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Abstract. Norms are an efficient way of controlling the behaviour of
agents while still allowing agent autonomy. While there are tools for pro-
gramming Multi-Agent Systems, few provide an explicit mechanism for
simulating norm-based behaviour using a variety of normative represen-
tations. In this paper, we develop an artefact-based mechanism for norm
processing, monitoring and enforcement and show its implementation as
a framework built with CArtAgO. Our framework is then empirically
demonstrated using a variety of enforcement settings.

1 Introduction

Multi-Agent Systems are often used as a tool for simulating interactions between
intelligent entities within societies, organisations or other communities. This
Agent-based Simulation is useful for studying social behaviour in hypothetical
situations or situations that may not be easily reproduced in the real world. The
entities being simulated, human or otherwise, are represented by programmable
intelligent agents, which must present reactive, pro-active and social behaviour
[1].

When working with social simulations, we must consider that agents should
be free to act in their own best interest, even though their actions might produce
negative effects to other agents. For this reason, rules are established to ensure
that certain actions, which would otherwise harm the society’s performance, are
prohibited. These rules, referred to as “norms” in multi-agent environments,
allow agents to reason and act freely, while still being subject to punishment in
the event that a norm is violated [2]. Agents are able to reason whether following
a norm brings more positive results by avoiding the penalties associated to its
violation. Some mechanisms [3][4][5][6][7][8][9][10] exist that makes reasoning
about norms possible. In order to simulate norm-based behaviour, a structure
must be defined that allows the specifying of norms in the form of prohibitions
and obligations. Once these norms are active, agent interactions shall be observed
by a monitoring mechanism and analysed by a norm-enforcing agent, which will
then punish agents caught violating norms.

Although there are multiple frameworks for simulating agent-based behaviour,
such as MASSim [11] or the agent programming languages Jason [12] and JADE
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[13], relatively less attention has been focused on frameworks for norm-based be-
haviour simulation [14, Chapter 1]. In this paper, we aim to bridge this gap by
developing a scalable norm processing mechanism that performs monitoring and
enforcement in multi-agent environments. Our contributions are a mechanism
to monitor agents’s actions in an environment, described in Section 4.4 and a
mechanism for norm maintenance and enforcement, described in Section 4.5. In
Section 5 we show empirical results of applying our mechanism to a Multi-Agent
System.

2 Multi-Agent Simulation

When intelligent agents [1] share an environment, competition between them
becomes inevitable [15]. This idea becomes clear when we think of multi-agent
systems as societies. Each person in a society has their own goals and plans to
achieve them, and it is in their best interest to do so by spending as little effort as
possible. Take for an example a person interested in eating an apple and another
interested in selling one. For the buying person, its goal is to acquire the apple
from the seller for the lowest cost possible, preferably with no cost at all. For the
seller, the goal is to sell the apple for as high a price as affordable by the buyer,
maybe even higher than that. Now, considering that in this hypothetical world
no notion of ethics is known yet, the buyer soon realizes that instead of paying
for the apple he wants to eat, he could simply grab it and eat it on the spot.

Competition between agents is often intended when working with agent-based
simulations, as we desire to see how agents perform under such circumstances.
However, to prevent the system as a whole from descending into chaos, rules must
be established in order to control agent interactions while still allowing them to
be autonomous. Nevertheless these rules must be limited to directing agents,
rather than restraining them, otherwise, much of the benefit from autonomous
agents is lost. When rules are set, agents that disregard them are subject to
punishment for potentially harming the environment. In our buyer/seller system,
we could establish a rule that guarantees items sold at shops must be paid for. If
one is caught stealing, it will need to pay for the seller’s injury. By doing so, we
allow the buyer to reason about the advantages and disadvantages of obeying
rules, letting it decide on an appropriate action plan. In multi-agent systems, we
refer to these rules as norms.

