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Abstract—Over the years, many researchers have studied
the evolution and maintenance of object-oriented source code in
order to understand the possibly costly erosion of the software.
However, many studies thus far did not link the evolution of
classes to faults. Since (1) some classes evolve independently,
other classes have to do it together with others (co-evolution);
and (2) not all classes are meant to last forever, but some
are meant for experimentation or to try out an idea that was
then dropped or modified. In this paper, we group classes
based on their evolution to infer their lifetime models and co-
evolution trends. Then, we link each group’s evolution to faults.
We create phylogenetic trees showing the evolutionary history
of programs and we use such trees to facilitate spotting the
program code decay. We perform an empirical study, on three
open-source programs: ArgoUML, JFreechart, and XercesJ, to
examine the relation between the evolution of object-oriented
source code at class level and fault-proneness. Our results
indicate that (1) classes having a specific lifetime model are
significantly less fault-prone than other classes and (2) faults
fixed by maintaining co-evolved classes are significantly more
frequent than faults fixed using not co-evolved classes.

Keywords—Evolutionary history; co-evolution; reverse engi-
neering; fault-proneness; bit vectors

I. INTRODUCTION

Object-oriented programs evolve continuously, requiring
constant maintenance and development [1]. Thus, they un-
dergo changes throughout their lifetimes as features are
added and faults are fixed. When evolution occurs in an
uncontrolled manner, the programs become more complex
over time and thus, harder to maintain [2][3]. At the same
time, the software architectures tend to degrade with time
as they become less relevant to new and emerging require-
ments. This design decay can be detected by measuring the
instability of the program artefacts [4], high fault rates [5],
and poor code quality [5][6].

For example, Ostrand et al. [7] found that 20% of classes
contains 80% of faults. At the same time, these 20% of
classes accounted for 50% of the source code. Assuming
that all classes are considered to have the same likelihood
for fault-proneness is not realistic, because, for example,
not all classes are there to last forever, some are meant for
experimentation, so it could be expected that they have more
faults.

Several fault prediction approaches were proposed to
analyse fault-proneness. While some approaches predict
the presence or absence of faults for each component
(the classification scenario), others predict the amount of
faults affecting each component in the future, producing
a ranked list of components. On the one hand, Change-
Log Approaches [8] use process metrics extracted from
the versioning system, assuming that recently or frequently
changed classes are the most probable source of faults. On
the other hand, Code-Metrics approaches [9] use source
code metrics, assuming that complex or larger classes are
more fault-prone. However, it is not clear how classes with
different evolution behavior are linked with faults. Indeed,
evolution studies out there did not link different evolution
behavior to faults.

Two major kinds of class evolution are class lifetime
and class co-evolution. For example, in ArgoUML, we
spotted that hundreds of classes existed only during some
program versions. We found that some of these classes, such
as GoModelToCollaboration and UMLInstance-
ClassifierListModel, were created by developers to
examine a feature which was later abandoned. We differ-
entiate between classes that appear and disappear many
times during the program lifetime, (Transient classes) and
classes that appear only during one version of the program
(Short-lived classes). Similarly, distinguishing between co-
evolving classes (classes which exhibit similar evolution
profiles, due to interdependencies among them [10]) and
independently evolving classes could make a difference. For
example, In XercesJ, we found that the class Document-
Builder co-evolved with the class SAXParser.java
from Xerces1.0.1 to Xerces2.0.0. Indeed, these two classes
are related to the same fault fixed on 26th September 2002.

To evaluate the fault-proneness of these different types
of classes, this paper proposes a novel approach, Profilo,
to analyse program evolution and fault-proneness. Our ap-
proach identifies co-evolution relations among classes and
groups classes based on their lifetimes to infer their evolu-
tion and co-evolution trends.

We apply our approach on three open-source programs:
ArgoUML, JFreeChart, and XercesJ to answer the following



research questions:
• RQ1: What is the relation between class lifetime and

fault-proneness?
We decided to consider three types of class evolu-
tion: Persistent, Short-lived, and Transient classes. We
showed that Persistent classes are significantly less
fault-prone than Short-lived and Transient classes.

• RQ2: What is the relation between class co-evolution
and fault-proneness?
We found that, in most cases, fixing faults in class A
requires changing the co-evolved classes of A.

This paper is organised as follows: Section II presents a
pilot study to assess the purpose of analysing the relation
between program evolution and fault-proneness. Section III
presents our approach Profilo. Section IV describes our
empirical study. Section VI, Section V and Section VII
report and discuss its results as well as threats to its validity.
Section VIII relates our study with previous work. Section
IX concludes with future work.

