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Abstract

Design patterns are important in software mainte-
nance because they help in designing, in understand-
ing, and in re-engineering programs. The identification
of occurrences of a design pattern consists in identify-
ing, in a program, classes which structure and organi-
sation match—strictly or approximately—the structure
and organisation of classes as suggested by the design
pattern. We express the problem of design pattern iden-
tification with operations on finite sets of bit-vectors.
We use the inherent parallelism of bit-wise operations
to derive an efficient bit-vector algorithm that finds ex-
act and approximate occurrences of design patterns in
a program. We apply our algorithm on three small-
to-medium size programs, JHotDraw, Juzzle, and
QuickUML, with the Abstract Factory and Composite
design patterns and compare its performance and re-
sults with two existing constraint-based approaches.

1 Introduction

Maintenance of object-oriented programs is diffi-
cult. It is a time- and resource-consuming activity
that amounts to more than 50% of the total cost of
a program [19, 21]. It is particularly difficult because
documentation is often obsolete—if existing at all, and
design information and choices are often lost. There-
fore, a major task of maintainers during maintenance
is design recovery. Design recovery consists in build-
ing higher-level abstractions from source code [5], the
only source of information about a program always up-
to-date, to understand the design and architecture of a
program and to identify where to perform maintenance
activities.

Design recovery benefits from the knowledge of used
design patterns [10]. Indeed, design patterns provide
“good” solutions to recurring design problems. So-
lutions of design patterns are design motifs, which
are implemented in programs as micro-architectures:
sets of entities (classes and interfaces) and of elements
(methods, fields, binary class relationships). How-
ever, micro-architectures implementing design motifs
are mingled in a program architecture and, therefore,
important design decision are lost (design problems
and the implemented solutions). The identification of
micro-architectures similar to design motifs would help
the design recovery task by highlighting potential uses
of design patterns and, by extension, design problems
and design choices made in a program architecture.

We address two aspects of design pattern identifi-
cation: quality of the micro-architectures and quality
of the identification process. Quality of the micro-
architectures includes identifying complete and approx-
imate occurrences of design motifs and the precision
and recall of the identified occurrences. Quality of
the identification process includes time- and resource-
efficiency (cost of the process in processing time and
memory), automation (automated versus manual pro-
cess), and interaction (capability of following the main-
tainers’ guidance).

Most previous approaches of design pattern identifi-
cation are limited because of their performance. Some
approaches use Prolog-like unification mechanism [26]
or constraint programming [23], which have poor per-
formance because of the combinatorial explosion of
possible occurrences, i.e., the possible combinations
of entities in a program that form micro-architectures
similar to a design motif. Other approaches based on
metrics [1, 14] show promising increase in performance
but are still too slow to be included in maintainers’
day-to-day design recovery tasks.
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We propose an efficient approach of design pattern
identification using a high-performance bit-vector algo-
rithm. Bit-vector algorithms are widely used in pattern
matching [2, 15] and, more recently, in bio-informatics
[3, 22]. We illustrate, with an example of a simple pro-
gram and of the Composite design motif, the expres-
sion of the design pattern identification problem with
bit-vectors operations and we detail our algorithm.
Then, we describe a complete case study of our algo-
rithm with JHotDraw [9], Juzzle, and QuickUML,
and the Composite and Abstract Factory design motifs
and we compare our algorithm with two existing ap-
proaches: explanation-based constraint programming
[13] and metric-enhanced constraint programming [14].

Section 2 summarises related work and highlights
their drawback; Section 3 describes our approach of de-
sign pattern identification using a dedicated bit-vector
algorithm; Section 4 details our implementation; Sec-
tion 5 presents a case study and a comparison; Section
6 discusses our algorithm and our approach; Finally,
Section 7 concludes and introduces future work.

2 Related Work

Several works introduce approaches of design pat-
tern identification. Most of the approaches use struc-
tural matching between micro-architectures and design
motifs. Different structural matching techniques are
used: rule inference [20, 26], queries [6, 18], fuzzy rea-
soning nets [16], constraint programming [13, 23]. For
example, in his precursor work, Wuyts [26] introduces
the SOUL environment. He describes design motifs as
Prolog predicates and programs entities as facts. He
applies a Prolog inference algorithm to unify predicates
and facts and, thus, to identify entities playing roles
in design motifs. The main problem of such a struc-
tural approach is the inherent combinatorial complex-
ity of identifying subsets of entities matching design
motifs, which corresponds to a problem of subgraph
isomorphism [8]. Approaches bases on constraint pro-
gramming [23] also face a combinatorial complexity,
although explanations [17] help in reducing this com-
plexity through user-interactions [13].

