
Taupe: Towards Understanding Program Comprehension

Yann-Gaël Guéhéneuc
Ptidej Team – LaiGLE

Département d’informatique et de recherche opérationnelle
Université de Montréal – CP 6128 succ. Centre Ville

Montréal, Québec, H3C 3J7 – Canada
guehene@iro.umontreal.ca

Abstract

Program comprehension is a very important ac-
tivity during the development and the mainte-
nance of programs. This activity has been ac-
tively studied in the past decades to present
software engineers with the most accurate
and—hopefully—most useful pieces of infor-
mation on the organisation, algorithms, ex-
ecutions, evolution, and documentation of a
program. Yet, only few work tried to under-
stand concretely how software engineers obtain
and use this information. Software engineers
mainly use sight to obtain information about
a program, usually from source code or class
diagrams. Therefore, we use eye-tracking to
collect data about the use of class diagrams by
software engineers during program comprehen-
sion. We introduce a new visualisation tech-
nique to aggregate and to present the collected
data. We also report the results and surprising
insights gained from two case studies.

1 Introduction

Program comprehension is one of the most im-
portant activity during the development and
maintenance of programs. This activity is
“necessary to facilitate reuse, inspection, main-
tenance, reverse engineering, re-engineering,
migration, and extension of existing software
systems” [11]. It consists, for a software engi-
neer, in acquiring information about the organ-

Copyright c© 2006 Yann-Gaël Guéhéneuc. Permis-
sion to copy is hereby granted provided the original
copyright notice is reproduced in copies made.

isation, algorithms, executions, evolution, and
documentation of a program to form an accu-
rate mental model of this program. This men-
tal model allows software engineers to perform
appropriate changes without introducing bugs
[23] or degrading the program design [18].

Previous work analysed the activity of pro-
gram comprehension and suggested techniques
to ease this activity. This work includes un-
derstanding the creation of mental models [23],
identifying interesting information [13], propos-
ing new techniques to present information [22].
However, to the best of our knowledge, no pre-
vious work studied how software engineers con-
cretely acquire information about a program.
The acquisition of information is mainly per-
formed through sight, from a computer screen.
Thus, we propose to study the use of sight by
software engineers during program comprehen-
sion to better understand this activity. A bet-
ter understanding of the acquisition of informa-
tion will help in combining existing techniques
and in developing new techniques to ease pro-
gram comprehension.

UML [15] has become de facto the standard
notation to describe the organisation, struc-
ture, and behaviour of object-oriented pro-
grams. In particular, class diagrams describing
the organisation of classes, their relationships
and their services, are often used by software
engineers to obtain information on the design
of objet-oriented programs [6, 19, 24].

We use eye-tracking to collect data on the
acquisition of information from class diagrams
by software engineers through sight to under-
stand concretely how software engineers obtain
information and use this source of information.

(a) Headband and its different parts. (b) Use of the headband.

Figure 1: SR Research EyeLink II eye-tracking system.

The data collected using eye-tracking consists
of two types of particularly useful information:
fixations and saccades. Fixations record the
position of the eye during a gaze while saccades
record the movements of the eyes between two
fixations. The numbers of fixations and sac-
cades can vary from a dozen to several hun-
dreds depending on the size and complexity of
the class diagram, on the time spent looking at
the diagram, on the strategy used to acquire
information from a diagram, and on the pur-
pose of the activity of program comprehension
at hand.

No two software engineers analyse a same
diagram identically. Therefore, we develop a
new visualisation technique to aggregate and
to present the fixations and saccades collected
from several software engineers. Our technique
introduces the concept of areas of interest and
superimposes aggregations of the fixations and
saccades and a class diagram with alpha com-
position to highlight the most visited areas of
the diagram. We implement our tool as the
Taupe data viewer. We perform two case stud-
ies with two different class diagrams and pro-
gram comprehension activities with software
engineers and report results using our visuali-
sation technique. These case studies show that,
surprisingly, binary class relationships (inheri-
tance, use, association, aggregation, and com-
position [7]) seem to be scarcely used. Thus,
our contributions are:

• The first use of eye-trackers to collect data
on the concrete use of class diagrams dur-
ing program comprehension.