Usual mechanisms for controlling agent interactions include interaction mod-
els, used by simulators such as NetLogo [16], MASON [17] and Repast [18];
strategies, commonly used in Game Theory; and regimented normative systems,
such as Moise [19]. The disadvantage of these methodologies is that agents are
constrained to the rules of their environment. They are not allowed to break
rules because the system is rule compliant by design, also known as the regi-
mentation approach [20]. However, unlike environmental constraints, perfectly
enforcement (regimentation) for social norms is both undesired, because it pre-
vents agents from occasional violations for the greater good, and unrealistic, as
it is not achievable in the real world.
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3 Normative Scenario - Immigration Agents

To facilitate explanation and exemplification of our approach, as well as to high-
light its capabilities, we present the scenario that was used to test our solution.
This scenario helps understand what norms are and how they control interactions
in an environment. First, we present a short story that connects the environment
to its agents, then we outline the norms that constrain them.

In a fictional emerging nation1, an immigration program was started by the
government to accelerate development through the hiring of foreigners. Besides
landed immigrants, visitors are also welcome to the country, since money from
tourism greatly boosts local economy. At the border, immigration officers are
tasked with the inspection of immigrant’s passports. The foreigner acceptance
policy is quite straightforward, and immigrants with valid passports and no
criminal records are to be accepted immediately, while John Does and refugees
are to be outright rejected. It is believed that the more immigrants accepted, the
better. Each officer’s responsibility is to accept as many immigrants as possible,
while still following the guidelines that were passed to them. Each accepted
able worker nets the officer 5 credits, which eventually turn into a bonus to the
officer’s salary. There are no rewards for rejecting immigrants. It becomes clear
that the bonus each officer accumulates depends entirely on chance, and some
officers may accumulate more than others, if at all. As such, some officers might
feel inclined to accept immigrants they should not, only to add to their personal
gain.

To ensure officers act on the best interests of the nation only, an enforcement
system is introduced to the offices at the borders. Among the officers working
in the immigration office, one is responsible for observing and recording the
behaviour of those working in booths. This officer is known as the “monitor”.
His job is to write reports about what the officers do and send these reports to
another officer, known as the “enforcer”. The enforcer then reads the reports
that are passed to him and look for any inconsistencies, such as the approval
of an illegal immigrant. As this represents a violation of a rule, or norm, the
enforcer then carries out an action to sanction the offending officer. The penalties
for approving an illegal immigrant are the immediate loss of 10 credits and
suspension of work activities for up to 10 seconds. Considering that immigrants
arrive at a rate of 1 per 2 seconds, in a 10-second timespan 5 immigrants would
have arrived at a given booth, meaning that a violating officer potentially loses
25 credits. Added to the other portion of the sanction, the potential loss rises
up to 35 credits.

The enforcement system, however, is not cost free. Each monitor and enforcer
has an associated cost and it is within the interests of the nation to spend as
little as possible with such a system. Therefore, the government wants to know
how intensive the system must be to cover enough cases of disobedience so that
officers will know violating norms is a disadvantage rather than an advantage.

1 Inspired by the game “Papers, please”: http://papersplea.se

http://papersplea.se
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There are two norms that can be extracted from this scenario. These defined
in Examples 1 and 2, which are detailed in Section 4.2, where we describe the
mathematical representation of norms in our system. These norms concern the
stability of the immigration program by assuring valid immigrants are accepted
and discouraging corrupt officers to accept those who should not be.

Example 1. “All immigrants holding valid passports must be accepted. Failure
to comply may result in the loss of 5 credits.”

Example 2. “All immigrants holding passports that are not valid must not be
accepted. Failure to comply may result in the loss of 10 credits and suspension
from work activities for up to 10 seconds.”

4 NormMAS Framework

In this section, we develop our normative monitoring and enforcement framework
for agent simulation. We start by reviewing the agent approaches that underpin
our framework in Section 4.1. We follow with the formalisation of the norms
processed in our system in Section 4.2, as well as the way actions are represented
in the environment in Section 4.3. With the formalisation in place, we proceed
to explaining the monitoring and enforcement systems in Sections 4.4 and 4.5,
respectively.

