
1

DPDX - A Common Exchange Format for Design
Pattern Detection Tools

Günter Kniesel∗, Alexander Binun∗, Péter Hegedus†, Lajos Jeno Fülöp†,
Alexander Chatzigeorgiou‡, Yann-Gaël Guéhéneuc§ and Nikolaos Tsantalis‡

∗University of Bonn, Bonn, Germany; Email: gk@iai.uni-bonn.de, binun@iai.uni-bonn.de
†University of Szeged, Szeged, Hungary; Email: hpeter@inf.u-szeged.hu, flajos@inf.u-szeged.hu
‡University of Macedonia, Thessaloniki, Greece; Email: nikos@java.uom.gr, achat@uom.gr
§École Polytechnique de Montréal, Québec, Canada; Email:yann-gael.gueheneuc@polymtl.ca

Abstract—Tools for design pattern detection (DPD) can sig-
nificantly ease program comprehension, helping programmers
understand the design and intention of certain parts of a system’s
implementation. Many tools have been proposed in the past.
However, the many different output formats used by the tools
make it difficult to compare their results and to improve their
accuracy and performance through data fusion. In addition, all
the output formats have been shown to have several limitations in
both their forms and contents. Consequently, we develop DPDX,
a rich common exchange format for DPD tools, to overcome
previous limitations. DPDX provides the basis for an open
federation of tools that perform comparison, fusion, visualisation,
and–or validation of DPD results. In the process of building the
format, we also clarify some central notions of design patterns
that lacked a common, generally accepted definitions, and thus
provide a sound common foundation and terminology for DPD.

I. INTRODUCTION

Object-oriented design patterns are an important part of cur-
rent design knowledge. They offer design motifs, solutions to
recurring design problems. Understanding the design patterns
and motifs employed in a program provides developers with
insight into the previous developers’ intentions, the structure
of the program, and some of its operational aspects. Therefore,
design pattern detection1 (DPD) is a helpful technique for
program comprehension. Building on the rich set of DPD
tools available today ([1], [2]), Kniesel and Binun [3] showed
that the precision and recall of the outputs of DPD tools can
be improved by fusing these outputs, i.e., by combining the
outputs of different tools to complement results and–or balance
conflicting results.

However, fusing also revealed several limitations of the
current outputs of the DPD tools, in forms and contents: some
output formats (1) do not report either their own identity or
the name and version of the program that they analysed; (2)
do not report all roles relevant to a given motif; (3) do not
identify reported roles unambiguously; (4) do not identify
detected motif candidates unambiguously; (5) do not report
their conceptual schema of the identified motif; (6) do not
justify their results; and (7) use ad hoc (generally textual)
output formats. Point 1 makes it difficult to reproduce the
DPD tool results; point 2 makes it hard to combine results

1We use the term “design pattern detection” for historical reason when we
should talk about “design motif detection”.

from different tools; points 3 and 4 make results ambiguous;
point 5 renders comparison of results difficult; point 6 leads to
problems when understanding and verifying the results; and,
point 7 hinders the automated use of the results by other tools

We propose to address these limitations by developing a
common exchange format for DPD tools, DPDX, based on
a well-defined and extensible metamodel. This format would
ease the comparison, fusion, visualisation, and validation of
the outputs of different DPD tools. In the process of building
this format, we also clarify some central notions of design
patterns that lacked common, generally accepted definitions,
and thus provide a sound common foundation and terminology
for design pattern detection.

Consequently, the contributions of this paper are twofold:
first, we provide a sound common foundation and terminology
for DPD; second, we propose a common exchange format
for DPD tools that fosters their synergetic use and supports
automated processing of their results. In the long term, the
foundation and terminology might be extended and–or com-
plemented to accommodate other tools, for example design
pattern code generators.

Section II defines a common terminology for design pattern
detection, motivates the need for a common exchange format,
and describes a set of requirements for the format. Section
III describes the current DPD tools reported in the literature
and their output formats. Section IV presents the concepts on
which the proposed exchange format is built. Sections V and
VI describe our common exchange format. Section VII reports
an evaluation of the common exchange format while Section
VIII concludes and presents future work.

II. BACKGROUND

This section introduces a common terminology, motivates
the need for a common exchange format, and describes a set
of general requirements that an acceptable exchange format
must fulfill.

A. Terminology

A design pattern describes a solution to a recurring design
problem. A design pattern includes at least four parts: a
name, a problem, a solution, and the consequences of applying
the proposed solution (see Gamma et al. [4]). The solution

2

component

ConcreteDecorator
operation()

Component

operation()

ConcreteComponent Decorator
operation()

component.operation()

Figure 1: Motif of decorator pattern with mandatory (plain)
and optional (dashed) roles

suggested by a design pattern is a design motif (see [5]),
which describes a prototypical set of classes and–or objects
collaborating to solve the design problem. A motif typically
describes several roles, which must be fulfilled by program
constituents (types, methods, fields...), their relations (inher-
itance, subtyping, association...), and–or their collaborations
(expressed by code fragments or UML-like sequence dia-
grams). Roles can be mandatory or optional [6]. Mandatory
roles (e.g., ‘Composite’ and ‘Decorator’ in the ‘Decorator’
motif) represent the essence of a motif. Optional roles might
not be present in some instances (e.g., ‘Concrete Decorators’
may be missing). An instance of a design pattern P is a set
of program constituents playing all the mandatory roles (and
possibly some or all the optional roles) in the motif of P. A
candidate of a design motif is a set of program constituents
supposed to form an instance of the motif in the program
and, generally, reported by a DPD tool, which typically report
candidates that they deem consistent with the design motif. P2.
Only developers can validate whether a candidate is actually
an instance, i.e., is consistent with the intent, applicability, and
expected consequences of P on the design and implementation
of the program. Although textbooks typically describe explic-
itly just one motif per design pattern, there can be several
implementation variants for each pattern, thus several design
motifs to be searched for by DPD tools.

As running example in this paper, we use the ‘Decorator’
design pattern [4]. Fig. 1 shows the usual UML representation
of its typical design motif: the name of each motif constituent
(class, method, field, etc.) is not to be taken literally but reflects
the role that the constituent plays in the motif. In addition, we
use the convention that mandatory roles are indicated by solid
lines and optional roles by dashed lines. Thus, the class-level
roles ‘Component’ and ‘Decorator’, the method-level role ’op-
eration’, the field-level role ‘component’, and the invocation
‘component.operation()’ are mandatory roles in this motif.
The roles ‘ConcreteComponent’ and ‘ConcreteDecorator’ are
optional.

Design pattern detection, like any information retrieval task,
might suffer from false negatives (missed instances) and false
positives (reported candidates that are no real instances) - see
[1]. When comparing tools on the same input, it is said that a
tool that yields less false negatives has a better recall and one
that yields less false positives has a better precision.

2Take this definition with a grain of salt. For a thorough definition see Sec.
IV-G

VisualisationDetection Assessment
VisualisationDetection Assessment

VisualisationDetection Assessment

Diagnostics,
justifications, assessments

Common Interchange Format

Diagnostics,
justifications, assessments

Figure 2: A federation of design pattern detection, visualisation
and assessment tools cooperating via the common exchange
format.

B. Motivation

A common exchange format for DPD tools would be
beneficial to achieve a synergy of many different tools. Our
vision is illustrated in Figure 2, where a federation of tools
based on the common exchange format interact to produce
new value

The figure could better emphasize the added values. You’re
welcome to suggest concrete ways how to improve it. . This
federation and the common format is also an invitation to
the program comprehension, maintenance, and reengineering
research communities to contribute individual tools, including
tools unforeseen in Figure 2.

For example, visualisations of DPD outputs could be built
entirely using the common exchange format, instead of being
implemented separately for each DPD tool. Similarly, it would
be possible to automate the process of collecting, comparing,
and evaluating the outputs of different tools, which is currently
a manual, error-prone, and time-consuming task. Similarly,
public repositories of instances of design motifs3 would benefit
greatly from a common exchange format. These repositories
are important in DPD research as a reference for assesing
the accuracy of tools [8]. Moreover, a common exchange
format would also help in achieving an automated round-trip
in DPD tools (see Albin-Amiot et al. [9]), including pattern
detection, collection, fusion, visualisation, validation, storage,
and generation.

C. Requirements

The common exchange format must fulfil the following core
requirements to address the limitations of current DPD tools
outputs and serve as the basis for a federation of tools:

1) Specification. The exchange format must be specified
formally to allow DPD tool developers to implement
appropriate generators, parsers, and–or converters.

2) Reproducibility. The tool and the analysed program
must be explicitly reported, to allow reproducing the
results.

3) Justification. The format must include explanations of
results and scores expressing the confidence of a tool in

3See, for instance, PMART (http://www.ptidej.net/downloads/pmart/) and
DEEBEE [7].

3

its diagnostics to help experts and other tools in using
the reported results.

4) Completeness. The format must be able to represent
program constituents at every level of role granularity
described in design pattern literature.

5) Identification of role players. Each program constituent
playing a role in a design motif must be identified
unambiguously.

6) Identification of candidates. Each candidate must be
identified unambiguously and reported only once.

7) Comparability. The format must enable reporting also
the motif definitions assumed by a tool and the applied
analysis methods to allow other tools to compare results.

In addition to the previous core requirements, the following
two optional requirements are also desirable:

1) Language-independence. The common exchange for-
mat should abstract language-specific concepts so that it
can be used to report candidates identified in programs
written in arbitrary imperative programming languages
(including in particular object-oriented languages).

2) Standard-compliance. The specification should be con-
sistent with existing standards so that it can be easily
adopted, maintained, and evolved.