Antoniol et al. introduce an alternative approach,
in which they reduce the search space using metrics
[1]. They design a multi-stage filtering process to iden-
tify micro-architectures identical to design motifs using
metrics. For each entity of a program, they compute
some metrics (for example, numbers of inheritance, of
association, and of aggregation relationships) and they
compare the metric values with expected values for the
corresponding role in a design motif, before applying
a constraint-based structural matching. They infer ex-

pected metric values from design pattern descriptions
manually. The main limitation of their work is the
assumption that the micro-architectures accurately re-
flects the design motifs, which is rare. Moreover, the
theoretical quantification of roles, when possible, does
not reduce the search space significantly.

Recently, the second author and other collaborators
attempted to improve on the two kinds of approaches
by combining empirical metric values and explanation-
based constraint programming [14]. Roles in design
motifs are quantified empirically using P-MARt [14],
a database of manually-identified micro-architectures
similar to design motifs in several programs. This
quantification is used to remove from the search space
entities which obviously (from the empirical data) do
not participate in a design motif. Explanation-based
constraint programming is applied on the remaining
entities to identify micro-architectures similar to design
motifs. This approach shows promising results but suf-
fers from a lack of data on manually-identified micro-
architectures and from the performance of explanation-
based constraint programming.

In this paper, we use a bit-vector algorithm
to perform the structural matching between micro-
architectures and design motifs. This matching is sim-
ilar to sequence comparisons in bio-informatics. For
example, duplication with modification is an essential
process in proteins evolution. Genes mutations are also
frequent in biology. Localising mutated genes in a long
anonymous DNA sequence or modified proteins in a
long amino-acid sequence are important problems in
bio-informatics, which are similar to the identification
of occurrences of design motifs in large programs. Au-
thors tackle these problems in bio-informatics with ap-
proximate string matching and bit-vectors algorithms
[3, 22]. Even if we cannot use their approaches for de-
sign pattern identification directly—a design motif be-
ing more a regular expression than a word—bit-vector
algorithms are promising and have not been used but
to represent binary decision diagrams [4].

3 Our approach

3.1 In a Nutshell
We summarise our approach of design pattern iden-

tification intuitively as follows: The identification of a
design pattern consists in traversing in parallel a pro-
gram and a design motif, entity from entity through
elements, and in recording the entities in the program
that match entities in the design motif, in structure and
in organisation. Thus, design patterns identification is
a combinatorial problem inherently, requiring all pos-
sible combinations of entities (through their elements)
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to be compared against a design motif.

The use of a bit-vector algorithm for design pattern
identification is interesting because such an algorithm
could find the solution to the problem in a bounded
number of vector operations, which is independent of
the length of the program. Allowable operations in bit-
vector algorithms are restricted to inherently-parallel
bit-wise operations available in processors (including
shifts), which implies that a bit-vector algorithm can
be implemented efficiently.

In the next subsections, we show the application of
bit-vector algorithms for design pattern identification.
The first step is to convert a program and a design
motif into strings, because bit-vector algorithms are
designed for strings. First, we convert models of the de-
sign motif and of the program in digraphs (Subsection
3.2). Then, we convert these digraphs into Eulerian di-
graphs (Subsection 3.3) to generate unique string rep-
resentations of the design motif and of the program
(Subsection 3.4). Finally, we apply a new bit-vector
algorithm on the string representations to identify ex-
act and approximate occurrences of the design motif in
the program efficiently (Subsections 3.5 and 3.6).

3.2 Design Motif and Program Models

Figure 1(a) shows the design motif of the Composite
design pattern [10, page 163] with a UML-like graphic
representation. A typical object-oriented program is
represented statically by its source code describing the
entities and elements interacting to perform some func-
tionalities. Figure 2(a) shows the model of a simple
example program with the same UML-like representa-
tion. Both representations are very similar and we can
model design motifs and programs using a single for-
malism. We use a meta-model to describe entities and
elements either forming a design motif or a program.
A meta-model defines constituents which instances are
entities and elements combined together to describe
models of design motifs and of programs. A model of a
design motif or of a program is actually a graph which
vertices are entities and which edges are elements con-
necting entities. For the sake of simplicity, we only con-
sider binary class relationships as elements: creation,
specialisation, implementation, use, association, aggre-
gation, and composition relationships. Thus, edges are
directed because binary class relationships are directed.
If more than one identical relationship (e.g., two asso-
ciations) exists between the two same entities, we only
keep one relationship because the others do not provide
extra information (see also Subsection 6.1).