II. PILOT STUDY

To motivate the need for studying class evolution for
different groups, we discuss a pilot study in which we use
phylogenetic trees [11] to observe the impact of fixing faults
on program evolution.

Phylogenics is the study of how organisms relate to
one another and can be ordered: a phylogenetic tree is a
reconstruction of the evolutionary history of species [12]. We
create phylogenetic trees for programs to identify how their
versions are related from a historical perspective, i.e., they
show commonalities, divergences, and evolution trends in
order to help developers to understand the full complexity of
programs. These trees help developers in understanding and
possible detecting design decay by spotting major changes
between program versions. The creation of phylogenetic
trees is explained in details in Section III.

For example, in JFreeChart, we analysed 46 different
versions. To simplify the trees, we use a simplified name for
version “0” to version “N” in the phylogenetic tree. This tree,
see Figure 1, shows a global pattern of amendments (change
in the architecture of the program, changes in classes imple-
mented and evaluated in versions, etc.) in the code of this
program before the publication of the version34 (jfreechart-
1.0.2) in August 2006 and in the period of publication of the
version37 (jfreechart-1.0.5) in March 2007. On the one hand,
when we analyse the evolution of fixed faults in JFreeChart,
see Figure 2, we noted that these periods correspond exactly
to the period with the highest number of faults found and
fixed for this project.

On the other hand, the majority of Transient and Short-
lived classes in JFreeChart were added in this period (more
than 70% of Transient and Short-lived classes on this pro-
gram). We suspect a correlation, between the introducing of
these classes in the program and the increasing number of

Figure 1. Phylogenetic tree of JFreeChart

Figure 2. The evolution of fixed and opened bugs JFreeChart

faults on this period. At the same time, some of this classes
are added, renamed, and changed on the same version over
their whole lifespan. We found that these classes have similar
evolution trends and that many of them are involved in the
same faults. Detecting dependencies of evolution of these
classes could explain and possibly prevent faults by being
sure that changes are propagated adequately by developers
among them.

We present a novel approach, Profilo, to (1) group classes
in an object-oriented programs according to their evolution-
ary histories, (2) spot their co-evolution profiles, and (3)
relate their evolution and co-evolution trends with fault-
proneness. Our goal is to understand amendments and decay
in the code of programs and to spot the impact of mainte-
nance activities and program evolution on fault-proneness.



Figure 3. Approach Overview

III. APPROACH OVERVIEW

This section presents our approach, Profilo, to analyse the
link between program evolution and fault proneness. We
will describe each step of the approach in details below
as shown in Figure 3. Given several versions of an object-
oriented program, Profilo extracts their class diagrams using
an existing tool PADL1. Profilo creates the set of version-
profiles that spots for each version all of its classes. Then,
it creates a phylogenetic tree that describes the evolution of
different versions. To investigate the relationship between
the evolution of programs modeled by phylogenetic trees
and the code decay indicated by fault-proneness, Profilo
identifies class renamings, class changes, and fault fixing
using previous approaches: ADvISE [4] and Macocha [13].
Profilo creates the set of class-profiles that describes the
evolution of each class in the program. Based on this set, it
groups classes according to their co-evolution relations.

A. Step 1: Pre-processing

We use PADL [14] to automatically reverse-engineer
class diagrams from the source code of object-oriented
programs2 and Macocha to identify the set of changes
performed on each class by mining version-control systems.
We compute the fault-proneness of a class by relating fault
reports and commits to the class. Fault fixing changes are
documented in text reports that describe different kinds
of problems in a program. Thus, we trace faults/issues to
changes by matching their IDs and their dates in the commits

1http://www.ptidej.net/tool/
2We consider six types of static relationships among classes: associations,

use relations, inheritance relations, creations, aggregations, and container-
aggregations (special case of aggregations [15])

Figure 4. Types of class evolution.

Figure 5. Version-profiles and Existence Class-profiles

and in the bug reports. For example, we detect around three
thousands classes in JFreeChart and we trace 420 faults.

B. Step 2: Version-profile Creation

We define a version-profile for each version of a program,
as a vector v = v1...vn, where n represents the number of
classes i.e., the union of the classes in all versions. The value
of vj indicates whether the jth class is present or not in a
version (see Figure 5).

vj =

{
1 if class j is present or renamed
0 otherwise.

The version-profiles are useful for creating the phylogenetic
tree of the program.