III. STATE OF THE ART

Without aiming for completeness, we evaluate in this section
the output formats of existing DPD tools with respect to
the requirements collected in Section II-C. The conclusions
presented below are based on intensive practical evaluations
of all tools presented in [2], [6] and thorough literature review.
Table I lists the analysed tools and the design patterns detected
by each DPD tool.

To make similarities and differences stand out clearly all for-
mats are presented on the common example of the ‘Decorator’
instance from Java IO, illustrated in Figure ??. This is also
done for tools that cannot analyse Java programs (like Colum-
bus) or do not detect instances of the ‘Decorator’ pattern (like
Fujaba). In such cases, we extrapolated how the format would
look like if the tool supported the ‘Decorator’ pattern mining
from Java source code. Examples containing extrapolated
elements are distinguished in the section. In addition, we also
reviewed the result representation format used by two DPD
result repositories, PMART www.ptidej.net/downloads/pmart/
and DEEBEE [7].

a) SPQR: SPQR (System for Pattern Query and Recog-
nition - see [10]), detects design patterns in C++ source code.
The output of SPQR is presented on Figure 3.

1<pattern name="Decorator">
2 <role name="Component">"Writer"</role>
3 <role name="Decorator">"BufferedWriter"</role>
4 <role name="ConcreteComponent">"OutputStreamWriter"</role>
5 <role name="ConcreteDecorator">"CharCountBufferedWriter"</role>
6 <role name="operation">"close"</role>
7</pattern>

Figure 3: Output format of SPQR

Table I: Design patterns detected by each tool evaluated by us

INSTANCE Component ConcreteComponent Decorator ConcreteDecorator

Decorator[0] Writer OutputStreamWriter BufferedWriter CharCountBufferedWriter

Decorator[0] Writer OutputStreamWriter BufferedWriter BlackListBufferedWriter

Table II: DP-Miner result

Due to the lack of a publicly available version of SPQR
we base our evaluation on the paper presenting it [10] and on
all technical reports about SPQR published at http://www.cs.
unc.edu/~stotts/techreports/. Without practical evaluation our
claims refer to the example used in the paper (but probably
generally true for all patterns). The format fulfills Complete-
ness since assignments for all mandatory roles are reported.
However, it fails to fulfill Identification of Role Players since
it does neither provide full class paths nor complete method
signatures. It does not mention any information about the
techniques being applied and the tool itself, therefore Repro-
ducibility and Comparability are not fulfilled. Moreover, it
does not contain information like hit probability or background
information about the tool’s decision so Justification is not
fulfilled. The format is based on XML so it is standard-
compliant.

b) DP-Miner: DP-Miner (see [11]) is able to present
its results in a textual table format (CSV). The information
provided by the tool for our ‘Decorator’ example is presented
in Table II):

One of the main advantages of the CSV-format is that
it is a quasi-standard that Microsoft Excel and many other
tools can read and display. This makes it very easy for
experts to interpret and evaluate design pattern results. On the
other hand it fulfills only two of our requirements: Language
Independence and Standard Compliance. The format contains
only basic information about a design pattern instance. Clearly,
it is a format for human examinations rather than for serving
as a common exchange format.

c) Fujaba : Fujaba [12], [13] detects design patterns in
Java source code. An example output is provided on Figure
4 (we constructed it manually since Fujaba does not detect
‘Decorator’ candidates).

We believe that the format fulfills Completeness since it
reports assignments of all mandatory roles for the patterns
that it supports. Justification is fulfilled partly since the format
contains a confidence score for each pattern (but without
explanations why the score is less than 100%). Explanations

www.ptidej.net/downloads/pmart/
http://www.cs.unc.edu/~stotts/techreports/
http://www.cs.unc.edu/~stotts/techreports/

4

1<StructuralAnnotation name="Decorator"
2 fuzzyBelief="56.6666666666664">
3 <BoundObject key="Component" name="java.io.Writer"/>
4 <BoundObject key="Decorator" name="java.io.BufferedWriter"/>
5 <BoundObject key="operation" name="write(char[],int,int)"/>
6</StructuralAnnotation>

Figure 4: Output format of Fujaba

in the form of a derivation history are available at GUI level
but currently not in the textual output format. Identification of
Role Players is fulfilled only for class role players. Complete
method signatures are reported but not which method belongs
to which class. This could only be deduced if we knew
the schema of the respective pattern. However, schemata are
not reported. The output format is based on XML, so it is
standard-compliant. Finally, since the output does not contain
information about the tool that generated it, Reproducibility
and Accountability are not fulfilled.

d) Maisa: Maisa (see [14] and http://www.cs.helsinki.
fi/group/maisa/) discovers design patterns based on logical
constraints that are expressed by Prolog clauses. The output
of the ‘Decorator’ pattern is presented on Figure 5. 4:

Solution 0
Component = Writer
Component.Operation() = Writer.close()
Decorator = BufferedWriter
Decorator.Operation() = BufferedWriter.close()
Decorator.component = BufferedWriter.out
ConcreteComponent = OutputStreamWriter
ConcreteComponent.Operation() = OutputStreamWriter.close()
ConcreteDecorator = CharCounterBufferedWriter
ConcreteDecorator.Operation() =
CharCounterBufferedWriter.close()
ConcreteDecorator.AddedBehavior() =
CharCounterBufferedWriter.extendStream()

Figure 5: Output format of Maisa

Completeness is fulfilled since the format reports all role
players (classes and methods) needed to reason about the
‘Decorator’ pattern. It fails to fulfill Identification of Role
Players for the same reasons as SPQR. The format does
not contain any background information that can be used by
fusion or visualization tools, breaking the requirements of
Justification, Reproducibility and Comparability. The format
is not based on XML but on an own syntax so Standard
Compliance is not fulfilled. Nevertheless clear role assignment
technique helps the experts to evaluate the results manually.

e) Similarity Scoring (SSA): SSA (see [15]) can present
identified pattern candidates on a graphical user interface but
can also export the results into an XML file. So Standard
Compliance is fulfilled. The XML file uses the following
format for representing the ‘Decorator’ design pattern instance
which is presented on Figure 6.

SSA always reports only class level roles. Therefore Com-
pleteness is not fulfilled by SSA. SSA reports full paths to
class role players (including nested classes) therefore Iden-
tification of Role Players is fulfilled. SSA does not report

4Maisa can not recover Decorator pattern so this format is prepared by
hand

1<pattern name="Decorator">
2 <instance>
3 <role name="Component" class="java.io.Writer"/>
4 <role name="Decorator" class="java.io.BufferedWriter"/>
5 </instance>
6</pattern>

Figure 6: Output format of SSA

information about the underlying techniques (or tool) therefore
Reproducibility and Comparability are not fulfilled. Finally,
since SSA does not report the reasons behind its findings,
Justification is not fulfilled.

f) Columbus: The Columbus [16] framework’s built-in
tool for design pattern detection provides a textual output. The
example on Figure 7 presents such an output.

Source class(es) for pattern class Component:
/src/Writer.java(50): pattern class Component =
source class Writer
/src/Writer.java(323): pattern operation Operation =
source operation close

Source class(es) for pattern class ConcreteComponent:
...
Source class(es) for pattern class Decorator:
...
Source class(es) for pattern class ConcreteDecorator:

Figure 7: Output format of Columbus

The output is not based on standard formats like XML thus
breaking Standard Compliance. It fulfills the requirement of
Completeness since classes and operations which are needed
to reason about the ‘Decorator’ pattern are reported . The
format fulfills the most important requirement, Identification
of Role Players only partly: full file names are reported but it is
unclear how nested classes can be identified this way; method
signatures are not reported (just names). Note that using line
numbers for identification of the pattern elements fails for two
reasons. First, it is no help if the tools processing the output
have no access to source code (many work on byte code only).
In addition, it can be unstable: if some formatting changes
that do not change the structure of the program happen in the
source code the line numbers will change. This behavior is not
desirable in cases when someone tries to use this identification
scheme for pattern evolution. However, if source is available
are a sufficient identification in one version of a software.
Moreover, this additional information can be very useful for
tools which visualize or evaluate design pattern instances.

As the format does not contain any background information
about the reasons behind the tool’s decision, the analyzed
software system or the benchmark being analyzed it fails to
fulfill Justification, Reproducibility and Comparability .

g) PINOT: PINOT [17] detects all design patterns in Java
source code. An example of the PINOT output is provided on
Figure 8.

The format fulfils the Completeness requirement since it
represents all information relevant to the detected patterns -
including roles at the class, field and method levels. Reasons
behind the results (scores, explanations) are not provided.

http://www.cs.helsinki.fi/group/maisa/
http://www.cs.helsinki.fi/group/maisa/

5

Decorator Pattern.
Writer is the Decoratee class.
BufferedWriter is the Decorator class.
Concrete Decorator classes:
CharCounterBufferedWriter BlackListBufferedWriter
flush() is the decorate operation
Files Location:
java/io/Writer.java, java/io/BufferedWriter.java

Figure 8: Output format of PINOT

Therefore Justification is not fulfilled. Identification of in-
dividual role players is unambiguous only for outer classes
since PINOT reports a set of files that contain the outer
classes. However PINOT does not report signatures or full
paths to elements below class level. The format consists of raw
text strings and therefore does not conform to any standard.
Reproducibility and Comparability are neither fulfilled since
the output does not contain information about the tool or the
techniques applied by PINOT.

h) Ptidej: Ptidej [18] detects design patterns in Java
source code, but requiring it to be compiled into the byte-
code. An example of Ptidej output is provided on Figure 9.