3.3 Eulerian Digraphs of Design Pattern and Pro-
gram Models

From the previous representation, a model of a de-
sign motif or of a program is a digraph. A digraph
is typically not Eulerian, i.e., it does not contain a
Eulerian circuit, a cycle which uses each edge exactly
once. We transform a digraph of a design motif or of
a program in a Eulerian graph automatically and con-
sistently. A directed graph is Eulerian if and only if
every vertex has equal in-degree and out-degree (res-
pectively the numbers of incoming and outgoing edges
for a vertex). The transformation consists in adding
dummy edges between vertices with unequal in-degree
and out-degree. We use the transportation simplex
to obtain the number of dummy edges to be added
among vertices. We consider the vertices with greater
in-degree as suppliers and the vertices with greater
out-degree as demanders. We assume uniform unitary
shipping costs between suppliers and demanders. The
transportation simplex computes the optimal solution
(minimum cost), a list of flows among suppliers and
demanders. In our case, a flow represents a dummy
edge between vertices. If the flow is greater than one,
then as many dummy edges must be added between
the vertices. Figures 1(b) and 2(b) show the Eulerian
models of the Composite design motif and of the simple
example program.

3.4 String Representations of Design Pattern and
Program Models

A Eulerian digraph contains a Eulerian circuit,
which is a cycle traversing each edge exactly once. We
compute the minimum Eulerian circuit using a dedi-
cated algorithm to obtain unique string representations
of a design motif and of a program models. The algo-
rithm solves the directed Chinese Postman problem:
the shortest tour of a graph which visits each edge at
least once (see for example [7]). For a Eulerian graph,
a Eulerian circuit is the optimal solution to the Chinese
Postman problem.

Given a starting vertex vs, the solution of the Chi-
nese Postman problem is a unique list of edges starting
and ending with vs and containing all edges once. We
iterate over the list of edges to build a unique (wrt. the
root vertex) string representation of design motif and
program models. Figures 1(c) and 2(c) show the string
representations of the Composite design motif and of
the example program. We discuss the uniqueness of a
string representation in Subsection 6.1.
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Figure 1. Representations of the Composite design motif1
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(c) String representation of the Eulerian model

Figure 2. Representations of a simple example program1

3.5 Iterative Bit-vector Algorithm
We match against each other the string representa-

tions of the design motif and of the program to identify,
in the program, micro-architectures similar to the de-
sign motif. The length of the string representing a de-
sign motif is typically short, less than 20 tokens, while
the length of a string representing a program might be
arbitrarily long, depending on the size of the program
to analyse, typically thousands of tokens.

We need an efficient mean to compute exact and ap-
proximate matches between the design motif and pro-
gram string representations. We attempted to use an
approximate string matching algorithm, developed in
[3], but a design motif is more a regular expression than
a word. Indeed, in Figure 1, the token Component in

1In the models, as, ag, co, cr, in, and dm are association,
aggregation, composition, creation (instantiation), inheritance,
and dummy relationships.

the design motif matches different classes (i.e., A, B,
C. . . ) of the program, in Figure 2. Thus, we develop
a dedicated iterative bit-vector algorithm to find exact
and approximate occurrences of a design motif in a pro-
gram. Let a token be any symbol appearing in a string
x representing a program model, the characteristic vec-
tor of a token l associated to the string x = x1...xm,
denoted by the bold token l, is

li =
{

1 if xi = l
0 otherwise.

For example, in the program in Figure 2, the char-
acteristic vector of class G is

G = 00000000000000︸ ︷︷ ︸
14

10001000100010000
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while the vector for the inheritance relationship in is

in = 010100010001 000000000000000000︸ ︷︷ ︸
19

.

Characteristic vectors are sequences of bits on which
we operate with standard bit operations: bit-wise log-
ical and, or operators, left and right shifts. . . Due to
our construction of the string representations, tokens
composing a design motif always appear in the same or-
der modulo a shift, so we consider bit-vector as being
circular. We define the right shift of a characteristic
vector x = x1 . . . xm as → x = xmx1 . . . xm−1 (all the
elements have been shifted to the right by one position,
circularly). Similarly, we defined the left shift of x as
← x = x2 . . . xmx1.