C. Step 3: Phylogenetic Tree Creation

A phylogenetic tree [16] is a model created from a set of
version-profiles, showing the inferred evolutionary relation-
ships among various versions based upon their similarities
and differences. We use the phylogenetic trees to assess more
accurately the contributions of the versions relative to the
others and to show the decay of the program across versions.
We use two existing tools PHYLIP3 and Phylodendron4 to
draw the phylogenetic tree of a program. Concretely, we use
the Hamming distance to measure the amount of differences
between two version-profiles, i.e., the number of positions
at which the corresponding bits are different. Then, we
construct a phylogenetic tree that places related versions
under the same interior node and whose branch lengths
reproduce the observed distances between versions. Figure 1
illustrates a phylogenetic tree representing the evolution of
46 versions of JFreeChart from the first published version
in December 2000 to version 1.0.14 in November 2011.
To explain the amendments in the code of this program

3PHYLIP is a free package of programs for inferring phylogenies. http:
//evolution.genetics.washington.edu/phylip.html

4Phylodendron is a free program for drawing phylogenetic trees. http:
//iubio.bio.indiana.edu/treeapp/treeprint-form.html



discussed in Section II, we decide to study the evolution
of its classes and to analyse the fault-proneness of object-
oriented source code at class level.

D. Step 4: Class Renaming Detection

ADvISE identifies class renamings using the structure-
based and the text-based metrics, which assess the similari-
ties between original and renamed classes, as follows:

1) Structure-based and Text-based Similarities: The
structure-based similarity (StrS), between a candidate re-
named class CA and a target class CB , is defined as the
percentage of their common methods, attribute types, and
relationships. We compute the text similarity, between a
candidate renamed class CA and each of the target class
CBi i ∈ [1, n], using a Camel-similarity (CamelS), and the
Normalized Levenshtein Edit Distance (ND). The CamelS
similarity between CA and CB represents the percentage of
their common tokens. The Normalized Edit Distance (ND)
between CA and CB is defined as:

ND(CA, CB) =
Levenshtein(CA, CB)

sum(length(CA), length(CB)
∈ [0, 1]

Let S(CA) and S(CB) to be the set of methods, attributes,
and relationships of CA (respectively CB). The structure-
based and the text-based similarities of CA and CB is
computed by comparing S(CA) to S(CB) using the Jaccard
index of similarity [17]. When we compare the similarities
of a candidate renamed class CA to many target classes
{CB1 , ..., CBn}, we first compare their structure-based sim-
ilarity StrS. We select the set of target classes having
the highest StrS value. Then, we compute their textual
similarities (ND and CamelS).

E. Step 5: Class-profiles Creation

Profilo mines source code and version control systems to
create a class-profile for each class, as follows:

Evolution Class-profile: We use this class-profile to
extract the co-evolution relations among classes. It is defined
as a vector y = y1...ym, where m represents the number of
versions. The value of yi indicates whether the class C is
present, renamed, changed, or deleted in the ith version.

yi =

 2 if class is renamed or changed at version i
1 if class is present at version i
0 otherwise.

The co-evolution relations are useful for identifying the sets
of classes that evolve together.

F. Step 6: Class-profiles Mining

1) Mining Class Lifetime: We classify classes according
to their class-profiles. Then, Profilo reports three types of
class evolution as shown in Figure 4.

Short-lived classes: They have a very short lifetime, i.e.,
they exist only during one version of the program. Such

classes may have been created to try out an idea that was
then dropped or modified.

Persistent classes: They never disappear after their first
introduction into the program. On the one hand, Persistent
classes should be examined, as they may represent cases of
dead code that no developer dares to remove as there is no
one being able to explain the purpose of these classes. On
the other hand, Persistent classes may be considered to be
part of a tunnel [18], the backbone part of the program, as
they have not been removed since their first appearance in
a given version of a program. Hence, we also mine version
control systems to assess whether a Persistent class is dead
code or not.

Transient classes: They appear and disappear many times
during the program lifetime. Such classes may have been
involved in many design choices and should be analysed, as
they represent cases of design decision changes.

2) Mining Co-evolution Relations: We group classes
that have the same Evolution Class-profile and are related
by static relationships. Such classes are added, renamed,
changed, and could be deleted in the same versions. They
are related, also, by static relationships (use, association,
aggregation, and composition relationships).

