SOSD(G) to solve this detection problem in the following
specific way: we would compute the value of the relaxation, i.e., compute ẼG[

∑n
i=1xi], and

threshold this quantity. For G ∼ Pk it would be at least k, so if for G ∼ G this quantity is,
say, at most (1 − ε)k with high probability, then this detection procedure would succeed
(that was the content of our Proposition 10.9).

The first key idea is that there is no reason to use the specific polynomial
∑n
i=1xi: if

we could replace that with some other polynomial p(x,G), we could attempt the same
thresholding procedure. Thus, if Conjecture 10.8 holds, we should at least expect to have

E
G∼G

ẼG[p(x,G)] ≈ E
G∼Pk

ẼG[p(x,G)]. (10.30)

Which polynomials p do we expect this to hold for? For the evaluation of the pseudoexpecta-
tion to make sense, we need degx(p) ≤ D. But also, for p(x,G) to be computable efficiently
the degree in the G variables must be bounded, say by some other constant degG(p) ≤ ∆.
(If we did not include this constraint, then we could take, e.g., p(x,G) =ω(G) which, being
a function of the Boolean matrix G is some polynomial in G, in which case (10.30) would
fail even once k� logn.)

The second idea is that, when k is close to n1/2 (as large as possible for Conjecture 10.8
to still apply), then when (x?, G) ∼ Pk, we expect to have

ẼG ≈ Eδx? . (10.31)

That is, as we approach the threshold of detection becoming possible, we expect the SOS
optimizer under the planted distribution Pk to behave like just an evaluation at the indicator
x? of the planted clique. (Another way to think about this is that around this threshold we
expect SOS to successfully solve the problem of recovering the planted clique.)

If we believe this, then combining (10.30) and (10.31) we find

E
G∼G

ẼG[p(x,G)] ≈ E
G∼Pk

ẼG[p(x,G)] ≈ E
(x?,G)∼Pk

p(x?,G), (10.32)

the same relation we proposed earlier. The requirement that (10.32) hold for all p with
degx(p) ≤ D and degG(p) ≤ ∆ is called pseudocalibration of the pseudoexpectation ẼG.

10.5.2 Deriving Pseudocalibrated Pseudomoments

We next show how (10.32) constrains ẼG sufficiently that there is essentially only one pseu-
docalibrated pseudoexpectation, and pseudocalibration can in fact be used to derive an
explicit description of this ẼG.

128

Consider what happens when we plug into (10.32) a monomial p(x,G) = xTGS . Note
that x ∈ Rn, so T ⊆ [n], while the degrees of freedom of the indices of G may be identified
with

(
[n]
2

)
(corresponding to the possible edges in G), so S ⊆

(
[n]
2

)
. Pseudocalibration then

gives us, upon using linearity of ẼG,

E
G∼G

[
GS ẼG[xT]

]
= E
(x?,G)∼Pk

[
(x?)TGS

]
. (10.33)

Consider the function fT (G) := ẼG[xT] (where we recall that we identify the graph G with
the matrix G). The left-hand side above is then none other than the Boolean Fourier trans-
form of fT , evaluated at the index S:

f̂T (S) = E
(x?,G)∼Pk

[
(x?)TGS

]
. (10.34)

We know that the full Fourier transform, by Fourier inversion, would fully determine fT ,
and doing this for all T would fully determine ẼG:

ẼG[xT] = fT (G) =
∑

S⊆([n]2)
f̂T (S)GS . (10.35)

Unfortunately, we only expect pseudocalibration to ensure the above for sufficiently small
S, having |S| ≤ ∆. To fully determine ẼG, we must then make some choice of what f̂T (S)
should be for large S. The choice that we make is, as a last assumption, to set these to zero:

assume f̂T (S) = 0 for |S| > ∆. (10.36)

One way to justify this is to note that, as an evalution of the solution of the degree D
SOS relaxation, ẼG is efficiently computable from G. On the other hand, if the polynomial
expansion (10.35) has non-zero terms for many large S, then ẼG would not be efficiently
computable as a polynomial, in the usual brute force way of evaluating polynomials. Of
course, some special polynomials can be computed faster than by term-by-term summation,
but this heuristic gives some justification for the assumption (10.36).

Under this assumption, we have enough information to fully determine ẼG, and we arrive
at the first version of our pseudocalibrated pseudoexpectation:

Ẽ(0)G [x
T] :=

∑
S⊆([n]2)
|S|≤∆

(
E

(x?,G)∼Pk

[
(x?)TGS

])
GS . (10.37)

We will see that to satisfy the actual SOS constraints we will need to make some further
adjustments to this construction, but this is very close to the pseudoexpectation that is
used to prove our lower bound.

10.5.3 Computing Fourier Coefficients

Our description in (10.37) may not seem fully satisfying, since the Fourier coefficients are
still given as vague-looking expectations over Pk. But actually, these are not hard to compute

129

in closed form, and we give the calculation below. The following notion will be useful; the
notation encourages us to think of S as a set of “potential edges” in G (or actual edges in
the complete graph Kn), and defines the set of vertices that these edges touch:

vert(S) :=
⋃

{i,j}∈S
{i, j} = {i ∈ [n] : i ∈ A for some A ∈ S} . (10.38)

Lemma 10.13 (Pseudocalibration Fourier coefficients). For any T ⊆ [n] and S ⊆
(
[n]
2

)
, we

have

E
(x?,G)∼Pk

[
(x?)TGS

]
= P
C?∼Unif(([n]k))

[T ∪ vert(S) ⊆ C?] ≈
(
k
n

)|T∪vert(S)|
. (10.39)

Proof. Expanding the definitions and then conditioning on C?, we may rewrite:

E
(x?,G)∼Pk

(x?)TGS = E
(C?,G)∼Pk

1{T ⊆ C?}
∏

{i,j}∈S
Gij

= E
C?∼Unif(([n]k))

1{T ⊆ C?} E
G∼Pk

 ∏
{i,j}∈S

Gij

∣∣∣∣∣C?

Here, the inner expectation is zero if any of the Gij in the product are not forced to equal 1
by the conditioning. Thus, we have

= E
C?∼Unif(([n]k))

1{T ⊆ C?}1{vert(S) ⊆ C?}

= E
C?∼Unif(([n]k))

1{T ∪ vert(S) ⊆ C?}

= P
C?∼Unif(([n]k))

[T ∪ vert(S) ⊆ C?],

and the remaining approximation for small |T ∪ vert(S)| is straightforward.

Actually, it will be convenient for us to assume the approximation above holds exactly,
so we will make a first adjustment to our construction by plugging it in directly, obtaining
more explicit, negligibly different pseudomoments

Ẽ(1)G [x
T] :=

∑
S⊆([n]2)
|S|≤∆

(
k
n

)|T∪vert(S)|
GS . (10.40)

10.6 Adjustments to Satisfy Relaxation Constraints

We will have to further adjust our construction of ẼG in order to satisfy the SOS constraints.
Recall that we wrote ω(G) as a polynomial optimization problem in (10.4), and based on
this we may write the feasibility conditions on ẼG as follows:

1. ẼG is linear,

130

2. ẼG[(x2
i − xi)p(x)] = 0 whenever deg(p) ≤ D − 2,

3. ẼG[xixjp(x)] = 0 whenever i 6∼G j and deg(p) ≤ D − 2,

4. ẼG[1] = 1, and

5. ẼG[p(x)2] ≥ 0 whenever deg(p) ≤ D/2.

