Automatic Generation of Detection Algorithms for Design Defects

Naouel Moha and Yann-Gaél Guéhéneuc and Pierre Leduc
P1iDEJ Team, GEODES Lab
Department of Informatics and Operations Research
University of Montreal, Quebec, Canada
{mohanaou ,guehene, leducpie}©iro .umontreal.ca

Abstract

Maintenance is recognised as the most difficult and
expansive activity of the software development process.
Numerous techniques and processes have been pro-
posed to ease the maintenance of software. In par-
ticular, several authors published design defects for-
malising “bad” solutions to recurring design problems
(e.g., anti-patterns, code smells). We propose a lan-
guage and a framework to express design defects syn-
thetically and to generate detection algorithms auto-
matically. We show that this language is sufficient to
describe some design defects and to generate detection
algorithms, which have a good precision. We validate
the generated algorithms on several programs.

1 Introduction

Large object-oriented programs are expensive to
maintain because of bad design practices and archi-
tectural drift [8], which make adding, debugging, and
evolving features difficult. We define “design defects”
as the embodiment of bad design practices in the
source code of programs. Informally, design defects are
“bad” solutions to recurring design problems that hin-
der maintenance by decreasing software quality. They
encompass problems with different granularities, from
architectural problems, such as antipatterns [3], to low-
level problems, such as code smells [4] (long methods,
long parameter lists, or large classes). The Blob is a
typical example of a high-level design defect. A Blob
[3] (or God class [10]) corresponds to a large controller
class that monopolises most of the processing done by
a program. This controller class declares many fields
and methods with a low cohesion among one another.
It is associated with several simple data classes. It is
dependent on the data stored in the data classes. A
data class contains only data and accessor methods.

Tools such as SmallLint [2] or PMD [9] detect de-
fects such as bugs, unused code, or syntax errors. These
tools focus on code-level problems but do not address
higher-level defects because the specification and detec-

tion of design defects are tedious and labour-intensive
activities. Some authors proposed definitions of design
defects [4, 10] and algorithms to detect design defects
in programs [5, 7, 11], yet these definitions are infor-
mal and subject to misinterpretations and the detec-
tion techniques are mostly limited to metrics, such as
previous in works by Marinescu [5] or Munro [7].

We attempt to overcome the limitations of previ-
ous work on the detection of design defects by defining
these defects synthetically and by generating detection
algorithms automatically. We enhance the specifica-
tion and detection of design defects with structural and
semantic properties because metrics are not sufficient
to detect design defects precisely. Using a method to
describe design defects [6], we build the first language
to specify design defects in terms of their basic char-
acteristics, such as metrics, structural relationships,
and semantic and structural properties. We use this
language to specify design defects from the literature.
Then, using this language and our framework dedicated
to the analysis of programs, we generate detection algo-
rithms automatically from the specifications of design
defects. The language is sufficient to describe com-
mon design defects and to generate accurate detection
algorithms. We validate the generated algorithms on
several programs to demonstrate their precision.

The remainder of this paper is organised as follows.
Section 2 surveys related work on the specification and
detection of design defects. Section 3 presents the lan-
guage to specify design defects. Section 4 describes the
framework to generate detection algorithms for design
defects automatically. Section 5 presents case studies
of the generated algorithms on different programs. Fi-
nally, section 6 concludes and sketches future work.

2 Related Work

In their pioneering work, Fowler and Beck describe
22 code smells, that are low-level design defects in the
source code of a program suggesting that maintain-
ers should apply refactorings [4]. They define code

smells in an informal style and propose methods to
locate different code smells in source code manually,
using code inspection and human judgment. Brown
et al. [3] published the first book on antipatterns,
which are described textually. These books provide in-
breadth views on heuristics, code smells, and antipat-
terns aimed at a wide audience for educational pur-
poses rather than in-depth technical studies. There-
fore, it is difficult to build detection algorithms from
the textual descriptions directly because they lack pre-
cision and are prone to misinterpretations. We defined
in a previous work [6] a systematic method to spec-
ify design defects from their textual descriptions and
generate automatically detection algorithms.

