This paper has been accepted at ASE 2001.

Instantiating and Detecting Design Patterns:
Putting Bits and Pieces Together

Hervé Albin-Amiot} Pierre Cointe,
Yann-Gaél Guéhéneuc! Narendra Jussien

Ecole des Mines de Nantes
4, rue Alfred Kastler — BP 20823
44307 Nantes Cedex 3
France
E-mail: {albin|cointe|guehene|jussien}@emn.fr

Abstract

Design patterns ease designing, understanding, and
re-engineering software. Achieving a well-designed
piece of software requires a deep understanding and a
good practice of design patterns. Understanding exist-
ing software relies on the ability to identify architec-
tural forms resulting of the implementation of design
patterns. Maintaining software involves spotting places
that can be improved by using better design decisions,
like those advocated by design patterns. Nevertheless,
there is a lack of tools automatizing the use of design
patterns to achieve well-designed pieces of software, to
identify recurrent architectural forms, and to maintain
software. In this paper, we present a set of tools and
techniques to help OO software practitioners design,
understand, and re-engineer a piece of software, us-
ing design-patterns. A first prototype tool, PATTERNS-
Box, provides assistance in designing the architecture
of a mew piece of software, while a second prototype
tool, PTIDEJ, identifies design patterns used in an ex-
isting one. These tools, in combination, support main-
tenance by highlighting defects in an existing design,
and by suggesting and applying corrections based on
widely-accepted design patterns solutions.

1. Introduction

Since design patterns emerge [7], they have been
widely accepted by OO software practitioners. Their

*This work is partly funded by Soft-Maint — 4, rue du Chéateau
de I'Eraudiere — 44 324 Nantes — France

TThis work is partly funded by Object Technology Inter-
national, Inc. — 2670 Queensview Drive — Ottawa, Ontario,
K2B 8K1 — Canada

contribution cover the definition, the design, and the
documentation of class libraries and frameworks. They
are an efficient tool to communicate, to capitalize on,
and to understand solutions to common OO design
problems. We do not pretend that design patterns
solve on their own all the problems occurring during
software designing or re-engineering, but we strongly
believe that they have an important role to play.

The more important problem using design patterns
is the lack of tools to automate their instantiation and
detection. In this paper we propose a set of tools and
techniques to help software designers use design pat-
terns. This set of tools and techniques encompasses:
(1) The choice of the right design pattern depending
on the context; (2) The adaptation of the design pat-
tern to specific requirements; (3) The application of
the design pattern in a given target language; (4) The
detection of complete and distorted versions of a design
pattern; and, (5) The transformation of the distorted
versions.

With these tools, we intend to bring a solution to
the three following questions:

m While developing, how to enforce the use of design
patterns?

m When reviewing, how to identify the use of design
patterns?

® When maintaining, how to enforce! the use of design
patterns?

We present a solution based on a meta-model used
to formalize patterns in such a way they can be manip-

IThe first and third points are alike: Enforcing the use of
design patterns while developing or maintaining boils down to a
unique problem: How to transform some source code such that
it complies with design patterns?

ulated by tools. This meta-model serves as a basis for
our two prototype tools, PATTERNSBOX and PTIDEJ,
which provide mechanisms to apply and to detect de-
sign patterns.

Because we believe in the usefulness of design pat-
terns, this paper follows the formalism suggested by [7].
Each section is a pattern made of the following subsec-
tions: Name, Also Known As (A.k.a.), Intent (what
is the problem we try to solve), Motivation (why we
try to solve this problem), Applicability (how relevant
is the solution we propose), Consequences (what are
the consequences and the trade-offs involved by our
solution), Implementation (how the solution is imple-
mented), Sample, and Related patterns.

This paper is organized as follows: Section 2 intro-
duces the meta-model, core of our tools. Section 3
presents the tool to select, adapt, and instantiate de-
sign patterns. Section 4 describes the tool to detect and
correct design patterns. These tools use a Constraint
Satisfaction Problem (csp) formalism [11], as presented
in Section 5; an explanation-based constraint solver, as
presented in Section 6; and a source-to-source transfor-
mation engine, as presented in Section 7. Finally, we
summarize and conclude on our approach.

2. PDL

A.k.a. PATTERN DESCRIPTION LANGUAGE

Intent Describe design patterns as first-class entities
that can be manipulated and reasoned about.