Since our general plan is to specify ẼG[xT] for sets T and extend first to multisets and
then to arbitrary polynomials by linearity, Conditions 1 and 2 will always be satisfied auto-
matically so long as we stick to this class of constructions.

10.6.1 Clique Constraints

Let us next consider Condition 3. By expanding p(x) as a sum of monomials and applying
Condition 2 as needed, we see that it suffices to show this equivalent condition:

3′. ẼG[xT] = 0 whenever T ∈
(
[n]
≤D

)
is not a clique in G.

We observe that this condition almost holds: grouping the terms in (10.40) by the set
R := T ∪ vert(S), we have

Ẽ(1)G [x
T] =

∑
R⊆[n]
T⊆R

(
k
n

)|R| ∑
S⊆([n]2)

R\T⊆vert(S)⊆R
|S|≤∆

GS

and, expanding the definition of GS , we have

=
∑
R⊆[n]
T⊆R

(
k
n

)|R| ∑
S⊆([n]2)

R\T⊆vert(S)⊆R
|S|≤∆

(−1)#{{i,j}∈S:i 6∼Gj}. (10.41)

Note first that for R large enough there are no terms in the inner sum since it becomes
impossible to have both R \ T ⊆ vert(S) and |S| ≤ ∆, so there are really only finitely many
terms in the outer sum. Note also that for R small enough, namely for

(
|R|
2

)
≤ ∆, we may

discard the size constraint on S, |S| ≤ ∆. Suppose that this is the case, and that T is not a
clique in G. That means that are some i0, j0 ∈ T with i0 6∼G j0. We may then reorganize the
inner sum as∑

S⊆([n]2)
R\T⊆vert(S)⊆R

(−1)#{{i,j}∈S:i 6∼Gj} =
∑

S⊆([n]2)
R\T⊆vert(S)⊆R
{i0,j0}∉S

(
(−1)#{{i,j}∈S:i 6∼Gj} + (−1)#{{i,j}∈S∪{{i0,j0}}:i 6∼Gj}

)

= 0, (10.42)

since each pair of grouped terms now are opposite signs.
Thus, the only reason that Condition 3′ does not hold for Ẽ(1)G is that there are some R

for which the inner sum is not empty, but we cannot disregard the condition |S| ≤ ∆; this

131

Construction Formula (on xT) Source Issue

Ẽ(0)G
∑
S⊆([n]2)
|S|≤∆

(
EPk

[
(x?)TGS

])
GS Pseudocalibration and

low-degree truncation
Inconvenient
combinatorial coefficients

Ẽ(1)G
∑
S⊆([n]2)
|S|≤∆

(
k
n

)|T∪vert(S)|
GS Approximate evaluation

of Fourier coefficients
Does not satisfy clique
constraints

Ẽ(2)G
∑

S⊆([n]2)
|T∪vert(S)|≤∆

(
k
n

)|T∪vert(S)|
GS Different application of

truncation
Does not satisfy
normalization Ẽ[1] = 1

Ẽ(3)G = ẼG Ẽ(2)G [xT]/Ẽ
(2)
G [1] Normalization None!

Table 10.1: The sequence of constructions eventually leading to a valid pseudoexpectation
for the planted clique problem.

condition actually imposes a non-trivial truncation of the inner sum. In that case, the above
grouping fails because it can be that {i0, j0} ∉ S with |S| = ∆, so that S ∪ {{i0, j0}} is not
included in the sum.

To deal with this, we adjust our construction again, changing the way that we perform
the truncation on the size of S to make sure the above issue never occurs. Namely, we take:

Ẽ(2)G [x
T] :=

∑
S⊆([n]2)

|T∪vert(S)|≤∆

(
k
n

)|T∪vert(S)|
GS . (10.43)

Following the above argument again, one may then check the following.

Proposition 10.14. For any graph G and any T not a clique in G, Ẽ(2)G [xT] = 0.

10.6.2 Normalization Constraint

We are now ready to state the final pseudoexpectation that we will work with to prove our
main lower bound:

ẼG[xT] = Ẽ(3)G [x
T] := Ẽ(2)G [xT]

Ẽ(2)G [1]
. (10.44)

This will automatically satisfy Conditions 1 through 4 above, so it will remain to prove
positivity.

However, it will be useful for us to know at a quantitative level that this renormalization
does not change the values of the pseudoexpectation too much, i.e., that Ẽ(2)G [1] ≈ 1. (At the
very least, we would like Ẽ(2)G [1] > 0 so that positive semidefiniteness of Ẽ(3)G is equivalent
to that of Ẽ(2)G .)

Lemma 10.15 (Approximate normalization of Ẽ(2)G). Suppose k ≤ √n. The random variable
Y = Y(G) := Ẽ(2)G [1] satisfies the following properties:

E[Y] = 1, (10.45)

Var[Y] = O∆
((

k√
n

)4
)
. (10.46)

In particular, if k = n1/2−ε and ∆ is constant, then |Y − 1| = O(n−Ω(ε)) with high probability.

132

We note that, remarkably, the k ∼ √n threshold appears independently of any of our previ-
ous algorithmic reasoning in this calculation! We will return to this phenomenon later when
we study low-degree polynomial algorithms and their connection to pseudocalibration.

Proof. From the definition of Ẽ(2)G evaluated with T = ∅, we have

Y =
∑

S⊆([n]2)
|vert(S)|≤∆

(
k
n

)|vert(S)|
GS . (10.47)

We note that E[GS] = 0 for any S ≠∅, since Gij ∼ Unif({±1}) independently. Thus the only
contribution to E[Y] is from S = ∅, and we indeed find E[Y] = 1.

For computing the second moment E[Y 2], we note that E[GSGS′] = E[GS4S′] is zero
unless S = S′, in which case it is 1 (indeed, this statement is just the orthonormality of the
Boolean Fourier basis GS). Thus we have

E[Y 2] =
∑

S⊆([n]2)
|vert(S)|≤∆

(
k
n

)2|vert(S)|
= 1+

∑
S⊆([n]2)

2≤|vert(S)|≤∆

(
k
n

)2|vert(S)|

︸ ︷︷ ︸
=Var[Y]

, (10.48)

where we isolate the contribution of S = ∅. Grouping according to t = |vert(S)| and making
some elementary estimates, we have

Var[Y] ≤
∆∑
t=2

(
k
n

)2t (n
t

)
︸ ︷︷ ︸
≤nt

#{distinct graphs on t labelled vertices}︸ ︷︷ ︸
≤2t2

≤ 2∆
2
∆∑
t=2

(
k√
n

)2t

= O∆
((

k√
n

)4
)
,

where we use that, since k/
√
n ≤ 1 by assumption, up to terms depending on ∆, the value

of the sum is proportional to the first term.

