
A Study on the Relation Between Antipatterns
and the Cost of Class Unit Testing

Aminata Sabané1,2, Massimiliano Di Penta3, Giuliano Antoniol2, Yann-Gaël Guéhéneuc1

1 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
2 Soccer Lab., DGIGL, École Polytechnique de Montréal, Canada

3 Department of Engineering, University of Sannio, Benevento, Italy
E-mails: aminata.sabane@polymtl.ca, dipenta@unisannio.it, yann-gael.gueheneuc@polymtl.ca,antoniol@ieee.org

Abstract—Antipatterns are known as recurring, poor design
choices; recent and past studies indicated that they negatively
affect software systems in terms of understandability and
maintainability, also increasing change-and defect-proneness.
For this reason, refactoring actions are often suggested. In this
paper, we investigate a different side-effect of antipatterns,
which is their effect on testability and on testing cost in
particular. We consider as (upper bound) indicator of testing
cost the number of test cases that satisfy the minimal data
member usage matrix (MaDUM) criterion proposed by Bashir
and Goel. A study—carried out on four Java programs, Ant
1.8.3, ArgoUML 0.20, CheckStyle 4.0, and JFreeChart 1.0.13—
supports the evidence that, on the one hand, antipatterns unit
testing requires, on average, a number of test cases substan-
tially higher than unit testing for non-antipattern classes. On
the other hand, antipattern classes must be carefully tested
because they are more defect-prone than other classes. Finally,
we illustrate how specific refactoring actions—applied to classes
participating in antipatterns—could reduce testing cost.

Keywords-Antipatterns, Object oriented testing, Testing cost,
Refactoring

I. INTRODUCTION

Object-oriented programs consist of hundreds or thou-
sands of classes each contributing to different functional-
ity, component implementation, organization and behavior.
Object-oriented (OO) development promotes encapsulation
and information hiding to improve software maintainability
and comprehensibility. In past and recent years, several met-
ric profiles have been proposed to characterize the quality of
an object-oriented design or implementation, for example the
Chidamber & Kemerer metrics suite [1]. Furthermore, some
authors—e.g., Brown [2]—have tried to provide a systematic
classification of poor design choices, referred to as antipat-
terns (APs) [2]. APs are opposite to design patterns [3], i.e.,
they identify “poor” solutions to recurring design problems,
for example Brown’s 40 APs describe the most common
pitfalls in the software industry [2]. They are generally
introduced by developers not having sufficient knowledge
and–or experience in solving a particular problem or having
misapplied some design patterns.

Despite the rich literature on the undesired side effects
of APs and code smells, e.g., [4], [5] on software change-
proneness, defect-proneness, and comprehensibility, to the

best of our knowledge, there is no study aimed at answering
the following question:

What is the impact of APs on software testing effort?
We conjecture that, on the one hand, APs are more

difficult to test as they require a substantially higher class
unit testing effort, measured in terms of number of test cases
in this paper. On the other hand, as previous studies have
shown [4], APs are arguably more difficult to understand
and maintain and thus it is also reasonable to expect that
they have a higher defect-proneness than other classes [5].
Consequently, APs have to be tested more.

Based on such a conjecture, in this paper we investigate (i)
whether the number of test cases required to perform class
unit testing is higher for classes participating in APs—and
specifically in particular kinds of APs—than in other classes,
and (ii) what is the cost-benefit tradeoff achieved when
prioritizing testing of classes participating in APs compared
to other classes. Then, the paper shows how specific source
code refactoring actions can be used as a means to reduce
the high effort required to test AP classes.

In this paper we estimate the cost of class unit testing
based on the number of test cases required by the minimal
data members usage matrix, MaDUM [6] technique. We
choose such a technique because, differently from others, it
does not require specific design documentation—e.g., state
machines or invariants—to be applied. This technique is
also known to suggest a larger number of test cases and
hence can be considered as an upper-bound for the testing
cost. MaDUM’s core idea is that to test a class a developer
must test, in isolation, methods interacting with any given
attribute, referred to as data slice. For each data slice,
MaDUM starts with testing all accessors of the attribute,
all constructors, and then all setters. After that, it tests
all possible permutations of transformers, i.e., methods that
modify the attribute. When a class has many data slices and,
in turn, each data slice has a high number of transformers,
the number of test cases increases exponentially.

In this paper, we computed the number of MaDUM
test cases for classes of four Java open-source programs,
namely Ant 1.8.3, ArgoUML 0.20, CheckStyle 4.0, and
JFreeChart 1.0.13. Then, we detected, using an existing

tool named DECOR [7], the presence of APs in programs,
and related the number of test cases with the presence
of APs. Also, we related the occurrences of APs to class
defect-proneness. Results of our study support the evidence
that classes participating in APs—in particular Blobs, Anti-
Singleton and Complex Classes—require a higher number
of test cases than other classes. In most cases, APs are also
more defect-prone than other classes. Hence, even if testing
classes that participate in APs is expensive, it is crucial to
detect a high proportion of defects. Finally, with the aim of
reducing such a cost, we explain how specific refactoring
actions—generally different from “traditional” refactoring
aimed at removing APs and increasing understandability and
maintainability—can be applied to reduce the size of the test
suite and therefore the testing cost.

Structure of the paper. Section II provides background
information about the MaDUM class testing strategy. Sec-
tion III and Section IV describes the empirical study design
and the obtained results, respectively. Section V illustrates
how specific refactoring actions can be applied to classes
participating in APs to reduce the testing cost. Section VI
discusses the threats to study validity. Section VII overviews
the related literature. Finally, Section VIII concludes the
paper and outlines future work.

II. A PRIMER ON THE MADUM TESTING STRATEGY

Many authors pointed out the insufficiency of traditional
methods of functional and structural unit testing concerning
OO unit (class) testing [8]. The main reason is that many
defects depend on the behavior of particular methods when
the class is in a certain state.