Decorator : 100%
component as java.io.Writer ,
concretecomponent-1 as java.io.FileWriter ,
concretecomponent-2 as java.io.ObjectWriter ,
decorator as java.io.BufferedWriter ,
concretedecorator-1 as java.io.CharCounterBufferedWriter ,
concretedecorator-2 as java.io.BlackListBufferedWriter

Figure 9: Output format of Ptidej

Completeness is not fulfilled since only class roles are
reported (while method roles are also needed to reason about
the ‘Decorator’ pattern). Justification is fulfilled since Ptidej
reports not only scores but also explanations how a pattern
instance was recognized. A pattern is expressed as a CSP
problem and explanations are formulated as constraint vio-
lations/satisfactions (see [19]). Identification of Role Players
is fulfilled since all reported role players (classes only) are
identified with their full paths. The format represents raw tex-
tual phrases therefore it is not standard-compliant. Since the
output contains justification information about the constraints
being satisfied/violated, human users can guess that constraint
satisfaction might be used. However, this is not made explicit
in a form that a tool could use. So Reproducibility and
Comparability is not fulfilled.

i) DEEBEE: DEEBEE (see [7], [2]) is a benchmark
environment intended to analyze and compare the results of
several DPD tools. The results of DPD tools are kept in CSV
files (therefore Standard Compliance is fulfilled) and include
classes, methods and attributes. An excerpt of such a CSV file
(taken from [7]) is provided on Figure 9.

Completeness is fulfilled since all roles needed to reason
about the ‘Decorator’ pattern (classes, methods) are reported.
No information about the reasons behind decisions of DPD
tools being compared therefore Justification is not fulfilled .
Identification of Role Players is not fulfilled since methods

Decorator
class AbstractClass,Writer,Writer.java:1:6
operation flush,Writer,Writer.java:3:15
class ConcreteClass,BufferedWriter,BufferedWriter.java:8:12
operation flush,BufferedWriter,BufferedWriter.java:9:9

Figure 10: Input format of DEEBEE

and fields are reported without signatures. DEEBEE assigns
unique IDs (so-called tickets) to each pattern candidate and
merges several different candidates with the same mandatory
role assignments (marking these candidates as siblings). There-
fore we assume that Identification of Candidates is fulfilled.
DEEBEE does not keep any information about the techniques
applied by DPD tools or design motifs being recognized so
Comparability is not fulfilled. Reproducibility, however, is
fulfilled since DEEBEE maintains the information about the
tool including its version) and the code repository (including
its version) for each pattern candidate.

j) P-Mart: P-Mart is a repository that keeps the results
of manual DP identification from several Java repositories. An
example ‘Decorator’ instance from P-Mart is presented in Fig.
11:

01<microArchitectures>
02 <microArchitecture number="76">
03 <roles>
04 <components>
05 <component roleKind="AbstractClass">
06 <entity>java.io.Writer</entity>
07 </component>
08 </components>
09 <concreteComponents>
10 <concreteComponent roleKind="Class">
11 <entity>java.io.StringWriter</entity>
12 </concreteComponent>
13 </concreteComponents>
14 <decorators>
15 <decorator roleKind="AbstractClass">
16 <entity>java.io.BufferedWriter</entity>
17 </decorator>
18 </decorators>
19 <concreteDecorators>
20 <concreteDecorator roleKind="Class">
21 <entity>./CharCountBufferedWriter</entity>
22 </concreteDecorator>
23 <concreteDecorator roleKind="Class">
24 <entity>./BlackListBufferedWriter</entity>
25 </concreteDecorator>
26 </concreteDecorators>
27 </roles>
28 </microArchitecture>
29</microArchitectures>

Figure 11: Format of PMART

P-Mart keeps results in XML format, therefore fulfilling
Standard Compliance. Only class role assignments are kept
therefore Completeness is not fulfilled. P-Mart does not keep
explanations why a given DP instance is a true positive there-
fore Justification is not fulfilled. Identification of Role Players
is fulfilled since class role players are reported with full
paths (even including local classes). P-Mart does not include
information about the techniques applied by DPD tools being
analyzed since the DPD detection is done manually - therefore
Comparability is not fulfilled. Reproducibility is fulfilled since
P-Mart identifies pattern instances using repository name and

6

version (e.g.: JHotDraw-v.5.1, JRefactory-v.2.6)
k) Summary: Each of the reviewed output formats for

describing design pattern candidates contains some elements
that are worth to use in a general exchange format. In par-
ticular, each fulfills the Language Independence requirement,
containing no language specific information. Despite that,
there is no format that would fulfill all of our requirements.

Table III shows that three formats (of DP-Miner, SSA and
PTidej) do not fulfill Completeness by not reporting all the
relevant roles. Half of the tools analyzed by us use ad hoc
formats, failing to fulfill Standard Compliance. The formats
of DP-Miner and DEEBEE exchange are based on a quasi
standard, CSV, but unfortunately one that fails unambiguity
since even classes are not identified uniquely (only by their
name). However, it is worth noting that the other standard
compliant output formats structure information using XML
syntax, which supports nesting and therfore recommends itself
as a good basis for a general exchange format.

All formats (except the output format of SSA) either do not
support Identification of Role Players at all or just for a limited
set of program elements, mostly outer classes. Fujaba is the
only one that supports classes and method / field signatures.
No format supports unambiguous identification of elements at
finer grained levels (individual statements). We noted that line
numbers are not a satisfactory identification scheme.

Obviously, all the reviewed output formats are mainly
targeted at satisfying a human expert. They assume much
implicit knowledge about programming languages and design
patterns that a software engineer typically has but which an
automated tool has not. Typically, none of the tools provide
explicit schemata of the searched design motifs, that would
help another tools to understand their conceptual model of
a pattern, or information about employed analysis methods.
Therefore the Comparability requirement is not fulfilled by
any tool.

DP-Miner does not fulfill Identification of Candidates since
it can repeat the same candidate with the same role assign-
ments multiply. Identification of Candidates is not fulfilled by
Maisa, PINOT and Fujaba since when a candidate has several
method/fields playing the same role these tools report multiple
candidates (one for each method/field). SSA does not report
multiple candidates in such cases. It reports only mandatory
class roles, a candidate is identified unambiguously therefore
Identification of Candidates is fulfilled.

Ptidej, DEEBEE and Columbus fulfill Identification of Can-
didates since they merge different candidates that have the
same mandatory role assignments.

Reproducibility is fulfilled partly by P-Mart (only repository
names and versions are included).

We should note that P-Mart reports role kinds for class
roles (Class, Abstract Class etc). Therefore we could claim
that Specification is partly fulfilled (only by P-Mart).

Last but not least, only two tools (Ptidej and Fujaba) report
confidence scores and a single tool (Ptidej) provides explana-
tions. Ptidej, which provides explanations about violated and
fulfilled constraints implicitly hints at constraint satisfaction
as the employed analysis technique.

Table III: Tools and requirements fulfilled by their output
formats

IV. DPDX CONCEPTS

In this section, we develop the concepts on which our
proposed exchange format, DPDX, is based. We show how
DPDX adresses each of the requirements stated in Section
II-C, overcomming the limitations of existing output formats
identified in the previous section.

A. Specification

“For enabling DPD tool developers to implement
appropriate exchange format file generators parsers
or converters, the exchange format must be specified
formally.”

The common exchange format will be specified by a set of
extensible metamodels that capture the strucutral properties of
the relevant concepts, e.g., candidates, roles and their relations.
Metamodels that reflect the decisions explained in this section
are presented in Sec.V. They significantly extend previous
similar proposals, for example, the PADL metamodel of Albin-
Amiot et al. [20]. However, they intentionally do not capture
certain details, since a too detailed metamodel would be too
rigid. In particular, we do not model the constraints that define
a certain relation between roles but only the names of rela-
tions, together with a predefined but extensible set of relation
names with an informally stated meaning. Similarly,we do not
model the precise structure of object-oriented programming
languages but just the concepts that are essential for unique
identification of program elements (see Sec. IV-E). The pos-
sible kinds of program constituents and the related abstract
syntax tree are no first-class elements of the metamodel but
are captured by a set of predefined values for certain attributes
in the metamodel. This ensures easy extensibility since only
the set of values must be extended to capture new relations
or language constructs whereas the metamodel and the related
exchange format remain stable. The set of defined terms can
be seen as a simple ontology. Ontologies have already been
used in the domain of design pattern detection. For example,
Kampffmeyer et al. [21] showed that an ontology can be

7

used to model the intents of design patterns. Their proposed
ontology is useful to relate automatically design patterns with
one another.

B. Reproducibility

“The tool and the analysed program must be explic-
itly reported, to allow reproducing the results.”

A DPD result file must contain the diagnostics of a particular
DPD tool for a particular program. To enable reproducing
the results, it must include the name and version of the
originating tool and the name, version, and the URI of the
analysed program. Names and versions may be arbitrary
strings. The URI(s) must reference the root directory(ies) of
the analysed program. The URI field is optional, since the
analysed program might not be publicly accessible. The other
fields are mandatory.

C. Justification

“The format must include explanations of results
and scores expressing the confidence of a tool in its
diagnostics to help experts and other tools in using
the reported results.”

Justification of diagnostics consists of confidence scores, re-
ported as real numbers between 0 and 1, and textual ex-
planations. Justification information can be added at every
level of granularity: for an entire candidate, individual role
assignments and individual relation assignments (see Sec.
V-C).

D. Completeness

“The format must be able to represent program con-
stituents at every level of role granularity described
in design pattern literature.”