IV. EMPIRICAL STUDY

Following the Goal Question Metric (GQM) [19], the
goal of this study is (1) to detect interesting observations
on the relationship between the evolution of object-oriented
source code at class level and fault-proneness, (2) to detect
co-evolution dependencies to explain and possibly prevent
faults, and (3) to confirm these observations statistically. The
quality focus is the reduction of comprehension cost and
maintenance effort. The perspective is of both researchers,
who want to study the relationship between program evo-
lution and fault-proneness, and practitioners, who analyse
software evolution to estimate the effort required for future
maintenance tasks. The context of our experiment is three
open-source Java programs: ArgoUML, JFreeChart, and
XercesJ.

A. Objects

We apply our approach on three Java programs: Ar-
goUML5, JFreeChart6, and XercesJ7. We use these programs
because they are open source, have been used in previous
work, are of different domains, span several years and
versions, and underwent between thousands and hundreds
of classes. Table I summarises some statistics about these
programs.

ArgoUML is an UML diagramming program written in
Java. We analyse the evolution of this program for a period
of nine years, from 2002-10-09 to 2011-04-03. In this period,

5http://argouml.tigris.org/
6http://www.jfree.org/
7http://xerces.apache.org/xerces-j/



Table I
DESCRIPTIVE STATISTICS OF THE OBJECT PROGRAMS

ArgoUML JFreeChart XercesJ
Versions 18 46 36
Start study 02-10-09 00-12-01 03-10-13
End study 11-04-03 11-11-20 06-11-23
From Version 0.10.1 0.5.6 1.0.1
To Version 0.32.2 1.0.13 2.9.0
# of classes 2011 1938 892

Table II
CARDINALITIES OF THE SETS OBTAINED IN THE STUDY

ArgoUML JFreeChart XercesJ
Transient 690 645 313
Persistent 1241 1293 537
Short-lived 80 324 42
# of Co-Evolution 42 11 23

ArgoUML has gone through over 18 major versions, from
the version 0.10.1, to the version 0.32.2.

JFreeChart is a Java open-source framework to create
complex charts. We analyse the evolution of this program
for a period of 10 years. In this period, JFreeChart has gone
through 46 major versions, from the first published version
on December 2000 to version 1.0.14 on November 2011.

XercesJ is a collection of software libraries for parsing,
validating, and manipulating XML. We analyse the evolution
of this program for a period of three years, from 2003-10-13
to 2006-11-23. In this period, XercesJ has gone through 36
major versions.

Fault-proneness refers to whether a class underwent at
least a fault fixing change during the study periods. Fault
fixing changes are documented in text reports that describe
different kinds of problems in a program. They are usually
posted in issue-tracking systems e.g., Bugzilla, for the three
studied programs by users and developers to warn their
community of pending issues with its functionalities; issues
in these systems deal with different kinds of change requests:
fixing faults, restructuring, and so on. We trace faults/issues
to changes by matching their IDs in the commits and by
manually validation.

V. EXPLORATORY STUDY

In essence exploratory studies are undertaken to better
comprehend the link between program evolution and fault-
proneness since very few studies might have been considered
in that area.

We use data collected in the three programs and from
externals information to discuss typical examples as follows:
Persistent classes: In Figure 6, we note that most
classes in ArgoUML, JFreeChat, and XercesJ are Persis-
tent (more than 60% of classes). On the one hand, these
classes represent the stable backbone (tunnel) of the program
such as org.argouml.uml.generator.ui.Class-
GenerationDialog in ArgoUML. In fact, this class

Figure 6. Distribution of class lifetimes detected by Profilo

implement the java code generator in this program and
was maintained 82 times by several developers (tfmorris,
penyaskito, mvw, etc.). On the other hand, Persistent classes
could represent also dead code, such as SDNotation-
Settings. Indeed, this class was never changed after its
introduction in ArgoUML on March 1999 by tfmorris. We
noted that in ArgoUML, more than 80% of classes were
maintained three times at most. On the other hand, less than
1% of classes were maintained 50 times at least.
Transient classes: We detect classes that appear and dis-
appear many times during the maintenance of the three pro-
grams. For example, the class OverlaidCategoryPlot,
appeared in JFreeChart in the version 0.9.9 in June 2003, and
was deleted in the version 0.20.0 before reappeared in next
versions. In fact, developer detect faults in this class, and that
explain the Nonpersistence of this class. For example, in the
Bugzilla of JFreeChart, the bug ID5767608 report in relation
with this class that “No outline for overlaid category plot”
when developers used category plots in one application.

