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To grasp the landscape of software engineering patterns for machine learning (ML) applications, a systematic literature review of both
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1. INTRODUCTION

Researchers and practitioners studying best practices strive to provide patterns that address software complexity
and quality issues in any type of software system. Recently, software systems with machine learning (ML)
algorithms have become very popular. Because these ML applications are complex, they should benefit from
patterns that codify good/bad architectural and design practices during development. To help developers ensure
quality, such practices are often formalized as architecture and design patterns, which encapsulate reusable
solutions to common problems within a given context.

To grasp the landscape of software-engineering architecture and design patterns for machine-learning appli-
cations (SEP4MLA), we performed a systematic literature review (SLR) of both academic and gray literature to
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collect SE good (bad) patterns for ML application systems and software [Washizaki et al. 2019]. From the 32
scholarly documents and 48 gray documents identified in the SLR, 12 ML architecture patterns, 13 ML design
patterns, 3 ML anti-architecture patterns, and 5 ML anti-design patterns were extracted. Figure 1 shows a pattern
map of these patterns and their relationships [Washizaki et al. 2020].

A survey of software-engineering and machine-learning developers at a workshop revealed that there are 7
major ML architectural patterns and 5 major ML design patterns among these 33 SEP4MLA. Multiple developers
answered that they used the following ML architecture patterns: “Data-Algorithm-Serving-Evaluator”, “Data Lake“,
“Distinguish Business Logic from ML Models”, “Microservice Architecture”, “Event-driven ML Microservices”,
“Lambda Architecture”, and “Parameter-Server Abstraction” [Washizaki et al. 2020]. They also used the following
ML design patterns: “Handshake”, “Isolate and Validate Output of Model”, “ML Versioning”, “Test Infrastructure
Independently from ML”, and “Wrap Black-box Packages into Common APIs” [Washizaki et al. 2020].

Since not all of the identified patterns are well documented in the standard pattern format, which includes clear
problem statements and corresponding solution descriptions, herein we describe three major ML architecture
patterns and one ML design pattern in the standard pattern format so that practitioners can (re)use them in their
contexts.

2. DATA LAKE

2.1 Source

[Gollapudi 2016; Menon 2017; Singh 2019]
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2.2 Intent

Collect raw data for as long as possible and offer access to analytic algorithms, like ML algorithms.

2.3 Context

A lot of real-world data/information cannot be expressed easily through relational schemas. This data can be
documents (e.g., images), key/value pairs (e.g., users’ encrypted passwords) graphs (e.g., UML class diagrams),
or time series (e.g., temperatures from sensors). Although this data is not necessarily “big” data, it must be stored
to be analyzed asynchronously.

2.4 Problem

In the traditional Data Warehouse architecture, all data is read from various sources by an ETL (Extract/Transform/Load)
tool, and is well structured based on a simplified data model to gain all the advantages of a data warehouse such
as fast and efficient query processing [Daehn 2017]. In other words, semantics first and content later [Daehn 2017].
In practice, neither the types of analyses that will be performed nor the adopted frameworks can be foreseen.

2.5 Solution

Figure 2 shows the entire structure to solve the problem. Data, which ranges from structured to unstructured,
should be stored as “raw” as possible into a data storage called a "Data Lake". A data lake should allow parallel
analyses of different types of data with various frameworks. Thus, a data lake should facilitate efficient (time, space)
writing of data from the data sources (e.g., sensors) and efficient, parallel reading of the data for ML frameworks.
To realize these features, the data lake must contain historical data and support the insert functionality.

The approach of the data lake is the opposite of a data Warehouse. That is, content first and semantics later
[Daehn 2017]. By giving up the update and delete functionalities, the overhead of an active database can be
avoided without sacrificing anything else [Daehn 2017].

2.6 Example

Apache Hadoop1 and Azure Data Lake Storage Gen22 implement data lakes. In addition, Amazon Simple Storage
Service (S3)3 can be used to implement a data lake, and Amazon provides a service called "AWS Lake Formation"4

to set up a secure data lake in days.

2.7 Discussion

Data lakes must have clear access controls to allow certain users to write data and other users to read data. For
example, sensors can write (not read), while a control system can read (not write). Analyses applying on a data
lake must first transfer (while transforming) the relevant data from the data lake into a data warehouse. Then the
data warehouse can be completely rebuilt using a transformation tool such as Apache Spark5.

2.8 Related Patterns

“Distinguish Business Logic from ML Models” (see Section 3) and Gateway Routing Architecture (not described
here).

1https://hadoop.apache.org/
2https://azure.microsoft.com/solutions/data-lake/
3https://aws.amazon.com/s3/
4https://aws.amazon.com/lake-formation/
5https://spark.apache.org/
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3. DISTINGUISH BUSINESS LOGIC FROM ML MODELS

3.1 Source

[Yokoyama 2019]

3.2 Intent

Separate the overall business logic of the ML application from the actual used ML models.

3.3 Context

ML applications often use different ML frameworks and associated models (trained in previous, off-line phases).
The frameworks and models play roles in the wider business logic.

3.4 Problem

The business logic depends on the results of the models, which may fail for a variety of reasons (as the rest of the
business logic can too). Hence, the overall business logic should be isolated as much as possible from the ML
models. This way, they can be changed/overridden when necessary without impacting the rest of the business
logic.

3.5 Solution

Figure 3 shows the entire structure to solve the problem.

(1) Separate the business logic and the inference engine, loosely coupling the business logic and ML-specific
dataflows.