Marinescu [5] presents an approach based on metrics
for detecting code smells with detection strategies. A
detection strategy is a generic algorithm for computing
metric values on a source code model and for capturing
deviations from “good” design principles using heuris-
tics. The detection algorithm of each code smell is built
automatically, but only using set operators on sets of
classes with some manually-specified metric values (ab-
solute or relative), which cannot express structural or
semantic properties. Munro [7] builds on this previous
work and characterises code smells less informally us-
ing a generic template and software metrics. Munro
and Marinescu’s approaches have two important limi-
tations. First, they focus only on code smells and do
not apply their detection strategies to higher-level de-
sign defects, such as antipatterns. Indeed, it is our
understanding that they cannot combine their heuris-
tics easily. Marinescu illustrates his approach with the
Blob for only high-level design defect. Second, they
use heuristics based on metrics only, which are insuf-
ficient to detect design defects precisely, because met-
rics cannot express important structural and semantic
properties. To ease the comparison previous work, we
illustrate our approach with the Blob and three other
high-level design defects: Functional Decomposition,
Spaghetti Code, and Swiss Army Knife.

We improve previous work on the specification and
detection of design defects. Based on our systematic
method [6], we introduce a language to describe de-
sign defects synthetically. This language uses struc-
tural relationships, the semantics of names, and struc-
tural properties in addition to metrics to characterise
design defects, because metrics cannot characterise ad-
equately several properties of high-level design defects.
We generate detection algorithms automatically using
this language. We detail in the following the specifi-
cation of design defects using the example of the Blob
design defect, the generation of algorithms, and the
validation of the algorithms.

3 Specification of Design Defects

We specify design defects synthetically using rule
cards, i.e., sets of rules. Rule cards are at the core of
our method to generate detection algorithms for design
defects automatically.

Rule Card and Rules. A rule card describes a de-
sign defect, its code smells and the relationships among
code smells. We formalise rule cards with a BNF gram-
mar, which determines the exact syntax for a language.
Figure 1 shows the grammar used to express rule cards.
A rule card is identified by the keyword RULE_CARD,
followed by a name and a set of rules specifying this
specific design defect as a set of code smells (Figure 1,
line 1). A rule describes a code smell as a list of proper-
ties (such as metric, lines 7-16, see in the following for
more details), its relationships with other code smells
(such as associations, lines 18-22), and-or combination
with other code smells, based on available operators
(such as union, line 5).

Properties. Properties can be of three different
types (metrics, structural, or semantics) and define
pairs of identifier—value (lines 8-10). A structural prop-
erty (line 16) is property verified by a method, an inter-
face, a field, or a parameter. A property based on met-
rics defines a numerical or an ordinal value for a specific
metric (line 12). We can sum or subtract metrics (line
11). Numerical values are used to define thresholds
or absolute values, whereas ordinal values are used to
define values relative to all the classes of the program
under analysis. A semantic property relates to the se-
mantics of a class.

Example. Figure 2 illustrates the grammar with the
rule card of the Blob design defect. The Blob design
defect is divided in two main code smells: Controller
Class and Data Class. These two code smells represent
classes tied by an association relationship (ASSOC). A
Controller Class is the union of two other code smells
LargeClassLowCohesion and ControllerClassName,
i.e., classes with large number of methods and at-
tributes (NM + NA) (line 11), with low cohesion (LCOM5)
(line 13), and with specific names identified by key-
words (CLASSNAME and METHODNAME) (line 16-17). A
Data Class is a class defining accessors (Accessor) with
a high cohesion (line 20).

Discussion. The language we propose for specify-
ing rule cards offers a greater flexibility than imple-
menting ad-hoc detection algorithms, because it allows
describing design defects at a higher-level of abstrac-
tion than previous works, including combining rules for
code smells and specifying the relationships, structure,
and semantics of the suspicious classes. Moreover, the

rule_card := RULE_CARD: string {list_rules};
list_rules := rule | list_rules rule
rule := RULE: string {content_rule};
content_rule = operator rule rule | list_relations | list_prop
operator := INTER | UNION | DIFF | INCL | NEG
list_prop = property | operator property property
property = (METRIC: id_metric, value_ordi)
| (SEMANTIC: id_sem, value_sem)
| (STRUCT: id_struct, string)
id_metric = id_metric+id_metric | id_metric-id_metric | string
value_ordi ::= VERY_HIGH | HIGH | MEDIUM | LOW | NONE | NUMBER
id_sem = CLASSNAME | METHODNAME | FIELDNAME
value_sem = {cont_semantic}
cont_sem = string | string, cont_sem
id_struct = CLASS | INTERFACE | METHOD | FIELD | PARAMETER

list_relations
relationship

relationship | relationship list_relations

TO: string cardinality
ASSOC | AGGREG | COMPOS
ONE | MANY | ONE_OR_MANY | OPTIONALLY_ONE

name_relation
cardinality

language is straightforward to understand and to han-
dle by a maintainer, because it does not require exten-
sive programming skills.