• A new visualisation technique to aggregate
and to present collected data and its im-
plementation, the Taupe data viewer.

• Two case studies of the analysis of pro-
gram comprehension with class diagrams
performed with software engineers.

Section 2 introduce the idea of using eye-
tracking to study the comprehension of class
diagrams. Section 3 present our visualisation
technique and its implementation, the Taupe

data viewer. Section 4 report the results of two
first case studies with class diagrams. Finally,
Section 5 concludes and presents future work.

2 Class Diagrams and Eye-
Tracking

Class diagrams represent the structure and
global behaviour [10] of programs, showing
classes, interfaces, and their relationships.
They are often used by software engineers
during development and maintenance to ab-
stract implementation details and to present an
easier-to-grasp clustered view of the program
source code [6, 19, 24].

2.1 Previous Work

Class diagrams have been extensively studied
in the literature on program comprehension.
We only summarise here some of the main lines
of research on program comprehension using
class diagrams.

2

Purchase et al. [1] reported the results of
experiments on the effect of aesthetics criteria
on the preferences of users for UML class di-
agrams. They performed several experiments
with subjects to assess the subjects’ preferences
over several pairs of class diagrams, each dia-
gram in a pair conforming to different (but re-
lated) aesthetics criteria. They collected quan-
titative data in the form of percentages of sub-
jects preferring one diagram over another in
each pair and qualitative assessments of each
diagram. They concluded on the most im-
portant aesthetic criteria for UML class dia-
grams, including joined inheritance arcs and
directional indicators.

Eichelberger [3] studied the relation between
the UML notation for class diagrams, princi-
ples of human–computer interactions, and prin-
ciples of object-oriented design and program-
ming. The author then suggested changes to
the UML notation and aesthetics criteria to
lay out class diagrams. These changes and aes-
thetic criteria are implemented in a tool, Sugi-

bib, to lay out UML-like class diagrams. The
author claimed that laying out class diagrams
while conforming to the aesthetics criteria im-
prove the readability of the diagrams but he
only provides qualitative arguments.

Hadar and Hazzan [8] presented results from
a study on the startegies applied by software
engineers in the process of comprehending vi-
sual models of programs. They use visual mod-
els that were described using the UML notation
and included use case, activity, class, sequence,
collaboration, state chart, object, package, and
deployment diagrams. The subjects were se-
nior students majoring in computer science
from several universities. The subjects were di-
vided in two groups to collect both qualitative
and quantitative data. The authors concluded
on the usefulness of multifaceted descriptions
of programs provided by the UML and that no
one type of diagram was more important than
the other. However, further studies should be
performed to confirm these findings.

Sun and Wong [24] evaluated the layout al-
gorithms for class diagrams of two industrial
tools, Rational Rose and Borland Together, ac-
cording to criteria from previous work, includ-
ing the cited works by Purchase [1] and Eichel-
berger [3]. Using laws from the Gestalt the-

ory of visual perception [16, p. 50–53], they
retained and justified 14 criteria to assess the
visual quality of the layouts of class diagrams.
They applied these criteria on a Thermometer
program and on JUnit [4]. They concluded on
the good quality of both industrial tools, on the
relevance of their criteria, and on the difficulty
of satisfying all criteria.

Previous work developed and studied criteria
and techniques to ease program comprehension
in general and using class diagrams in partic-
ular. Yet, to the best of our knowledge, no
previous work studied the concrete acquisition
of information from class diagrams.

2.2 General Setting

Progress in non-intrusive monitoring of human
behaviour allows studying the external behav-
iour of software engineers involved in program
comprehension activities while disturbing their
activities as little as possible. In particular,
the use of video-based eye tracking systems al-
lows recording software engineers’ eye move-
ments when they look at a class diagram to
understand the modelled program.

A video-based eye tracking system collects
data on the relative coordinates of a sub-
ject’s eye movements over a computer screen,
through a special headband, without interfer-
ing with the subject’s activity, if the subject
keeps a relatively steady position in front of
the screen. The system converts the collected
raw coordinates in fixations and saccades using
thresholds based on human physiology.