4.1 Jason and CArtAgO

In order to show the feasibility of the mechanism proposed in this paper, we use
two programming approaches: agent-oriented programming and environment-
oriented programming. The former is provided by the Jason interpreter [12],
while the latter is achieved with the Common Artifact infrastructure for Agents
Open environments (CArtAgO) [21].

Jason provides us with a means to program agents using the AgentSpeak
language [22] in a Java environment. Agents are built with the BDI [23] archi-
tecture, and so their behaviour is directed by beliefs, goals and plans. Beliefs are
logical predicates that represent an agent’s considerations towards its environ-
ment. Predicates such as valid(Passport) and wallet(50,dollars) indicate
that the agent believes the given passport variable is valid and that his wallet
currently contains 50 dollars. In AgentSpeak variables start with an upper-case
letter, while constants start with lower-case.

Goals are states which the agent desires to fulfil, and these can be either
achievement goals or test goals. Achievement goals are objectives or milestones
that agents pursue when carrying out their duties. To represent these in AgentS-
peak, the goal’s name is preceded by the ‘!’ character. Test goals, on the other
hand, are questions an agent may ask about the current state of the environment.
These can be identified by a ‘?’ preceding the goal’s name.

To achieve these goals, agents need to perform sequences of actions that
modify the environment towards the desired states. This sequence of actions
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is referred to as a plan. A plan is not necessarily composed solely of actions,
however, it can also contain sub-plans. This allows complex behaviours to be
built, creating flows of actions that vary and are influenced by agent beliefs and
perceptions.

As with any other programmed system, multi-agent systems must be tested
before being effectively deployed to their end environments. To do so, test envi-
ronments can be programmed for agents to be observed and any faulty behaviour
addressed before release. Jason allows the programming of test environments in
Java language, by providing an interface between agents and the programmed en-
vironment. These environments, however, are centralised, and so they are meant
for small systems or specific test scenarios. This hinders scalability, which is an
important aspect to consider when working with complex, more realistic sce-
narios or simply more robust structures. To address this limitation, we use the
CArtAgO framework for environment programming.

In CArtAgO, environments are seen as composed by different artefacts. These
artefacts represent objects in the environment through which agents interact
with one another indirectly. E.g. a table in an office, which an agent may put re-
ports on and from where another agent may pick these reports up to read them.
The environment then becomes an abstraction, composed of different artefacts,
which may be introduced to or removed from the environment whenever conve-
nient. In our work, this allows us to create artefacts specifically for monitoring
and enforcement tasks. These normative artefacts are then shared between nor-
mative agents so that more monitors and enforcers may be added to the system
as it scales up.

4.2 Norms

In order to keep competition between agents manageable, norms are established
to direct agent behaviour so that an environment’s stability is maintained. This
is achieved by specifying obligations and prohibitions [6]. Here, obligations are
behaviours that agents must follow in a given context to comply with the norm,
and prohibitions behaviours that jeopardise the environment’s stability, and so
must be avoided. Violating prohibitions is just as harmful as violating obliga-
tions, hence both cases must be addressed when detected. We expect that, when
agents are punished for transgression, they are able to learn not to misbehave.
Examples 1 and 2, in Section 3, correspond to an obligation and a prohibition,
respectively.

While norms in the real world are expressed in natural language, they must
be translated to a multi-agent environment so that agents are able to reason
about them. This requires the extraction of necessary information related to a
norm and composition of a mathematical representation. Agents should not have
to reason how or why a certain norm came to be, but rather what the norm is
about and what are the consequences of violating it. The format can also be
extended to include other important information, such as the sanction function
associated with a norm’s violation, or the conditions for automatic activation
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and expiration of the norm [6]. In this paper, norms as specified according to
the tuple of Definition 1.

Definition 1. A norm is represented by the tuple N = 〈µ, κ, χ, τ, ρ〉, where:
– µ ∈ {obligation, prohibition} represents the norm’s modality.
– κ ∈ {action, state} represents the type of trigger condition enclosed.
– χ represents the set of states (context) to which a norm applies.
– τ represents the norm’s trigger condition.
– ρ represents the sanction to be applied to violating agents.