To identify a candidate unambiguously each program con-
stituent that can possibly play a mandatory role must be
reported (see IV-G). Therefore, DPDX allows reporting each
of the following constituents: nested and top-level types (in-
terfaces, concrete and abstract classes); fields and methods;
any statements (including in particular field accesses and
method invocations). Expressions are not distinguished from
statements since many languages (notably Java and C++) let
expressions contain method invocations with side-effects, thus
making them only technically but not semantically different
from statements5. Reporting role mappings at all possible
granularity levels improves the presentation of the results and
ease their verification by experts and use by other tools. Re-
porting roles played by statements different from invocations
and field accesses is important because they are essential for
disambiguating certain motifs. An example is given in Section
VII.

5Only local variables and parameters are not reported. We did not find
any motif in which they would play a role. However, if the need occured,
the identification scheme proposed below would apply without modifications
- only the set of keywords would need to be extended.

E. Identification of role players

“Each program constituent playing a role in a
design motif must be identified unambiguously.”

The main part of a DPD result file consists of role mappings,
i.e., assignments of program constituents to the roles that
they play in a motif. Given a particular program version and
program consitutent description, it must be possible to identify
the constituent precisely and unambiguously in the program.
In addition, it would be beneficial if the identification scheme
were stable, i.e. if it were not affected by changes in the source
code that are mere formatting issues or reordering of elements
whose order has no semantic meaning. For instance, after
inserting a blank line or changing the order of declarations,
each program element should still have the same identifier as
before. This is necessary to compare DPD results across differ-
ent program versions, when analysing the evolution of design
pattern implementations over time. The stability requirement
rules out identification based on line numbers, as provided by
some of the reviewed tools (Sec. III).

Identifying named elements: According to Sec. IV-D we
must unambiguously identify program elements down to the
granularity level of individual statements.

Stable identification is easy for type and field declarations,
which are typically named. Chaining names from outer to
inner scopes is sufficient for identifying declarations of classes
and fields. For instance, in the example below myApp.A
identifies the class A and myApp.B.b identifies the field b
in class B:
package myApp ;
class A { public void f (i n t a , i n t b) { . . . } }
class B {

i n t b ;
public void b (B b) { . . . }
public void b (A a) {

i n t c , d ;

i f (. . .) a . f (c , d) else a . f (d , c) ;
}

}

Because in many object-oriented languages methods can
be overloaded *** cite: Java language specificatioin, C++
Annotated Reference Manual *** , unique identification
requires including the types of method arguments in the
identifier of a method.

Identifying unnamed elements: Unfortunately, nested
naming is inapplicable to fine-grained elements (statements
and expressions), which may occur multiply in the same scope,
e.g. in the same method body or field initializer expression.
Cases like the two invocations of method f() within the body of
method b() above can neither be disambiguated by additionally
reporting the static type of invocation arguments (which is the
same in both cases) nor by adding line number information
(which anyway fails the stability requirement).

However, every element can be identified uniquely by a path
in a abstract syntax tree (AST) representation of the respective
program. This path consists of names for the child branches of
each AST element and positions within statement sequences.
We call this the model-based identification scheme since it
assumes a standardized model of an abstract syntax tree and
standardized names for its parts. For instance, the if statement

8

in the above code example can be identified by ifPath =
myApp.B.b(myApp.A).body.2. This illustrates how child ele-
ments of an already identified element are identified either by
their unique, standardized name within the enclosing element
(e.g.“body as the name of the block representing a method
body) or by their unique position inside the enclosing element
(e.g. 6 a the position of the if-statement within the block).
Similarly, we can distinguish the expression that represents
the target of a method invocation (target) by the invocation
itself (call). In a conditional statement we can distinguish
elements nested inside the condition (if), the first alternative
(then) and the second alternative (else). Accordingly, we
can denote the invocation of f() in the first alternative by
ifpath.then.1.call distinguishing it from the one in the second
alternative, denoted ifpath.else.1.call .

Serving all needs.: To satisfy the diverging needs of fu-
sion tools, visualisation tools and humans, precise hierarchical
identification information is complemented with information
about source code positions, if available. Source code positions
contain a file path in Unix syntax (relative to the base directory
indicated by the URI of the analysed program), a start position
and an end position in the file, each indicated by a line and
column number.

In addition, field aceesses and method invocations
may be complemented by information about the ac-
cessed field or called method. For instance, the invoca-
tion of f() in the then part could also be reported as
“ifpath.then.1.call=myApp.A.f(int,int)” Since model-based
identification is unambiguous the additional information
“=myApp.A.f(int,int)” is just an optional courtesy to pro-
grammers and tools who use the DPD results. It lets them
know which element is referenced by the field access or
method invocation without to analyse themselves the code
of the source program. The class ‘ReferencingStatement’ in
the metamodel (Sec.V-B) reflects the option to provide such
additional referencing information.

DPD tools are required to support at least hierarchical
naming of types, fields methods and argument types in method
signatures. The source code position and the model-based
identification of statements is optional, since tools based on
byte code analysis will not always be able to provide it.

F. Language independence

The common exchange format should abstract
language-specific concepts so that it can be used
to report candidates identified in programs written
in arbitrary imperative programming languages (in-
cluding in particular object-oriented languages).

The standardized model of an abstract syntax tree that un-
derlies the above program element identification approach
is reflected by the program element identifier metamodel in
Sec.V-B and the standardized element names listed in the
Appendix cover the abtract syntax of a wide range of strongly
typed imperative and object-oriented languages with a name
based type system (e.g. Beta, C, C++, Eiffel and Java) and
dynamically typed languages (e.g. Smalltalk).

To be generally applicable, the metamodel necessarily ab-
stracts from details that are not relevant for unique identifica-
tion. Types are subsumed as named elements. This includes
class and interface types but also primitive types (e.g. “int,
char”) and built-in types (e.g. array types in Java and pointer
types in C++). Language-specific syntactic indicators for built-
in types are regarded as part of the repective type name (e.g.
“MyClass[][]” or “char**”).

The metamodel also captures nested type definitions (e.g.
nested and local classes in Java). Java’s anonymous nested
classes and Smalltalk’s closures can simply be treated like
unnamed blocks, referencing them by their position within the
enclosing element. The same is true for blocks nested directly
in other blocks.

G. Identification of Candidates

“Each candidate must be identified unambiguously
and reported only once.”

Several of the reviewed tools (e.g., PINOT and DP-Miner)
report multiple candidates for the same instance of a mo-
tif whose mandatory roles are played by different program
constituents. For example, in the case illustrated in Figure
??, PINOT outputs a separate Decorator candidate for each
forwarding method. Reporting “related” candidates multiple
times

• can confuse developers and automated tools that would
use the results and leads to

• erroneous precision and recall and
• false diagnostics that could be otherwise avoided (see

example in Sec. “Evaluation”).

Avoiding multiple reporting of “related” candidates requires in
the first place a well-defined notion of identity for candidates.
Most tools do not explicitly define such a notion. Some
define the conceptual identity of a candidate to be the set
of values that it assigns to mandatory roles (Columbus, Ptidej
and DEEBEE). However, this definition is insufficient, since
it implies that two Decorator candidates that only differ in the
player of the (mandatory) “Operation” role are considered to
be different. However, a decorator instance may have many
methods playing the “Operation” role and all the players must
be reported as being part of the same instance (or candidate).

In this context the contribution of this section it a precise
definition of candidates and candidate identiy and a clarifica-
tion of its implications for DPD tools, the exchange format
and DPD result fusion.

l) From Motifs to Schemata. : Usually, motifs are illus-
trated by UML templates in which role names are used like
variables to be substituted by concrete names of elements from
a program. For instance, Fig. 1 illustrates the design motif
of the decorator pattern. This notation is intuitive enough for
humans, who understand, for example, that the “operation”
role is not played just by a single method and that the case
illustrated in Fig. ?? is a legal instance. A tool, however,
needs a more precise specification that makes all cardinalities
and relationships explicit. In addition, the motif notation often
cannot name roles properly, being constrained by the rules of

9

UML. For instance, an “operation” role appears in the “Com-
ponent” and the “Decorator” to express the overriding relation
between these methods. So the motif fails to express that the
“operation” in the “Decorator” actually plays a different role in
the pattern that would more accurately be called “forwarding
method”. For these reasons, we introduce the concept of design
pattern schema as a precise and unambiguous means to specify
motifs.

A design pattern schema is a set of named roles and named
relationships between these roles. A role has a name, a set
of associated properties, an indication of the kind of program
element that may legaly play that role (e.g. a class, method,
etc.), a set of contained roles and a specification of the role
cardinality, which determines how many elements that play
the role may occur within the encolsing entity. Mandatory
roles have cardinality greater than zero. A relationship has a
name and cardinalities specifying how many program elements
that play a particular role can be related on either end of the
relationship.

m) From Schemata to Candidates. : A role mapping
maps roles and relations of the schema to elements of a
program so that the target program elements are of the required
kind, have the required properties and relationships and fulfill
the cardinality constraints stated in the schema. The essential
task of DPD tools is suggesting role mappings. The set of all
role mappings identified by a DPD tool for a particular schema
and analysed program defines a graph with nodes being the
program elements playing roles and arcs being the relations be-
tween these elements. Each relation between elements reflects
a relation between the roles that the elements play. We call this
graph the projection graph, since it represents the projection of
the schema on the analysed program. A candidate is the set of
nodes in a connected component of the projection graph. Each
proper subset of a candidate is called a candidate fragment or
simply fragment.

The identifiers of any program element that is part of a
candidate uniquely identifies that candidate since the same
element cannot occur in any other (complete) candidate.
However, having possibly different identifiers for the same
candidate is unsatisfactory, since it makes it hard to compare
candidates based on their identifiers. Therefore, we require that
every pattern schema specifies exactly one of its mandatory
roles as the identifying role. The identifier of the element
that plays that role in a particular candidate will identify that
candidate.