We use characteristic vectors to find the entities
playing a role in a design motif. Our algorithm
iteratively reads triplets of tokens (roles) in the design
motif string representation and associates program
entities to the roles by resolving a unification-like
problem using the characteristic vectors. For example,
if we want to identify the exact occurrences of the
Composite design motif, in Figure 1, in the simple
example program, in Figure 2, the algorithm reads
the first triplet Component in Leaf and finds potential
entities for the Component and Leaf roles in the string
representation of the simple example program. It
retrieves entities before and after the in token in the
program string representation by applying bit-wise
operations on its characteristic vectors. The following
pseudo-code shows the retrieval of the entities before
and after a specific token.

before := {}
after := {}
→token

FOR EACH ENTITY X IN THE STRING

conjunctionX := X ∧ token

IF conjunctionX IS NOT NULL

ADD X IN after

←←conjunctionX

FOR EACH ENTITY Y IN THE STRING

conjunctionY := Y ∧ conjunctionX

IF conjunctionY IS NOT NULL

ADD Y IN before

ENDIF

ENDFOR

ENDIF

ENDFOR

The algorithm now has initial sets of entities for the
two roles. The next triplet represents a dummy rela-
tionship added by the transportation simplex and is

therefore ignored. The algorithm performs the pre-
vious operations on the next triplet Component in
Composite. However, it does not take potential Com-
ponent entities in the set of all entities but in the
Component role set, because it has already read the
Component token. Thus, sets of entities represent po-
tential occurrences and the algorithm tests each oc-
currence repeatedly after each triplet. In the case of
the triplet Component in Composite, the algorithm
searches for all possible entities for the Composite role
for each occurrence by verifying if the conjunction be-
tween every entities characteristic vectors and the con-
junction of the → in characteristic vector and the
→→ Component characteristic vector is not null.
For example, with the current occurrence {Component
= B, Leaf = C}, we compute the following operations
on the characteristic vectors

→→ B = 0000100010001 0 . . . 0| {z }
18

→ in = 0010100010001 0 . . . 0| {z }
18

(→→ B) ∧ (→ in) = 0000100010001 0 . . . 0| {z }
18

E = 00000000| {z }
8

1 0 . . . 0| {z }
15

1 000000| {z }
6

(→→ B) ∧ (→ in) ∧E = 00000000| {z }
8

1 0 . . . 0| {z }
22

.

Occurrence {Component = B, Leaf = C,
Composite = E} is added to the list of occurences
because (→→ B)∧ (→ in)∧E is not null: The entity
E is found after the tokens B in in the program string
representation.

Table 1 shows the occurrences after, respectively,
the first, the third and the fourth triplets have been
processed. The second triplet is ignored since it rep-
resents a dummy relationship. The order in which the
triplets are read influences the identification time. It
is preferable to treat less frequent relationships first
to reduce the number of potential occurrences early
in the process. This can be done by giving different
weights to edges when resolving the Chinese Postman
problem or by doing a post-treatment on a design mo-
tif string representation. For example, the Composite
string representation could be read circularly begin-
ning with the Composite token, so that the co relation
would be treated first. Table 2 shows that it decreases
the number of potential occurrences wrt. Table 1.

3.6 Approximate Iterative Bit-vector Algorithm
Design pattern identification can be considered as a

unification problem (see the large body of work us-
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Table 1. Occurrences after processing the
first, third, and fourth triplets.
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Table 2. Occurrences after processing the
first, second, and fourth triplets.

ing Prolog-unification mechanism or constraint pro-
gramming). However, it is an approximate unifica-
tion problem, because a program model rarely reflects
a design motif completely: Often, entities and ele-
ments are added or removed to integrate the design
motif—solution of a general design problem—within
the program architecture—where the design problem
occurs specifically. Thus, we are not interested only
in strict matches between models of design motif and
of programs. For example, there are some micro-
architectures similar to the Composite design motif
where the composition relationship is replaced by an
aggregation relationship and where a class is inserted
in the Component hierarchy, see Figure 3.