8http://sourceforge.net/tracker/index.php?func=detail&aid=
576760&group id=15494&atid=115494



Short-lived classes: They represent the smallest group
of classes in the three analysed programs. Such classes
were created to try out an idea that was then dropped or
modified, or to test some program behavior. For example,
the class org.jfree.chart.demo.TimePeriodTo-
StringTest was created in JFreeChart0.9.9 published in
July 2003 to test information encapsulated in TimePeriod
in order to fix a fault9 related to this class. After this version,
this class was deleted.
Co-evolution: The development and maintenance of a pro-
gram involves handling a large number of classes. Knowing
that two or more classes follow the same co-evolution pattern
helps developers to maintain properly the dependencies
between these classes in the program. Otherwise, they lead
to faults in the program. For example, in JFreeChart, we find
that ChartPanel and CombinedDomainXYPlot. were
introduced, changed and renamed in the same versions but
in different periods and by different developers. Thus, co-
change analysis cannot report their dependency. Profilo re-
port that these two files co-evolved and the bugID195003710

reported “ a bug either in ChartPanel or CombinedDo-
mainXYPlot when trying to zoom in/out on the range axis”
and confirmed the dependency between these two classes.

VI. STUDY RESULTS

Table II summarises the results obtained by applying
Profilo. We validated Profilo results manually and checked
external sources of information provided by bugs reports,
mailing lists, and requirement descriptions to confirm and
to discuss results. The analyses reported in this section have
been performed using the R statistical environment11. We
use the contingency tables to assess the direction of the
difference, if any.

A. What is the relation between class lifetime and fault-
proneness?

1) Motivation: We group classes according to their pro-
files through the program lifespan, taking into considera-
tion the renaming, refactoring, and structural changes of
classes, to determine how class lifetime are related to fault-
proneness.

2) Method: We use Fisher’s exact test [20] to check
whether the difference is significative. We also compute the
odds ratio [20] that indicates the likelihood for an event to
occur. The odds ratio is defined as the ratio of the odds p of
an event occurring in one sample, i.e., the odds that Short-
lived and Transient classes are identified as fault-prone, to
the odds q of the same event occurring in the other sample,

9http://sourceforge.net/tracker/index.php?func=detail&aid=
814424&group id=15494&atid=365494

10http://sourceforge.net/tracker/index.php?func=detail&aid=
1950037&group id=15494&atid=115494

11http://www.r-project.org

i.e., the odds that Persistent classes are identified as fault-
prone. An odds ratio greater than 1 indicates that the event
is more likely in the first sample, while an odds ratio less
than 1 that it is more likely in the second sample. An odds
ratio OR = p/(1−p)

q/(1−q) . OR = 1 indicates that fault-prone
entities can either have high or low term entropy and context
coverage (the condition or event under study is equally likely
to occur in both groups). OR > 1 indicates that fault-prone
entities have high term entropy and high context coverage.
We expect OR > 1 and a statistically significant p-value.

We verify the null hypothesis that we state as:
• HRQ10 : There is a statistically significant difference be-

tween proportions of faults carried by Persistent, Short-
lived, and Transient classes in ArgoUML, JFreeChart,
and XercesJ.

If we reject the null hypothesis HRQ10 , then we explain
the rejection either as:

• HRQ11 : There is a statistically significant difference
between proportions of faults carried by Persistent,
Short-lived and Transient classes.

To attempt rejecting HRQ10 , we test whether the propor-
tion of classes in ArgoUML, JFreeChart and XercesJ that
compose Short-lived and Transient (respectively Persistent)
classes take part (or not) in significantly more faults than
those in Persistent (respectively Short-lived and Transient)
classes.

Table III
CONTINGENCY TABLE AND FISHER TEST RESULTS IN ARGOUML,
JFREECHART AND XERCESJ FOR PERSISTENT, NON-PERSISTENT

CLASSES (SHORT-LIVED AND TRANSIENT CLASSES) WITH AT LEAST
ONE FAULT

Faulty Clean
ArgoUML’s Non-Persistent classes 400 370
ArgoUML’s Persistent classes 326 915
JFreeChart’s Non-Persistent classes 312 657
JFreeChart’s Persistent classes 366 927
XercesJ’s Non-Persistent classes 268 277
XercesJ’s Persistent classes 170 508
The Sum of Non-Persistent classes 980 1304
The Sum of Persistent classes 862 2350
Fisher’s test 2.2e-16
Odd-ratio 2.048582

3) Results: Table III presents a contingency table for
ArgoUML, JFreeChart and XercesJ that reports the number
of (1) Short-lived and Transient classes that are identified
as fault-prone; (2) Short-lived and Transient classes that are
identified as clean; (3) Persistent classes that are identified as
fault-prone; and, (4) Persistent classes that are identified as
clean. The result of Fisher’s exact test and odds ratios when
testing HRQ10 are significant. The p-value is less then 0.05
and the odds ratio for fault-prone Short-lived and Transient
classes is two times higher than for fault-prone Persistent
classes.