We use the eye-tracking systems provided by
SR Research to study software engineers dur-
ing program comprehension. SR Research is
an international manufacturer of high quality
eye-tracking systems. It provides the EyeLink
II system, which decomposes in a display com-
puter displaying the data to be analysed by a
software engineer, a host computer storing the
data on an engineer’s eye movements, and a
headband supporting cameras to track the eye
movements.

Figure 1(a) depicts the headband and its dif-
ferent parts. The headband mainly consists of
a set of cameras recording the position of the
head and the eye movements with respect to
the image displayed on the computer screen:

3

Figure 2: Use of a EyeLink II system.

active components are the eye cameras and
head camera, which capture the eye movements
and relate the position of the head with this of
the computer screen. The other components
are used to set and hold the cameras in place.
Figure 1(b) shows an anonymous subject with
such a headband.

Figure 2 illustrates the data acquisition
process. The headband is connected to the
host computer, which is connected through an
Ethernet link to the display computer. Syn-
chronisation with the image displayed on the
screen of the display computer (being looked at
by the software engineer) is perform via a pro-
vided API, which allows the display computer
to control the host computer to synchronise the
cameras and the display screen and to gener-
ate the data. The generated data is stored on
the host computer and transferred to the dis-
play computer for analysis at the end of each
experiment. The host computer allows experi-
menters to calibrate the cameras and to control
the experiments.

We use such EyeLink II systems to study
software engineers’ eye movements over the
constituents of class diagrams and the dwell
time of fixations on individual constituents
such as classes, interfaces, and relationships.

2.3 Collected Data

An experiment divides in a set of trials. A
trial contains the data collected while a soft-
ware engineer looks at one image on the display
computer, an experiment groups many trials
performed successively with (possibly) differ-
ent images.

The data collected during a trial contains
raw coordinates and three types of events: fixa-
tions, blinks, and saccades. Each type of event
is characterised by the position of the eyes rel-
ative to the display screen (two positions for
saccades) and by a timestamp in milliseconds
relative to the beginning of each trial.

The data collected during one of our typi-
cal trials ranges between 200 and 5,000 kilo-
bytes of data, depending on the duration of the
experiment. It contains between 10,000 and
200,000 lines of raw data representing 50 and
up to 500 fixations, saccades, and blinks. Fixa-
tions, saccades, and blinks are intertwined with
the raw data on the fly, during data collection.

This data is stored in a binary format known
as Eyelink Data Files (EDF). The EDF format
is convenient for quick addition of new data and
treatment, in particular conversion into ASCII.
Table 1 describes the skeleton of an EDF file:
An EDF file divides in a header and a body;
The header contains information about the ex-
periments, the trial, calibration, drift correc-
tion, and the type of recorded events; The body
stores both the raw data and events such as be-
ginnings and ends of fixations or saccades.

3 Visualisation Technique

We must aggregate and present the data col-
lected for a same trial across as many exper-
iments as possible to build sound general hy-
potheses on the acquisition of information by
software engineers from class diagrams. We
develop a new visualisation technique to aggre-
gate data from several trials and to highlight
the parts of a class diagram more or less used by
software engineers to acquire information. The
main hypothesis of our visualisation technique
is that we can equate fixation with attention as
suggested for example by Rock [20].

3.1 Previous Work

Previous work attempted to quantify traces of
eye-movements rather than parameters such as
mean fixation duration, to identify clusters of
meaningful fixations, or to manipulate images.

DeCarlo and Santella [2] used eye-trackers
to identify the point of attention of a sub-
ject on an image and, using this knowledge,

4

Header
General information,

including the name of the
class diagram

MSG 82177 TRIALID PIX1 Normal
MSG 82178 !V TRIAL VAR DATA Normal
MSG 82210 !V IMGLOAD FILL images/UMLDiagram1.jpg

Calibration

MSG 208698 !CAL Calibration points:
MSG 208698 !CAL 176.2, 74.5 -808, 3467
. . .
MSG 230854 !CAL VALIDATION HV9 R RIGHT GOOD ERROR

0.55 avg. 0.97 max OFFSET 0.45 deg. -13.2,5.2 pix.