These notions are illustrated in Fig. 12. Its left-hand side
shows a graph that represents the core structure of the Decora-
tor schema (only the roles and relationships are shown without
their attributes - for a detailed representation see Sec. V-A).
The right-hand-side illustrates that projection graph induced
in some hypotetical program by a possible set of role and
relation mappings. It has two connected components, corre-
sponding to two candidates. If we assume that “Cmponent”
is the identifying role, then the two candidates are uniquely
identified by the classes A and C. The different colors in
the A candidate illustrate possible fragments. The multiple
candidates erroneously reported by PINOT and DP-Miner for
one instance correspond to such fragments.

Component Decorator

SubtypeOf

Operation Forwarder
calledMethod

ForwardCall
Contains

HasType Component
Reference

Contains

ContainsContains

A B

m() m()aRef.m()

aRef

Decorator Schema Projection Graph

f() f()aRef.f()

C D

h() h()cRef.h()

cRef

accessed Field

Sample role mappings for the „Operation“ role

Figure 12: Illustration of candidates

The umambiguous candidate identification requirement is
fulfilled if a tool reports (complete) candidates only, not
fragments. This requires the exchange format to provide means
of expressing mapping of a particular role to multiple players
within the same candidate such as. the methods m() and
f() playing both the “Operation” role in the upper candidate
shown in Fig. 12. Since XML is well-suited to represent
hierarchical nesting and also fulfils our standard compliance
requirement, DPDX is based on XML.

H. Comparability

“For comparing results with those of other tools,
the format must enable reporting also the design
motif definitions assumed by a tool and the applied
analysis methods.”

DPDX supports comparability by specifying a precise meta-
model of schemata, enabling tools to report their schemata. In
addition, it provides means to specify used analysis methods
and specifies a common vocabulary of analysis methods.

V. DPDX META-MODELS

This section presents the three meta-models that together
specify the DPDX format: the meta-model design pattern
schemata, the meta-model of program element identifiers and
the meta-model of DPD results. These models reflect the
decisions explained in the previous chapter.

Models, metamodels schema
and instances

Metamodel of
DP Schemata

Metamodel of
DPD Results

Metamodel of
Program Elements

instanceOfinstanceOf instanceOf

S1 = Schema of
Singleton

... Role mappings and

Sn = Schema
of Decorator

.

relation mappings

Results
of T for P

Schemata
of tool T

Elements of
program P

DPD results of tool T for program P

Figure 13: Relation of schemata, diagnostics and instances

10

Figure 13 shows how these models are related. Results
are instances of the result metamodel. Their main part are
mappings of roles and relations to program elements. Candi-
dates are targets of such mappings (see Sec.IV-G). Note that
candidates may overlap, that is, program elements can play a
role in different pattern schemata, as illustrated by the overlap
of one of the Singleton candidates with one of the Decorator
candidates in Figure 13.

A. Schema Metamodel

The metamodel of design pattern schemata is illustrated in
Figure 14a. An instance of the metamodel that represents the
schema of the ‘Decorator’ motif is shown in Figure 14b.

The metamodel reflects the definition of schemata in Sec.
IV-G and supplements it with the definition of properties
as triples consisting of a name, a value and a boolean that
indicates whether the property must be met exactly or might be
relaxed. In the first case it represents a core characteristic (e.g.
the ’ConcreteDecorator’ role must be played by a class whose
‘abstractness’ property has the value concrete – see Fig.14b).
Otherwise, it is is ignored if not fulfilled but increases the
confidence in the diagnostic if fullfilled (e.g. the ‘Decorator’
is typically abstract but not necessarily so). The metamodel
further adds the option to represent that a schema is a variant
of another one, e.g. a ‘Push Observer’ is a variant of the
‘Observer’ motif.

Note that the representation can accomodate arbitrary lan-
guages and the evolution of existing languages without any
change in the metamodel because language level concepts
(e.g. classes, methods, statements) are not first class entitites
of the metamodel but just values of the ‘kind’ field of the
Role class. In order to enable different tools understand each
other, it is sufficient to agree on a common vocabulary,
that is, a set of ‘kind’ values with a fixed meaning. For
instance, the ‘kind’ class generally represents an object type
and the distinction between interfaces, abstract classes and
concrete classes is represented by the property, ‘abstractness’,
with predefined values interface, abstract and concrete. A
suggested common vocabulary is presented in the appendix.

B. Program Element Metamodel

The identification scheme elaborated in Sec. IV-E distin-
guishes
• named elements (fields, classes, interfaces and primitive

or built-in types),
• typed elements (method signatures),
• indexed elements (statements in a block) and
• blocks.

Each of these elements can be nested inside each another
element. That is general enough to accomodate even exotic
languages. Although blocks and named elements look
similar (both contain just a name), there is a significant
distinction. The names of named elements stem from the
analysed program whereas those of blocks belong to a fixed
vocabulary specified in the Appendix. Each block is named
after its role in the program element in which it occurs

ProgramElement

TypedElementNamedElement

name: String name: String

*

IndexedElement

indexInParent: int

Block

nameInParent: String
1..*

Source

uri: String
line: int
col : int
endline : int
endCol :int

kind ∈ {class,
interface, field,

basicType}

kind ∈
{method}

kind ∈ {block}

kind ∈ {block, ...}

kind: String

ReferencingStatementkind ∈ {get, set, call}

1
0,1

referencedElement

ref

(a) Metamodel of program element identifiers and optional source locations

:Named

java.io.BufferedWriter

:Typed

write

:Indexed

1

:Block
synchro

nized

:Named

char[]

:Named

int

:Named

int

:Indexed

3

:Indexed

2

:Block

then

:Block

call

(b) Representation of the marked invocation from Fig. 17

Figure 16: Metamodel of program element identifiers and
sample instance

public void w r i t e (char cbuf [] , i n t o f f , i n t l en) . . . {
synchronized (lock) { / / 1 s t statement

ensureOpen () ;
i f (. . .) . . . else . . .
i f (. . .) { / / 3 rd statement

f l u s h B u f f e r () ;
−−> out . w r i t e (cbuf , o f f , len) ; / / 2nd statement

. . .
}
. . .

}
}

Figure 17: An excerpt of method write(char[],int,int) from
class java.io.BufferedWriter

(e.g. ifCondition, then, else, whileCondition, whileBody).
The ‘kind’ field corresponds to the one in the schema
metamodel and can have the same values. Indexed elements
whose kind is get, set or call can be optionally treated as
referencing statements, allowing to add information about
the referenced element (see Sec. IV-E). Fig. 16b illustrates
the object representation of the marked invocation from Fig.
17. In the textual notation from Sec. IV it would be denoted as
‘java.io.BufferedWriter.write(char[],int,int).1.synchronized.
3.then.2.call’.

C. Result Metamodel

Figure 15a shows the metamodel of DPD results. A DPD
result contains a set of diagnostics produced by a tool for
a given program. Each diagnostic contains a set of role and
relation assignments and a reference to the pattern schema
whose roles and relations are mapped. Each role assignment
references a the mapped role and the program element that
plays the role. A relation assignment references the mapped
relation, a program element that serves as relation source and
an element that serves as relation target. Optional justifications
can be added to diagnostics and each of their role and relation
assignments. Schemata, roles, relations and program elements
are defined according to Fig. 14a and Fig. 16a.

Figure 15b shows a diagnostic that is an instance of this

11

Role

PatternSchema

Relation

name : String
kind : String
cardinality : String

source

1

1

target

1

1..*

1
name : String
srcCard: String
targetCard : String
mandatory : Bool
direct: Bool

name : String

va
ria

n
tO

f

*

roles
Property

name : String
value: String
strict: Bool

*1

1

containedRoles

*

(a) Metamodel of design pattern schemata

:Schema
Decorator

Component
class

1

Decorator
class

1

: Role
Operation
method

1..*

: Role
Forwarder

method
1..*

: Role
ForwardCall

call
1

: Role
Parent

field
1

ConcreteDecorator
class

*

:Relation
SubtypeOf

+
1

:Property
abstractness
concrete
true

: Role : Role : Role

:Relation
SubtypeOf

+
1

invokes
1
1

HasType
1
1

:Relation

:Relation

(b) A schema of the Decorator design pattern represented by an instance of the
schema metamodel. Values of the attributes “mandatory” and “direct” in relation
instances, and the agregation of relation instances within the schema instance have
been ommitted for conciseness.

Figure 14: Design pattern schemata: metamodel and sample schema

RoleAssignment

Diagnostic

1..*

patternName : String

1 1

1player

roleAssignments

DPD Result

name: String
version : String

Tool

name: String
version : String
language: String

Program

1..*diagnostics

1 1

source target

explanation : String
score : Real

0,1

0,1
Justification

1..*relationAssignments

Role

Relation

1

1
RelationAssignment

ProgramElement

(a) Metamodel of design pattern detection results

:Pattern
Decorator

: Role
Component

java.io.Writer

: Role
Decorator

java.io.BufferedWriter

:Relation
SubtypeOf

: Role
Operation

write()

: Role
Forwarder

write()

:Relation
MGBC

: Role
ForwardCall
writer.write()

:Relation
Invokes

:Relation
HasType

: Role
Parent

out

:Relation
Contains

:Relation
Contains

:Relation
Contains

: Role
Operation

flush()

: Role
Forwarder

flush()

:Relation
MGBC

: Role
ForwardCall
local.flush()

:Relation
Invokes

(b) An instance of the diagnostics metamodel. It represents a decorator candidate
that conforms to the schema from Figure 14b) Not yet consistent with metamodel

Figure 15: Design pattern diagnostics: metamodel and sample pattern instance

metamodel. It represents an instance of Decorator consisting
of the program elements java.io.Writer, java.io.FilterWriter,
java.io.Writer.write(), java.io.FilterWriter.write(), etc.