Motivations We want to reify design patterns as
first-class entities providing their associated code and
detecting their occurrences in existing code. We need
to formalize design patterns according to these two
dual requirements. It is not possible to describe for-
mally what a design pattern is in essence, but the meta-
modelling technique is useful to formalize design pat-
terns in specific use-cases, like representation, applica-
tion, or validation. PDL is a meta-model that describes
the semantics of a design pattern description language
and which handles uniformly the instantiation and the
detection of design patterns. Several meta-models for
representing design patterns have already been pro-
posed but none are specifically designed toward code
generation and detection. [14] and [16] introduce meta-
models for design patterns instantiation and validation
but without support for code generation. In the PAT-
TERNGEN prototype tool [17], the meta-model does not
allow design patterns detection. In [6], the fragment-
based meta-model allows design patterns representa-
tion and composition.

Applicability Use PDL to formalize and describe de-
sign patterns, and give them existence when designing
a piece of software.

Consequences PDL defines a set of meta-entities. A
design pattern description is obtained by instantiation
and composition of these entities. The composition fol-
lows semantic rules defined by the relationships among
the meta-entities and, thus, provides a means to for-
malize design patterns. The result of the composition is
a model, which describes the structural and behavioral
aspects of the modelled design pattern. This model is
not yet bound to any specific context and contains only
the generic micro-architecture and intent of the design
pattern. For this reason, we call this model an abstract
model and we call the same model, refined for a specific
context, a concrete model.

Implementation A design pattern abstract model is
reified as an instance of a subclass of class Pattern, see
Figure 1; this class inherits the services defined by the
class Pattern and may define other services, specific
to the abstract model it represents (like addLeaf(),
for the Composite pattern abstract model). A design
pattern abstract model consists of a collection of en-
tities (instances of PEntity), representing the notion
of participants as defined in [7]. Each entity contains
a collection of elements (instances of PElement), rep-
resenting the different relationships among entities. If
needed, new entities or elements can be added by spe-
cialization of the PEntity or PElement classes. It is
possible to reason about and act on design pattern ab-
stract models as on any other regular objects, because
they are represented by standard classes and instances.

Sample We use the Composite pattern from [7] (see
its structure Figure 2 (Left)) and we follow the descrip-
tion presented under the Section Implementation, in
paragraph Declaring the child management operations.
This is the most common use of the Composite pattern
(for example, the classes Component and Container of
the Java AWT? follow this implementation).

The diagram in Figure 2 (Center) represents the de-
sign pattern abstract model derived from the original
design pattern leitmotiv [5] (all the informal pieces of
information given in [7] are made explicit).

Related patterns PATTERNSBOX, in Section 3, uses
PDL to manipulate design patterns abstract models
and to adapt them to a specific context. PTIDEJ, in
Section 4, uses design pattern abstract models to de-
tect design patterns in source code.

2AwT stands for ABSTRACT WINDOW TOOLKIT.

0."
Pattern PatternBuilder
L related
list() ttem) L
0. | build() .\ yay
ificBuil PatternR 1 %[TypesRepository
missing(Pattern) name [|

getName() visibility

getintent()
getCl i i

recognize()

[ist) [i | [smaltalkBuilder
[|
]

Ordler(| [|

[T 1
Pattemintrospector| [Observer | [Composite
inherits [|
\] 1] J .

0.

PAssoc 2| PMethod
[

targetAssoc

|
targetEntity
PClass 0. [Pinterface
| t]
| —

L1

PDelegatingMethod
S

Figure 1. A UML-like partial representation of our meta-model.

[Cown |

Oparationt)

| Leat | Composite

operation()

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Graphie_| ,

i) children

children

[Rectangle | [Line [Te

Picture

ES

(Compeste

Operation() @-----
Add(Gomponent)

Operation()

GatChild(iny)

[EET T) I | EE)

drawl)
addGraphic(...)
rermoveGraphic(...)
getGraphics()

[poerationq) |

Figure 2. (Left) The OMT-like diagram of the Composite pattern from [7]. (Center) A representation of the
Composite pattern abstract model. The dotted rounded square is an instance of the class Composite, subclass
of class Pattern. Rounded squares represent instances of PClass; ovals, instances of PInterface; and, boxed
names, instances of PDelegatingMethod. Instances of PAssoc and realization links use the standard UML

notation. (Right) UML diagram of the concrete model.