Drift correction MSG 253038 DRIFTCORRECT R RIGHT
at 640,512 OFFSET 0.83 deg. -20.9,14.5 pix.

Information on the
recorded data

MSG 253043 !MODE RECORD P 500 2 1
START 253044 RIGHT SAMPLES EVENTS
PRESCALER 1
VPRESCALER 1
PUPIL AREA
EVENTS GAZE RIGHT RATE 500.00 TRACKING P FILTER 2
SAMPLES GAZE RIGHT RATE 500.00 TRACKING P FILTER 2

Body

Eye positions 253048 641.7 512.0 499.0 .
. . .

Beginning and end of a
fixation with in-between
samples of eye positions

SFIX R 253052
. . .
253310 643.7 508.0 496.0 .
. . .
EFIX R 253052 253310 260 641.5 509.1 504

Beginning and end of a
saccade with in-between
samples of eye positions

SSACC R 253312
. . .
253328 691.9 435.4 522.0 .
. . .
ESACC R 253312 253346 36 644.0 505.0 706.3 394.3 4.43 260

Following beginnings and
ends of fixations and

saccades with in-between
samples of eye positions

SFIX R 253348
. . .
EFIX R 253348 253610 264 714.8 404.2 452
SSACC R 253612
. . .

End
End of the recording END 267755 SAMPLES EVENTS RES 32.69 29.12

Table 1: Details of the collected data.

5

to compute a stylised and abstract version of
the image. Their work falls in the field of
non-photorealistic rendering. They developed
a perceptual model to translate the data gath-
ered from an eye-tracker into predictions about
which elements of the image carry information
interesting to the subject. Then, they proposed
an algorithm to stylise and abstract the image,
thus reducing the perceptual and cognitive ef-
fort required to understand the image by re-
moving extraneous details. Their work is espe-
cially interesting with photographs.

Santella and DeCarlo [21] proposed a ro-
bust clustering technique to group sets of fix-
ations either spatially or spatially and tempo-
rally. Their technique is robust because its re-
sults are not affected by noise and outliers. It
can be used to locate areas of interest for a sub-
ject or subjects and to quantify the interest in
each area. It uses a mean shift procedure which
proceeds deterministically without the need to
choose a number of clusters in advance. Our vi-
sualisation technique performs in the opposite
of this technique: We assume the knowledge of
the areas of interest and we want to allocate fix-
ations in these areas (to compute percentages)
rather than to cluster the fixations.

Wooding [26] introduced the concept of fix-
ation maps. A fixation map is a three-
dimensional map in which the two first di-
mensions are the coordinates of the fixations
under study (either from one subject or from
several subjects) and the third dimension is a
value describing the discrimination, detection,
or perception achievable from some considered
fixations. The third dimension is deliberately
left vague by the author. A fixation map is
built by computing for each fixation location
the third dimension, for example using a 3-
dimensional gaussian or a cylinder. If more
than one gaussian overlap at the location of
one fixation, their value is added to the third
dimension. The width of the gaussian or cylin-
der depends on the size of the area over which
a fixation exists. Using fixation maps, it is thus
possible to aggregate fixations and to highlight
the areas which received most attention.

Previous work proposed analyses and studied
the data collected using eye-tracking systems.
Yet, to the best of our knowledge, no previous

fA fB

d = 1/2 d = 1/2
w = 1

A BC

Figure 3: Problem of juxtaposition of fixations
(or groups thereof) in fixation maps, where d
is a distance and w the weight of a point.

work proposed a technique to display this data
and the amount of attention in areas of interest.

3.2 Areas of Interest

Our technique builds on previous work on clus-
tering and fixation maps and introduces the
concept of area of interest. Fixation maps are
useful to show the areas of an image that at-
tracted most of the fixations by highlighting
these areas through colour gradation. Yet, it
combines the data from several trial linearly
and, if used to combine several trials, meets
the problem of juxtaposition among fixations.

The problem of juxtaposition arises when
two fixations (or group thereof) belong to two
distinct yet close areas of interest. Figure 3
shows a typical case of problem of juxtaposi-
tion: Although fixation fA pertain to area A
and fixation fB belongs the distinct area B and
the two areas are separated by area C, a fixa-
tion map would show a continuum of interest in
the empty area C because each point in area C,
such as the black point, is weighted relatively
to the fixations fA and fB , with a weight of 1
in the example.