VI. DPDX IMPLEMENTATION

The DPDX metamodels are a common framework of ref-
erence for developing implementingtextual output of DPD
tools and parsing / interpretation of this output on by users
of DPD results (developers, the fusion tool, benchmarks and
visualization tools) For long-term maintenability, the imple-
mentations of the meta-model should rely as much as possible
on emerging or de-facto standards. Therefore we base our
common exchange output format on XML. Thus XSLT can
be used to transform results into a readable format or the
proprietary format of individual tools. Furthermore, the rules
of the format can be easily defined by XSD.

The implementation of DPDX consists of realization of the
three meta-models introduced in Section V. Implementation
of the Schema meta-model (see Subsection V-A) allows the
tools to report the schema of the patterns they search for,

the Program Element meta-model (see Subsection V-B) imple-
mentation is for identifying the program elements of the source
code playing some role in the pattern instance and the Result
Meta-model (see Subsection V-C) implementation describes
the detected pattern instances themselves.

A. Schema Meta-model implementation

In order to support Comparability, DPDX must contain
definition of the design pattern’s schema that a tool searches
for. This definition is embedded into DPDX in the ‘Pattern-
Schema’ XML tag. The structure of the ‘PatternSchema’ must
reflect the meta-model presented in 14a. For our running
example, this is the XML representation of the UML diagram
shown in Figure 14b.

The ‘PatternSchema’ tag has two children: ‘Roles’ and
‘Relations’. These nodes describe the roles and relations
between them, that a tool searches for. A ‘PatternSchema’ can
refer to another schema by its ‘variantOf’ attribute, meaning
that this schema is a variation of the other one (or contains
the value %NONE% if the schema is not a variation). Each
‘Role’ tag describes a design pattern role with an unique ‘id’,

12

01<PatternSchema name="Decorator" variantOf="%NON%">
02 <Roles>
03 <Role id="R1" name="Component" kind="Class" cardinality="1">
04 <Property name="abstractness" value="abstract" strict="false"/>
05 <Role id="R2" name="Operation" kind="Method" cardinality="+"/>
06 </Role>
07 <Role id="R3" name="Decorator" kind="Class" cardinality="1">
08 <Role id="R4" name="Forwarder" kind="Method" cardinality="+">
09 <Role id="R5" name="ForwardCall" kind="Call" cardinality="1"/>
10 </Role>
11 <Role id="R6" name="Parent" kind="Field" cardinality="1"/>
12 </Role>
13 <Role id="R7" name="ConcreteDecorator" kind="Class" cardinality="*">
14 <Property name="abstractness" value="concrete" strict="true"/>
15 </Role>
16 </Roles>
17
18 <Relations>
19 <Relation id="RE1" name="subTypeOf" source="R3" srcCard="1"
20 target="R1" targetCard="1" mandatory="true" direct="false"/>
21 <Relation id="RE2" name="subTypeOf" source="R7" srcCard="1"
22 target="R3" targetCard="1" mandatory="false" direct="false"/>
23 <Relation id="RE3" name="invokes" source="R5" srcCard="1"
24 target="R2" targetCard="1" mandatory="true" direct="true"/>
25 <Relation id="RE4" name="hasType" source="R6" srcCard="1"
26 target="R1" targetCard="1" mandatory="true" direct="false"/>
27 </Relations>
28</PatternSchema>

Figure 18: Implementation of schema metamodel

a ‘name’, a ‘kind’ and a ‘cardinality’ attribute. The ‘kind’
attribute holds the kind of the program element that can play
this role (e.g.: Class, Method, Field, etc. – see Appendix A),
while the ‘cardinality’ attribute defines the legal number of this
role in the instance. Optionally the ‘Role’ nodes can contain
‘Property’ elements which describe a property of a ‘Role’.
An sample ‘Property’ tag can be seen in the example at the
role with ‘id’ R1 (Fig. 18, line 4). A ‘Property’ has a ‘name’
(property name), ‘value’ (value of the property) and ‘strict’
(whether it is strict property or can be relaxed) attribute.

The aggregation between ‘Role’ elements is represented
by XML nesting. The possible number of instances of a
certain ‘Role’ is represented by the ‘cardinality’ attribute of
the ‘Role’.

The relations between the roles are expressed by ‘Relation’
tags. The ‘Relation’ tag describing relations, have a ‘name’
describing the relation (e.g. invokes, subtypeOf, hasType,
etc. for a complete list of possible values see Appendix A),
‘srcCard’ and ‘targetCard’ attributes describing the source and
target cardinality and ‘source’ and ‘target’ attributes referring
to the roles that are the sources and targets of the relation. It
also contains a ‘mandatory’ and a ‘direct’ attribute. The first
one determines if the relation is mandatory, the second one
tells if the relation needs to be direct between the source and
target or it can be a transitive relation.

B. Program Element Meta-model implementation

In this subsection we present the implementation of the
Program Element Meta-model. The root node of the for-
mat is ‘ProgramElements’. ‘ProgramElements’(Figure 19, line
1) can contain any special kind of ‘ProgramElement’ (e.g.
‘NamedElement’, ‘TypedElement’, and so on) that is de-
fined in the Program Element Meta-model. Furthermore, ‘Pro-
gramElements’ can also contain a ‘Sources’ element which
contains ‘Source’ elements representing position information

in the source code. A ‘Source’ element has the following
attributes to represent source code positions: ‘URI’, ‘line’,
‘col’, ‘endLine’, ‘endCol’.

01<ProgramElements>
02 <NamedElement id ="PE1" name="java.io.Writer" kind="class"
03 source="P1">
04 <TypedElement id="PE2" name="write" kind="method" source="P2">
05 <ref>
06 <ref ref="PE11"/>
07 <ref ref="PE12"/>
08 <ref ref="PE12"/>
09 </ref>
10 </TypedElement>
11 <TypedElement id="PE3" name="flush" kind="method" source="P3"/>
12 </NamedElement>
13
14 <NamedElement id ="PE4" name="java.io.BufferedWriter" kind="class"
15 source="P4">
16 <TypedElement id="PE5" name="write" kind="method" source="P5">
17 <ref>
18 <ref ref="PE11"/>
19 <ref ref="PE12"/>
20 <ref ref="PE12"/>
21 </ref>
22 <IndexedElement id="PE6" indexInParent="7" kind="if">
23 <Block nameInParent="if">
24 <ReferencingStatement id="PE7" indexInParent="2"
25 kind="call" referencedElement="PE2" source="P6"/>
26 </Block>
27 </IndexedElement>
28 </TypedElement>
29 <TypedElement id="PE8" name="flush" kind="method" source="P7">
30 <ReferencingStatement id="PE9" indexInParent="2" kind="call"
31 referencedElement="PE3" source="P8"/>
32 </TypedElement>
33 <NamedElement id="PE10" name="out" kind="field" source="P9"/>
34 </NamedElement>
35
36 <NamedElement id="PE11" kind="basicType" name="char[]"/>
37 <NamedElement id="PE12" kind="basicType" name="int"/>
38
39 <Sources>
40 <Source id="P1" URI="/java/io/Writer.java" line="33" col="1"
41 endLine="308" endCol="1"/>
42 <Source id="P2" URI="/java/io/Writer.java" line="128" col="5"
43 endLine="128" endCol="81"/>
44 <Source id="P3" URI="/java/io/Writer.java" line="293" col="5"
45 endLine="293" endCol="52"/>
46 <Source id="P4" URI="/java/io/BufferedWriter.java" line="47"
47 col="1" endLine="253" endCol="1"/>
48 <Source id="P5" URI="/java/io/BufferedWriter.java" line="154"
49 col="5" endLine="183" endCol="5"/>
50 <Source id="P6" URI="/java/io/BufferedWriter.java" line="169"
51 col="3" endLine="169" endCol="28"/>
52 <Source id="P7" URI="/java/io/BufferedWriter.java" line="232"
53 col="5" endLine="237" endCol="5"/>
54 <Source id="P8" URI="/java/io/BufferedWriter.java" line="235"
55 col="6" endLine="235" endCol="17"/>
56 <Source id="P9" URI="/java/io/BufferedWriter.java" line="49"
57 col="5" endLine="49" endCol="23"/>
58 </Sources>
59</ProgramElements>

Figure 19: Implementation of program metamodel

Most of the elements of the Program Element Meta-model
are implemented directly. First of all, every ‘ProgramElement’
node can contain other ‘ProgramElement’ nodes by the nesting
technique of XML. In the followings we examine the special
cases of ‘ProgramElement’. ‘NamedElement’ has a ‘name’
attribute which represents it’s name, it also has a ‘source’
attribute which refers the corresponding ‘Source’ element,
and it has an ‘id’ attribute which can be used to refer this
‘NamedElement’. ‘TypedElement’ has the same attributes as
the ‘NamedElement’, the only difference between them that
‘TypedElement’ can contain a ‘ref’ element which refers

13

to the types of it’s parameters (‘TypedElement’ represent a
method). ‘IndexedElement’ (Figure 19, line 22) can have a
‘name’ attribute for naming and an ‘id’ attribute for referring
this element. ‘ReferencingStatement’, the specialization of
‘IndexedElement’, has a ‘kind’ attribute to describe it’s kind
(get, set or call), it has a ‘referencedElement’ attribute to refer
the referenced element (e.g. the called element) and it can has
a ‘source’ attribute to refer the appropriate ‘Source’ element
optionally. ‘Block’ element has a ‘nameInParent’ attribute for
representing the parent statement of a the given block.

