
Numerical Signatures of Antipatterns: An Approach based on B-Splines

Rocco Oliveto
Software Engineering Lab (SE@SA Lab)

DMI – University of Salerno, Italy
roliveto@unisa.it

Foutse Khomh, Giuliano Antoniol, and Yann-Gaël Guéhéneuc
SOCCER Lab and Ptidej Team

École Polytechnique de Montréal, QC, Canada
foutsekh@iro.umontreal.ca, {giuliano.antoniol, yann-gael.gueheneuc}@polymtl.ca

Abstract—Antipatterns are poor object-oriented solutions to
recurring design problems. The identification of occurrences
of antipatterns in systems has received recently some attention
but current approaches have two main limitations: either (1)
they classify classes strictly as being or not antipatterns, and
thus cannot report accurate information for borderline classes,
or (2) they return the probabilities of classes to be antipatterns
but they require an expensive tuning by experts to have
acceptable accuracy. To mitigate such limitations, we introduce
a new identification approach, ABS (Antipattern identification
using B-Splines), based on a numerical analysis technique.
The results of a preliminary study show that ABS generally
outperforms previous approaches in terms of accuracy when
used to identify Blobs.

I. INTRODUCTION

Antipatterns [1] are poor solutions to recurring design
problems. They occur in object-oriented systems when de-
velopers unwillingly introduce them while designing and
implementing the classes of their systems. Antipatterns have
a negative impact on the quality of a system [1], [2].
Consequently, their identification has received recently more
attention from both researchers and practitioners who have
proposed various approaches to detect them. In particu-
lar, two approaches were proposed: DECOR, [3] the first
systematic method to specify and generate automatically
detection algorithms for code smells and antipatterns and
Bayesian Beliefs Networks (BBNs), an approach based on
BBNs for ranking classes according to their probabilities of
participating in antipatterns [4].

However, previous approaches have two main limitations:
either (1) they classify classes strictly as being or not
antipatterns and thus cannot report accurate information
for borderline classes (e.g., DECOR), or (2) they return
the probabilities of classes to be antipatterns but require
expensive (in time and knowledge) tuning by experts to have
acceptable accuracy (e.g., BBNs). The first limitation lead to
the “submarine” effect: several classes may be very close to
be identified as antipatterns but remain under the threshold
during their evolution. Minor changes can then bring them
all above the threshold, falsely leading developers to suspect
the latest changes as culprit. The second limitation cause the
detection results to rely too much on the experts’ judgement.
An incomplete experts’ knowledge can cause a high number
of false positives, resulting in a waste of time and resources

for developers and managers that must skim through the
results. Moreover, a model built in a given context is not
generalisable to other contexts and should be recalibrated to
be effective, which is a difficult task as historical data and
context knowledge are not always available.

In this paper, we propose a new identification approach,
called ABS (Antipattern identification using B-Splines), to
help overcome these limitations. ABS is based on a learning
technique using an interpolation method from the numerical
analysis field. The basis of ABS is the building of signatures
of classes based on quality metrics, as in [5], using B-
splines [6] to abstract the metric values. ABS models a class
using specific interpolation curves (i.e., B-splines) of plots
mapping metrics and their values for the class. The similarity
of a given class to an antipattern is computed by calculating
the distance between the curve of the class and the curves
of classes previously classified as antipatterns (or good
classes). Like BBNs, ABS needs a corpus of antipatterns.
However, in contrary to BBNs, ABS does not need experts’
knowledge to define a learning structure; thus, it reduces the
bias introduced in BBNs by the experts’ subjectivity when
structuring the BBNs of the antipatterns.

We have implemented ABS in “Sign-o-meter”, a tool
to assist developers in assessing quickly the probability of
classes to become Blobs and the evolution of this probability.
Moreover, we performed a preliminary study applying ABS
to detect the Blob antipattern. The identification accuracy
of ABS was compared with DECOR and BBNs. The case
study shows that, in general, ABS provides better results
than BBNs and DECOR. In few explainable cases, ABS
has lower accuracy than previous approaches, i.e., when the
training set to build the signature is too small.

The paper is organised as follows. Section II discusses
previous work. Section III describes the proposed approach
for identifying antipatterns, while Section IV presents the
results of a preliminary study carried out to evaluate the
proposed approach and concludes the paper.