Indeed, black-box and white box testing strategies con-
ceived for procedural programs test OO methods as stand-
alone units, therefore they could miss errors that are due to
the interaction between methods (inter-methods). To address
this insufficiency, Bashir and Goel [6] proposed an approach
to test the interaction of OO methods. The approach, widely
known as the MaDUM (Minimal Data members Usage
Matrix) testing strategy is based on data slices, defined as
the set of methods that access or modify a data field (i.e.,
attribute). The correctness of a class is tested in terms of
correctness of all its slices, that are tested separately.

The identification of each slice is based on two key ele-
ments: the enhanced call-graph (ECG) and the MaDUM. An
ECG represents the accesses (usage or invocation) of mem-
bers of a class by the other members. The ECG of a class
C can be defined as: ECG(C) = (M(C),F(C),Em f ,Emm),
where M(C) represents the set of methods of C, F(C) is
the set of fields of C, Em f = (mi, f j) indicates that there
is an edge between the method mi and the field f j, i.e.,
mi accesses the field f j, and Emm = (mi,m j) indicates that
there is an edge between the methods mi and m j, i.e., mi
invokes m j. The MaDUM strategy classifies methods into
four categories:

• Constructors (c): class constructors;
• Transformers (t): methods that alter the state of one or

more fields;
• Reporters (r): methods that return the value of a field;
• Others (o): methods that do not fit in the cate-

gories above, e.g., methods that handle special condi-
tions/exceptional behavior.

A MaDUM is an n f · nm matrix, where n f and nm are
respectively the number of fields and the number of methods
in the class. Built based on the ECG of the class, each cell
(i, j) of the MaDUM is marked as follows:
• t if a method m j transforms a field fi;
• r if m j reports the state of fi;
• o if m j accesses the field fi without being a transformer

or a reporter.
The MaDUM testing strategy works as follows. First,

reporters are tested, followed by setters (if present) and
by constructors. Then, interactions among transformers are
tested generating, for each given slice, the permutation of
slice transformers for each constructor context. In other
words, let c be the set of constructors and t be the set of
transformers in the given slice, to test the slice the tester
must produce |c| · |t|! test cases, where |c| is the number
of constructors (number of elements of the constructor set)
and |t| the number of transformers. Finally, the others (o) are
tested using traditional black or white-box testing strategies.

A method m j can access a field fi directly or indirectly
through another method mk (transitively) invoked by m j.
However, if m j accesses fi only through mk, and mk has
been tested already in the fi slice, then according to the
strategy [6], there is no need to also test m j in the fi slice.

Further details about the approach and the algorithm used
to generate the MaDUM can be found in [6].

III. STUDY DESIGN

The goal of this study is to investigate the cost of unit
testing for classes participating in APs, as opposed to other
classes, and the potential benefits obtained with such a
testing activity. The quality focus is the effort needed to
produce test cases, and the extent to which testing particular
classes would help to reveal defects. The perspective is of
researchers, interested to understand the influence of APs
on software quality from the point of view of testing and to
conduct more research in this direction.

The context of this study consists of a class unit testing
technique—the MaDUM technique—and one release of four
Java open-source projects. We have chosen the MaDUM
strategy because it requires information usually available
from source code and a high number of test cases—that
combinatorially increases with the number of transformers.
In summary, such a number of test cases would represent an
upper bound when testing the class, while other OO testing
techniques—such as those based on pre- and post-conditions

Table I
NUMBER OF CLASSES PARTICIPATING IN DIFFERENT KINDS OF APS.

Name (Abbr) Ant ArgoUML CheckStyle JFreeChart
AntiSingleton (AS) 2 257 15 20
BaseClassShouldBeAbstract (BCSBA) 20 20 3 14
Blob (B) 50 123 11 32
ClassDataShouldBePrivate (CDSBP) 84 44 4 20
ComplexClass (CC) 103 214 34 55
LazyClass (LzC(46 60 4 21
LongMethod (LM) 178 267 69 102
LongParameterList (LPL) 34 237 8 50
MessageChains (MC) 186 145 7 56
RefusedParentBequest (RPB) 67 497 80 62
SpaghettiCode (SC) 1 45 1 0
SpeculativeGenerality (SG) 4 23 1 1
SwissArmyKnife (SAK) 1 4 0 14
Antipattern classes 452 901 161 245
No Antipattern (None) 297 376 99 233

[9] as well as state-based techniques [10], [8]—would often
require a smaller number of test cases, but unfortunately rely
on representations rarely available in practice.

We chose the four open-source programs according to dif-
ferent criteria (i): systems belonging to different application
domains, (ii) availability of bug-fixing data from versioning
and issue-tracking system, and (iii) use in previous studies
concerning APs and-or testability [11], [12]. Table I reports
the number of classes that participate in APs or not for the
four systems1. Apache Ant2 is a built tool for Java. Its release
1.8.3 has 209 KLOC for 767 classes. ArgoUML3 is an open-
source tool for UML diagrams. We used its version 0.20,
which consists of 1,277 classes for 196 KLOC. CheckStyle4

is a development tool for Java programs. It checks whether
Java code adheres to a specific coding standard chosen by
the developers. Its release 4.0 has 261 classes for 56 KLOC.
JFreeChart5 is a Java class library to embed/generate charts
in Java programs. Its release 1.0.13 consists of 484 classes
for 183 KLOC.

A. Research Questions

This study aims at addressing three research questions:
RQ1: How large is the MaDUM test suite for classes

participating in APs compared to that of other classes? This
research question investigates whether classes participating
in APs have larger MaDUM test suites than other classes.
The conjecture is that poor design and coding practices have
also consequences on testing. Because APs make possibly
difficult to partition methods into data slices, i.e., most of
the methods belong to all slices, they require a high number
of test cases to fulfill the MaDUM testing strategy.

1The sum of classes participating in different kinds of APs can be greater
than the number of classes participating in at least one AP, because some
classes participate in more than one AP.