We avoid the problem of juxtaposition when
aggregating and presenting data from more
than one trial through the use of areas of inter-
est. We define an area of interest as an area in a
class diagram that the experimenter considers
as relevant to program comprehension activ-
ity, excluding pieces of the image not belonging
to an area of interest. The experimenter may
choose areas of interest before trials or identify
these areas after visual analyses of the clustered
collected data.

Typically with class diagrams, areas of in-
terest are rectangles circumscribing the graphi-
cal representations of classes and interfaces and
polygons surrounding relationships (such as in-

6

Figure 4: Some areas of interest (black rectan-
gles) in a subset of a typical class diagram.

heritance, implementation, or association rela-
tionships). Figure 4 shows some areas of inter-
est in a subset of a class diagram used in our
case studies (black rectangles around classes).

We use areas of interest to aggregate fixa-
tions and saccades from many trial while high-
lighting the areas with more or less fixations
with respect to one another. For each area
of interest, we count the number of fixations
and–or saccades in the area across trials and
compute percentages with respect to the over-
all number of fixations and–or saccades. Thus,
we associate a percentage with each area of in-
terest and can show differences among areas
and thus highlight which areas received more
of less attention than others without the jux-
taposition problem.

The concept of areas of interest is simple and
can be applied to any type of image where ex-
perimenters can identify such areas.

3.3 The Taupe Data Viewer

We have implemented our visualisation tech-
nique in the Taupe data viewer. The Taupe

data viewer (Thoroughly Analysing the Under-
standing of Programs through Eyesight1) is im-
plemented 100% in Java. It uses the API pro-
vided by SR Research to handle EDF files di-
rectly in Java. It is a simple program consisting
of 20 classes and 130 methods for 1,500 lines of
commented codes (excluding comments and li-
braries).

Figure 5 shows the user interface of the
Taupe data viewer. Part A displays the class
diagram shown to software engineers during
some trials. Part B is used to load the data
viewer data from experiments, choose the tri-

1Taupe means mole in French.

Figure 5: User interface of the Taupe data
viewer and its three parts.

als of interest in these experiments, show/hide
fixations and–or saccades, and include/exclude
fixations and–or saccades from the computa-
tion of the percentages of the areas of interest.
Part C is used to load sets of areas of inter-
est into the data viewer, to display these areas,
and to shift the position of the collected data
to compensate any drift during calibration of
the eye-trackers.

The Taupe data viewer uses alpha compo-
sition to display fixations, saccades, and ar-
eas of interest over the class diagram without
cluttering the diagram while differentiating ar-
eas which received much attention from those
which did not.

Figure 6(b) shows the fixations from several
software engineers and the computed areas of
interest superimposed over the typical class di-
agram used in our first case study and shown
in Figure 6(a). Dots represent fixations, some
parts of the class diagram are almost invisible
to indicate that they did not receive attention
from the software engineers while others (such
as F) received much attention. Figures 6(a)
and 6(b) show that, using our data viewer, we
can accurately highlight the parts of a class di-
agram that received much attention from soft-
ware engineers during program comprehension.

4 Case Studies

We perform two case studies to highlight the
use of eye-tracking systems to understand the
program comprehension activity better. In

7

these case studies, we show two typical class di-
agram to software engineers and ask, for each, a
typical question that could arise during the de-
velopment or the maintenance of the described
programs. We obtain surprising results on the
use of relationships.

4.1 Experimental Setting

We want to understand how software engineers
use concretely class diagrams during program
comprehension activities. Thus, the subjects of
our experiments are software engineers and the
objects are class diagrams representing some
programs. In the perspective of generalising
the results of our experiments, we must choose
the subjects and objects carefully.