II. RELATED WORK

Webster [7] wrote the first book on “antipatterns” in
object-oriented development; his contribution covers con-
ceptual, political, coding, and quality-assurance problems.



Riel [8] defined 61 heuristics characterising good object-
oriented programming to assess software quality manually
and improve design and implementation. Beck [2] defined
22 code smells, suggesting where developers should apply
refactorings. Mäntylä [9] and Wake [10] proposed classi-
fications of code smells. Brown et al. [1] described 40
antipatterns, including the well-known Blob.

Several approaches to specify and identify code smells
and antipatterns have been proposed in the literature. They
range from manual approaches, based on inspection tech-
niques [11], to metric-based heuristics [3], [12], [13], where
antipatterns are identified according to sets of rules and
thresholds defined on various metrics. In [12] the detection
of smells is based on deviations from good design principles
and consist of combining metrics with set operators and
comparing their values against absolute and relative thresh-
olds. In [13] heuristics to identify code smells are derived
from template similar to the one used for design patterns.
Moha et al. [3] proposed the DECOR method to specify and
automatically generate identification algorithms. DECOR
provides identification algorithm with good precision and
perfect recall while allowing quality analysts to adapt the
specifications to their context. It is the current state-of-the-
art threshold-based identification approaches.

Khomh et al. [4] argued that threshold-based approaches
do not handle the uncertainty of the detection results and,
therefore, miss borderline classes. Consequently, they pro-
posed a BBN for the identification of Blobs in systems,
which output is the probability that a class exhibiting the
characteristics of Blob is truly a Blob. Similar to our ap-
proach, a BBN is able to qualify continuously the probability
of classes to be antipatterns.

Some visualisation techniques, for example [14], were
used to find a compromise between fully-automatic identifi-
cation techniques and manual inspections. Other approaches
perform fully-automatic identification and use visualisation
to present the identification results [15], [16].

Other related approaches include architectural consistency
checkers, which have been integrated in style-oriented ar-
chitectural development environments [17], [18], [19]. For
example, active agents acting as critics [19] can check
properties of architectural descriptions and identify potential
syntactic and semantic errors.

III. ANTIPATTERN IDENTIFICATION USING B-SPLINES

This section presents our approach, ABS (Antipattern
identification using B-Splines), for the identification of
antipatterns using their signatures, described as B-splines
[6]. Recently, B-splines were used to characterise software
artefacts (documentation and code) to compute their textual
similarity for traceability recovery [20].

ABS first models each class by its particular interpolation
curves, i.e., its B-splines, built using a set of metrics and
their values for the class. In ABS, we also model antipatterns

Figure 1. Class/antipatterns representation using B-splines

using B-splines, inferred from a set of classes known as
participating in the antipatterns. Then, we estimate the risk
of a class to be an antipattern by computing the similarity
of its signature from the signature of known antipattern.
To improve accuracy when computing the risk, we also
consider the distance from both antipatterns and a set of
good quality classes. We define good classes as any classes
that does not participate in an antipattern. The similarity
is then computed by calculating the similarity between the
corresponding interpolation curves.

A. Identifying the Signature of Classes

A class can be described by a set of metric values; metrics
measuring for example the class cohesion, coupling, and
complexity. Let M = m1,m2, . . . ,mn be a set of metrics
computed for each class of a system, then a class cj is
represented by the set of points {p1, p2, . . . , pn} where the
X and Y coordinates of the generic point pi are i and mi,j .

Such a representation allows using a numerical analysis
technique to define the signature of the class by interpolating
the points associated to the class. We consider the points
representing a class as control points of a uniform B-spline
curve [6], which is a generalisation of a Bézier curve, i.e.,
a piece-wise Bézier curves [6].

Figure 1 shows the graphical representation of a class.
The dash and the bold lines denote the control polynomial
and the B-spline curve representing the class, respectively.
The B-spline is a curve approximation technique where the
control points influence the shape of the curve but the curve
does not interpolate the control points, except for the first
and last points [6]. However, it is possible to force the B-
spline to interpolate a set of given points [6]. We force the
B-spline to interpolate the points representing metrics with
values equal to 0, as shown in Figure 1: in this way we do
not give to these points the average value of the preceding
and following points.