2http://ant.apache.org/
3http://argouml.tigris.org/
4http://checkstyle.sourceforge.net/
5http://www.jfree.org/jfreechart/

RQ2: How does the size of the MaDUM test suite vary
among classes participating in different kinds of APs? This
research question refines the question previously investigated
in RQ1. The conjecture is that some APs can have a higher
impact on the testing cost than others.

RQ3: What is the potential cost-benefit achieved when
focusing testing on APs, as opposed to other classes? This
research question adds a further dimension, i.e., given the
cost needed to test a class, we investigate what would be the
benefit we gain—in terms of discovered defects—assuming
that the testing strategy we employ is able to detect all
defects of the class under test.

B. Analysis Method

In the following, we describe the dependent and indepen-
dent variables of this study, and the statistical procedures
used to address each research question. All statistics have
been performed using the R statistical environment6. For all
statistical tests, we assume a significance level of 5%.

For RQ1, the dependent variable we measure is the
number of the needed test cases—using the MaDUM testing
strategy—to test each class. The independent variable is the
participation of classes in APs. Basically, such a Boolean
variable is true if a class participates to at least one AP. It
is false otherwise.

We statistically compare the number of test cases between
AP and non-AP classes. Specifically, we test the following
hypotheses H01 : There is no significant difference between
the number of test cases of classes participating and not
in APs. We test the hypothesis using a non-parametric
test, the Mann-Whitney U test. Because we do not know
a priori whether the number of test cases will be higher
in one direction or in the other, we perform a two-tailed
test. Besides testing the hypothesis, we also estimate the
magnitude of the differences of means between classes
participating and not in APs. We use non-parametric effect
size measure Cliff’s d [13], which indicates the magnitude
of the effect size of the treatment on the dependent variable.
The effect size is small for 0.147 ≤ d < 0.33, medium for
0.33≤ d < 0.474, and large for d ≥ 0.474 [13].

For RQ2, the dependent variable is also the number of
MaDUM test cases. The independent variable is a Boolean
variable for each kind of AP, indicating whether a class
participates in that kind of AP or not. We test the following
null hypothesis: H02 : There is no significant difference
between the number of test cases of classes participating
in different kinds of APs. First, we test the hypothesis using
the Kruskal-Wallis test, which is a non-parametric test for
comparing multiple medians. Then, we pairwise compare
the number of test cases for different kinds of APs using
the Mann-Whitney U test. Finally, we correct the obtained
p-values using the Holm’s correction [14]. This procedure

6http://www.r-project.org/

sorts the p-values resulting from n tests in ascending order
of values, multiplying the smallest by n, the next by n−1,
and so on.

For RQ3 we identify—for the analyzed releases of the
four projects—the number of post-release defects affecting
each class. Then, we put ourselves in the perspective of a
“lazy” tester, who starts to test the classes in an increasing
order of number of test cases regardless of other more
sound criteria, for example the number of needed stubs
or the different kinds of interactions with other classes.
We thus assume a simple and blind testing strategy as our
goal is to verify the potential increase in detected defects
rather than using more sophisticated approaches such as the
firewall strategy [8], [15] or other strategies to determine the
integration testing order in OO systems [16].

We analyze what the potential benefit achieved is in
terms of defects that can be discovered when test cases
are increased. We perform such an analysis—by plotting
cumulative curves of number of test cases (independent
variable) vs. number of defects that can be discovered
if properly testing these classes (dependent variable)—for
classes that participate in APs or not.

C. Data Extraction

In this section we describe how we extract data needed
for our study, i.e., how we measure the dependent and
independent variables.

As for the number of MADUM test cases, we implement
the MaDUM strategy and count the number of test cases as
detailed in Section II.

For what concerns the detection of APs, as in previous
works [5], [11], we use DECOR, the approach with highest
precision in the literature [7], to detect APs. DECOR uses a
set of rules (metrics, relations between classes) that describe
the characteristics of each AP. The input of DECOR is a
Patterns and Abstract level Description Language (PADL)
model [17]. A PADL model is an abstract representation
of the structure and part of the behavior of object-oriented
systems, including classes, interfaces, methods, attributes,
inheritance relations, etc. PADL models are generated by
the Ptidej tool suite [18] based on the source or bytecode of
programs. Further details can be found in [7].

Finally, the number of post-release defects, has been
identified as follows:

1) we identify, from the commit notes of the versioning
system, changes related to bug-fixing, by matching
issue tracking system IDs and keywords such as “bug”
and “fixed”. We limit our attention to the time frame
between the release date and the next release;

2) we check, by analyzing the information in the issue
tracking system, whether the fix concerns a correc-
tive maintenance (defect fixing) or whether it is the
implementation feature-request/enhancement. . Then,
we discard the latter. Also, we restrict our attention

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●
●●
●

●

●
●
●●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●●●
●
●
●●
●●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●●

●

●●●●
●●
●

●

AP NAP AP NAP AP NAP AP NAP

0
20

40
60

80

Ant ArgoUML Checkstyle JFreeChartSystem
Classes

of

 T
es

t C
as

es
 (

<
=

10
0)

Figure 1. Number of test cases in the MaDUM test suite for classes
participating (AP) and not (NAP) in antipatterns.

Table II
MADUM TEST SUITE SIZE FOR CLASSES PARTICIPATING AND NOT TO

APS: MANN-WHITNEY TESTS AND CLIFF’S d RESULTS.

System Mean TCs AP Mean TCs NAP p-Value Cliff’s d
Ant 18 9 < 0.01 0.23 (Small)

ArgoUML 10 3 < 0.01 0.35 (Medium)
CheckStyle 9 6 = 0.01 NA
JFreeChart 26 13 < 0.01 0.22 (Small)

to issues marked as “CLOSED” and “FIXED” in the
issue tracking system;

3) finally, for the remaining issue after step (2), we map
the change to the affected classes by analyzing the
change that occurred. After that, we count the number
of defect-fixing changes that occurred to each class.