Subjects. Subjects should be representative
of software engineers in general and be suffi-
cient in number to account for incidental vari-
ations. We use subjects from a convenient
sample consisting of graduate students in soft-
ware engineering at the Department of Infor-
matics and Operations Research at University
of Montreal to perform the first experiments
reported in the following. Graduate students
have an reasonable knowledge of UML in gen-
eral and class diagrams in particular, with re-
spect to software engineers in general. Al-
though most do not have industrial experience
in development and maintenance, they all have
designed and developed small-scale programs
using UML during their studies. We perform
our experiments with a dozen subjects to lever-
age further variations.

Objects. The objects of our experiments are
class diagrams modelling object-oriented pro-
grams. We use two different class diagrams
from two different programs to avoid rein-
forcement learning [19, 25] after the first set
of trials. The first class diagram, CD1 in
Figure 6(a), models a subset of the Ptidej

program [6]. We render this class diagram
anonymous to avoid bias as some subjects
participated in its development. The sec-
ond class diagram, CD2 in Figure 7(a), mod-
els a simulation of an ATM machine writ-
ten by Russell C. Bjork and freely avail-
able at http://www.math-cs.gordon.edu/

courses/cs211/ATMExample/. We use this ex-
ample because it provides a complete yet man-
ageable class diagram.

Questions. We ask the subjects one question
per class diagram to trigger the program com-
prehension activity. The question associated to
CD1 concerns the design of the modelled pro-
gram and the addition of a new class in the
class hierarchy):

Q1: Where to add a class Other such
that its instances belong to a tree of
objects with instances of class F as
containers?2

The second question related to CD2 also con-
cerns design and class hierarchy but involved
changing the existing class hierarchy:

Q2: How to add a new type of
Transaction that is not associated
with a Session?2

Recording. We ask subjects to come for the
experiments in sequential order. We monitored
in real-time and continuously the recordings to
prevent drift and errors in the measures. We
asked subjects not to communicate on the ex-
periments with future subjects. We record the
subjects’ eye movements, including events re-
lated to fixations and saccades. We do not
record events related to blinks because we do
not believe they are relevant to understand the
program comprehension activity. Results of
the experiments are kept strictly confidential
through the automatic generation of the names
of the EDF files and the automatic renaming of
all the files in random order to prevent identi-
fication through time stamps. We ensure that
subjects understood the question and perform
the expected program comprehension activity
by analysing their answers to the questions. In
our experiments, no subject has been rejected
because of misunderstanding.

Results. Figures 6(b) and 7(b) show screen-
shots of the Taupe data viewer showing the
results of the experiments for CD1 and CD2,
respectively. As expected, the collected data

2The questions are translated from French.

8

(a) A typical class diagram (CD1).

(b) Results of the analysis of the class diagram with fixations and areas of interest.

Figure 6: Analysis of the typical class diagram CD1
9

(a) Class diagram of an ATM machine (CD2).

(b) Fixations on the class diagram without areas of interest.

Figure 7: Analysis of the typical class diagram CD2
10

supports the idea that software engineers first
browse the class diagrams seemingly randomly
to identify most useful parts and then focus
on these parts for the program comprehension
activity at hand (to answer the questions).

Thus, it is not surprising to observe more
fixations towards the classes most useful:

• CD1: Software engineers concentrated
their attention on class F and related
classes, in particular B, D, and E3.

• CD2: Software engineers fixed their atten-
tion on class Transaction, its subclasses
(such as Withdrawal), and class Session4.

Surprisingly, however, software engineers do
not seem to follow binary class relationships,
such as inheritance and composition. In none of
the experiments, either using the Taupe data
viewer to display fixations and saccades or SR
Research default viewer to replay the eye move-
ments could we notice software engineers fol-
lowing the relationships among classes.

This is a very surprising result, in particular
in face of the several techniques existing in the
literature to choose correct relationships among
classes, such as [9, 14], and to recover binary
class relationships from source code, such as
[7, 10]. We hypothesise that we obtain these
results because the class diagrams are quite
simple and the questions do not require per se
the use of the binary class relationships. Yet,
we expected software engineers to confirm their
findings using the relationships among classes.