We can answer to RQ1 as follows: we showed that Persis-
tent classes are significantly less fault-prone than Short-lived
and Transient classes.

B. What is the relation between class co-evolution and fault-
proneness?

1) Motivation: The goal of analysing dependencies
among co-evolved classes (clusters of classes exhibit similar
evolution profiles) is to check if the proportion of faults fixed
by maintaining co-evolved classes are significantly more
than faults fixed using not co-evolved classes.

2) Method: The Chi-Square test is used to test the dif-
ferent proportions of faults fixed for co-evolved and not co-
evolved classes. Indeed, the Chi-Square statistic compares
the tallies or counts of categorical responses between two
(or more) independent groups.

We test for statistical significance to verify the null
hypothesis that we state as:

• HRQ20 : There are no statistically significant between
proportions of faults involving co-evolved classes or
not co-evolved classes in the three programs.

If we reject the null hypothesis HRQ20 , then we explain
the rejection either as:

• HRQ21 : The proportion of faults carried by co-evolved
classes is not the same as the proportion of faults
carried by not co-evolved classes.

To attempt rejecting HRQ20 we test whether the proportion
of co-evolved classes in ArgoUML, JFreeChart and XercesJ
take part (or not) in significantly more faults than other
classes.

3) Results: We use in this test the contingency Table IV,
where rows represent the number of faults involving co-
evolved classes and the number of faults involving non co-
evolved classes. The result of Chi-Square test and odds ratios
when testing HRQ20 are significant. The p-value is less then
0.05 and we can reject the null hypothesis.

Table IV
CONTINGENCY TABLE AND CHI-SQUARE TEST RESULTS IN ARGOUML,

JFREECHART AND XERCESJ FOR FAULTS FIXED BY CO-EVOLVED
(CC)OR NOT CO-EVOLVED CLASSES (NCC)

Faults involving CC Faults involving NCC
ArgoUML 126 92
JFreeChart 69 61

XercesJ 19 15
Chi-Square 0.01859

We can answer to RQ2 as follows: faults fixed by main-
taining co-evolved classes are significantly more than faults
fixed using not co-evolved classes.

VII. RELEVANCE AND DISCUSSION

A. Phylogenetic Tree and Program Evolution

Phylogenetic tree, is an essential tool in the study of
biological evolution since the time of Charles Darwin. In this

study, we showed that such trees can be used sufficiently to
show the evolution of programs and to spot the design decay
phenomenon in software engineering. Indeed, phylogenetic
tree shows a representation, simple to understand and quick
to generate, of the evolution of a huge amount of data
(tens of versions having thousands of classes). Such trees
facilitate to developers the comprehension and the detection
of design decay by showing major change in the program
versions. The phylogenetic tree shows, also, stability periods
of programs: in these periods, we pass from one version
to another without adding new classes in the program i.e.,
a new version is published with the same classes, but by
fixing some problems such as faults or by adding some
functionalities in existing classes.

B. Class Lifetime and Fault-proneness

In this paper, we combine information obtained from class
evolutionary history and from bug reports to obtain a clearer
picture of the evolution of object-oriented program. This is a
key knowledge for a maintenance activity, because it allows
us to detect the critical parts of the program that represent the
starting point for a maintenance process. We found that Non-
Persistent classes should be spotted and well-understood
before maintaining the programs as these classes are more
fault-prone. Special attention must be given to these entities
to keep the design intact during program evolution because
the instability of these classes could have a negative impact
on the fault-proneness of the program.

C. Similarities in Classes Evolution Profiles

While co-change dependencies analysis reports the sets
of classes that are often changed together, our approach
reports the sets of classes that evolve in parallel ways and not
necessarily at the same time. To the best of our knowledge,
previous co-change approaches did not use method such as
structure-based and text-based similarities to identify class
renamings and, therefore, they could not report co-change
or co-evolution relations among renamed classes. In this
paper, we noted that such relations describe implicit design
dependencies and source code evolution. Thus, special at-
tention must be given to these relations to keep the design
intact during program maintenance activity. If numerous
co-evolution relations exist, Profilo sort the sets of results
depending on the number of static relationships among co-
evolved classes in order to help the developers to focus on
those that potentially led to a design flaw or to mistakes in
maintaining classes together.