The number of defect-prone classes is, for Ant 131 out
of 767 (17%), for ArgoUML 190 out of 1284 (15%), for
CheckStyle 3 out of 261 (1%), and JFreeChart 16 out of
484 (3%).

IV. EMPIRICAL STUDY RESULTS

This section reports the results of our empirical study.
Working data sets are available for replication purposes7.

A. RQ1: How large is the MaDUM test suite for classes
participating in APs compared to that of other classes?

Figure 1 shows—for the four analyzed systems—the dis-
tribution of MaDUM test suite size for classes participating
and not in APs. The figure clearly highlights how, with some
exceptions (CheckStyle in particular), the test suite size is
larger for classes participating in APs than for other classes.

Table II reports the Mann-Whitney test results and Cliff’s
d effect size obtained when comparing the number of
MaDUM Test cases between classes that participate in APs
or not . Except for CheckStyle, results show statistically-
significant differences. The Cliff’s d effect size is small for
Ant and JFreeChart, and medium for ArgoUML.

7http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/MaDUM-AP-
Replication-Package.tar.gz

RQ1 Summary: We can reject the null hypothesis H01
for Ant, ArgoUML, and JFreeChart. In these three sys-
tems, the number of test cases required for MaDUM
testing strategy of AP classes are significantly higher than
those of other classes. For CheckStyle, the difference is
not statistically significant, therefore we cannot reject H01
for this system. We can conclude stating that AP classes
are less testable than non-AP classes. If developers want
to test AP classes thoroughly using the MaDUM testing
strategy, they need to write more test cases and this may
increase the testing cost and effort.

B. RQ2: How does the size of the MaDUM test suite vary
among classes participating in different kinds of APs?

For Ant, classes participating in Blob (B) APs require
a significantly higher number of test cases than classes
participating in other APs (BCSBA, CSBP, LzC, LM,
MC, RPB) and than classes not participating in APs.
A high number of test cases is also required for Com-
plex Class (CC), and, specifically, significantly higher than
CDSBP(ClassDataShouldBePrivate), LzC (LazyClass), LM
(LongMethod), MC (MessageChains), RPB (RefusedParent-
Bequest), and classes not participating in APs. In all cases,
the Cliff’s delta effect size is high. Some APs do not imply
a high number of test cases: it is the case of LzC or
RefusedParentBequest (RPB).

We obtain similar results for ArgoUML, where Blob (B)
APs require a significantly higher number of test cases
than LzC, LM, LPL, MC, RPB, BCSBA (high effect size),
than CDSBP, SG, SC (medium effect size), and classes
not participating in APs (high effect size). ComplexClass
(CC) APs require a significantly higher number of test cases
than LzC, RPB, BCSBA (BaseClassShouldBeAbstract)—
with high effect size—than CSBLP, LM, LPL, MC (medium
effect size), and than classes not participating in APs (high
effect size). Also, AntiSingleton (AS) APs require more test
cases than LzC, RPB and no AP classes (high effect size
in all cases), and CDSBP APs require more test cases than
LzC, RPB and no AP classes (high effect size). We found no
significant difference for SwissArmyKnife (SAK)—despite
what the boxplot shows—because of the limited number of
instances of this AP found.

For CheckStyle, due to the limited number of AP in-
stances, the only significant difference found is for Anti-
Singleton (AS) classes, that require a significantly higher
number of test cases than LzC and RPB, in both cases with
a high effect size.

A similar situation occurs for JFreeChart, here again, AS
classes require a significantly higher number of test cases
than LzC and RPB (with a high effect size).

●●●
●
●

●
●●

●

●

● ●
●●

●●●
●

●

●●

●
●

●
●●

●

●

●
●●
●
●

●●

●

●

●

●

●

●●●●●●●●
●●●●
●●
●●●
●
●
●
●

●

AS BCSBA B CDSBP CC LzC LM LPL MC RPB SC SG SAK NONE

0
20

40
60

80
10

0

Kind of Antipattern

of

 T
es

t C
as

es
 (

<
=

10
0)

(a) Ant

●●●
●
●●●
●●

●●
●●

●●
●●
●
●●

●●
●
●

●

●

●

● ●●
●
●

●

●●

●

●

●●
●●
●
●●

●●●
●
●

●

●

●●
●●●●●

●
●●
●
●●

●
●●

●

●

●

●

●●●
●●
●

●●
●●

●

●
●

●

●●

●●
●

●
●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●
●●●
●●●●●
●●●
●●●●
●●●
●●●
●●●

●●●
●

●●
●

●

●

●

●

●●●●●●●●●●●
●●●●
●●●
●●

●

AS BCSBA B CDSBP CC LzC LM LPL MC RPB SC SG SAK NONE

0
20

40
60

80
10

0

Kind of Antipattern

of

 T
es

t C
as

es
 (

<
=

10
0)

(b) ArgoUML

●

●

●

●

●

●

●

●

●

●●●
●●
●●●

●●●
●
●

●●
●

●

AS BCSBA B CDSBP CC LzC LM LPL MC RPB SC SG SAK NONE

0
20

40
60

80
10

0

Kind of Antipattern

of

 T
es

t C
as

es
 (

<
=

10
0)

(c) CheckStyle

●

●●
●●

●

●
●●

●●●

●

●

●
●

● ●●

●

●

●
●

●●●
●●●
●●●●●
●●●●●
●

●●

●

AS BCSBA B CDSBP CC LzC LM LPL MC RPB SC SG SAK NONE

0
20

40
60

80
10

0

Kind of Antipattern

of

 T
es

t C
as

es
 (

<
=

10
0)

(d) JFreeChart

Figure 2. Number of test cases in the MaDUM test suite for classes
participating in different kinds of APs.