4 Generation of the Algorithms

We use the language based on rule cards defined in
the previous section to generate detection algorithms
automatically. The automatic generation ensures the
traceability between the specifications of the design de-
fects and their detection.

Underlying Framework. The automated genera-
tion of detection algorithms relies on the SAD frame-
work (Software Architectural Defects). The SAD
framework provides the building blocks (related to the
concepts of relationships, operators, properties, and or-
dinal values) common to all detection algorithms. It
provides services to build, to access, to compute met-
rics, to analyse structural relationships, and to perform
semantic and structural analyses on a program model.

The SAD framework includes the PADL meta-model
(Pattern and Abstract-level Description Language) [1],
which allows describing object-oriented programs and
the structure of solutions of design patterns. PADL
offers a set of constituents (classes, interfaces, methods,
fields...) to describe programs and the methods on
these constituents required to assess their properties.

Structural and semantic properties can be specified
via PADL. Properties based on metrics are computed
using POM (Primitives, Operators, Metrics), an ex-
tension to PADL to compute metrics. POM provides
several dozen metrics, such as LCOM5 (Lack Of Cohe-
sion in Methods), NM (Number of Methods), and CBO
(Coupling Between Object).

The SAD framework also includes the SADDL meta-
model (Software Architectural Defects Definition Lan-

name_relation: string FROM: string cardinality

RULE_CARD: BlobCard {

RULE: Blob {ASSOC: associated FROM: ControllerClass ONE
TO: DataClass MANY};

RULE: ControllerClass

{INTER LargeClassLowCohesion ControllerClassName};

RULE: LargeClassLowCohesion

{INTER LargeClass ClassLowCohesion};

© W N U W N

[
S

RULE: LargeClass {(METRIC: NM + NA, VERY_HIGH)};

= e
N

RULE:

-
w

ClassLowCohesion {(METRIC: LCOM5, VERY_HIGH)} ;

[
'S

RULE: ClassControllerName {UNION
(SEMANTIC: CLASSNAME, {System, Manager, Controller})

(SEMANTIC: METHODNAME, {Process, Control, Command})};

B e e
o N o w

RULE: DataClass

[
o ©

&)
[
[

guage), which extends the PADL meta-model with con-
stituents related to design defects (identified as key
concepts, such as constituents to specify design defects
and their code smells) to describe models of rule cards.

Finally, the SAD framework includes algorithms to
visit models of rule cards and to generate detection
algorithms from these models.

Concrete Generation. The generation of the detec-
tion algorithms divides in three steps. The first step
consists in generating a parser for the grammar of the
rule cards. The second step consists in parsing the rule
cards to check if they conform to the BNF grammar.
As we parse the rule card, we build a model represent-
ing this rule card using the SAD framework, which pro-
vides all the constituents required to model rule cards.
In the last step, we visit the model of the rule card and
generate the detection algorithm corresponding to the
rules, using the SAD framework.

5 Validation of the Algorithms

We perform a study on the use of the language and
of the SAD framework to express design defects and to
detect these design defects in programs.

Our objective is to show through case studies that
our language has enough expressive power to describe
several design defects of different nature and that the
precision of the generated detection algorithms is rea-
sonable, i.e., at least two-third of the results of the
generated algorithms are true positive. The precision
compares the number of true design defects among all
detected design defects.

Concretely, we use our language to describe 4
well-known but different design defects described in
Brown’s book [3]: Blob, Functional Decomposition,
Spaghetti Code, and Swiss Army Knife. These

{INTER (STRUCT: METHOD, Accessor) (METRIC: LCOM5, HIGH)};

design defects include in their descriptions differ-
ent code smells described in Fowler’s book [4].
We studied more that 15 design defects and re-
port here 4 of them. For lack of space, we can-
not provide the rule cards of all these design de-
fects. However, they are available with the mater-
ial for replication at http://ptidej.iro.umontreal.
ca/downloads/experiments/propASE06/. We sum-
marise in the following each design defect.

Functional Decomposition. The Functional De-
composition design defect occurs when experienced
procedural developers with little knowledge of object-
oriented programming implement an object-oriented
program. It divides in a main class (a class with a pro-
cedural names, such as Compute or Display, in which
inheritance and polymorphism are scarcely used) asso-
ciated with many data classes (like in the Blob design
defect) or small classes (classes with a very low number
of methods and fields).