D. Threats to the Study Validity

Some threats limit the validity of our empirical study.
Construct Validity: Construct validity threats concern the
relation between theory and observations. In this study, they
could be due to the errors of the implementation. They
could also be due to an imprecision of our measurements of



the distance between different couples of class-profile and–
or different couples of version-profile. We believe that this
threat is mitigated by the facts that we validated Profilo re-
sults manually and checked external sources of information
(bug reports and others).
Conclusion validity: Threats concern the relation between
the treatment and the outcome. We paid attention not to
violate assumptions of the statistical test that we used, in
RQ1 and in RQ2. We cannot claim causation, but our
discussion tries to explain why some classes could have been
subject to faults.
Reliability Validity: Reliability validity threats concern the
possibility of replicating this study. We attempted to provide
all the necessary details to re-implement our approach and
replicate our empirical study. The programs, change logs,
and raw data to obtain our observations are available online
at http://www.ptidej.net/downloads/experiments/csmr13a/.
External Validity: External Validity concern the generali-
sation of our findings. Although we performed our analyses
on three different programs, belonging to different domains
and with different sizes, we are aware that further empirical
validations on a larger set of programs would be beneficial to
better support our findings. We cannot assert that our results
and observations are generalisable to any other program and
the fact that all the analysed programs are open source and
are developed with Java may reduce this generability.

VIII. RELATED WORK

Our work relates to different research directions: fault-
proneness, program evolution, detection of class evolution,
and co-evolution.

A. Fault-proneness

Nagappan and Ball [21] performed a study on the influ-
ence of code churn [22] on the fault density. They found
that relative code churn was a better predictor than absolute
churn. Moser et al. [9] used metrics (e.g. code churn, past
faults and refactorings, etc.) to predict the presence/absence
of faults in files of Eclipse. Hassan and Holt [8] proposed
heuristics to analyse fault proneness and they found that
recently modified and fixed classes were the most fault-
prone. Ostrand et al. [23] predict faults on two industrial
systems, using change and fault data. Bernstein et al. [24]
used fault and change information in non-linear prediction
models. Zimmermann and Nagappan [25] used dependencies
between binaries in Windows server 2003 to predict faults.
Marcus et al. [26] used a cohesion measurement based on
LSI for fault prediction. Neuhaus et al. [27] used a variety
of features of Mozilla, such as past faults, package imports,
call structure, to determine fault vulnerabilities. Previous
approach on fault-proneness out there did not link class
evolution behaviors to faults. In this paper, we spotted the
links between software evolution and fault-proneness.

B. Program Evolution

The phenomenon of software aging is the result of soft-
ware evolution. Parnas [28] suggested that programs suffer
from various aging problems such as increasing complexity,
faults, unstructured code, feature overloading, etc. Eick et al.
[6] suggested that a code is decayed if it is more difficult to
maintain than it used to be. We believe, like the above cited
authors, that code decay is essentially the result of program
evolution. The design of a program deviates from its planned
form with every new version of program to incorporate
new features by implementing new classes and–or deleting,
refactoring and changing old classes. We relate the evolution
of classes in object-oriented programs and fault-proneness
to emphasize program evolution consequences. Fraser [16]
presented DiffTree to infer a phylogenetic tree from related
programs. It described the retrospective computation of
version trees for a set of programs, without mining source
code control systems.

DiffTree compared set of codes with one another, and
presents a parsimonious phylogenetic tree for them. It can
also help to identify cases where a repair made to one ver-
sion was missed in others. We share with the author the idea
that is interesting to identify commonalities and divergences
among versions to acknowledge the contributions of each
version relative to one another. Karim et al. [29] described
a method for constructing phylogeny models that used n-
perms to match possibly permuted code and to discover
malicious programs, such as viruses and worms, frequently
related to previous programs through evolutionary relation-
ships. These last two approaches are the closest to our work.
They infer a phylogenetic tree from related programs but do
not analyse the classes lifetime and co-evolution relations
among them. In addition, our work differs in the aspects
considered: they considered differences between versions in
term of lines of code and did not consider types of changes
or the impact of change in term of classes and program
architecture, while we consider differences between versions
in term of object-oriented structures (classes) used, modified,
refactored, and renamed.