Overall, the obtained results tell that, despite RQ1 indi-
cated low or no significant difference between the number
of test cases required for classes that participate in APs in
general and those that do not, different kinds of APs exhibit
different results. Intrinsically, some APs are classes with
more responsibility—see for instance Blob, ComplexClass,
or AntiSingleton. In these cases the presence of APs is

Table III
RESULTS OF FISHER’S EXACT TEST FOR DEFECT-PRONENESS OF

CLASSES PARTICIPATING AND NOT IN APS. (DP: DEFECT PRONE).

System AP classes NAP classes p-value OR
DP Not DP DP Not DP

Ant 91 354 28 268 < 0.001 2.45
ArgoUML 167 726 19 357 < 0.001 4.31
CheckStyle 2 158 0 99 0.5259 Inf
JFreeChart 12 221 0 232 < 0.001 Inf

also related with a higher number of test cases. Other
kinds of APs, such as LazyClass, RefusedParentBequest or
MethodChains are not really related to classes having too
much responsibility, hence the presence of APs does not
imply having more test cases.

RQ2 Summary: Classes participating in APs related to
“excess of responsibility” such as Blob, ComplexClass,
AntiSingleton, or SwissArmyKnife, require a signifi-
cantly higher number of test cases than other classes.
Instead, APs such as LazyClass, MethodChains, or Re-
fusedParentBequest require a relatively small number of
test cases.

C. RQ3: What is the potential cost-benefit achieved when
focusing testing on APs, as opposed to other classes?

Table III reports results of the Fisher’s exact test, which
statistically compares the proportion of defect-prone classes
between classes participating and not in APs (replicating
what has been done by Khomh et al. [5]). For Ant and
ArgoUML, results of the test are statistically significant, and
classes participating in APs have 2.45 and 4.31 more time
the chance of exhibiting at least a post-release defect than
other classes. As for CheckStyle and JFreeChart, only AP
classes exhibited post release defects, therefore the Fisher’s
exact test OR is infinite. In summary—and in agreement
with the findings of Khomh et al.—classes participating in
APs have higher chances of exhibiting post-release defects
than other classes.

Figure 3 shows what would be the cumulative number
of defects found when testing only classes participating
in APs (red line) or only classes not participating in APs
(black line)” We adopt a “lazy” ordering, testing classes in
ascending order according to their number of test cases, i.e.,
testing those with a lower number of test cases first. When
interpreting such results, it is important to point out that:
(i) we are considering class unit testing therefore we are
not following any strategy for integration ordering, and (ii)
we consider that, when we test a class, all defects will be
discovered. We are aware this is not always true; however
what we show is basically an upper bound of the number of
defects one can discover if testing such classes.

0 1000 2000 3000 4000 5000 6000 7000

0
20

40
60

80
10

0

of Test Case (cum.)

D
ef

ec
ts

 in
 te

st
ed

 c
la

ss
es

 (
cu

m
.)

(a) Ant

0 2000 4000 6000 8000

0
50

10
0

15
0

20
0

25
0

of Test Case (cum.)

D
ef

ec
ts

 in
 te

st
ed

 c
la

ss
es

 (
cu

m
.)

(b) ArgoUML

Figure 3. Testing cost-effectiveness for classes participating (red) and not
(black/dashed) in APs.

Due to lack of space, we only report results for Ant
and ArgoUML. As both figures show, it is clear that, even
when starting to test the first few classes, the number of
defects that can be found for classes participating in AP is
substantially higher than for other classes. In the graphs of
results for CheckStyle and JFreechart, the non-AP line is
flat because there is no defects in these classes in these two
systems.

RQ3 Summary: Classes participating in APs exhibit a
significantly higher defect-proneness than other classes.
Despite the fact that their testing cost is higher, it is cost-
effective to analyze/test them with a higher priority than
other classes.

In summary, this study has highlighted that APs increase
the class unit test cost, although at the same time such
classes have to be properly tested because they contain
a high proportion of defects. In the following, we will
qualitatively show how specific refactoring actions can be
applied to classes participating in APs. Our aim is to
pursue refactoring objectives that are different from the usual
ones, i.e., decreasing the testing cost rather than improving
maintainability.

V. REFACTORING FOR REDUCING THE TESTING COST

According to the MaDUM testing strategy—see Section
II—the number of transformers and of constructors in each
data slice can dramatically increase the number of test
cases. Table IV reports data about cases in which specific
refactoring activities, discussed below, can be used to reduce
the number of transformers in the data slices of such
classes. It is important to point out that such refactoring
activities do not remove APs, i.e., they are complementary
to “traditional” refactorings that one often performs with the
aim of increasing comprehensibility and maintainability.

A typical situation that we found in most of the classes
reported in Table IV is related to source code fragments—
cloned in multiple methods—that transform the same fields.
These cloned statements contribute to increase the number
of transformers per slice and consequently the number of test
cases. We reduce the testing cost by performing an extract
method refactoring.

For example, in the class PropPanel of ArgoUML, we
found a sequence of statements that transforms the field
listenerList, and that is repeated in four methods with
a slight variation. These repeated sequences increase the
number of transformers for the slice of listenerList field and,
consequently, the number of test cases required to test that
class according to the MaDUM strategy. We extract those

Table IV
IMPACT OF THE REDUCTION OF THE NUMBER OF TRANSFORMERS

(TRS) ON THE NUMBER OF TEST CASES (TC).

Before After
refactoring refactoring

Class (system) Type TRS TCs TRS TCs
TokenFilter (Ant) CDSBP 5 263 2 27
PropPanel (ArgoUML) Blob 5 271 3 43
BooleanExpressionComplexityCheck

(Checkstyle)
LPL 6 732 5 132

AxisState (JFreeChart) NAP 5 248 1 11
DynamicTimeSeriesCollection
(JFreeChart)

Blob 4 208 2 122

statements and create a new method that is then called by
the old ones. With this refactoring action, the number of
transformers for the field listenerList becomes 3 instead of
5, and the number of test cases of the refactored class is 43
instead of 271. This refactoring reduces the number of the
transformers of this class and then the number of test cases
required to test it according to the MaDUM testing strategy.