The last thing that we will need for our lower bound is to verify that the objective func-
tion of the SOS relaxation, Ẽ[

∑n
i=1xi], is still roughly k even after all of our adjustments.

This result is quite similar to Lemma 10.15, so we only sketch the proof to highlight the
main differences.

Lemma 10.16. Suppose k ≤ √n. The random variable Z = Z(G) := Ẽ(2)G [
∑n
i=1xi] satisfies the

following properties:

E[Z] = k, (10.49)

Var[Y] = O∆
(
k2
(
k√
n

)4
)
. (10.50)

In particular, if k = n1/2−ε and ∆ is constant, then Z ≥ n1/2−ε/2 with high probability.

133

Proof Sketch. Expanding as in Lemma 10.15, we have

Z =
n∑
i=1

∑
S⊆([n]2)

|vert(S)∪{i}|≤∆

(
k
n

)|vert(S)∪{i}|
GS . (10.51)

In each inner sum, the only contribution to E[Z] is again from S = ∅, for which the contri-
bution is k/n. Thus we have E[Z] = (k/n) ·n = k.

Switching the order of summation and grouping according to the coefficient of GS , ne-
glecting some minor subtleties with the truncation for large S, we essentially have

Z ≈
∑

S⊆([n]2)
|vert(S)|≤∆

(
|S|

(
k
n

)|vert(S)|
+ (n− |S|)

(
k
n

)|vert(S)|+1
)
GS

=
∑

S⊆([n]2)
|vert(S)|≤∆

(
|S| + n− |S|

n
· k
)(
k
n

)|vert(S)|
GS

and, since we have |S| � k�√n, we further have

≈ k
∑

S⊆([n]2)
|vert(S)|≤∆

(
k
n

)|vert(S)|
GS

= kY ,

where Y is as in Lemma 10.15. The rest of the proof then goes through as before, though to
be fully precise we must account for the approximations above carefully.

10.6.3 Formulating Main Lower Bound

Finally, with the above results established, we may formulate the remaining positivity result
that we will need to prove, and use this to formulate and prove our main theorem (which,
assuming that result, will be nothing but a combination of the various preliminary results).
We do this here before moving on to the complexities of proving positivity.

Lemma 10.17 (Positivity of Ẽ(2)G). Suppose D is constant not depending on n, k = n1/2−ε for a
fixed ε > 0 also not depending on n, and ∆ = C ·D/ε for a universal constant C > 0. Then,
with high probability, for all p with deg(p) ≤ D/2, Ẽ(2)G [p(x)2] ≥ 0.

Theorem 10.18 (Planted clique lower bound; special case of [BHK+19]). Suppose D is con-
stant not depending on n, k = n1/2−ε for a fixed ε > 0 also not depending on n, and
∆ = C ·D/ε for a universal constant C > 0. Let ẼG = Ẽ(3)G be as in (10.44) or Table 10.6.2 (this
pseudoexpectation is a function of G, k, and ∆). Then, with high probability, ẼG is feasible for
the degree D SOS relaxation of ω(G), and has objective value ẼG[

∑n
i=1xi] ≥ n1/2−ε/3.

We note that the original reference [BHK+19] also allowed D to grow modestly with n, which
is an interesting extension of this lower bound, but for the sake of simplicity in our exposi-
tion we do not allow this.

134

Proof. ẼG satisfies linearity, respects the Boolean constraints x2
i −xi = 0, and has ẼG[1] = 1

by construction. It respects the clique constraints xixj = 0 when i 6∼G j by Proposi-
tion 10.14.

We have ẼG = Ẽ(2)G /Ẽ
(2)
G [1]. By Lemma 10.17, Ẽ(2)G satisfies the positivity constraint with

high probability, and by Lemma 10.15 we have Ẽ(2)G [1] > 0 with high probability. Thus, also
with high probability, ẼG satisfies the positivity constraint.

Finally, by Lemma 10.16 we have Ẽ(2)G [
∑n
i=1xi] ≥ n1/2−ε/2 with high probability, and by

Lemma 10.15 we have Ẽ(2)G [1] ≤ 3
2 with high probability. Thus, also with high probability,

ẼG[
∑n
i=1xi] = Ẽ(2)G [

∑n
i=1xi]/Ẽ

(2)
G [1] ≥ n1/2−ε/3.

Exercises

Exercise 10.1 (Lovász ϑ function). Let G be a graph on vertex set [n]. An orthonormal
representation of G is a set of unit vectors v1, . . . ,vn ∈ Sd−1 so that 〈vi,vj〉 = 0 whenever
i 6∼G j. The Lovász ϑ function of G is the quantity

ϑ(G) := min
c∈Sd−1

(v1,...,vn) an orthonormal
representation of G

max
i∈[n]

1
〈c,vi〉2

. (10.52)

This is a bound on the size of the maximum independent set in G, and geometrically may be
viewed as finding the narrowest cone (centered on c) on which an orthonormal representation
of G may lie. Let G be the graph complement of G. Show that

ϑ(G) = SOS2(G). (10.53)

Notes

Metropolis Revisited It was recently realized that, in retrospect, it was not quite correct
to take Jerrum’s lower bound against Metropolis dynamics finding planted cliques of size
n1/2−ε for some ε > 0 in [Jer92] as evidence that n1/2 is the threshold of detectability in
planted cliques. On the contrary, Jerrum’s result was suboptimal, and Metropolis dynamics
is much worse at finding planted cliques, failing to find even cliques of size n1−ε [CMZ23].

135

Part IV

Miscellaneous Background

136

A | Linear Algebra

A.1 Symmetric Matrices

Definition A.1 (Frobenius inner product). 〈X ,Y 〉 :=
∑
i,j XijYij = Tr(X>Y).

Definition A.2 (Eigenvalues). ForX ∈ Rn×nsym , we write λ1(X) ≥ · · · ≥ λn(X) for the ordered
eigenvalues. We also sometimes write λmax(X) = λ1(X) and λmin(X) = λn(X).

A.2 Positive Semidefinite Matrices

Definition A.3. Let X ∈ Rn×nsym . We say that X is positive definite if v>Xv > 0 for all
v ∈ Rn \ {0}, written X � 0, and positive semidefinite if v>Xv ≥ 0 for all v ∈ Rn, written
X � 0. For another Y ∈ Rn×nsym we write X � Y if X −Y � 0 and X � Y if X −Y � 0.

Proposition A.4. Let X ∈ Rn×nsym . Then, the following are equivalent:

1. X � 0, i.e., v>Xv ≥ 0 for all v ∈ Rn.

2. λi(X) ≥ 0 for all i ∈ [n].

3. There exist vi ∈ RN for some N ≥ 1 with Xij = 〈vi,vj〉.

4. There exist vi ∈ Rn with Xij = 〈vi,vj〉.

5. There exist v1, . . . ,vN for some N ≥ 1 with X =
∑N
i=1 viv

>
i .