Threats to Validity. The previous results
are subject to some threats to validity:

• Time thresholds, peripheral vision, and
offsets: it is unlikely that we missed fixa-
tions, in particular on the binary class re-
lationships, due to the thresholds used to
identify fixations from raw data, to the use
of peripheral vision by software engineers
while focusing on classes, or to measure-
ment problems. Yet, further (different) ex-
periments are required to confirm our find-
ings. In particular, we will study other dia-

3Adding Other as a subclass of B answers Q1.
4The hierarchy of Transaction must be modified to

add an extra ManagedTransaction class to answer Q2.

grams with different layouts where entities
are further apart.

• Subjects: we used a convenient sample of
graduate students to perform the exper-
iments. We must perform again our ex-
periments with other subjects to level any
particularity of our convenient sample.

• Questions: the question used to trigger the
program comprehension activity are quite
simple and should be further refined to
better frame the software engineers’ be-
haviour.

Despite these threats to validity, the re-
ported results are important because they open
interesting research avenues to better under-
stand the use of class diagrams during program
comprehension and provide a base on which to
build further experiments.

5 Conclusion

We applied eye-tracking to a first study of the
use of class diagrams by software engineers dur-
ing program comprehension. We report inter-
esting results from two case studies on the ap-
parent lack of use of the relationships among
classes. Our first experiments—although their
validity should be further confirmed—are only
a beginning in promising research to better un-
derstand program comprehension.

This work is part of the on-going Taupe

project being carried out at the Department of
Informatics and Operations Research of Uni-
versity of Montreal. It is but a first step to-
wards a better understanding of the use of class
diagrams and other software artifacts during
program comprehension. Future work includes:

• Performing more case studies with differ-
ent and more complex class diagrams and
other types of diagram [17], different activ-
ities of program comprehension, and with
other participants, including software en-
gineers from the industry.

• Evaluating the different strategies used by
software engineers to acquire information
from class diagrams with respect to the ac-
tivity of program comprehension at hand.

11

• Studying other sources of information such
as UML sequence diagrams, source code,
adjacency matrices [5], and other visuali-
sation techniques [12], such as in [8, 13].

• Formulating hypotheses, based on the case
studies and their results, on the concrete
use of information by software engineers
and developing a theory of program com-
prehension to help in developing and in
evaluating new visualisation techniques.

Acknowledgements

The author thanks gratefully the Canadian
Foundation for Innovation for the financial sup-
port, SR Research for the their invaluable help,
Pierre Poulin for the many interesting discus-
sions, and the several participants to the case
studies.

References

[1] Helen C.Purchase, Jo-Anne Allder, and
David Carrington. Graph layout aesthet-
ics in UML diagrams: User preferences.
journal of Graph Algorithms and Applica-
tions, 6(3):255–279, June 2002.

[2] Doug DeCarlo and Anthony Santella. Styl-
ization and abstraction of photographs.
In Tom Appolloni, editor, proceedings of
the 29th conference on Computer graphics
and interactive techniques, pages 769–776.
ACM Press, July 2002.

[3] Holger Eichelberger. Nice class diagrams
admit good design? In John T. Stasko,
editor, proceedings of the 1st symposium
on Software Visualization, pages 159–168.
ACM Press, June 2003.

[4] Erich Gamma and Kent Beck. Test in-
fected: Programmers love writing tests.
Java Report, 3(7):37–50, July 1998.

[5] Mohammad Ghoniem, Jean-Daniel
Fekete, and Philippe Castagliola. A
comparison of the readability of graphs
using node-link and matrix-based repre-
sentations. In Matt Ward and Tamara
Munzner, editors, proceedings of the 10th

symposium on Information Visualisation,
pages 17–24. IEEE Computer Society
Press, October 2004.

[6] Yann-Gaël Guéhéneuc. A reverse engi-
neering tool for precise class diagrams. In
Janice Singer and Hanan Lutfiyya, editors,
Proceedings of the 14th IBM Centers for
Advanced Studies Conference, pages 28–
41. ACM Press, October 2004.

[7] Yann-Gaël Guéhéneuc and Hervé Albin-
Amiot. Recovering binary class relation-
ships: Putting icing on the UML cake.
In Doug C. Schmidt, editor, Proceedings
of the 19th conference on Object-Oriented
Programming, Systems, Languages, and
Applications, pages 301–314. ACM Press,
October 2004.