Another case concerns multiple methods having a very
similar code structure and behavior while having a different
name. This is possibly meant to make the source code
easier to understand. Those methods transform the same
field(s). An example of this case occurs in the class Axis-
State of JFreeChart. In this class, we have four methods,
namely cursorUp, cursorDown, cursorLeft, and cursorRight
that increment (cursorDown and cursorRight) or decrement
(cursorUp and cursorLeft) the field cursor by a given value
passed as argument. We can refactor to reduce the number
of test cases by replacing the four methods by a new one,
namely moveCursor. Then, we replace the call of the old
methods by the new one and adjust the argument: a positive
argument is passed instead of calling cursorDown or cursor-
Right and a negative argument is passed instead of calling
cursorUp and cursorLeft. This refactoring helps to reduce
the number of transformers from 5 to 1 and, consequently,
the number of test cases. However, this refactoring could
negatively affect code understandability. Indeed, the old
methods had more appropriate and straightforward names
than the new one. As an alternative, it is possible to use
the old methods as simple wrappers directly calling the new
method moveCursor. Thus the old methods are still used.
The code is actually refactored into moveCursor and only
moveCursor must be tested achieving thereby the double
goal of not affecting understandability while reducing the
number of test cases. This example shows that refactoring
performed for the sake of reducing the testing cost must be
carefully chosen to avoid decreasing other quality attributes
such as understandability.

In summary, the examples reported in Table IV show
how there can be opportunities for refactoring that can
reduce the testing cost. Noticeably, all classes reported in
our examples except the class AxisState participate in APs
and this means—as discussed in Section IV—that a high
number of test cases is required to test them. We suggest
that APs refactoring should not only consider actions to
improve cohesion, reduce coupling, and in general address
all maintainability issues. It should also consider specific
refactoring activities, as those described above, aimed at
reducing the number of transformers per data slice and thus
the number of test cases. It is also important to notice that
such refactorings can be worthwhile also for some classes
that do not participate in APs and that however have a high
number of transformers, e.g., class AxisState of JFreeChart.
The examples above show also that, when applying refactor-
ing actions to classes with the purpose of reducing testing

costs, we must be aware of the possible impact on other
quality attributes and find the best tradeoff, e.g., between
testability and comprehensibility/maintainability.

VI. THREATS TO VALIDITY

In this section, we discuss the main threats to validity that
could affect our study.

Threats to construct validity concern the relation between
theory and observation. In this paper, this is mainly due to
possible mistakes/imprecisions in the APs detection, in the
classification of defects used to address RQ3, and in the
“lazy” testing ordering considered in RQ3. Concerning APs
detection, the study was based on DECOR APs identification
[7]. Although DECOR is known to be accurate [7], there is
no guarantee that we detect all APs or that what we classified
as APs are indeed true APs.

A second threat to construct validity derives from the
definition of defect, the content of bug tracking systems and
the way in which defects are assigned to classes. It is well-
known that issue tracking systems contain all sort of change
requests [19]. Thus, in general, we cannot guarantee that all
issue tracking entries are indeed related to fixing defects. For
two systems (Ant and ArgoUML), the issue tracking system
uses a specific category to classify corrective maintenance
changes (“DEFECT”). For the two others (CheckStyle and
JFreeChart), we relied on information about fixed bugs
available in the release notes. Last but not least, the approach
we used to link issue reports to commits can miss some fixes
not explicitly mentioning the issue ID in the commit note
[20].

Finally, the simplistic “lazy” integration strategy, has to
be considered as a way of gauging the maximum theoretical
difference, if any, between defects detection obtained by
prioritizing APs classes testing over classes not participating
in APs. We cannot claim that MaDUM test cases will even-
tually detect all defects or what percentage of undetected
defects exists. Also, such a simplistic testing approach does
not account for class interactions, nor it considers the actual
complexity of writing and running test cases. In essence, we
can only claim that, no matter what the testing strategy or the
testing order, developers should focus their quality assurance
efforts on classes participating in APs, and possibly remove
APs as a first step toward an improved design.

Threats to internal validity concern any confounding
factors that could have influenced the results of our study.
This mainly concerns the subjectivity in performing manual
class refactoring to reduce the number of test cases. To
some extent, this threat is also related to the perception the
authors (who performed the refactoring) have of what could
be considered a good design.

Threats to conclusion validity concern the relation be-
tween the treatment and the outcome. We used proper tests
and effect size measures to address our research questions.
In particular, we used non-parametric tests (Wilcoxon and

Fisher’s exact test) and effect size measures (Cliff’s delta
and Odds Ratio) that do not make any assumption about
the underlying distributions of data. Finally, we dealt with
problems related to performing multiple Wilcoxon tests
using the Holm’s correction procedure.

Threats to external validity concern the possibility of
generalizing our results. Although we analysed programs
belong to different application domains and developed by
different teams, the study needs to be replicated on further
programs to confirm or contradict our results.

VII. RELATED WORK

This section discusses related literature concerning APs
and their detection, class testability, and OO unit testing
strategies.

A. Antipatterns

Many researchers and practitioners described APs and
proposed solutions to refactor and–or remove them. Webster
first discussed about APs in the context of OO programming
in 1995 [21]. He described conceptual, implementation, and
quality-assurance problems. Brown et al. [22] introduced 40
APs, including Blob and Spaghetti Code.

Researchers have proposed a number of approaches to
detect code smells and APs based on different techniques,
ranging from manual inspection [23] to rule-based systems
[7], [24]. More recently, researchers have used machine
learning techniques — see for instance Khomh et al. [25]
and Maiga et al. [26] — to locate code smells and APs.