We include automatic and manual approxima-
tion mechanisms in our iterative bit-vector algorithm.
Maintainers can perform approximations manually by
specifying which relationships should be relaxed but de-

D
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G

F

H

dm

dm

cr cr cr

ag

as

dm

in

ag as

in

in in in

Figure 3. Example program with approximate
occurrences of the Composite design motif1

scribing all possible approximations is not reliable be-
cause one possible approximation could be overlooked
and because describing all possible approximations is
time-consuming, tedious, and difficult to maintain. An
automatic mechanism of approximations can be used to
compute and to explain identified micro-architectures
to maintainers by stating explicitly what parts of a de-
sign motif are not strictly implemented. The approx-
imately identified micro-architectures, although they
must be manually inspected by the maintainers, help
in improving the code by applying corrections based on
the design motifs.

Association Relationships. Approximate occur-
rences of design motifs with respect to association, ag-
gregation, and composition relationships are easily ob-
tained with bit-vectors. We use a conjunction of the
characteristic vectors of the relaxed relationships in ad-
dition to characteristic vector of the expected relation-
ship, following the order: composition, aggregation, as-
sociation, and finally use relationships [12].

Entity Counts. All roles in a design motif must not
necessarily be played by an entity in a program. For
example, it is possible to find micro-architectures im-
plementing the Composite design motif but without a
Leaf. To identify those occurrences, all relationships
may be relaxed or removed completely. Thus, a role
can be overlooked if all the relationships related to that
role are removed.

Inheritance Relationship. The design motif hier-
archy can also be approximate. Indeed, some entities
could be inserted or removed from a hierarchy. A doc-
umented occurrence of the Composite design motif in
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JHotDraw v5.1 has a class inserted between the ones
playing the roles of Component and Composite. Those
approximate occurrences can be identified by adding
occurrences with the parents and children of a class
playing a role in a design motif as possible entities play-
ing that role in the list of potential occurrences. We
currently access the program model to retrieve the in-
heritance tree because it is directly available (see also
Subsection 6.4).

4 Tools

We integrate freely available tools loosely to im-
plement our approach to design pattern identification
using our bit-vector algorithm. For performance and
convenience reason, we decompose the iterative bit-
vector algorithms in two parts: (1) Construction of the
characteristic vectors; (2) Design pattern identification
through unification, based on characteristic vectors.

Design Motif and Program Models. We use the
PADL meta-model [11] to describe design motifs and
programs. The PADL meta-model defines all the con-
stituents required to describe the static structure of
design motifs and of programs and part of their be-
haviour, including binary class relationships and mes-
sage sends. The PADL meta-model is associated with
several parsers to build models of programs from AOL,
C++, Java. It also includes a design motif repository
containing several well-known design patterns, such as
Abstract Factory, Composite, Facade.

Eulerian Graphs of Design Pattern and Pro-
gram Models. We iterate through the PADL mod-
els of a design motif and of a program to identify the
entities with unequal in-degree and out-degree using
adjacency matrices. Then, we use Park’s implemen-
tation of the transportation simplex2 to build flows
among entities with unequal degrees. The obtained
flows are added as dummy relationships in the design
motif and program models, which thus become Eule-
rian digraphs.

String Representations of Design Pattern and
Program Models. After transforming design motif
and program models in Eulerian digraphs, we build
string representations using Thimbleby’s efficient im-
plementation of an algorithm to solve the Chinese Post-
man problem [25]. This implementation uses several
well-known algorithms for efficiency, such as Floyd-
Warshall’s for shortest path, cycle cancelling.

2See www.orlab.org.

Iterative bit-vector algorithm. We develop an it-
erative bit-vector algorithm in Java using the Eclipse
platform. We use a sparse vector representation be-
cause our characteristic vectors can be long and be-
cause the majority of the bits in the vectors are 0-
valued. This representation is backed by a hash map
and only the 1-valued bits are stored in the map. This
ensures space-efficiency. This is quite important be-
cause the number and the lengths of characteristic vec-
tors can be large.

5 Case Study

In previous work, constraint programming showed
promising results with respect to the quality of the
identified micro-architectures, while metrics decrease
identification time significantly. We compare our bit-
vector algorithm to Ptidej, a framework dedicated to
the analysis and maintenance of object-oriented archi-
tectures implementing metric-enhanced explanation-
based constraint programming.

We apply Ptidej and our algorithm on three pub-
lic domain software, JHotDraw v5.1, Juzzle v0.5,
and QuickUML 2001. JHotDraw is a framework
for technical and structured graphics, Juzzle is a puz-
zle game, and QuickUML is a UML class-diagram
graphic editor. These programs are written in Java
and are composed of, respectively, 261, 99, and 373 en-
tities, which represent small-to-medium size programs.
We compare Ptidej and our algorithm using the Ab-
stract Factory and Composite design patterns, because
these are well-known design patterns with different in-
tents and solutions. We compare the three approaches
with the Abstract Factory and Composite design motifs
but all three could identify other design patterns.