We choose a B-spline to derive a curve representing a
class because (i) it is fast and easy to compute, (ii) it provides
local control on the curve, and (iii) the degree of the B-
spline is independent of the number of control points. In
particular, we empirically observed that computing the B-
spline never took more than 1 second and that k = 30 is



Figure 2. Signature comparison using B-splines

a good compromise between computational complexity and
identification accuracy. The latter observation is consistent
with that in previous work [20].

B. Comparing the Signature of Classes

Once obtained the signatures of each class of a system,
it is possible to compare them with those of classes previ-
ously classified as antipatterns or good quality classes. The
conjecture is that if a class has a signature similar to that of
a previously classified antipattern, e.g., God class [8], and
different from a set of classes previously classified as good
quality classes, then the class under analysis is probably the
considered antipattern, e.g., a God class.

Let A = {a1, a2, . . . , ap} be the set of classes previously
classified as being an antipattern1, and G = {g1, g2, . . . , gq}
be the set of classes previously classified as good classes.
We compute the similarity between the signature of ci and
the signature of every elements in A and G and rank—in a
decreasing order—each pair according to these similarities.
Thus, the risk that a generic class ci is an antipattern is:

godliness(ci, A,G) =

p∑

j=1

wAi,j ⋅ similarity(ci, aj)−
q∑

k=1

wGi,k
⋅ similarity(ci, gk)

where wAi,j = 1
pos(ci,aj)

and wGi,k
= 1

pos(ci,gk)
represent

weights based on the positions of the pairs (ci, aj) and
(ci, gk) in the ranked list. The higher the “godliness” [4]
value, the higher the likelihood that ci is an antipattern.

The similarity between the class signatures of class ci and
of antipattern aj—or good quality class gk—is based on the
distance between the corresponding B-spline curves:

similarity(ci, aj) = 1−D(ci, aj)

where D(ci, aj) ∈ [0, 1] represents the distance between the
B-splines of ci and aj and is calculated using the normalised
1-norm (see Figure 2).

1These classes can be class of a same system or classes taken from
different systems.

Figure 3. Screen-shot of Sign-o-Meter

The order of the metrics on the X-axis influences the
representation of a class and the distance between two
classes (or a class and an antipattern). However, we studied
different ways of ordering the metrics and did not find any
substantial difference in the identification results.

C. Visualising and Following the Evolution of Signatures

The graphical representation of the B-splines character-
ising classes and antipatterns is also useful to monitor the
evolution of classes in time. We implemented a tool, called
Sign-o-Meter, that displays two related and complementary
views of the signatures of a class:

1) One dial showing the similarity between the class un-
der development and an antipattern using the godliness
metric scaled in [0, 100].

2) A plot of three B-spline curves representing, respec-
tively, the current signature of the class, the signature
of the previous version of the class, and the signature
of an ideal antipattern, defined as the average signature
of the previously classified antipatterns.

Figure 3 illustrates a usage scenario of Sign-o-Meter,
where the tool is used to identify Blobs (or God classes). On
the left hand side, it shows the dial displaying the godliness
measure of the class. Higher is the value, higher is the
likelihood that the class is a Blob. On the right hand side,
it shows a dash B-Spline curve for the previous version
of the class, a thin continuous line for the B-spline curve
of the current version of the class, and a thick line for
the curve characterising the ideal Blob (from the previous
classified Blob). Such a plot provides information on the
evolution of the class by allowing developers to compare the
signatures of the current version of a class to the one of its
previous version and to the ideal antipattern. Consequently,
it allows developers to realise that their class is moving
towards or away from the ideal antipattern and, thus, to take
the appropriate actions.

IV. CONCLUSION AND FUTURE WORK

We presented a novel approach, ABS, to identify occur-
rences of antipatterns using the signature of the classes and
of the antipatterns. The signature of a class (or antipattern)
is represented by a particular interpolation curve, i.e., its



B-spline, built using a set of metrics and their values for
the class. Then, we estimate the risk of a class to be an
antipattern by computing the similarity of its signature with
the signature of known antipattern and the distance from a
set of good quality classes.