3. PatternsBox

A.k.a. DESIGN PATTERNS OUT-OF-A-BOX

Intent Provide an intuitive way to select, adapt, and
apply a design pattern.

Motivations The application of a design pattern can
be decomposed in three distinct activities: (1) The
choice of the right design pattern, which fulfils the user
requirements; (2) Its adaptation to these requirements
(the term instantiation is commonly used to identify
this task); and (3) The production of the code required
for its implementation. PATTERNSBOX is a tool de-
signed to help developers accomplish these three tasks.

Applicability Use PATTERNSBOX to select the re-
quired design pattern; to adapt the associated abstract
model defined using PDL; and, finally, to generate the
corresponding source code.

Consequences PATTERNSBOX provides:

m Access to the design pattern repository and, for each
design pattern, a shortcut to its intent.

m Mechanisms to adapt a selected design pattern ab-
stract model to a given context, thus creating a con-
crete model of the design pattern.

m Generation of the source code associated with the
design pattern concrete model. Our tools shall be
able to modify existing source code to instantiate
design patterns, using a source-to-source transfor-
mation engine.

Implementation Currently, navigation through the
design patterns repository is guided using the Html
version of [7]. We plan to integrate a more sophis-
ticated mechanism such as in [13]. Once an ab-
stract model is selected, PATTERNSBOX uses Java in-
trospection capabilities to discover its properties, ma-
nipulate, and adapt it. Then, PATTERNSBOX dialogs
through message-sends with instances of the abstract
model. These messages may be those understood by
the Pattern class (like build(), to generate code) or
those specific to the abstract model.

Sample The following example has been introduced
in [7] and reused in [14]. It defines a hierarchy of graph-
ical components as shown Figure 2 (Right).

The following lines of code declare a new Composite
concrete model. PATTERNSBOX performs these opera-
tions automatically.

Composite p = new Composite();

p.getActor ("Component") . setName ("Graphic") ;

p.getActor ("Component")
.getActor("operation") .setName("draw") ;

p.getActor("Leaf") .setName ("Text");

p.getActor ("Composite") .setName ("Picture");

p.-addLeaf ("Line");

p.addLeaf ("Rectangle") ;

From this new concrete model, the source code gener-
ated by PATTERNSBOX is:

/* Graphic.java */
public interface Graphic {
public abstract void draw();
}
/* Picture.java */
public class Picture implements Graphic {
// Association: children
private Vector cildren = new Vector();
public void addGraphic(Graphic aGraphic) {
children.addElement (aGraphic) ;
}
public void removeGraphic(Graphic aGraphic) {
children.removeElement (aGraphic) ;
}
// Method linked to: children
public void draw() {
for (Enumeration enum = children.elements();
enum.hasMoreElements () ;
((Graphic) enum.nextElement()).draw());
}
}
/* Text.java */
public class Text implements Graphic {
public void draw() {}
}
/* Line.java */
public class Line implements Graphic {
public void draw() {}
}
/* Rectangle.java */
public class Rectangle implements Graphic {
public void draw() {}
}

Related patterns PATTERNSBOX uses PDL, from
Section 2, to navigate through the design pattern
repository, to refine abstract models, and, finally, to
generate the source code.

4. PTIDEJ

A.k.a. PATTERN TRACE IDENTIFICATION, DETEC-
TION, AND ENHANCEMENT FOR JAVA

Intent Automate the identification of design pat-
terns complete and distorted versions in source code
and refactor the distorted ones to comply closely with
the corresponding design pattern.

Motivations It is difficult to use design patterns up-
front when designing an application. When design pat-
terns are used in a software architecture, their imple-
mentation often blurs the relations between (on the
one hand) the design patterns actors and their rela-
tionships and (on the other hand) the software classes
and their relationships. The semantic gap between de-
sign and implementation increases the difficulty of the
overall maintenance task and of the identification of
design patterns.

Many studies address the problem of automating the
identification of design patterns in source code, like [1,
2, 4, 10, 15]. However, these approaches only consider
complete implementations and ignore the refactoring
aspects.