Furthermore, various studies suggested that code smells
and APs negatively impact software quality. Deligiannis et
al. conducted an empirical study to analyze the influence
of God classes on software understandability and main-
tainability [27]; their findings support the claim that God
classes have a negative impact on the evolution of design
structures. Abbes et al. [11] investigated the influence of
Blob and Spaghetti Code on software understandability.
They discovered that the presence of Blob or Spaghetti
Code does not have significantly negative impact on software
understandability, but the combination of the two APs made
programs significantly more difficult to understand. Olbrich
et al. [28] and Khomh et al. [5] studied the relation between
the presence of smells and change/defect-proneness. The two
studies agree on the negative impact of APs on change- and
defect-proneness.

Finally, some authors have discussed refactoring oppor-
tunities to remove APs. For example, both Brown [22]
and Fowler [29] provide APs definitions as well as rules
to refactor them. Tsantalis et al. [30] proposed a semi-
automatic approach for move-method refactoring with the
aim of removing Feature Envy smells, while Fokaefs et al.
[31] proposed JDeodorant, a tool for extract-class refactoring
in presence of God Classes.

B. Testability and Unit Testing Strategies

The software testing literature reports several definitions
of testability, all related to the testing effort and cost.
The IEEE standard glossary [32] defines testability as “the
degree to which a system or component facilitates the
establishment of test criteria and performance of tests to
determine whether those criteria have been met.” Bache and
Mullerburg [33] defined testability in terms of the effort
required for testing. They measured this effort using the
number of test cases required to satisfy a given coverage
criterion.

Software testability is an important software quality at-
tribute that can significantly contribute to facilitate testing
activities and to reduce testing effort and costs [34], [35].
Many works investigated factors that influence testability
and proposed techniques to improve this attribute [36], [37].

Testability is defined and measured at different levels
of testing: unit testing [12], integration testing, system
testing [36]; and also for different artifacts, i.e., design
[38] and source code [12]. Bruntink et al. [12] proposed
the usage of a pool of OO class metrics—namely LOC,
Fan-Out, Number of Fields (NOF), Number of Methods
(NOM), Response For Classes (RFC), and Weighted Method
Complexity (WMC)—to predict the testability of a class.

Following the definition provided by Bache and Muller-
burg [33], we used the number of test cases required to
test a class according to the MaDUM testing strategy as
our testability measure. Thus, this measure has been used
to evaluate the testability of classes participating in APs,
compared to that of other classes. However, it is important
to notice that there are numerous OO unit testing criteria
focusing on detecting different kinds of defects or on de-
tection efficiency [8]. Criteria such design by contract, pre
and post conditions first proposed for procedural code have
been adapted to OO [9]. Other criteria such as state-based
techniques [8], [10] are quite powerful [39], although they
require the availability of specific design artifacts, namely
state machine diagrams.

Overall, to the best of our knowledge, no previous work
investigated the impact of APs on class testability and testing
effort, nor conjectured the possibility of a testability-driven
refactoring, or provided evidence that APs negatively impact
testability.

VIII. CONCLUSION AND FUTURE WORK

This paper investigated the effects of antipatterns (APs) on
the cost of class unit testing in object-oriented systems and
on how refactoring activities could possibly reduce testing
cost. We detected APs using the DECOR tool [7] in four Java
programs, namely Ant 1.8.3, ArgoUML 0.20, Checkstyle
4.0, and JFreeChart 1.0.13. Then, we estimated the number
of test cases required to test each class using the MaDUM
class unit testing strategy [6]. Finally, we compared the
number of test cases required for classes that participate in

APs or not and related such a number of test cases with the
number of post-release fixed defects of such classes.

Findings of the study strongly support the evidence that:

1) classes participating in APs are, in general, more
expensive to test than other classes;

2) specifically, classes participating in some kinds of
APs, such as Blobs, Anti-Singleton or Complex
Classes have a significantly higher testing cost than
other classes, whereas some APs, such as Method
Chains or Lazy Classes, do not strongly contribute to
the testing cost. Interestingly, this contradicts findings
related to AP defect-proneness, indicating Method
Chains among the APs with the highest defect-
proneness [5];

3) giving a high priority to classes participating in APs
makes testing activities more cost-effective because
they contain a higher proportion of defects than other
classes.

In addition, we showed how appropriate refactoring ac-
tivities can be adopted for classes participating in APs—
but also for some other classes—with the aim of reducing
the testing cost. These kinds of refactoring are different,
complementary, and in some cases can pursue conflictual
objectives with respect to traditional refactoring actions
aimed at improving comprehensibility and maintainability.

Future work aims at (i) extending our evaluation to class
integration by accounting for integration ordering strategies
[16], [15] and related test integration; (ii) investigating the
feasibility of automatic or semi-automatic approaches to
promote refactoring and refactoring aimed at reducing the
testing cost and in general testability-driven refactoring; and
(iii) extending the empirical study to more programs.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Trans. Softw. Eng., vol. 20,
no. 6, pp. 476–493, 1994.

[2] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick
III, and T. J. Mowbray, Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis, 1st ed. John Wiley and
Sons, March 1998.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns – Elements of Reusable Object-Oriented Software,
1st ed. Addison-Wesley, 1994.

[4] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An ex-
ploratory study of the impact of code smells on software
change-proneness,” in Proceedings of the 16th Working Con-
ference on Reverse Engineering (WCRE). IEEE CS Press,
October 2009.

[5] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol,
“An exploratory study of the impact of antipatterns on class
change- and fault-proneness,” Empirical Softw. Eng., vol. 17,
no. 3, pp. 243–275, 2012.

[6] I. Bashir and A. L. Goel, Testing Object-Oriented Software:
Life-Cycle Solutions, 1st ed. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2000.

[7] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur,
“DECOR: A method for the specification and detection of
code and design smells,” IEEE Transactions on Software
Engineering, vol. 36, pp. 20–36, 2010.