[8] Irit Hadar and Orit Hazzan. On the con-
tribution of UML diagrams to software
system comprehension. journal of Ob-
ject Technology, 3(1):143–156, January–
February 2004.

[9] Brian Henderson-Sellers and Franck Bar-
bier. A survey of the UML’s aggregation
and composition relationships. L’objet
: Logiciel, Base de données, Réseaux,
5(3/4):339–366, December 1999.

[10] Daniel Jackson and Allison Waingold.
Lightweight extraction of object models
from bytecode. In David Garlan and
Jeff Kramer, editors, proceedings of the
21st International Conference on Software
Engineering, pages 194–202. ACM Press,
May 1999.

[11] Kostas Kontogiannis. ICPC web-site,
April 2006. http://www.icpc2006.
uwaterloo.ca/.

[12] Guillaume Langelier, Houari A. Sahraoui,
and Pierre Poulin. Visualization-based
analysis of quality for large-scale software
systems. In Tom Ellman and Andrea
Zisma, editors, proceedings of the 20th in-
ternatinal conference on Automated Soft-
ware Engineering. ACM Press, November
2005.

12

[13] Gail C. Murphy, Mik Kersten, Martin P.
Robillard, and Davor Čubranís. The
emergent structure of development tasks.
In Andrew P. Black, editor, proceed-
ings of the 19th European Conference on
Object-Oriented Programming, pages 33–
48. Springer-Verlag, July 2005.

[14] James Noble and John Grundy. Explicit
relationships in object-oriented develop-
ment. In Bertrand Meyer, editor, proceed-
ings of the 18th conference on the Technol-
ogy of Object-Oriented Languages and Sys-
tems, pages 211–226. Prentice-Hall, No-
vember 1995.

[15] Object Management Group. UML v1.5
Specification, March 2003.

[16] Stephen E. Palmer. Vision Science: Pho-
tons to Phenomenology. The MIT Press,
1st edition, May 1999.

[17] Ivan P. Paltor and Johan Lilius. Digital
sound recorder: A case study on design-
ing embedded systems using the UML no-
tation. Technical Report TR-234, Turku
Centre for Computer Science, January
1999.

[18] Dewayne E. Perry and Alexander L. Wolf.
Foundations for the study of software ar-
chitecture. Software Engineering Notes,
17(4):40–52, October 1992.

[19] Václav Rajlich. Program comprehension
as a learning process. In Yingxu Wang,
editor, proceedings of the 1st Interna-
tional Conference on Cognitive Informat-
ics, pages 343–347. IEEE Computer Soci-
ety Press, August 2002.

[20] Irvin Rock and Daniel Gutman. The effect
of inattention on form perception. Jour-
nal of Experimental Psychology: Human
Perception and Performance, 7:275–285,
1981.

[21] Anthony Santella and Doug DeCarlo. Ro-
bust clustering of eye movement record-
ings for quantification of visual interest.
In Andrew Duchowski and Roel Vertegaal,
editors, proceedings of the 3rd symposium

on Eye Tracking Research and Applica-
tions, pages 27–34. ACM Press, March
2004.

[22] Jochen Seemann. Extending the Sugiyama
algorithm for drawing UML class di-
agrams: Towards automatic layout of
object-oriented software diagrams. In
Giuseppe Di Battista, editor, proceedings
of the 5th international symposium on
Graph Drawing, pages 415–424. Springer-
Verlag, September 1997.

[23] Elliot Soloway. Learning to program =
Learning to construct mechanisms and ex-
planations. Communications of the ACM,
29(9):850–858, September 1986.

[24] Dabo Sun and Kenny Wong. On evalu-
ating the layout of UML class diagrams
for program comprehension. In James R.
Cordy and Harald Gall, editors, proceed-
ings of the 13th International Workshop
on Program Comprehension, pages 317–
326. IEEE Computer Society Press, May
2005.

[25] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction.
MIT Press, 1st edition, March 1998.

[26] David S. Wooding. Fixation maps: Quan-
tifying eye-movement traces. In Roel
Vertegaal and John W. Senders, editors,
proceedings of the 2nd symposium on Eye
Tracking Research and Applications, pages
31–36. ACM Press, March 2002.

13