6. There exist v1, . . . ,vn with X =
∑n
i=1 viv

>
i .

7. There exists A ∈ Rn×N for some N ≥ 1 with X =AA>.

8. There exists A ∈ Rn×n with X =AA>.

9. There exists A ∈ Rn×nsym with X =A2.

137

Bibliography

[AGH+14] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Tel-
garsky. Tensor decompositions for learning latent variable models. Journal of
machine learning research, 15:2773–2832, 2014.

[AGJ14] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed non-
orthogonal tensor decomposition via alternating rank-1 updates. arXiv preprint
arXiv:1402.5180, 2014.

[AGJ15] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Learning overcomplete
latent variable models through tensor methods. In Conference on Learning The-
ory, pages 36–112. PMLR, 2015.

[AGZ10] Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random
matrices. Cambridge University Press, 2010.

[AH19] Amir Ali Ahmadi and Georgina Hall. On the construction of converging hier-
archies for polynomial optimization based on certificates of global positivity.
Mathematics of Operations Research, 44(4):1192–1207, 2019.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique
in a random graph. Random Structures & Algorithms, 13(3-4):457–466, 1998.

[ALPTJ11] Radosław Adamczak, Alexander E Litvak, Alain Pajor, and Nicole Tomczak-
Jaegermann. Sharp bounds on the rate of convergence of the empirical covariance
matrix. Comptes Rendus Mathematique, 349(3-4):195–200, 2011.

[AN04] Noga Alon and Assaf Naor. Approximating the cut-norm via Grothendieck’s in-
equality. In Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pages 72–80, 2004.

[Art27] Emil Artin. Über die zerlegung definiter funktionen in quadrate. In Abhandlun-
gen aus dem Mathematischen Seminar der Universität Hamburg, volume 5, pages
100–115, 1927.

[Ban15] Afonso S Bandeira. Ten lectures and forty-two open problems in the mathematics
of data science, 2015.

138

[BBH+12] Boaz Barak, Fernando GSL Brandao, Aram W Harrow, Jonathan Kelner, David
Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their
applications. In 44th Annual ACM Symposium on Theory of Computing (STOC
2012), pages 307–326. ACM, 2012.

[BCMV14] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan.
Smoothed analysis of tensor decompositions. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, pages 594–603, 2014.

[BCN89] Andries E Brouwer, Arjeh M Cohen, and Arnold Neumaier. Association schemes.
In Distance-Regular Graphs, pages 43–78. Springer, 1989.

[BCO14] Cristiano Bocci, Luca Chiantini, and Giorgio Ottaviani. Refined methods for
the identifiability of tensors. Annali di Matematica Pura ed Applicata (1923-),
193(6):1691–1702, 2014.

[BDER16] Sébastien Bubeck, Jian Ding, Ronen Eldan, and Miklós Z Rácz. Testing for high-
dimensional geometry in random graphs. Random Structures & Algorithms,
49(3):503–532, 2016.

[Ben17] Olivier Benoist. Writing positive polynomials as sums of (few) squares. EMS
Newsletter, (105):8–13, 2017.

[BGJR88] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An
application of combinatorial optimization to statistical physics and circuit layout
design. Operations Research, 36(3):493–513, 1988.

[BGP16] Grigoriy Blekherman, João Gouveia, and James Pfeiffer. Sums of squares on the
hypercube. Mathematische Zeitschrift, 284(1-2):41–54, 2016.

[BHK+19] Boaz Barak, Samuel B Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra,
and Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted
clique problem. SIAM Journal on Computing, 48(2):687–735, 2019.

[BIK+96] Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák.
Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proceedings
of the London Mathematical Society, 3(1):1–26, 1996.

[BKM19] Jess Banks, Robert Kleinberg, and Cristopher Moore. The Lovász theta function
for random regular graphs and community detection in the hard regime. SIAM
Journal on Computing, 48(3):1098–1119, 2019.

[BKS14] Boaz Barak, Jonathan A Kelner, and David Steurer. Rounding sum-of-squares
relaxations. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing, pages 31–40. ACM, 2014.

[BKS15] Boaz Barak, Jonathan A Kelner, and David Steurer. Dictionary learning and ten-
sor decomposition via the sum-of-squares method. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing, pages 143–151, 2015.

139

[BM86] Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Mathematical
Programming, 36(2):157–173, 1986.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Alge-
braic Geometry. 2006.

[Bro87] W Dale Brownawell. Bounds for the degrees in the Nullstellensatz. Annals of
Mathematics, 126(3):577–591, 1987.

[BS14] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward op-
timal algorithms. arXiv preprint arXiv:1404.5236, 2014.

[BS16] Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through the lens of
sum-of-squares. http://www.sumofsquares.org/public/index.html, 2016.

[Buc06] Bruno Buchberger. Bruno buchberger’s phd thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial
ideal. Journal of symbolic computation, 41(3-4):475–511, 2006.

[CAPT22] Diego Cifuentes, Sameer Agarwal, Pablo A Parrilo, and Rekha R Thomas. On the
local stability of semidefinite relaxations. Mathematical Programming, pages 1–
35, 2022.

[Cat12] Olivier Catoni. Challenging the empirical mean and empirical variance: a de-
viation study. In Annales de l’IHP Probabilités et statistiques, volume 48, pages
1148–1185, 2012.

[CEP71] John WS Cassels, William J Ellison, and Albrecht Pfister. On sums of squares and
on elliptic curves over function fields. Journal of Number Theory, 3(2):125–149,
1971.

[CHS20] Diego Cifuentes, Corey Harris, and Bernd Sturmfels. The geometry of sdp-
exactness in quadratic optimization. Mathematical programming, 182(1-2):399–
428, 2020.

[CLOS94] David Cox, John Little, Donal O’Shea, and Moss Sweedler. Ideals, varieties, and
algorithms. American Mathematical Monthly, 101(6):582–586, 1994.

[CMZ23] Zongchen Chen, Elchanan Mossel, and Ilias Zadik. Almost-linear planted cliques
elude the Metropolis process. In Proceedings of the 2023 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 4504–4539. SIAM, 2023.

[Col75] George E Collins. Quantifier elimination for real closed fields by cylindrical alge-
braic decompostion. In Automata theory and formal languages, pages 134–183.
Springer, 1975.

[Con] Keith Conrad. Pfister’s theorem on sums of squares. https://kconrad.math.
uconn.edu/blurbs/linmultialg/pfister.pdf.

140

http://www.sumofsquares.org/public/index.html
https://kconrad.math.uconn.edu/blurbs/linmultialg/pfister.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/pfister.pdf

[CR79] Stephen A Cook and Robert A Reckhow. The relative efficiency of propositional
proof systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

[CST11] Kevin P Costello, Asaf Shapira, and Prasad Tetali. Randomized greedy: new vari-
ants of some classic approximation algorithms. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 647–655.
SIAM, 2011.