Using Definition 1, we can proceed to formalising the norms from our exam-
ple. We can formalize the first norm of our scenario from Example 1, as shown
in Example 3.

Example 3. 〈obligation, action, valid(Passport), accept(Passport), loss(5)〉
The process can be repeated for Example 2. By identifying the context of a

norm, it is possible to define it solely with predicates and atoms, as shown in
Example 4, below.

Example 4. 〈prohibition, action, not valid(Passport), accept(Passport), loss(10)〉

4.3 Action Records

Similarly to norms, actions must also be stored as tuples containing essential
information. Actions captured by monitors must only be accessed by agents
of the enforcer type, and therefore only the pieces of information that can be
associated with norms are deemed essential. These are: what was done; who did
it; and under what context it was done. Example 5 shows how a monitor reports
its observations to an enforcer:

Example 5. “Officer John Doe approved Passport #3225. The passport was
known to be valid.”

From this report, we can extract the following details:

Example 6. 〈johndoe, approve(Passport), valid(Passport)〉
In this example, an officer approves the entry of an immigrant holding a valid
passport. The next report reads:

Example 7. “Officer John Smith approved Passport #2134. The passport was
not known to be valid.”

From this report, we can extract the following details:

Example 8. 〈johnsmith, approve(Passport), notvalid(Passport)〉
As such, we define Action Records:

Definition 2. An Action Record, stored within the Action History, is repre-
sented by the tuple: R = 〈γ, α, β〉, where:
– γ represents the agent executing the action;
– α represents the action being executed by the agent γ; and
– β represents the agent γ’s internal state at the moment of execution.
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4.4 Monitoring System

The monitoring system has two roles: capturing agents’s actions and forward-
ing reports, employing a producer/consumer mechanism. An action is captured
whenever any agent successfully executes an action. In CArtAgO, this means
that each operation executed successfully is saved to the Action History. This
function is agent independent and thus it is implemented directly in the simu-
lation engine’s architecture. In our framework, we use an adapted agent archi-
tecture for Jason agents acting in CArtAgO environments and extend it so all
successful actions are stored in a separate data structure referred to as the Ac-
tion History. Should an action fail for any reason, it is ignored by the capturing
system.

Art:Reporting
Interface

Ag:MonitorArt:Monitoring
Interface

Monitoring System

sendReport

action

readAction

+actionAvailable

poll

Fig. 1. Monitoring System Sequence Flow.

For these actions to be analysed, they must be sent to an enforcer agent
in the form of a report. To achieve that, we use producer/consumer dynamic,
in which an agent is tasked with continuously providing information through
a channel, while another agent consumes this information. With this in mind,
we can identify four components that are necessary for this set-up: a Producer,
a Consumer, a channel for communications and the information itself. In our
context, the role of Producer is given to the Monitor Agent; the role of Consumer
is given to the Enforcer Agent; the communications channel is an interface called
“Reporting Interface”; and the information that transits through this channel
are reports containing the actions executed by agents. This process is illustrated
in Figure 1.
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Monitoring tasks are not cost-free, and monitoring costs grow with its in-
tensity [24]. For this reason, it must be possible to adjust monitoring intensity
so that enforcement can be performed effectively at a cost considered affordable
by the society. Adjustments can be made either by configuring the monitor’s
enforcement intensity (inducing some desirable probability of reading actions)
or by creating monitoring strategies. In this paper, we use a purely probabilistic
strategy to study the general behaviour of our simulation.

The Action History is a queue-like data structure that stores captured
actions, from which monitors gather the information that is sent to the norm
enforcers. Actions are stored in the format discussed in Section 4.3 and are
removed from the queue as soon as a monitor attempts to read them, regardless
of the monitor’s success when doing so. This represents the chance a violation
will go unpunished.

4.5 Enforcement System

Art:Normative
Interface

Ag:EnforcerArt:Reporting
Interface

Enforcing System

sanction

violation

detectViolation

report

readReport

+newReport

Fig. 2. Enforcement System Sequence Flow.