Spaghetti Code. The Spaghetti Code design defect
results from procedural thinking in object-oriented pro-
gramming. It characterises classes with long methods,
with methods with no parameters, with no inheritance,
defining global variables.

Swiss Army Knife. The Swiss Army Knife design
defect is a complex class that offers a high number of
services to address many different needs. Utility classes
are typical examples of Swiss Army Knives. A Swiss
Army Knife is a complex class implementing a high
number of interfaces.

Results. We then generate the associated detection
algorithms using our SAD framework. We apply these
algorithms on 6 open-source programs: Log4J, Lucene,
PMD, QuickUML, Xerces v1.0.1, and Xerces v2.7.0.
In contrast with previous works, we use freely avail-
able programs to ease comparisons and replications of
this study. We record the times of detection and the
number of suspicious classes. We perform two separate
manual code inspections to validate the results and
compute their precisions. Validation was performed
manually because only maintainers can assess the pres-
ence of defects in the design depending on their design
choices and on the context.

Our language has enough expressive power to de-
scribe 15 design defects of different nature. The gener-
ated algorithms provide good results in terms of num-
ber of suspicious classes and their precisions. The over-
all precision is reasonable, with 64% or more, in par-
ticular for large programs, such as PMD and Xerces.
Computation times vary from 1 millisecond for the
Swiss Army Knife (the most simple of the 4 design
defects) for QuickUML to 2,364 milliseconds for the

Spaghetti Code for Xerces v2.7.0. These results con-
firm the interest of specifying design defects using a de-
fined language, based on metrics as well as structural
relationships, structural and semantic properties.

6 Conclusion and Future Work

Maintenance of programs is a tedious and time-
consuming activity, mainly because of the quality of
programs. We defined a simple language based on a
BNF grammar to specify the design defects in terms of
metrics and structural and semantic properties. This
language describes rule cards, which allows maintainers
to specify easily and freely the design defects they are
looking for exactly. Then, we presented a framework
to support the automatic generation of detection algo-
rithms from the rule cards. This framework provides
all constituents and the services to model rule cards
and to generate detection algorithms. Finally, we vali-
dated the generated algorithms on several open-source
programs and reported their precisions. We showed
that the detection algorithms are efficient in time and
precise. We are currently developing our method (1)
to compare in details with previous work; (2) to apply
our algorithms on larger programs and to analyse the
results of the detection algorithms; and (3) to develop
the language and the generation algorithms.

References

[1] H. Albin-Amiot, P. Cointe, and Y.-G. Guéhéneuc. Un méta-
modele pour coupler application et détection des design pat-
terns. In actes du 8° colloque Langages et Modéles a Objets,
volume 8, numéro 1-2/2002 of RSTI - L’objet, pages 41-58.
Hermes Science Publications, janvier 2002.

[2] J. Brant. Smalllint, April 1997. http://st-www.cs.uiuc.edu/
users/brant/Refactory/Lint.html.

[3] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. M. III,
and T. J. Mowbray. Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley and Sons,
1%t edition, March 1998.

[4] M. Fowler. Refactoring — Improving the Design of Existing
Code. Addison-Wesley, 1% edition, June 1999.

[5] R. Marinescu. Detection strategies: Metrics-based rules for de-
tecting design flaws. In Proceedings of the 20t" International
Conference on Software Maintenance, pages 350-359. IEEE
Computer Society Press, 2004.

[6] N. Moha, D.-L. Huynh, and Y.-G. Guéhéneuc. Une taxonomie
et un métamodele pour la détection des défauts de conception.
In actes du 12° colloque Langages et Modéles a Objets, pages
201-216. Hermes Science Publications, March 2006.

[7] M. J. Munro. Product metrics for automatic identification of
“bad smell” design problems in java source-code. In proceed-
ings of the 11*" International Software Metrics Symposium.
IEEE Computer Society Press, September 2005.

[8] D. E. Perry and A. L. Wolf. Foundations for the study of soft-
ware architecture. In Software Engineering Notes, 17(4):40—
52, October 1992.

[9] PMD, June 2002. http://pmd.sourceforge.net/.

[10] A. J. Riel. Object-Oriented Design Heuristics. Addison-
Wesley, 1996.

[11] A. Trifu and I. Dragos. Strategy-based elimination of design
flaws in object-oriented systems. In proceedings of the 4"
international Workshop on Object-Oriented Reengineering.
Universiteit Antwerpen, July 2003.