[CW04] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: extending
Grothendieck’s inequality. In 45th Annual IEEE Symposium on Foundations of
Computer Science, pages 54–60. IEEE, 2004.

[CX16] Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted
problems and submatrix localization with a growing number of clusters and sub-
matrices. The Journal of Machine Learning Research, 17(1):882–938, 2016.

[DdL+22] Jingqiu Ding, Tommaso d’Orsi, Chih-Hung Liu, Stefan Tiegel, and David Steurer.
Fast algorithm for overcomplete order-3 tensor decomposition. arXiv preprint
arXiv:2202.06442, 2022.

[Del73] Philippe Delsarte. An algebraic approach to the association schemes of coding
theory. Philips Res. Rep. Suppl., 10:vi–97, 1973.

[DFHT20] Irit Dinur, Yuval Filmus, Prahladh Harsha, and Madhur Tulsiani. Explicit SoS lower
bounds from high-dimensional expanders. arXiv preprint arXiv:2009.05218,
2020.

[Dia88] Persi Diaconis. Group representations in probability and statistics. Lecture Notes
Monograph Series, 11, 1988.

[DK70] Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a
perturbation. iii. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

[DKP02] Etienne De Klerk and Dmitrii V Pasechnik. Approximation of the stability number
of a graph via copositive programming. SIAM Journal on Optimization, 12(4):875–
892, 2002.

[DKP20] Ilias Diakonikolas, Daniel M Kane, and Ankit Pensia. Outlier robust mean es-
timation with subgaussian rates via stability. Advances in Neural Information
Processing Systems, 33:1830–1840, 2020.

[DL09] Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics. Springer,
2009.

[DL22] Jules Depersin and Guillaume Lecué. Robust sub-gaussian estimation of a mean
vector in nearly linear time. The Annals of Statistics, 50(1):511–536, 2022.

[DLCC07] Lieven De Lathauwer, Josphine Castaing, and Jean-Franois Cardoso. Fourth-order
cumulant-based blind identification of underdetermined mixtures. IEEE Transac-
tions on Signal Processing, 55(6):2965–2973, 2007.

141

[DLV04] Nikhil R Devanur, Richard J Lipton, and Nisheeth K Vishnoi. On the complexity of
Hilbert’s 17th problem. In International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 237–249. Springer, 2004.

[dlVKM07] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear program-
ming relaxations of maxcut. In Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 53–61, 2007.

[DM15] Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds
for hidden clique and hidden submatrix problems. In 28th Annual Conference on
Learning Theory (COLT 2015), pages 523–562, 2015.

[DW12] Andrew C Doherty and Stephanie Wehner. Convergence of SDP hierarchies for
polynomial optimization on the hypersphere. arXiv preprint arXiv:1210.5048,
2012.

[Erd67] Paul Erdős. On bipartite subgraphs of a graph. Matematika Lapok, 18:283–288,
1967.

[FF20] Kun Fang and Hamza Fawzi. The sum-of-squares hierarchy on the sphere and
applications in quantum information theory. Mathematical Programming, pages
1–30, 2020.

[FH04] William Fulton and Joe Harris. Representation theory: a first course. Springer
Science & Business Media, 2004.

[FH14] Péter Frenkel and Péter Horváth. Minkowski’s inequality and sums of squares.
Open Mathematics, 12(3):510–516, 2014.

[FK81] Zoltán Füredi and János Komlós. The eigenvalues of random symmetric matrices.
Combinatorica, 1(3):233–241, 1981.

[FK00] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique
in a semirandom graph. Random Structures & Algorithms, 16(2):195–208, 2000.

[FK03] Uriel Feige and Robert Krauthgamer. The probable value of the Lovász-
Schrijver relaxations for maximum independent set. SIAM Journal on Computing,
32(2):345–370, 2003.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic Proofs and
Efficient Algorithm Design. Now the Essence of Knowledge, 2019.

[FL06] Uriel Feige and Michael Langberg. The RPR2 rounding technique for semidefinite
programs. Journal of Algorithms, 60(1):1–23, 2006.

[FS02] Uriel Feige and Gideon Schechtman. On the optimality of the random hyperplane
rounding technique for max cut. Random Structures & Algorithms, 20(3):403–440,
2002.

142

[FSP16] Hamza Fawzi, James Saunderson, and Pablo A Parrilo. Sparse sums of squares
on finite abelian groups and improved semidefinite lifts. Mathematical Program-
ming, 160(1-2):149–191, 2016.

[Ful97] William Fulton. Young tableaux: with applications to representation theory and
geometry. Cambridge University Press, 1997.

[GKD18] Fred Glover, Gary Kochenberger, and Yu Du. A tutorial on formulating and using
QUBO models. arXiv preprint arXiv:1811.11538, 2018.

[GM15] Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using
sum-of-squares algorithms. arXiv preprint arXiv:1504.05287, 2015.

[GM17] Rong Ge and Tengyu Ma. On the optimization landscape of tensor decomposi-
tions. In Advances in Neural Information Processing Systems, pages 3653–3663,
2017.

[GR99] Michel X Goemans and Franz Rendl. Semidefinite programs and association
schemes. Computing, 63(4):331–340, 1999.

[Gri01a] Dima Grigoriev. Complexity of Positivstellensatz proofs for the knapsack. Com-
putational Complexity, 10(2):139–154, 2001.

[Gri01b] Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus
proofs for the parity. Theoretical Computer Science, 259(1-2):613–622, 2001.

[Gro56] Alexandre Grothendieck. Résumé de la théorie métrique des produits tensoriels
topologiques. Soc. de Matemática de São Paulo, 1956.

[GS06] Christopher D Godsil and Sung Y Song. Association schemes. In Handbook of
Combinatorial Designs, pages 351–355. Chapman and Hall/CRC, 2006.

[GV01] Dima Grigoriev and Nicolai Vorobjov. Complexity of Null- and Positivstellensatz
proofs. Annals of Pure and Applied Logic, 113(1-3):153–160, 2001.

[GW95] Michel X Goemans and David P Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[Hab39] Walter Habicht. Über die zerlegung strikte definiter formen in quadrate. Com-
mentarii Mathematici Helvetici, 12(1):317–322, 1939.

[Har70] Richard A Harshman. Foundations of the PARAFAC procedure: Models and con-
ditions for an “explanatory” multimodal factor analysis. 1970.

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM
(JACM), 48(4):798–859, 2001.

[Her98] Grete Hermann. The question of finitely many steps in polynomial ideal theory.
ACM SIGSAM Bulletin, 32(3):8–30, 1998.

143

[Hil88] David Hilbert. Über die darstellung definiter formen als summe von formen-
quadraten. Mathematische Annalen, 32(3):342–350, 1888.

[Hil90] David Hilbert. Ueber die theorie der algebraischen formen. Mathematische an-
nalen, 36(4):473–534, 1890.

[Hil93a] David Hilbert. Über die vollen invariantensysteme. Mathematische Annalen,
42(3):313–373, 1893.

[Hil93b] David Hilbert. Über ternäre definite formen. Acta Mathematica, 17(1):169, 1893.