The enforcement system represents the Consumer entity in the normative
mechanism’s Producer/Consumer scheme. An enforcer agent connects to the
Reporting Interface and awaits the arrival of new reports to analyse. The arrival
of new reports is perceived by the enforcer, and in our implementation this
perception is mapped to the +newReport signal. Once the report submission is
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perceived, the enforcer accesses the Normative Interface in search of currently
activated norms and checks for any possible violations by the reported action.

During the violation detection routine, the perception of violations is also
mapped to a signal, represented in the sequence diagram of Figure 2 as the
+violation event. When a violation is perceived, it falls to the enforcer to
apply associated sanctions. The sanctioning step is the last in this process, and
it starts as soon as detection finishes.

In order to sanction violating agents, the normative mechanism must be able
to recognise them. It does not make sense to be told “John has approved an
invalid passport. He violated a norm.” if we do not know who John is in the
first place. Therefore agents must be registered to the normative system prior
to execution of their designed plans, similar to how people are registered for
government issued IDs. In CArtAgO, this is accomplished through an operation
in the Normative Interface that adds the agent’s ID to a list, so that they may
be found when needed. The ID they are registered with should be the same that
appears in Action Records.

Normative Base When norms are created, they must be stored within the
system so that they may be accessed by an enforcer attempting to detect vi-
olations. The Normative Base structure holds all the norms that exist in the
system, active or not. Every time a norm is created, it is stored in a list struc-
ture with a unique identification. Norms may be activated or deactivated through
the Normative Interface. Every time a norm is created, activated, deactivated or
destroyed, agents connected to the Normative Interface perceives the event.

Detecting Violations The detection operation runs for each action report
received by an enforcer agent. Each action read is verified against the normative
base, along with the context under which the action was executed. Since it is
possible for an action to violate more than one norm, we utilize a list structure
to take note of all violations detected so they will be properly addressed at a
later time. At first, no norm is seen as violated and thus the list is empty. A
norm is only added to the list when all verification steps finish with the variable’s
isV iolated value set to True. The procedure for detecting violations can be seen
in Algorithm 1 and is explained further.

Detection of violations can be achieved in two steps: context analysis and
trigger condition analysis. Context analysis is about making sure that the ac-
tion’s execution context is the same as the one predicted by a norm. If it is, then
there is a possibility of violation and further analysis is required. Otherwise,
violation is considered an impossibility and the routine carries on. Formally, we
define the norm’s context as χ and the acting agent’s belief-base as β. Hence, the
context analysis returns True value if χ ⊆ β. Algorithm 2 is used for comparing
sets of predicates. It checks if all the predicates defined in context χ are present
in the agent’s belief-base β, one by one. If a predicate in χ is negated (e.g not

valid(Passport)), then the algorithm checks for its absence in belief-base β in-
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stead. This is to reflect how not operator works in Jason. If the trigger condition
is satisfied, the routine returns True value, and False otherwise.

Algorithm 1 Violation detection algorithm.
1: function DetectViolation(〈γ, α, β〉)
2: V ← [ ]
3: for each n = 〈µ, κ, χ, τ, ρ〉 ∈ ActiveNorms do

4: if ContextApplies(χ, β) then

5: if ConditionApplies(κ, τ, α, β) then
6: if µ = prohibition then

7: V ← V ∪ {n} . Violation detected! Adds to the list of violated norms.

8: else

9: if µ = obligation then
10: V ← V ∪ {n} . Violation detected! Adds to the list of violated norms.

11: for each n ∈ V do
12: SignalViolation(n, γ)

A trigger condition of a norm can be either an action that was executed or a
state the agent has reached. This is specified by the norm’s trigger condition type
and directs the way in which the detection algorithm executes. If we are working
with an action trigger, then we must compare the action that was executed with
the one specified by the norm. However, if we are working with a state trigger,
then two contexts must be compared: the agent’s belief-base and the norm’s state
trigger condition. These are compared using the context analysis algorithm of
Algorithm 2. The pseudo-code for the trigger analysis procedure can be seen in
Algorithm 3.