C. Class Evolution

Many approaches exist to analyse classes in programs
based on their relative evolution. Lanza et al. [30] presented
an evolution matrix to display the evolution of the classes of
a program. Each column of the matrix represents a version of
the program, while each row represents the different versions
of the same class. Lanza et al. considered that two classes
in two different versions are the same if they have the same
name. Then, the authors presented a categorisation of classes
based on their visualisation. Our work differs in the level of
granularity and on the aspects considered. Indeed, Lanza et
al. considered only class name to identify classes in different
version. Thus, the same class in two different versions are
considered two different classes if they are renamed. To



overcome this issue, we use a set of structure-based and text-
based similarities to identify class renamings in programs.

UMLDiff [31] compared and detected the differences
between the classes of two object-oriented program versions.
It extracts the history of the program evolution, in terms of
the additions, removals, moves, renamings, and signature-
changes of classes. UMLDiff then assigned a stability type
to each class: short-lived (they exist only in a few versions of
the program), idle (they rarely undergo changes after their
introduction in the program), and active (they keep being
modified over their whole lifespan). In contrast to UMLDiff,
our approach aims to present an understandable model of the
evolutionary history of classes by modeling class-profiles
with a bit vector model. Other than the simplicity of this
model, bit vector allow for significant effectiveness and
efficiency on the analysis of the evolution of large programs
because it allows small arrays of bits to be stored and
manipulated with efficient operations. Further, UMLDiff
cannot relate the evolutionary history of classes with fault-
proneness.

Kpodjedo et al. [32] [18] proposed to identify all classes
that do not change in the history of a program, using an
Error Correcting Graph Matching algorithm (ECGM). They
studied the evolution of programs and recovered traceability
links between subsequent class diagrams. Their approach
identified evolving classes that maintain stable static re-
lations with other classes and that constitute the stable
backbone (tunnel) of programs. In addition to the detection
of these stable backbones, our approach groups classes based
on their evolution profiles and use these groups to detect co-
evolution among them.

Demeyer et al. [33] presented an approach to understand
how object-oriented programs have evolved by discovering
which refactoring operations have been applied from one
version of the software to the next. Antoniol et al. [34]
adopted techniques inspired by Information Retrieval (IR)
approaches to automatically identify evolution discontinu-
ities when analyzing the evolution of object-oriented source
code at class level. These two last approaches were useful
to identify some replacement, merge and refactoring during
the evolution of programs but they cannot relate program
evolution with faults proneness.

D. Co-evolution Relationships

The maintenance of a program involves handling a large
number of classes. Indeed, classes that exhibit similar evo-
lution profiles, due to interdependencies among them, are
considered as co-evolved classes [10]. Xing et al. [31] anal-
ysed the evolution profile for each class. The class-evolution
profile reports the complete history of changes made to an
individual class in each subsequent version. Furthermore,
they examined clusters of classes that changed in very
similar ways for a substantial period of time. However, their
approach cannot detect co-evolved classes involved in the

same fault. Antoniol et al. [35] presented an approach to
detect similarities in classes evolution profiles starting from
past maintenance. They applied the LPC/Cepstrum technique
to identify in version-control systems the classes that evolved
in the same or similar ways. Their approach identified co-
evolved classes but cannot report the different lifetime and
relate these types with fault-proneness. Several approaches
identify co-changes among artefacts, e.g., [36], [37], and
[13], which represent the (often implicit) dependencies or
logical couplings among artefacts that have been observed
to frequently change together [38]. Typically, two artefacts
are co-changing if they were changed by the same author and
with the same log message in a time-window of less than 200
ms [37]. Co-change is one aspect of co-evolution. Indeed,
if two classes co-changed then they co-evolved. But if two
classes co-evolved then they not necessarily co-changed.

IX. CONCLUSION AND FUTURE WORK

We described a novel approach to analyse programs evo-
lution and to trace fault-proneness. One of goals addressed
in this paper is how we can relate the evolution of classes in
object-oriented programs with fault-proneness. The concepts
of class lifetime, co-evolution, and phylogenetic tree helped
us to describe and to identify the reasons that have driven
the programs’ codes to their current states. We showed
that Persistent classes are significantly less fault-prone than
other classes and that faults fixed by maintaining co-evolved
classes are significantly more than faults fixed using not co-
evolved classes. Profilo draw, also, informed conclusions
about the relation between maintenance tasks and fault-
proneness in order to help developers to understand evo-
lution trends and to maintain the programs correctly.

Work-in-progress aims at (1) analysing further co-
evolution relations by replicating our study with other larger
programs, (2) performing a comprehensive study of the
relationships between class lifetime and change-proneness,
and (3) identifying the lifetime followed by design motifs
such as design patterns and anti-patterns.
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