C. Result Meta-model implementation

The XML format of the result implementation reflects the
structure of the pattern shown in Figure 15b as an instance of
the Diagnostics meta-model (see Figure 20).

01<DPDResult creationDate="2009-09-28 16:04:00">
02 <Tool name="NotNamed" version="1.0"/>
03 <Program name="JDK" version="1.6" language="Java"/>
04
05 <Diagnostic id="PI1" patternName="Decorator">
06 <RoleAssignments>
07 <RoleAssignment id="RA1" role="R1" player="PE1">
08 <RoleAssignment id="RA2" role="R2" player="PE2"/>
09 <RoleAssignment id="RA3" role="R2" player="PE3"/>
10 </RoleAssignment>
11 <RoleAssignment id="RA4" role="R3" player="PE4">
12 <RoleAssignment id="RA5" role="R4" player="PE5">
13 <RoleAssignment id="RA8" role="R5" player="PE7"/>
14 </RoleAssignment>
15 <RoleAssignment id="RA6" role="R4" player="PE8">
16 <RoleAssignment id="RA9" role="R5" player="PE9"/>
17 </RoleAssignment>
18 <RoleAssignment id="RA7" role="R6" player="PE10"/>
19 </RoleAssignment>
20 <RoleAssignment id="RA10" role="R7" player="%MISSING%"/>
21 </RoleAssignments>
22
23 <RelationAssignments>
24 <RelationAssignment relation="RE1" source="PE4" target="PE1"/>
25 <RelationAssignment relation="RE3" source="PE8" target="PE2"/>
26 <RelationAssignment relation="RE3" source="PE10" target="PE3"/>
27 <RelationAssignment relation="RE4" source="PE11" target="PE1"/>
28 </RelationAssignments>
29
30 <Justifications>
31 <Justification for="RA5" score="80%" explanation=""/>
32 <Justification for="RA8" score="80%" explanation="conditional
33 forward"/>
34 <Justification for="RA10" score="" explanation="missing subclass"/>
35 <Justification for="PI1" score="95%" explanation=""/>
36 </Justifications>
37 </Diagnostic>
38</DPDResult>

Figure 20: Implementation of result metamodel

The root node of the DPDX format is the ‘DPDResult’,
which contains the creation date as an attribute. The children
nodes of the root are: ‘Tool’, ‘Program’, and ‘Diagnostic’. By
the ‘Tool’ tag the tool can set basic information in form of
attributes about itself, for example it’s ‘name’ and ‘version’.
The ‘Program’ element holds information about the analyzed
program: ‘name’, ‘version’, and ‘language’. The ‘DPDResult’
can contain one or more ‘Diagnostic’ children nodes. ‘Di-
agnostic’ nodes represent a possible occurrence of a design
pattern with the name of the pattern (attribute ‘patternName’,
‘Decorator’ in our example). ‘Diagnostic’ nodes also have a
unique ‘id’.

‘Diagnostic’ tags can contain the following children
nodes: ‘RoleAssignments’, ‘RelationAssignments’ and ‘Justi-
fications’. The first two are mandatory tags, the last one is not.
The children of ‘RoleAssignments’ are the ‘RoleAssignment’
nodes, which describe the discovered roles of the candidate
with the appropriate mappings to program element(s). The role
mapping is based on the design pattern meta-model (for the
‘Decorator’ pattern model, see Figure 14b). The attributes of
the ‘RoleAssignment’ node are the ‘id’, which is a unique id
within the results, ‘role’ is a reference to a ‘Role’ defined in
‘PatternSchema’, and ‘player’ is the unique identifier of the
program element (defined in ‘ProgramElements’ node) that is
assigned to this role. The ‘player’ can hold a special value,
%MISSING% (for example in Figure 20, line 20), meaning
that the tool could not assign this role to any program element
(despite the fact it searched the role).

The ‘RelationAssignments’ node collects the ‘RelationAs-
signment’ entries. These ‘RelationAssignment’ nodes repre-
sent the discovered relations between the found roles. Each
‘RelationAssignment’ tag has a ‘relation’ attribute referring
to a ‘Relation’ element defined in ‘PatternSchema’, a ‘source’
and a ‘target’ attribute holding a reference to program elements
which are related. Finally a set of ‘Justification’ elements are
defined inside a ‘Justifications’ node. These optional tags can
hold additional justification information for each ‘RoleAssign-
ment’ (attribute ‘for’ refers to a ‘RoleAssignment’ or to a ‘Re-
lationAssignment’) in terms of a confidence ‘score’ and a low
level textual ‘explanation’. If there is no ‘Justification’ node
referring to a ‘RoleAssignment’ or to a ‘RelationAssignment’
than the assignment has a 100% confidence ‘score’ with no
extra ‘explanation’ by default.

The exact rules of the XML format is defined by an XSD
schema file which is available online [?].

D. Integration and visualization

The implementation of the three meta-model discussed
above could have been placed into three different XML
files. However, we chose to integrate them into one, since
it eases the process and the visualization of DPDX. In the
implementation it means, that the ‘ProgramElements’ and the
‘PatternSchema’ tags are inserted into DPDX as the children
of ‘DPDResult’ tag.

For supporting the human readability of the format, an
XSLT transformation file is also provided. It transforms DPDX
files into nicely formatted HTML tables, whereby the source
code of the pattern candidates can be loaded immediately. The
HTML representation of the example DPDX presented in this
section is available online at the DPDX homepage [22].

VII. EVALUATION

In this section we show how the DPDX format eases data
fusion of the outputs of different DPD tools and enables to
achieve results that were not possible before. In particular, we
show how our solutions to the requirements from Section II-C
improve the accuracy of data fusion.

14

Figure 21: Improper Decorator (JHotDraw 6.0)

A. Identification of Candidates

Figure 21 presents an example from JHotDraw 6.0. In class
org.jhotdraw.standard.FigureAndEnumerator the method
next() forwards to two different objects referenced by different
fields of type FigureEnumeration: myFE1 and myFE2. In
this case, PINOT reports two false ‘Decorator’ candidates, one
for each field. In each candidate FigureAndEnumerator is
reported as Decorator, FigureEnumeration as Component,
and next() as Operation. This violates the Identification of
Candidates requirement

Our definition of candiates (Sec. IV-G) and program element
identification scheme enables a data fusion tool to detect such
cases. Whenever overlapping candidate fragments are reported
(either by the same or different tools) they can be joined into
a single candiate. In our example this yields a ‘Decorator’
candidate with multiple fields playing the ‘componentField’
role. This helps to discover that the assumed ‘Decorator’
candidate is a false positive because decorators never forward
to multiple immediate parents. GoF [4, , page 178] notes that
‘Decorator forwards requests to its Component object. That
is, forwarding to multiple parents indicates the absence of
‘Decorator’.

B. Completeness and Program Element Identification

Figure 22illustrates a ‘Decorator’ instance from Java IO
where java.io.InputStream plays the ‘Component’ role,
the class PeekInputStream (which is a local class in
java.io.ObjectInputStream) plays the ‘Decorator’ role and
its methods available() and close() play the ‘Operation’ role.

In this case, PINOT, on the one hand, reports all roles
necessary to reason about this Decorator (the classes and the
forwarder methods) but does not report full paths to classes,
making it hard to locate the nested, local class PeekInput-
Stream. On the other hand, SSA and Ptidej report full paths
to classes but does not report forwarder methods.

If the Completeness and Identification of Role Players were
fulfilled in both tools, they would report each role player in this
Decorator instance with full paths and explicitly mention the
forwarder methods. A data fusion tool could then determine
that identical results had been reported by both tools, thus
increasing the confidence that a true positive has been found
(see Kniesel and Binun [6]).

Figure 22: Decorator and Chain of Responsibility (Java IO)

C. Completeness and Comparability

Figure 22 also illustrates an instance of the
‘Chain of Responsibility’ (CoR) pattern. The class
java.io.InputStream plays the ‘Handler’ role, the class
java.io.ObjectInputStream.PeekInputStream plays the
‘Concrete Handler’ role and the method read() plays the
‘Request’ role. Note the distinction between the conditional
forwarding in read() which characterized the ‘Request’ role
distinguishes it from the ‘Operation’ role played by the
methods available() and close().

PINOT reports the ‘Chain of Responsibility’ instance prop-
erly, with read() as the player of the ‘Request’ role. This
diagnosis is apparently contradicted by SSA . SSA reports
‘Decorator’ instead of ‘Change of Responsibility’ since it
does not distinguish between conditional and unconditional
forwarding. The outputs of SSA includes neither information
about matching techniques (violating the Comparability re-
quirement) nor method level roles (violating the Completeness
requirement).

If Completeness and Comparability were fulfilled, SSA
would report all roles (including methods) and in addition,
the reports would include the information that the analyses
employed by SSA do not distinguish between conditional and
unconditional forwarding. Then the data fusion tool would
understand that SSA does not contracict but confirms the
diagnosis of PINOT, since the CoR and ‘Decorator’ motifs
are the same except for conditional versus unconditional
forwarding.

VIII. CONCLUSION

Design pattern detection is a significant part of the reverse
engineering process that can aid program comprehension
and to this end several design pattern detection tools have
been developed. However, each tool reports design pattern
candidates in its own format, prohibiting the comparison,
validation, fusion and vizualization of their results. Apart from
this limitation, each pattern identification approach employs
different terms to describe concepts that underly the pattern
detection process, further inhibiting their synergetic use.

In this paper we have proposed DPDX, a common exchange
format for design pattern detection tools. The proposed for-
mat is based on a well-defined and extensible metamodel
addressing a number of limitations of current tools. The
employed XML-based metamodel can be easily adopted by
existing and future tools providing the ground for improving
accuracy and recall when combining their findings. Moreover,

15

the paper attempts to clarify central notions in the design
pattern detection process providing a common foundation and
terminology.