[HKM21] Samuel B Hopkins, Gautam Kamath, and Mahbod Majid. Efficient mean estimation
with pure differential privacy via a sum-of-squares exponential mechanism. arXiv
preprint arXiv:2111.12981, 2021.

[HKP15] Samuel B Hopkins, Pravesh K Kothari, and Aaron Potechin. Sos and planted
clique: Tight analysis of mpw moments at all degrees and an optimal lower bound
at degree four. arXiv preprint arXiv:1507.05230, 2015.

[HL96] Thomas Hofmeister and Hanno Lefmann. A combinatorial design approach to
MAXCUT. In Annual Symposium on Theoretical Aspects of Computer Science,
pages 439–452. Springer, 1996.

[HL03] Didier Henrion and Jean-Bernard Lasserre. GloptiPoly: Global optimization over
polynomials with Matlab and SeDuMi. ACM Transactions on Mathematical Soft-
ware (TOMS), 29(2):165–194, 2003.

[HL05] Didier Henrion and Jean-Bernard Lasserre. Detecting global optimality and ex-
tracting solutions in GloptiPoly. In Positive polynomials in control, pages 293–310.
Springer, 2005.

[HLZ20] Sam Hopkins, Jerry Li, and Fred Zhang. Robust and heavy-tailed mean estimation
made simple, via regret minimization. Advances in Neural Information Processing
Systems, 33:11902–11912, 2020.

[Hop18a] Sam Hopkins. Clustering and sum of squares proofs: Six blog posts on unsuper-
vised learning. 2018.

[Hop18b] Samuel B Hopkins. Mean estimation with sub-gaussian rates in polynomial time.
arXiv preprint arXiv:1809.07425, 2018.

[Hop18c] Samuel B Hopkins. Statistical inference and the sum of squares method. PhD
thesis, Cornell University, 2018.

[HSSS16] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spec-
tral algorithms from sum-of-squares proofs: tensor decomposition and planted
sparse vectors. In 48th Annual ACM Symposium on Theory of Computing (STOC
2016), pages 178–191, 2016.

144

[HST19] Samuel B Hopkins, Tselil Schramm, and Luca Trevisan. Subexponential LPs ap-
proximate max-cut. arXiv preprint arXiv:1911.10304, 2019.

[Hur98] Adolf Hurwitz. Über die komposition der quadratischen formen von beliebig
vielen variabeln. 1898.

[HV91] David J. Haglin and Shankar M. Venkatesan. Approximation and intractability
results for the maximum cut problem and its variants. IEEE Transactions on
Computers, 40(01):110–113, 1991.

[HW79] Godfrey Harold Hardy and Edward Wright. An introduction to the theory of num-
bers. Oxford university press, 1979.

[Jer92] Mark Jerrum. Large cliques elude the Metropolis process. Random Structures &
Algorithms, 3(4):347–359, 1992.

[JH16] Cédric Josz and Didier Henrion. Strong duality in Lasserre’s hierarchy for poly-
nomial optimization. Optimization Letters, 10(1):3–10, 2016.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[Kar99] Howard Karloff. How good is the Goemans-Williamson MAX CUT algorithm?
SIAM Journal on Computing, 29(1):336–350, 1999.

[KHG+14] Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lü, Haibo
Wang, and Yang Wang. The unconstrained binary quadratic programming prob-
lem: a survey. Journal of combinatorial optimization, 28(1):58–81, 2014.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pages 767–775,
2002.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inap-
proximability results for MAX-CUT and other 2-variable CSPs? SIAM Journal on
Computing, 37(1):319–357, 2007.

[KLM16] Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. Sum-of-squares hier-
archy lower bounds for symmetric formulations. In International Conference on
Integer Programming and Combinatorial Optimization, pages 362–374. Springer,
2016.

[KLYZ12] Erich L Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification in
global polynomial optimization via sums-of-squares of rational functions with
rational coefficients. Journal of Symbolic Computation, 47(1):1–15, 2012.

[KM22] Dmitriy Kunisky and Cristopher Moore. The spectrum of the Grigoriev-Laurent
pseudomoments. SIAM Journal on Discrete Mathematics, to appear, 2022.

145

[KMV21] Pravesh K Kothari, Pasin Manurangsi, and Ameya Velingker. Private robust esti-
mation by stabilizing convex relaxations. arXiv preprint arXiv:2112.03548, 2021.

[KO06] Subhash Khot and Ryan O’Donnell. SDP gaps and UGC-hardness for MAXCUT-
GAIN. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 217–226. IEEE, 2006.

[Kol88] János Kollár. Sharp effective Nullstellensatz. Journal of the American Mathemat-
ical Society, pages 963–975, 1988.

[KOTZ14] Manuel Kauers, Ryan O’Donnell, Li-Yang Tan, and Yuan Zhou. Hypercontractive
inequalities via SOS, and the Frankl-Rödl graph. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1644–1658. SIAM,
2014.

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to
within 2- ε. Journal of Computer and System Sciences, 74(3):335–349, 2008.

[Kri64] Jean-Louis Krivine. Anneaux préordonnés. Journal d’Analyse Mathématique,
12(1):307–326, 1964.

[Kuč95] Luděk Kučera. Expected complexity of graph partitioning problems. Discrete
Applied Mathematics, 57(2-3):193–212, 1995.

[KV05] Subhash Khot and Nisheeth K Vishnoi. On the unique games conjecture. In 46th
Annual Symposium on Foundations of Computer Science (FOCS 2005), 2005.

[KV15] Subhash A Khot and Nisheeth K Vishnoi. The unique games conjecture, inte-
grality gap for cut problems and embeddability of negative-type metrics into `1.
Journal of the ACM (JACM), 62(1):1–39, 2015.

[Las01] Jean B Lasserre. Global optimization with polynomials and the problem of mo-
ments. SIAM Journal on Optimization, 11(3):796–817, 2001.

[Lau03] Monique Laurent. Lower bound for the number of iterations in semidefinite hier-
archies for the cut polytope. Mathematics of Operations Research, 28(4):871–883,
2003.

[Lau09] Monique Laurent. Sums of squares, moment matrices and optimization over
polynomials. In Emerging applications of algebraic geometry, pages 157–270.
Springer, 2009.

[LL78] Anneli Lax and Peter D Lax. On sums of squares. Linear algebra and its applica-
tions, 20(1):71–75, 1978.

[LM19] Gábor Lugosi and Shahar Mendelson. Sub-gaussian estimators of the mean of a
random vector. The annals of statistics, 47(2):783–794, 2019.

[Lov79] László Lovász. On the Shannon capacity of a graph. IEEE Transactions on Infor-
mation Theory, 25(1):1–7, 1979.

146

[LP68] Joram Lindenstrauss and Aleksander Pełczyński. Absolutely summing operators
in lp-spaces and their applications. Studia Mathematica, 29(3):275–326, 1968.

[LPR14] Henri Lombardi, Daniel Perrucci, and Marie-Françoise Roy. An elementary re-
cursive bound for effective Positivstellensatz and Hilbert 17th problem. arXiv
preprint arXiv:1404.2338, 2014.