[8] R. V. Binder, Testing object-oriented systems: models, pat-
terns, and tools. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1999.

[9] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: automated
testing based on java predicates,” in Proceedings of the 2002
ACM SIGSOFT international symposium on Software testing
and analysis, ser. ISSTA ’02. New York, NY, USA: ACM,
2002, pp. 123–133.

[10] T. S. Chow, “Testing software design modeled by finite-state
machines,” IEEE Trans. Softw. Eng., vol. 4, no. 3, pp. 178–
187, May 1978.

[11] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An
empirical study of the impact of two antipatterns, blob and
spaghetti code, on program comprehension,” in Proceedings
of the 2011 15th European Conference on Software Mainte-
nance and Reengineering, ser. CSMR ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 181–190.

[12] M. Bruntink and A. van Deursen, “An empirical study into
class testability,” J. Syst. Softw., vol. 79, no. 9, pp. 1219–1232,
2006.

[13] R. Grissom and J. Kim, Effect sizes for research: a broad
practical approach. Lawrence Erlbaum Associates, 2005.

[14] S. Holm, “A simple sequentially rejective Bonferroni test
procedure,” Scandinavian Journal of Statistics, vol. 6, pp. 65–
70, 1979.

[15] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima, “Class
firewall, test order, and regression testing of object-oriented
programs,” JOOP, vol. 8, no. 2, pp. 51–65, 1995.

[16] L. Briand, J. Feng, and Y. Labiche, “Experimenting with
genetic algorithms and coupling measures to devise optimal
integration test orders,” Software Engineering with Computa-
tional Intelligence Kluwer, 2003.

[17] Y.-G. Gueheneuc and G. Antoniol, “DeMIMA: A multi-
layered approach for design pattern identification,” IEEE
Transactions on Software Engineering, vol. 34, pp. 667–684,
2008.

[18] Y.-G. Guéhéneuc, “Ptidej: Promoting patterns with patterns,”
in Proceedings of the 1st ECOOP workshop on Building a
System using Patterns, M. E. Fayad, Ed. Springer-Verlag,
July 2005.

[19] G. Antoniol, Kamel Ayari, M. Di Penta, F. Khomh, and
Y.-G. Guéhéneuc, “Is it a bug or an enhancement? a text-
based approach to classify change requests,” in Proceedings
of the 18th IBM Centers for Advanced Studies Conference
(CASCON), M. Vigder and M. Chechik, Eds. ACM Press,
October 2008.

[20] A. Bachmann, C. Bird, F. Rahman, P. T. Devanbu, and
A. Bernstein, “The missing links: bugs and bug-fix commits,”
in Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010,
Santa Fe, NM, USA, November 7-11, 2010. ACM, 2010, pp.
97–106.

[21] B. F. Webster, Pitfalls of Object Oriented Development, 1st ed.
M & T Books, February 1995.

[22] W. J. Brown, R. C. Malveau, H. W. M. III, and T. J.
Mowbray, AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis, T. Hudson, Ed. John Wiley & Sons,
Inc., 1998.

[23] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili,
“Detecting defects in object-oriented designs: using reading

techniques to increase software quality,” in Proceedings of the
14th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, ser. OOPSLA
’99. New York, NY, USA: ACM, 1999, pp. 47–56.

[24] R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in Proceedings of the 20th IEEE In-
ternational Conference on Software Maintenance, ser. ICSM
’04. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 350–359.

[25] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“BDTEX: A GQM-based bayesian approach for the detection
of antipatterns,” J. Syst. Softw., vol. 84, no. 4, pp. 559–572,
2011.

[26] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G.
Guéhéneuc, G. Antoniol, and E. Aimeur, “SMURF: a SVM-
based incremental anti-pattern detection approach,” in Pro-
ceedings of the 19th Working Conference on Reverse Engi-
neering (WCRE). IEEE Computer Society Press, October
2012.

[27] I. S. Deligiannis, I. Stamelos, L. Angelis, , M. Roumeliotis,
and M. Shepperd, “A controlled experiment investigation
of an object-oriented design heuristic for maintainability,”
Journal of Systems and Software, vol. 72, no. 2, pp. 129 –
143, 2004.

[28] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The
evolution and impact of code smells: A case study of two
open source systems,” in Proceedings of the 2009 3rd Inter-
national Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 390–400.

[29] M. Fowler, Refactoring: improving the design of existing
code. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

[30] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” IEEE Trans. Software
Eng., vol. 35, no. 3, pp. 347–367, 2009.

[31] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeor-
giou, “JDeodorant: identification and application of extract
class refactorings,” in Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, 2011, pp. 1037–1039.

[32] IEEE, “IEEE standard glossary of software engineering ter-
minology,” 1990.

[33] R. Bache and M. Mullerburg, “Measures of testability as a
basis for quality assurance,” Softw. Eng. J., vol. 5, no. 2, pp.
86–92, 1990.

[34] R. V. Binder, “Design for testability in object-oriented sys-
tems,” Commun. ACM, vol. 37, no. 9, pp. 87–101, 1994.

[35] L. C. Briand, Y. Labiche, and H. Sun, “Investigating the use of
analysis contracts to improve the testability of object-oriented
code,” Softw. Pract. Exper., vol. 33, no. 7, pp. 637–672, 2003.

[36] S. Jungmayr, “Testability measurement and software depen-
dencies,” 2002.

[37] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper, “Testability transformation,” IEEE
Trans. Softw. Eng., vol. 30, no. 1, pp. 3–16, 2004.

[38] B. Baudry and Y. L. Traon, “Measuring design testability of
a UML class diagram,” Inf. Softw. Technol., vol. 47, no. 13,
pp. 859–879, 2005.

[39] L. C. Briand, M. Di Penta, and Y. Labiche, “Assessing and
improving state-based class testing: A series of experiments,”
IEEE Trans. Software Eng., vol. 30, no. 11, pp. 770–793,
2004.