Applicability Use PTIDEJ when you want to iden-
tify design patterns in the source code of an applica-
tion. A pattern is represented by an abstract model.
At the source code level, an abstract model is trans-
lated into a micro-architecture. Then, we say that a
micro-architecture is a complete version of a design
pattern, if it strictly complies with the pattern ab-
stract model micro-architecture; and, we say that a
micro-architecture is a distorted version, if some rela-
tionships are missing. If PTIDEJ finds distorted ver-
sions of a design pattern, it computes the differences
between them and the design pattern abstract model
micro-architecture and suggests corrections to decrease
these differences. These corrections are performed by
a source-to-source transformation engine.

The same techniques and tools can be used to detect
and correct inter-class design defects [9].

Consequences PTIDEJ makes it possible to:

m Reference a design pattern. We model a design pat-
tern as an abstract model and the tool generates the
corresponding CSP.

m Load and display an application architecture.

m Produce a simplified model of the application archi-
tecture.

m Solve the csp with the simplified model as domain,
using an explanation-based constraints solver. By
solving this csp, PTIDEJ identifies a design pattern
micro-architecture complete and distorted versions
(and the associated transformation rules) in a soft-
ware architecture.

m Visualize the complete and distorted versions of a
design pattern (the csp solutions).

m Select a specific distorted version.

m Transform the parts of the application source code
corresponding to the selected distorted version, such

that the source code better complies with the cor-
responding design pattern abstract model micro-
architecture.

m Load the modified source code.

m Display the new application architecture using a
UML-like notation.

Implementation We use the Java programming lan-
guage and different existing libraries to implement
PTiDEJ. We use PDL to model source code. Because
there is a duality between Java source code and Java
byte-codes, we use CFPARSE [8] to analyse Java classes
and build a model of these classes based on our meta-
model. We display this model using a graphical frame-
work dedicated to our meta-model. From the model of
the Java classes, PTIDEJ generates a new model in the
Claire programming language [3], a language used to
express the csp.

Sample We apply the constraints defined for the
Composite pattern on the source code of the applica-
tion Figure 3 (Left). The constraint solver generates
the set of all the groups of entities similar to the Com-
posite pattern abstract model. These groups are visible
in Figure 3 (Center) as the grey boxes outlining the
classes. The group of entities Element, Paragraph and
Document is one example. The greater the number of
constraints relaxed, the less similar to the Composite
pattern is the solution group and the lighter are the
outlining boxes.

The grey-shaded boxes represent the entities belong-
ing to (at least) one group of entities similar to the
Composite pattern. When a box is selected, it high-
lights all the entities belonging to this particular group
and presents related information: The degree of sim-
ilarity of the group with the original abstract model,
the constituents of this group, their values, and the as-
sociated transformation rules. The group composed of
classes Element, Document and Paragraph is similar to
the Composite pattern at 50 percent. The transforma-
tion to apply is given by the XCommand field:

Composite, Component
| javaXL.XClass cl, javaXL.XClass c2
| c1.setSuperclass(c2.getName());

This means that the class playing the role of Composite
must be a subclass of the class playing the role of
Component. In the example, the class Document must
be a subclass of Element. The transformation engine
automatically performs the modifications on the appli-
cation source code by executing the XCommand. Fig-
ure 3 (Right) illustrates the resulting architecture of
the application.

Related patterns PTIDEJ uses abstract models, de-
fined in Section 2. It translates a design pattern ab-
stract model into a CsP, presented in Section 5. The
explanation-based constraint solver in Section 6 solves
the csp. The transformation engine, introduced in Sec-
tion 7, transforms the application source code.

5. CSP

A .k.a. CONSTRAINT SATISFACTION PROBLEM

Intent Define the problem of detecting a design pat-
tern, in terms of its variables, the constraints among
them, and their domains.

Motivations We deduce a CSP from a design pattern
abstract model and a given source code. This CSP rep-
resents the problem our explanation-based constraint
solver, PALM, solves to identify, in the given source
code, micro-architectures that are identical or similar
to the micro-architecture defined by a design pattern.

Applicability Use a ¢sP when you want to resolve
a problem defined by the values to obtain rather than
by the process to obtain these values.

The csp is divided into three parts:

m The set of the variables. This set corresponds to the
entity® constituting a given design pattern abstract
model.

m The set of the constraints among the variables. This
set corresponds to the relationships among the en-
tities defined by the given design pattern abstract
model.

m The domain of the variables. This set corresponds
to the entities of the given source code and their
relationships.