[LR24] Julia Lindberg and Jose Israel Rodriguez. Invariants of sdp exactness in quadratic
programming. Journal of Symbolic Computation, 122:102258, 2024.

[LRA93] Sue E Leurgans, Robert T Ross, and Rebecca B Abel. A decomposition for three-
way arrays. SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083,
1993.

[LV22] Monique Laurent and Luis Felipe Vargas. Finite convergence of sum-of-squares
hierarchies for the stability number of a graph. SIAM Journal on Optimization,
32(2):491–518, 2022.

[Mag15] Victor Magron. Error bounds for polynomial optimization over the hypercube
using Putinar type representations. Optimization Letters, 9(5):887–895, 2015.

[Mar08] Murray Marshall. Positive polynomials and sums of squares. Number 146. Ameri-
can Mathematical Soc., 2008.

[Mik20] Dan Mikulincer. A CLT in Stein’s distance for generalized Wishart matrices and
higher order tensors. arXiv preprint arXiv:2002.10846, 2020.

[Min22] Stanislav Minsker. U-statistics of growing order and sub-gaussian mean estima-
tors with sharp constants. arXiv preprint arXiv:2202.11842, 2022.

[MM82] Ernst W Mayr and Albert R Meyer. The complexity of the word problems
for commutative semigroups and polynomial ideals. Advances in Mathematics,
46(3):305–329, 1982.

[Moi20] Ankur Moitra. Sum of squares in theoretical computer science. In Sum of Squares:
Theory and Applications, volume 77 of Proceedings of Symposia in Applied Math-
ematics. American Mathematical Society, 2020.

[MOO05] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of
functions with low influences: invariance and optimality. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05), pages 21–30. IEEE,
2005.

[Mot67] Theodore Samuel Motzkin. The arithmetic-geometric inequality. Inequalities
(Proc. Sympos. Wright-Patterson Air Force Base), pages 205–224, 1967.

[MR95] Sanjeev Mahajan and Hariharan Ramesh. Derandomizing semidefinite program-
ming based approximation algorithms. In Proceedings of IEEE 36th Annual Foun-
dations of Computer Science, pages 162–169. IEEE, 1995.

147

[MS08] Claire Mathieu and Warren Schudy. Yet another algorithm for dense max cut: go
greedy. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 176–182. Citeseer, 2008.

[MSS16] Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor decomposi-
tions with sum-of-squares. In 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pages 438–446. IEEE, 2016.

[MW13] Raghu Meka and Avi Wigderson. Association schemes, non-commutative poly-
nomial concentration, and sum-of-squares lower bounds for planted clique. In
Electronic Colloquium on Computational Complexity (ECCC), volume 20, page 10,
2013.

[Nag69a] Aleksandr V Nagaev. Integral limit theorems taking large deviations into account
when CramérâĂŹs condition does not hold. i. Theory of Probability & Its Applica-
tions, 14(1):51–64, 1969.

[Nag69b] Aleksandr V Nagaev. Integral limit theorems taking large deviations into account
when CramérâĂŹs condition does not hold. ii. Theory of Probability & Its Appli-
cations, 14(2):193–208, 1969.

[Nes98] Yurii Nesterov. Semidefinite relaxation and nonconvex quadratic optimization.
Optimization Methods and Software, 9(1-3):141–160, 1998.

[Nes00] Yurii Nesterov. Squared functional systems and optimization problems. In High
performance optimization, pages 405–440. Springer, 2000.

[Nie14] Jiawang Nie. Optimality conditions and finite convergence of Lasserre’s hierar-
chy. Mathematical programming, 146(1):97–121, 2014.

[NZ21] Ivan Nourdin and Guangqu Zheng. Asymptotic behavior of large Gaussian corre-
lated Wishart matrices. Journal of Theoretical Probability, pages 1–30, 2021.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[O’D17] Ryan O’Donnell. SOS is not obviously automatizable, even approximately. In
8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[OS18] Ryan O’Donnell and Tselil Schramm. Sherali-Adams strikes back. arXiv preprint
arXiv:1812.09967, 2018.

[OZ13] Ryan O’Donnell and Yuan Zhou. Approximability and proof complexity. In
Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 1537–1556. Society for Industrial and Applied Mathematics, 2013.

[Par00] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization. PhD thesis, California Institute of Tech-
nology, 2000.

148

[Par03] Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic prob-
lems. Mathematical Programming, 96(2):293–320, 2003.

[PD13] Alexander Prestel and Charles Delzell. Positive polynomials: from Hilbert’s 17th
problem to real algebra. Springer Science & Business Media, 2013.

[Pfi67] Albrecht Pfister. Zur darstellung definiter funktionen als summe von quadraten.
Inventiones mathematicae, 4(4):229–237, 1967.

[Pfi95] Albrecht Pfister. Quadratic forms with applications to algebraic geometry and
topology, volume 217. Cambridge University Press, 1995.

[Pól28] George Pólya. Über positive darstellung von polynomen. Vierteljschr. Naturforsch.
Ges. Zürich, 73(141-145):2, 1928.

[Pot17] Aaron Potechin. Sum of squares lower bounds from symmetry and a good story.
arXiv preprint arXiv:1711.11469, 2017.

[Pow11a] Victoria Powers. Positive polynomials and sums of squares: Theory and practice.
Real Algebraic Geometry, 1:78–149, 2011.

[Pow11b] Victoria Powers. Rational certificates of positivity on compact semialgebraic sets.
Pacific journal of mathematics, 251(2):385–391, 2011.

[Pow21] Victoria Powers. Certificates of positivity for real polynomials. 2021.

[PP08] Helfried Peyrl and Pablo A Parrilo. Computing sum of squares decompositions
with rational coefficients. Theoretical Computer Science, 409(2):269–281, 2008.

[PR01] Victoria Powers and Bruce Reznick. A new bound for Pólya’s theorem with ap-
plications to polynomials positive on polyhedra. Journal of pure and applied
algebra, 164(1-2):221–229, 2001.

[PT82] Svatopluk Poljak and Daniel Turzik. A polynomial algorithm for constructing a
large bipartite subgraph, with an application to a satisfiability problem. Canadian
Journal of Mathematics, 34(3):519–524, 1982.

[PT94] Svatopluk Poljak and Zsolt Tuza. The expected relative error of the polyhedral
approximation of the max-cut problem. Operations Research Letters, 16(4):191–
198, 1994.

[Put93] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana
University Mathematics Journal, 42(3):969–984, 1993.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every
CSP? In 40th Annual ACM Symposium on Theory of Computing (STOC 2008),
pages 245–254. ACM, 2008.

[Rez95] Bruce Reznick. Uniform denominators in Hilbert’s seventeenth problem. Mathe-
matische Zeitschrift, 220(1):75–97, 1995.

149

[Rez00] Bruce Reznick. Some concrete aspects of Hilbert’s 17th problem. Contemporary
Mathematics, 253:251–272, 2000.