The first part of our algorithm consists in build-
ing a string representation of the programs to compute
the related characteristic vectors, using the transporta-
tion simplex and solving the Chinese postman prob-
lem. This computation is only performed once. Table
3 presents the average computation time on our test
machine, an AMD Athlon 64bits at 2GHz. We retrieve
identification times using the Eclipse-based profiling
tool, Eclipse Profiler [24]. We perform all computa-
tions three times and report median times.

Programs Sizes Computation times

JHotDraw v5.1 261 71
Juzzle v0.5 99 5
QuickUML 2001 373 149

Table 3. Computation times (in seconds) for
building the string representations
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CP CP+M BV BV+O
Abstract Factory

JHotDraw v5.1 1202 275 218 27
Juzzle v0.5 1 2 0.9 0.3
QuickUML 2001 785 153 97 29

Composite

JHotDraw v5.1 +∞ 17362 129 25
Juzzle v0.5 45 3 0.5 0.3
QuickUML 2001 +∞ 26514 185 27

Table 4. Identification times (in seconds) of
the design motifs

Table 4 presents the identification times in seconds
when using explanation-based constraint programming
(CP), metric-enhanced explanation-based constraint
programming (CP+M), our bit-vector algorithm (BV),
and an optimised version of our bit-vector algorithm
(BV+O). The optimisations implemented in our algo-
rithm (BV+O) to reduce identification times are, for
example, computing the conjunctions of the character-
istic bit-vectors for every entities with all relationships
up-front and only once for every relationship in a de-
sign motif string representation.

Although several works exist on design pattern iden-
tification, none clearly states what it considers as one
occurrence of a design motif. For example, in the case
of the Composite design motif and of the simple exam-
ple program in Figures 1 and 2, there could be one or
two occurrences of the design motif
{Component = B, Composite = F, Leaf = {D, E}}

or
{Component = B, Composite = F, Leaf = D}
∧ {Component = B,Composite = F, Leaf = E}.

Whether an occurrence of the Composite design mo-
tif includes several leaves potentially or only one leaf
is important because it varies between tools. In our
case, we consider that micro-architectures similar to
the Composite design motif with three leaves counts
as three occurrences. We use this definition of occur-
rence to compare our results with those of Ptidej.
Table 5 presents the number of occurrences of the
Abstract Factory and Composite design motifs identi-
fied by the three approaches, constraint-programming
(CP), constraint-programming with metrics (CP+M)
and bit-vector (BV) on the three programs. It also
presents the numbers of occurrences without ghost en-
tities (entities known only through references).

We analyse the programs manually to identify
micro-architectures similar to design motifs to vali-
date the results. We do not claim that all micro-
architectures similar to design motifs in a given pro-
gram have been identified manually but the existing

occurrences counted in Table 5 should be identified by
the three systems. The numbers of approximate oc-
currences identified by the constraint-based approaches
are very high because these approaches perform more
automatic approximations. Indeed, when no occur-
rence is found, a constraint is replaced or removed un-
til there is no more constraint. However, most of these
occurrences are unrelated to the design motif intent.
The number of retrieved occurrences by the bit vector
approach is also high because of the approximations
performed but they can be sorted by their distance to
an exact occurrence. Our definition of an occurrence
also contributes to the high numbers. Indeed, the 22
existing occurrences of the Composite design motif in
QuickUML represent only 2 micro-architectures with
several leaves.

These results show the reliability of the three ap-
proaches because all existing occurrences of the Ab-
stract Factory and Composite design motifs have been
identified as exact or approximate occurrences. They
also show the efficiency of the bit-vector approach com-
pared with the other approaches. Indeed, several or-
ders of magnitude separate the performance of our al-
gorithm with constraint-based approaches. Neverthe-
less, the use of metrics is interesting because it reduces
the noise and could be combined with our bit-vector
algorithm to increase precision and performance even
more.

6 Discussions

Our algorithm is interesting because of its efficiency
in comparison to previous approaches. However, a
number of concerns arose during its development and
its study.