Consequences Using PALM, the CSP solution is:

m The set of all the complete solutions to the prob-
lem. A complete solution is a set of entities from
the given source code whose relationships satisfy the
constraints of the problem.

m A subset of all the distorted solutions to the prob-
lem. A distorted solution is a set of entities from
the given source code whose relationships satisfy
a subset of the problem constraints. The choice
of the subset is performed either interactively by
the user or programmatically by associating weights
with each constraint.

31f we assume a Java-like object-oriented programming lan-
guage, an entity may be either a class or an interface.

AhstractDocument

ApstractDocument

AbstractDocument

AbstraciDocument

9

Dacument
K4
Main

i

Group solution 2 at50%
Component = jtu tests composite 2 AbstractDocument
Composite = jtutests.composite2.Document
Leaf = jtu.tests composite2.Paragraph
LeavesType = jtu tests composite2 Element
HCommand = Comnosite. Companent liavaxLXClass ¢
javaxL ®Class ¢2 | 1 setSuperclass(c? getMame);

,’iﬂﬂ

Paralndent

Paragraph

Figure 3. (Left) The architecture of the application. (Center) A suggestion of modification. (Right) The

modified architecture.

Implementation A CSP is expressed using the
CLAIRE programming language [3], in which the PALM
explanation-based constraint solver is written. The csp
is automatically obtained from the design pattern ab-
stract model.

Sample The Composite pattern, as presented in Fig-
ure 2, is modelled by associating a variable with each
defined entity (Component, Composite and Leaf), and
by constraining the values of these variables according
to the relationships among the entities: composite <
component, leaf < component, and composite D
component.

The source code of the application, Figure 3 (Left),
involves seven entities: AbstractDocument, Element,
Title, Paragraph, ParaIndent, Document, and Main.
The domain of each variable of the CSP, component,
composite, and leaf, is of size 7 (one slot for each
possible entity from the source code).

The resolution of the ¢sp modelling the Composite
pattern returns results of the form:

<Sol.#>.<Quality>.component =
<Sol.#>.<Quality>.composite =
<Sol.#>.<Quality>.leaf = <an entity>

<an entity>
<an entity>

A solution of weight 50, without constraint
Component < Composite, see Figure 3 (Center), is :

1.50.component = Element
1.50.composite = Document
1.50.1leaf = Paragraph

Related patterns We use a given design pattern ab-
stract model as presented in Section 2, to define a CSP.
The explanation-based constraint solver presented in
Section 6 solves this ¢sp. The PTIDEJ tool defined in
Section 4 generates the domain of the csp, calls the
constraint solver, and displays the results.

6. PaLM

A.k.a. PROPAGATION AND LEARNING WITH MOVE

Intent Define a new kind of constraint solver capa-
ble of providing explanations and information about its
actions (including explanations for a lack of solutions
to a given problem).

Motivations Complete solutions to the csp mod-
elling our problem are of no use when trying to un-
derstand and to improve source code. What is really
interesting are distorted solutions: Solutions that do
not respect all the constraints defining a complete so-
lution. Constraints that are not verified point out what
should be improved in the analyzed code.

A commonly used approach [19] is to a priori iden-
tify the possible distorsions and add them to the set of
examples defining the design pattern. This can become
extremely hard to maintain when adding new design
patterns or modifying old ones.

Classical constraint solvers are not designed to com-
pute distorted solutions. They are only capable of com-
puting complete solutions or of telling that there is no
solution at all. No commercial system can automati-
cally provide insights on distorted solutions to a given
problem. Thus, we need to define a new solver capable
of handling the search of distorted solutions.

Applicability We use a new paradigm in constraint
programming: Explanation-based constraint solving
[11]. The idea is to maintain information (namely ex-
planations), through the search, about (direct or in-
direct) effects of constraints appearing in the system.
Explanations are an abstraction of the trace of a con-
straint solver.
Explanations can be used:
m To point out which set of constraints is responsible
for the current solution (if one exists).

m To point out which set of constraints is responsible
for a contradiction (if no solution exists).

m To remove incrementally a constraint by undoing de-
pendent actions instead of a complete re-execution,
as it is done by classical solvers.

The last two features make explanation-based con-
straint programming an effective candidate to bring an
answer to our intent.