[Rez07] Bruce Reznick. On Hilbert’s construction of positive polynomials. arXiv preprint
arXiv:0707.2156, 2007.

[RW17] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-
squares proofs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 80:1–80:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[Sch91] Konrad Schmüdgen. The k-moment problem for compact semi-algebraic sets.
Mathematische Annalen, 289(1):203–206, 1991.

[Sch08] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In
Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Sympo-
sium on, pages 593–602. IEEE, 2008.

[Sch12] Konrad Schmüdgen. Around Hilbert’s 17th problem. Documenta Mathematica,
Optimization stories, extra volume ISMP, pages 433–438, 2012.

[Sch16] Claus Scheiderer. Sums of squares of polynomials with rational coefficients. Jour-
nal of the European Mathematical Society, 18(7):1495–1513, 2016.

[Sei91] JJ Seidel. Introduction to association schemes. Séminaire Lotharingien de Com-
binatoire [electronic only], 26:B26g–17, 1991.

[SG74] Sartaj Sahni and Teofilo Gonzales. P-complete problems and approximate solu-
tions. In 15th Annual Symposium on Switching and Automata Theory (swat 1974),
pages 28–32. IEEE, 1974.

[Shi19] Jonathan Shi. Tensor rank decompositions via the pseudo-moment method. PhD
thesis, Cornell University, 2019.

[Sho87a] Naum Z Shor. Quadratic optimization problems. Soviet Journal of Computer and
Systems Sciences, 25:1–11, 1987.

[Sho87b] Naum Zuselevich Shor. An approach to obtaining global extremums in polyno-
mial mathematical programming problems. Cybernetics, 23(5):695–700, 1987.

[SL22] Lucas Slot and Monique Laurent. Sum-of-squares hierarchies for binary polyno-
mial optimization. Mathematical Programming, pages 1–40, 2022.

[Ste74] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geom-
etry. Mathematische Annalen, 207(2):87–97, 1974.

150

[STT07] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. Tight integrality gaps
for Lovász-Schrijver LP relaxations of vertex cover and max cut. In Proceedings of
the thirty-ninth annual ACM Symposium on Theory of Computing, pages 302–310,
2007.

[Stu02] Bernd Sturmfels. Solving systems of polynomial equations. Number 97. American
Mathematical Society, 2002.

[Tau70] Olga Taussky. Sums of squares. The American Mathematical Monthly, 77(8):805–
830, 1970.

[Tre12] Luca Trevisan. Max cut and the smallest eigenvalue. SIAM Journal on Computing,
41(6):1769–1786, 2012.

[Tro15] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations
and Trends® in Machine Learning, 8(1-2):1–230, 2015.

[Vit81] Paul MB Vitányi. How well can a graph be n-colored? Discrete Mathematics,
34(1):69–80, 1981.

[Wed72] Per-Åke Wedin. Perturbation bounds in connection with singular value decompo-
sition. BIT Numerical Mathematics, 12(1):99–111, 1972.

[YWS15] Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the Davis-
Kahan theorem for statisticians. Biometrika, 102(2):315–323, 2015.

151

	List of Open Problems
	Invitation to Sum-of-Squares Proofs for Computer Scientists
	Maximum Cut and Approximation Ratios
	The Goemans-Williamson Relaxation
	Duality and Sum-of-Squares Proofs
	Towards Improvements
	What Is This Course About?
	Exercises
	Notes

	I General Theory
	Algebraic Proof Systems
	Obstructions and Certificates: A Simple Example
	Hilbert's Nullstellensatz
	Nullstellensatz Effectivization and Proof Systems

	The Real Case
	Real Nullstellensatz
	Sums of Squares and Hilbert's 17th Problem
	Dealing with Denominators
	Positivstellensätze
	Positivstellensatz Effectivization and Proof Systems

	Exercises
	Notes

	Lasserre-Parrilo Semidefinite Programming Relaxations
	Parrilo Proof Relaxation
	Lasserre Pseudomoment Relaxation
	Stylized Description
	Semidefinite Program Implementation
	Goemans-Williamson Redux

	Duality
	Convergence
	Exercises
	Notes

	II Sum-of-Squares Algorithms
	The Proofs-to-Algorithms Framework
	Reasoning About Pseudoexpectations
	Rounding Tools
	Exercises

	Case Study 1: Sparse Vectors in Subspaces
	Step 1: Polynomial Optimization Formulation
	Step 2: Analysis of Polynomial Optimization Problem
	Step 3: Proofs-to-Algorithms Analysis of Sum-of-Squares Relaxation
	Matrix Concentration and Proof of Lemma 5.10

	Exercises
	Notes

	Case Study 2: Tensor Decomposition
	Rotation Problem and Benefit of Higher Moments
	Verifiability and Injective Norm
	Jennrich Algorithm and Variants
	``Boosting'' with Sum-of-Squares: Method of Pseudomoments
	Step 1: Nuances in Polynomial Optimization
	Step 2: Baby Jennrich Algorithm with True Moments
	Step 3A: Baby Jennrich Algorithm with Pseudomoments
	Step 3B: SOS Version of Verifiability
	Step 3C: Full Quasipolynomial Time SOS Algorithm

	Polynomial Time with Jennrich Algorithm
	Exercises
	Notes

	Case Study 3: Heavy-Tailed Mean Estimation
	Scalar Mean Estimation
	Vector Mean Estimation
	Strong Median Estimator
	Lugosi-Mendelson Weak Median Estimator
	Hopkins' Sum-of-Squares Implementation
	Certifying Centrality
	Sum-of-Squares Squared

	Exercises
	Notes

	III Sum-of-Squares Lower Bounds
	Case Study 4: Parity/Knapsack
	Pseudoexpectation Values From Symmetry
	Degree 4 Lower Bound
	Spectra of Matrices with Entrywise Symmetry
	Representation Theory
	Association Schemes

	Full Proof Strategy for Lemma 8.3
	Exercises
	Notes

	Case Study 5: Constraint Satisfaction Problems
	Background on Constraint Satisfaction Problems
	Polynomial Encoding and Main Theorem
	Random Instances
	Pseudoexpectation Construction
	Proof of Theorem 9.1
	Notes

	Case Study 6: Large Cliques in Random Graphs
	Planted Clique Model and Information-Theoretic Threshold
	Basic Algorithms for Recovering Planted Cliques
	Degree Thresholding
	Spectral Algorithms
	The Planted Clique Hypothesis

	Sum-of-Squares Relaxations: Introduction and Degree 2
	Feige-Krauthgamer Pseudomoments and Kelner's Polynomial
	Pseudocalibration
	Motivating Argument
	Deriving Pseudocalibrated Pseudomoments
	Computing Fourier Coefficients

	Adjustments to Satisfy Relaxation Constraints
	Clique Constraints
	Normalization Constraint
	Formulating Main Lower Bound

	Exercises
	Notes

	IV Miscellaneous Background
	Linear Algebra
	Symmetric Matrices
	Positive Semidefinite Matrices

	Bibliography