6.1 Impact of the Root Vertex on the String Rep-
resentations

The generation of the string representations is mod-
elled as a Chinese Postman problem. The resolution
of the Chinese Postman problem requires choosing a
root vertex for the traversal of the digraph. The choice
of the root vertex impacts the string representations:
The string representation of the Composite design motif
from the Component class is: Component in Leaf dm
Component in Composite co Component, while from
the Composite class, it is: Composite co Component
in Leaf dm Component in Composite.

Although different, these string representations are
identical when considered as circular sequences, i.e.,
the last token in a string is the first token in the string.
Indeed, when first entering a vertex, our implementa-
tion of the Chinese Postman algorithm always chooses

8



Existing
Occurrences

Exact Approximate
CP CP+M BV/BV+O CP CP+M BV/BV+O

Abstract Factory

JHotDraw v5.1 0 216/2213 104/69 216/221 5245/2994 1444/849 408/194
Juzzle v0.5 0 19/0 0/0 19/0 179/9 6/0 53/13

QuickUML 2001 13 164/57 46/23 164/57 2002/593 356/124 273/118

Composite

JHotDraw v5.1 70 N/A 0/0 0/0 N/A 31709/16983 1083/609
Juzzle v0.5 0 0/0 0/0 0/0 1726/20 0/0 72/0

QuickUML 2001 22 N/A 0/0 0/0 N/A 14920/4743 5536/513

Table 5. Number of identified occurrences of the design motifs with and without ghost entities

the same edge to leave a vertex, using the edge with
the smallest weight and a lexicographic order among
equally-weighted edges.

6.2 Impact of the Direction of the Generalisation
Relationships

We chose to describe specialisation (respectively im-
plementation) relationships as directed edges from the
specialised (implemented) entity to the specialising
(implementing) entity. This choice impacts the solu-
tion of the transportation simplex used to build Eu-
lerian digraphs and, thus, the string representations.
However, the transformation of the digraphs in Eule-
rian digraphs absorbs this choice by adding dummy
edges symmetrically when appropriate.

6.3 Approximate String Matching vs. Regular
Bit-vectors Comparisons

Our first idea to identify all the approximate occur-
rences of a design motif in a program was to use an
approximate string matching bit-vector algorithm, de-
veloped by Bergeron–Hamel in [3]. However, a design
motif is more like a regular expression than a word.
To the best of our knowledge, no bit-vector algorithms
exist to find occurrences (or approximate occurrences)
of a regular expression in a text. We decided to build
an iterative bit-vector algorithm to identify all approx-
imate occurrences of a design motif, because our main
goal is to devise a really efficient algorithm in terms of
time-complexity. We are now studying the possibility
of generalising the approach described in [3] for a more
direct approach to design pattern identification.

6.4 Performance of Characteristic Vectors
We obtain satisfactory results using characteristic

vectors to find sets of entities before and after a re-
lationship. However, interrogating the PADL model
to find parents or children of a specific entity is faster
than manipulating the characteristic vectors. Indeed,
this data is available in the PADL models directly.

3Number of occurrences with/without ghost entities

7 Conclusion

We presented an adaptation of bio-informatics bit-
vector algorithms to the software maintenance prob-
lem of design pattern identification. We detailed the
conversion of the problem of identification of micro-
architectures similar to design motifs in a problem of
approximate string matching using bit-vectors. We im-
plemented our approach and showed its efficiency on
three small-to-medium size programs and the quality
of its results, including its approximation capabilities.
Thus, we addressed the two aspects of design pattern
identification: Quality of the occurrences and quality
of the identification process in time, resource, automa-
tion. Interactions with maintainers are possible when
computing approximate occurrences.

Our algorithm can identify any design pattern found
in the PADL design pattern repository by generating
its string representation. However, the precision of the
identification can vary depending on the design pat-
tern. Indeed, our string representations contain what
must be found but some design patterns also specify
what must not be found. For example, the Adaptee role
in the Adapter design motif must not know the Adapter
role. The number of spurious occurrences could be re-
duced if our string representations include those igno-
rance relationships. An ignorance relationship can be
considered as a set of negative relationships. Negative
relationships are easy to manipulate with bit-vectors
using negation operations.

As future work, we want to explore other ways to
use our string representations of the design motifs and
programs. One idea is to view the string representation
of a design motif as a regular expression and, then, find
a way to build automatically an automaton recognising
the expression exactly or approximately. One passage
of the string representation of a program through the
automaton would provide the occurrences that we are
looking for and their emplacements in the program.
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