Consequences When using explanation-based con-
straint programming, the reason why no (more) in-
stances of the searched design pattern exist can be
clearly stated to the developer: The solver gives the
set of constraints justifying that situation.

From that explanation, constraints can be removed
incrementally leading to distorted solutions. The set
of removed constraints is a description of why this dis-
torted solution is a quasi-solution and therefore this set
points out where to improve the source code.

Our tool can be automated if a set of preferences
is associated with the set of constraints defining the
searched design pattern. Solutions provided by the au-
tomated and user-driven versions are the same. The in-
teractive version allows the user to control completely
the search and to focus precisely on the distorted solu-
tions that are of interest.

Implementation FExplanations are computed by
keeping a limited (polynomial space occupation) trace
(polynomial time computation) of the behavior of the
solver. We use the PALM system [11], an explanation-
based constraint system built on top of an open-source
constraint solver, CHOCO [12] (both implemented using
the Claire programming language [3]).

Sample Let us consider a two-variable toy problem:
x and y with the same set of possible values [1,2, 3].
Let us state > y. The resulting sets of possible values
are [2, 3] for x and [1,2] for y. An explanation for this
situation is the constraint x > y.

Let us suppose that we choose to add the constraint
x = 2. The resulting possible value for z is only 2.
The explanation for the modification is the constraint
x = 2. The other consequence is that the remaining
value for y is 1. The explanation for this situation is
twofold: A direct consequence of the constraint x > y
and also an indirect consequence of constraint x = 2.

Related patterns PTIDEJ, the tool dedicated to the
detection of design patterns presented in Section 4, uses
PALM to solve the ¢sp defined in Section 5.

7. JavaXL

A.k.a. JAVA EXTENDED LANGUAGE

Intent Modify user source code to comply with a de-
sign pattern description.

Motivations Applying a design pattern on an exist-
ing implementation requires to modify the correspond-
ing source code as little as possible. If the developer
uses specific idioms, coding conventions, or comments,
it is mandatory to preserve them. For example, if a
design pattern description implies that the visibility
of a field must be private, then only the place where
the modifier is declared in the source code must be
changed. Existing source-to-source transformation en-
gines dedicated to the Java programming language, like
OPENJAVA [18], do not take this aspect into consider-
ation and perform a complete source re-generation.

Applicability JAVAXL can be used to apply design
patterns and to apply specific code conventions or id-
ioms. JAVAXL ensures that the resulting source code
is syntactically correct but does not ensure that it is se-
mantically correct (compilable). The transformation-
rule writer is in charge of the transformation semantics.

Consequences JAVAXL ensures that:

Let S be an original source code

Let S’ be a translated source code

Let T(S) — S’ be a transformation function
Then: T-1(T(9)) =S

Implementation JAvAXL is an extension to the
Java reflection API, which works at runtime and pro-
vides introspection mechanisms. JAVAXL is intended
to work during source code edition. This is a ma-
jor difference with existing source-to-source transfor-
mation engines (such as OPENJAVA), which perform,
before compilation, translations that are not intended
to be readable, only compilable. JAVAXL provides a
class hierarchy equivalent to the Java reflection API.
This hierarchy provides read access (introspection) and
write access (intercession) on every language entities:
Classes, fields, methods...

Sample Let us take the example presented in Sec-
tion 4 where an entity Document must be declared as a
sub-entity of an other entity Element. Let the follow-

ing source code be the source code for Document:
public class Document
/* Here is an important comment */
implements Cloneable {

}
The following code:
XClass document = new javaXL.XCLass("Document");

document . setSuperclass("Element") ;

produces the following result:

public class Document extends Element
/* Here is an important comment */
implements Cloneable {

}

Related patterns PTIDEJ, in Section 4, uses
JAvAXL to perform source transformations to make
a given source code compliant with a given design pat-
tern description. PATTERNSBOX shall use JAVAXL
as well. So far, it does not use the source-to-source
transformation engine because it is not dedicated to a
specific programming language. We must first adapt
JAvAXL to other languages, in addition of Java (like
C++ or Smalltalk).