A preliminary evaluation of ABS was conducted to iden-
tify the Blob antipattern. The accuracy of ABS was com-
pared with DECOR [3], which uses strict thresholds, and an
approach based on BBNs [4]. The case study was conducted
on two medium size open-source Java systems. We studied
the accuracy of ABS in the two following scenarios: (i)
intra-system identification, where we assumed that historical
data (i.e., correctly identified Blobs) are available for a given
system and where we used this data to identify other Blobs in
the same system; and (ii) extra-system identification, where
we assumed that a quality analyst has access to the historical
data from one system and uses it to identify Blobs in the
other system. We found that ABS outperforms in general
previous approaches in precision and recall while being more
attractive in practice thanks to its speed and ease to generate
and interpret the signatures. In few explainable cases, ABS
has lower precision or recall than previous approaches, when
the training set to build the signature is too small.

Future work include replicating our cast study on larger
systems to assess the generalisability of our novel approach.
It also include computing the signatures of other antipatterns
than the Blob and again replicate our study to assess the
impact of the antipattern on accuracy.

ACKNOWLEDGMENT

This work has been partly funded by the Canada Research
Chair on Software Patterns and Patterns of Software.

REFERENCES

[1] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick
III, and T. J. Mowbray, Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis, 1st ed. John Wiley and
Sons, 1998.

[2] M. Fowler, Refactoring – Improving the Design of Existing
Code, 1st ed. Addison-Wesley, 1999.

[3] N. Moha, Y. G. Guéhéneuc, L. Duchien, and A. F. L. Meur,
“DECOR: A method for the specification and detection
of code and design smells,” Transactions on Software
Engineering, 2009.

[4] F. Khomh, S. Vaucher, Y. G. Guéhéneuc, and H. Sahraoui,
“A bayesian approach for the detection of code and design
smells,” in Proceedings of the 9tℎ International Conference
on Quality Software, IEEE CS Press, 2009.

[5] Y. G. Guéhéneuc, H. Sahraoui, and F. Zaidi, “Fingerprinting
design patterns,” in Proceedings of the 11tℎ Working
Conference on Reverse Engineering, IEEE CS Press, 2004,
pp. 172–181.

[6] C. de Boor, “On calculating with b-splines,” Journal of
Approximation Theory, vol. 6, pp. 50–62, 1972.

[7] B. F. Webster, Pitfalls of Object Oriented Development,
1st ed. M & T Books, 1995.

[8] A. J. Riel, Object-Oriented Design Heuristics. Addison-
Wesley, 1996.

[9] M. Mantyla, “Bad smells in software - a taxonomy and an
empirical study,” Ph.D. dissertation, Helsinki University of
Technology, 2003.

[10] W. C. Wake, Refactoring Workbook. Addison-Wesley Long-
man Publishing Co., Inc., 2003.

[11] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili,
“Detecting defects in object-oriented designs: using reading
techniques to increase software quality,” in Proceedings of the
14tℎ Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM Press, 1999, pp. 47–56.

[12] R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in Proceedings of the 20tℎ Interna-
tional Conference on Software Maintenance. IEEE CS Press,
2004, pp. 350–359.

[13] M. J. Munro, “Product metrics for automatic identification
of “bad smell” design problems in java source-code,” in
Proceedings of the 11tℎ International Software Metrics
Symposium, IEEE Computer Society Press, 2005.

[14] F. Simon, F. Steinbrückner, and C. Lewerentz, “Metrics based
refactoring,” in Proceedings of the Fifth European Conference
on Software Maintenance and Reengineering. IEEE CS Press,
2001, p. 30.

[15] M. Lanza and R. Marinescu, Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[16] E. van Emden and L. Moonen, “Java quality assurance by
detecting code smells,” in Proceedings of the 9th Working
Conference on Reverse Engineering. IEEE CS Press, 2002.

[17] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mis-
match: Why reuse is so hard,” IEEE Software, vol. 12, no. 6,
pp. 17–26, 1995.

[18] R. Allen and D. Garlan, “A formal basis for architectural
connection,” ACM Transactions on Software Engineering
and Methodology, vol. 6, no. 3, pp. 213–249, 1997.

[19] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “A
comprehensive approach for the development of modular soft-
ware architecture description languages,” ACM Transactions
on Software Engineering and Methodology, vol. 14, no. 2, pp.
199–245, 2005.

[20] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella,
and S. Panichella, “Traceability recovery using numerical
analysis,” in Proceedings of 16th Working Conference on
Reverse Engineering. IEEE CS Press, 2009, pp. 195–204.