(2) Use loggers to monitor the behavior of the ML models.
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(3) Set-up alarms for changes in the data distributions that may invalidate the ML models throughout the execution
of the ML application.
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Fig. 3. Structure of the Distinguish Business Logic from ML Model pattern.

3.6 Example

Figure 4 presents an example of the pattern in a Slack-based Chatbot system [Washizaki et al. 2020]. In the
system, there is clear separation between the Chatbot service (as the business logic) and the underlying ML
components.

3.7 Discussion

This pattern distinguishes failures from the business logic and the ML models so that ML models can be changed
without impacting the rest of the logic.

3.8 Related Patterns

“Gateway Routing Architecture” and “Closed-loop Intelligence” (not described here).

4. MICROSERVICE ARCHITECTURE

4.1 Source

[Everett 2018; Smith 2017]

4.2 Intent

Define consistent input and output data and provide well-defined services to use for ML frameworks.

4.3 Context

ML applications often use different ML frameworks, which are developed independently by ML researchers. ML
researchers are experts in ML but not in the development of frameworks. Moreover, each team of researchers has
a different idea about their working frameworks. Thus, ML frameworks are heterogeneous in terms of forms (APIs)
and contents (data structures, algorithms).
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Fig. 4. Example of a Chatbot System Architecture by applying the “Distinguish Business Logic from ML Model” pattern.

A wide variety of these frameworks are available in open-source at places like mloss.org, or from in-house
code, proprietary packages, and cloud-based platforms. ML applications may use one framework but later change
for another framework.

4.4 Problem

It is impossible to be familiar with all ML frameworks. In addition, data scientists may be unable to install and run
these frameworks locally. Thus, ML applications may be confined to “known” ML frameworks, and opportunities for
more appropriate frameworks may be missed.

4.5 Solution

Figure 5 shows the entire structure to solve the problem. Data scientists working with or providing ML frameworks
can make these frameworks available through micro-services. Micro-services are fine-grained and accessible
through simple protocols. Thus, data scientists can offer access to their ML frameworks through micro-services so
that any ML application can benefit from their frameworks without having to (1) install them and (2) maintain them
when new versions are available.
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4.6 Example

Amazon SageMaker6 (see also AWS DeepRacer7)

4.7 Discussion

The benefit of microservices is that data scientists, who may not be experts in software engineering, do not have to
worry about installing/maintaining ML frameworks. They can also use the same set of microservices in different ML
applications. Similarly, microservices can be used by different, competing ML applications. Hence, microservice
providers can capitalize on their investment.

Unlike “Wrap Black-Box Packages into Common APIs”, ML applications depend on microservices and cannot
immediately replace one ML framework with another (unless the microservice provider offers different frameworks).
Thus, ML applications become dependent upon one service provider.

4.8 Related Patterns

“Daisy Architecture”, “Event-driven ML Microservices”, “Wrap Black-box Packages into Common APIs”, and
‘Separation of Concerns and Modularization of ML Components” (not described here).

5. ML VERSIONING

5.1 Source

[Wu et al. 2019; Amershi et al. 2019; Sculley et al. 2015]

5.2 Intent

Version ML models like any other software artifacts are tested for regressions and replication ease.

5.3 Context

ML applications may use (1) several models that (2) can change over time (new training).

6https://aws.amazon.com/sagemaker/
7https://aws.amazon.com/deepracer/
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5.4 Problem

ML models and their different versions may change the behavior of the overall ML application.

5.5 Solution

Figure 6 shows the entire structure to solve the problem. Record the ML model structure, training dataset, training
system and analytical code to ensure a reproducible training process and an inference process. Similar to other
software artifacts, ML models should be versioned so that they can be tested and rolled back in case of regression.

ML model

Dataset

Code

Version

Version Control and Configuration 

Management

…

…

Fig. 6. Structure of the ML Versioning pattern.

5.6 Example

In the Eclipse Foundation library DP4J, models can be saved and loaded from the file system using the org.
deeplearning4j.rl4j.policy.DQNPolicy.save(String) and org.deeplearning4j.rl4j.policy.DQNPolicy.
load(String) methods. These methods can be used not only during training/production but also during versioning
to store models and version them as any other software artifacts.

5.7 Discussions

To the best of our knowledge, previous works have not studied the performance and the sustainability of serialized
ML models. It is unknown whether saving/loading models has a negative impact on the performances of ML
applications. In addition, the long-term abilities to load and use ML models with new versions of (different) ML
frameworks are unknown.

Although versioning the control dataset, training system, analytical code, and corresponding ML models is
recommended to ensure the reproducibility, versioning all of them in a sophisticated and systematic manner
can be difficult due to the size of the dataset and complicated configurations among the hyperparameters,
training/inference code, etc. Two layers of version control can mitigate the issue by handling code and metadata
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(of dataset and ML models) in a code storage such as Git8, and handling large dataset and ML models in a data
storage such as DVC (Data Version Control)9 [Wu 2019].

5.8 Related Patterns

“Test the Infrastructure Independently from the Machine Learning” and “Canary Model” (not described here).

6. CONCLUSION

Herein three major ML architecture patterns (“Data Lake“, “Distinguish Business Logic from ML Models”, and
“Microservice Architecture”) and one major ML design pattern (“ML Versioning”) are described. These pattern are
from a set of 33 patterns identified through a SLR. In the future, we plan to write all 33 patterns in the standard
pattern format to help developers adopt good practices and avoid bad practices described by these patterns.
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