Aknowledgements

Collaborating with researchers from four different groups
in writing this paper has been a rewarding experience that we
will be happy to share with others.

REFERENCES

[1] J. Dong, Y. Zhao, and T. Peng, “A review of design pattern mining
techniques,” IJSEKE, 2008.

[2] L. J. Fülöp, A. Ilia, A. Z. Vegh, and R. Ferenc, “Comparing and
evaluating design pattern mining tools,” in Proceedings of SPLST ’07,
14th June 2007.

[3] G. Kniesel and A. Binun, “Witnessing Patterns: A Data Fusion Approach
to Design Pattern Detection,” CS Department III, Uni.Bonn, Ger-
many, Technical report IAI-TR-2009-01, ISSN 0944-8535, Jan. 2009,
http://www.cs.uni-bonn.de/˜gk/papers/IAI-TR-2009-01.pdf.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Addison Wesley, 1994.

[5] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi, “Fingerprinting design
patterns,” WCRE, vol. 0, pp. 172–181, 2004.

[6] G. Kniesel and A. Binun, “Standing on the shoulders of giants – a data
fusion approach to design pattern detection,” in ICPC 2009, A. Marcus
and R. Koschke, Eds. IEEE, 2009.

[7] L. J. Fulop, R. Ferenc, and T. Gyimothy, “Towards a benchmark for
evaluating design pattern miner tools,” in CSMR ’08: Proceedings of
the 2008 12th European Conference on Software Maintenance and
Reengineering. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 143–152.

[8] N. Pettersson, W. Löwe, and J. Nivre, “On evaluation of accuracy in
pattern detection,” in First International Workshop on Design Pattern
Detection for Reverse Engineering (DPD4RE’06), Oct. 2006. [Online].
Available: http://cs.msi.vxu.se/papers/PLN2006a.pdf

[9] H. Albin-Amiot and Y.-G. Guéhéneuc, “Design patterns: A round-trip,”
in Proceedings of 11th ECOOP Workshop for PHD students in Object-
Oriented Systems, June 2001.

[10] J. Smith and D. Stotts, “Spqr: Flexible automated design pattern
extraction from source code,” in ASE’03. IEEE, 2003. [Online].
Available: citeseer.ist.psu.edu/article/smith03spqr.html

[11] J. Dong, D. S. Lad, and Y. Zhao, “Dp-miner: Design pattern discovery
using matrix,” in ECBS’07. Washington, USA: IEEE Computer Society,
2007, pp. 371–380.

[12] L. Wendehals, “Struktur- und verhaltensbasierte entwurfsmustererken-
nung,” PhD thesis, Universität Paderborn, Institut für Informatik,
September 2007.

[13] ——, “Improving design pattern instance recognition by dynamic anal-
ysis,” in WODA’03. Portland, USA: IEEE Computer Society, 2003.

[14] R. Ferenc, J. Gustafsson, L. Müller, and J. Paakki, “Recognizing Design
Patterns in C++ programs with the integration of Columbus and Maisa,”
Acta Cybernetica, vol. 15, pp. 669–682, 2002.

[15] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” IEEE TSE, vol. 32,
no. 11, pp. 896–909, 2006.

[16] Z. Balanyi and R. Ferenc, “Mining Design Patterns from C++ Source
Code,” in Proceedings of the 19th International Conference on Software
Maintenance (ICSM 2003). IEEE Computer Society, Sep. 2003, pp.
305–314.

[17] N. Shi and R. A. Olsson, “Reverse engineering of design patterns from
java source code,” in ASE’06. Washington, USA: IEEE Computer
Society, 2006, pp. 123–134.

[18] Y.-G. Guéhéneuc, “A reverse engineering tool for precise class dia-
grams,” in CASCON’04. IBM Press, 2004, pp. 28–41.

[19] Y.-G. Guéhéneuc and N. Jussien, “Using explanations for design-
patterns identification,” in IJCAI’01. Seattle, USA: AAAI Press,
Aug. 2001, pp. 57–64. [Online]. Available: http://www.emn.fr/jussien/
publications/gueheneuc-WIJCAI01.pdf

[20] H. Albin-Amiot and Y.-G. Guéhéneuc, “Meta-modeling design patterns:
application to pattern detection and code synthesis,” in Proceedings
of First ECOOP Workshop on Automating Object-Oriented Software
Development Methods, 2001.

[21] H. Kampffmeyer and S. Zschaler, “Finding the pattern you need: The
design pattern intent ontology.” in MoDELS, ser. Lecture Notes in
Computer Science, G. Engels, B. Opdyke, D. C. Schmidt, and F. Weil,
Eds., vol. 4735. Springer, 2007, pp. 211–225. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/models/models2007.html#KampffmeyerZ07

[22] Dpdx homepage. [Online]. Available: http://www.sed.hu/dpdx/
Decorator_Writer.dpdx

[23] Wiki page of dpdx. [Online]. Available: https://sewiki.iai.uni-bonn.de/
research/dpd/

APPENDIX

A. DPDX attribute values

In order to make our DPDX format really beneficial, the
tools (and people) using the the format must agree on a
common terminology for keywords applied in DPDX. This
is important because XML attributes are just strings, but we
need a special meaning for some strings (e.g.: relation name
can not be an arbitrary string but a discrete value from a
known relation types set). So it is essential that all users of the
format use the same keyword for describing the same concept.
Otherwise the primary aim of the common exchange format, to
make the design pattern instances comparable, would brake.
For that very reason we would like to make a proposal for
all the researchers interested in using (or maybe developing)
DPDX: as a primary source of the existing DPDX attribute
values use our publicly available WIKI page [23]. Every
researcher is very welcome to extend the available keywords
if there is no suitable one already. This page allows us
avoiding the use of different keywords with the same meaning,
moreover the introduction of new keywords would base on a
common consensus.

As an example we collected a reference list of possible
keywords used as attribute values in DPDX, which is presented
in Table IV.

Tag name Attribute
name

Possible attribute values

Role kind ‘Class’, ‘Method’, ‘Field’,
‘Call’

Property name ‘abstractness’, ‘visibility’
‘staticness’

Relation relationName ‘subtypeOf’, ‘hasType’,
‘invokes’

Block nameInParent ‘if’, ‘then’, ‘else’,
‘whileloop’, ‘dowhileloop’,

‘dountilloop’, ‘forloop’,
‘switch’

Block kind ‘block’
IndexedElement kind ‘block’, ‘if’, ‘then’, ‘else’,

‘whileloop’, ‘dowhileloop’,
‘dountilloop’, ‘forloop’,

‘switch’
NamedElement kind ‘class’, ‘interface’, ‘field’,

‘basicType’
TypedElement kind ‘method’

ReferencingStatement kind ‘get’, ‘set’, ‘call’

Table IV: Attribute values of DPDX

Each Property tag with different name attribute, has a
different set of possible kind values. These values are collected
in Table V.

The listed values can be used language independently,
although the keywords used in the tables follow the Java
terminology. We prefer this solution instead of creating a

http://cs.msi.vxu.se/papers/PLN2006a.pdf
citeseer.ist.psu.edu/article/smith03spqr.html
http://www.emn.fr/jussien/publications/gueheneuc-WIJCAI01.pdf
http://www.emn.fr/jussien/publications/gueheneuc-WIJCAI01.pdf
http://dblp.uni-trier.de/db/conf/models/models2007.html#KampffmeyerZ07
http://dblp.uni-trier.de/db/conf/models/models2007.html#KampffmeyerZ07
http://www.sed.hu/dpdx/Decorator_Writer.dpdx
http://www.sed.hu/dpdx/Decorator_Writer.dpdx
https://sewiki.iai.uni-bonn.de/research/dpd/
https://sewiki.iai.uni-bonn.de/research/dpd/

16

Property name Property
attribute

Possible attribute values

‘abstractness’ kind ‘abstract’, ‘interface’, ‘concrete’
‘visibility’ kind ‘public’, ‘protected’, ‘private’
‘staticness’ kind ‘static’, ‘non-static’

Table V: Property values

whole new terminology. We chose Java for base because of
its current popularity. Despite the equivalency in terminology,
our keywords have a more general meaning. They can be
interpreted for various different programming languages. For
example the property value abstract (which is a Java keyword)
can be used in DPDX describing C++ design pattern instances
also. We have different interpretations of the keywords for
different languages, e.g.: the abstract property of a Java class
means the class is defined using the abstract Java keyword,
but in case of a C++ class, it means that the class has at least
one pure virtual method (but not all of them are pure virtual,
since it would make the class an interface).

Make the following consistent with dpd-uml-
metamodels.pptx page 22

	I Introduction
	II Background
	II-A Terminology
	II-B Motivation
	II-C Requirements

	III State of the Art
	IV DPDX Concepts
	IV-A Specification
	IV-B Reproducibility
	IV-C Justification
	IV-D Completeness
	IV-E Identification of role players
	IV-F Language independence
	IV-G Identification of Candidates
	IV-H Comparability

	V DPDX Meta-Models
	V-A Schema Metamodel
	V-B Program Element Metamodel
	V-C Result Metamodel

	VI DPDX Implementation
	VI-A Schema Meta-model implementation
	VI-B Program Element Meta-model implementation
	VI-C Result Meta-model implementation
	VI-D Integration and visualization

	VII Evaluation
	VII-A Identification of Candidates
	VII-B Completeness and Program Element Identification
	VII-C Completeness and Comparability

	VIII Conclusion
	References
	Appendix
	A DPDX attribute values