Algorithm 2 Context comparison sub-routine.
1: function ContextApplies(χ = [l1, ..., ln], β = [l1, ..., ln])

2: Require count(χ) ≤ count(β)
3: for each p ∈ χ do

4: isPresent← False
5: checkAbsence← False

6: if p is of the form ¬φ then

7: p← φ
8: checkAbsence← True

9: for each l ∈ β do

10: if l = p then
11: isPresent← True

12: break

13: if checkAbsence = isPresent then
14: return False

15: return True
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When both context and trigger conditions are satisfied, we need only verify
whether the norm is an obligation or prohibition to conclude if it was violated
or not. A prohibition means that a certain action or state is undesired under
the given context. If all the conditions up to now have been met, we conclude
that said undesired state has been reached and the norm was violated. On the
other hand, an obligation requires the flow specified by the norm to be followed
strictly, and if this is the case, we conclude that the norm was complied with.
By negating our conditions, we also negate its results: if in a prohibition context
the conditions were not met, then we would be home free; if they are not met
while in an obligation context, however, we would have just violated it.

Algorithm 3 Trigger condition analysis sub-routine.
1: function ConditionApplies(κ, τ, α, β)
2: if κ = action then

3: return τ = α

4: return ContextApplies(τ, β)

Their modality notwithstanding, every norm that is violated is added to a
list that is processed when all norms have been verified. Sanction functions are
then executed and agents perceive their punishments. Penalties can be brought
directly upon agents through perception or carried out by a third party, while
records on agent transgressions can be maintained in a separate structure for
greater consistency.

5 Evaluation

In order to test our solution, we programmed agents using Jason and deployed
them in a CArtAgO environment following the scenario described in Section 3.
To visualise the difference between compliant and non-compliant behaviours, two
types of agents were used: the normal type and the corrupt type. The normal
type is programmed to approve only those passports that are truly valid, whereas
the corrupt one will approve passports indiscriminately for his own personal gain.
By making it so, we can more easily tell the effectiveness of the norm enforcing
mechanism. Therefore, the following results were expected:

– Corrupt agents attain more credits when under lower monitoring intensity.

– Standard agents maintain an average quantity of credits through all simula-
tions.

– At some point, corrupt agents should start performing poorly due to higher
monitoring intensity. This marks the point at which monitoring can change
the environment.
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We ran 35 simulations for 11 different values of monitoring intensity. Intensity
values range from 0 to 100, with a step value of 10. Each simulation was run for
10 minutes. In this timespan, with our set-up, around 1048 immigrants attempt
to cross the border. In what follows, we refer to an agent’s obtained credits, or
their performance measure, as their utility. We use that measure in the graph
of Figure 3, which illustrates how the environment’s monitoring intensity affects
the utilities of corrupt agents 1 and 2. The monitoring intensity is the probability
as a percentage of a monitor to read an agent’s action. A value of 100 means
that all actions are read, while a value of 0 means no actions are read by the
monitor. We notice that, as the intensity of the monitoring mechanism increases,
the utility of corrupt agents decreases to the point where performing badly and
not performing at all yield the same utility, whereas normal agents maintain
their average utility. This allows us to conclude that, for a monitoring intensity
value of 40 or more, following norms is a better decision than the contrary.
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Fig. 3. Utility of corrupt agents is affected by monitoring intensity.

The data used to plot the graph of Figure 3 can be seen in Table 1. Values
for µ and σ represent the arithmetic mean and standard deviation, respectively.
These were calculated to show that utility values for normal agents are near
constant. The µ values for corrupt agents show that, at the end of the simu-
lation, their average performance is worse than those of normal agents, due to
their constant violation of norms. A high σ value for these agents shows that
their performance suffers between simulations. We can then see that through
the analysis of recorded agent actions and successful identification of violation
occurrences, violating agents are punished by the enforcement system and have
their utilities affected.



Simulating Normative Behaviour in Multi-Agent Environments 13

Table 1. Agent Utilities × Monitoring Intensity.