8. Conclusion

In this paper, we showed how to solve the problem
of automating the instantiation and the detection of
design patterns. We have presented a set of tools and
techniques that, put together, bring a solution to this
problem. We presented synthetically, as patterns, the
different tools and techniques needed to solve this prob-
lem. These techniques encompass:

m A meta-model, PDL, to describe design patterns
with an instantiation- and a detection-centric view.
Using this meta-model, we can express design pat-
tern as first-class entities that embody all the needed
information for instantiation and detection.

m A source-to-source transformation engine, JAVAXL,
to instantiate the design patterns, while modifying
as little as possible the user’s source code.

m A CSP to define the rules for design pattern detec-
tion.

m An explanation-based constraint solver, PALM, to
solve the csp.

We used these techniques to define two prototype
tools that assist the developers in instantiating and de-
tecting design patterns:

m PATTERNSBOX uses PDL to manipulate and adapt
design patterns models, to generate source code. In
the future, it shall useJAVAXL to transform existing
source code.

m PTIDEJ uses PDL to manipulate design patterns
models, a ¢csP and the PALM constraint system to
detect complete and distorted versions of design pat-
terns, and JAVAXL to make the distorted versions
compliant with the design pattern models.

We are currently assessing the usability and suit-
ability of our tools on several frameworks: Java AwT,

JUNIT, JHOTDRAW, and JEDIT.

Our proposal offers one answer, based on design pat-
terns, to automate, or to assist, in designing, under-
standing, and re-engineering software. In the future,
we hope to see other approaches to this problem, based
on the patterns we have presented.

References

[1] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pat-
tern recovery in object-oriented software. Proceedings of the
6 th Workshop on Program Comprehension, pages 153—160,

1998.
[2] K. Brown. Design reverse-engineering and automated de-

sign pattern detection in Smalltalk. Technical Report TR~

96-07, University of Illinois at Urbana-Champaign, 1996.
[3] Y. Caseau and F. Laburthe. Claire: Combining objects and

rules for problem solving. Proceedings of JICSLP, workshop

on multi-paradigm logic programming, 1996.

[4] O. Ciupke. Automatic detection of design problems
in object-oriented reengineering. Proceeding of TOOLS,
30:18-32, 1999.

[5] A. H. Eden. Precise Specification of Design Patterns and
Tool Support in their Application. PhD thesis, Tel Aviv

University, 2000.
[6] G. Florijn, M. Meijers, and P. V. Winsen. Tool support for

object-oriented patterns. Proceedings of ECOOP, 1997.
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns - Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1994.
[8] M. Greenwood. CFParse Distribution. IBM AlphaWorks,

September 2000.
[9] Y.-G. Guéhéneuc and H. Albin-Amiot. Using design pat-

terns and constraints to automate the detection and cor-
rection of inter-class design defects. Proceedings of TOOLS

USA, 2001.
[10] J. Jahnke and A. Ziindorf. Rewriting poor design patterns

by good design patterns. Proceedings the Workshop on
Object-Oriented Reengineering at ESEC/FSE, September

1997.
[11] N. Jussien and V. Barichard. = The PaLM system:

explanation-based constraint programming. In Proceed-
ings of TRICS: Techniques foR Implementing Constraint
programming Systems, a post-conference workshop of CP

2000, pages 118-133, Singapore, Sept. 2000.
[12] F. Laburthe. CHOCO’s API. Technical Report Version

0.13, OCRE Committee, 2000.
[13] O. Motelet. An intelligent tutoring system to help OO sys-

tem designers using design patterns. Master’s thesis, Vrije

Universitét, 1999.
[14] B.-U. Pagel and M. Winter. Towards pattern-based tools.

Proceedings of FuropLop, 1996.
[15] L. Prechelt and C. Kramer. Functionality versus practi-

cality: Employing existing tools for recovering structural
design patterns. Journal of Universal Computer Science,
4(12):866-882, 1998.

[16] P. Rapicault and M. Fornarino. Instanciation et vérification
de patterns de conception : Un méta-protocole. Proceedings

of LMO, in French, pages 43-58, 2000.
[17] G. Sunyé, A. L. Guennec, and J.-M. Jézéquel. Design pat-

terns application in UML. Proceedings of ECOOP, 2000.
[18] M. Tatsubori. An extension mechanism for the Java lan-

guage. Master’s thesis, Graduate School of Engineering,

University of Tsukuba , Ibaraki, Japan, 1999.
[19] R. Wuyts. Declarative reasoning about the structure of

object-oriented systems. Proceedings of TOOLS USA,
pages 112-124, 1998.