Intensity officer1 officer2 corrupt officer1 corrupt officer2

0 65,3285 66,3714 130,6571 130,7000

10 64,5871 66,5714 103,3000 106,2285

20 65,4428 65,0142 86,8000 87,9571

30 65,3142 64,8714 73,7571 75,6571

40 65,7857 65,1857 59,0571 57,8142

50 65,6714 65,7714 54,3285 53,1857

60 65,1571 65,1714 38,7714 38,4571

70 65,0142 65,6571 27,6428 27,3714

80 64,7857 64,9571 19,2285 19,3428

90 65,0714 66,1714 13,7857 13,8142

100 66,7571 65,8000 1,4714 0,0285

µ 65.3559 65.5948 55,3454 55,5051

σ 0.5569 0.5705 38,4836 39,1996

6 Related Work

There are multiple tools available for programming multi-agent environments,
few of which provide mechanisms for norm specification. These tools range from
programming libraries to model-based simulators. To name a few, NetLogo [16]
and its distributed version HubNet [25] are of the model-based type and al-
low users to work with educational projects and, to some extent, professional
ones. Other tools include MASON [17] and Repast [18]. MASON is a simula-
tion library developed in Java that provides functions for modelling agents and
visualising simulations as they run. As for Repast, it uses interaction models
much like NetLogo does, although it is meant for professional use and thus offers
more alternatives for agent programming. One final example worth mentioning
is MASSim [11], which promotes multi-agent research and is used in the MAS
Programming Contest2 [26]. This one, however, provides only the tools related
to the contests. Although it is possible to develop custom agents for operation
within the simulator, the practice is not encouraged by its developers.

Building a full-fledged norm-based behaviour simulation engine is not a triv-
ial task, and the “Emergence in the Loop” (EMIL) [27] project built a set of
tools to accomplish this objective. A toolset which includes an extension of
the BDI architecture that is capable of simulating the processes referred to as
“immergence” and “emergence” of norms [28]; and an integration with multi-
agent modelling tools such as NetLogo [16] and Repast [18]. In this way, agents
are modelled in one of these environments and then simulated using the EMIL
agent architecture. It is a very powerful tool for studying social behaviour in
autonomous agents, since agents can reason about norms and, together, create
conventions of what kinds of behaviours must be avoided or followed. EMIL’s
approach to normative simulation is more focused on agents and their experience

2 https://multiagentcontest.org

https://multiagentcontest.org
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with norms. This contrasts with our approach in that we are more focused on
norm monitoring and enforcement tasks, and little is said about these matters in
the EMIL literature. We also consider the environmental aspects of Normative
Multi-Agent Systems, which is why we employ CArtAgO in our implementation.

7 Conclusions and Future Work

In this paper, we constructed a mechanism of norm processing and enforcement
in a multi-agent environment. We show its feasibility with an implementation
using Jason [12] and Cartago [21] technologies. By keeping track of agent ac-
tivities and analysing actions against a normative base, it is possible to detect
violations and enforce norms through the sanctioning of violating agents. With
this framework, it is possible to evaluate different implementations [6,29,30,31]
of normative behaviour. Statistics collection can also be customised so that re-
sults may be compared between simulations.

CArtAgO allows us to build environments in a distributed manner, therefore
providing scalability for realistic simulation scenarios or complex multi-agent
systems. The philosophy behind CArtAgO, which sees the environment as the
composition of artefacts through which agents interact, also aided in the frame-
work’s construction. Artefacts are modular, they can be attached or detached
to a multi-agent system seamlessly. Meaning that artefacts can be created to
suit an agent’s or group of agents’s specific needs, and agents may connect only
to those artefacts that are related to their designs. We took advantage of those
features to build the interfaces for the monitoring system to access the Action
History and Normative Base structures.

As future work, we aim to build improvements and extensions to the frame-
work, such as: a mechanism to be added to the normative system that allows
activation and expiration of norms following predefined conditions; agent ar-
chitectures that can learn from normative environments, and with that avoid
penalties by violation or minimising performance loss when violations are in-
evitable [6]; enable agents to learn about the enforcing intensity and use that
information to their advantage [24]; and the introduction of agent hierarchies to
control normative power [32].
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