Ptidej: Promoting Patterns with Patterns

Yann-Gaél Guéhéneuc
GEODES - Group of Open and Distributed
Systems, Experimental Software Engineering
Department of Informatics and Operations Research
University of Montreal, Quebec, Canada
guehene@iro.umontreal.ca

Abstract

We introduce the PTIDEJ project and its tool suite
to evaluate and to enhance software quality by promot-
ing patterns. First, we summarise the components of
the tool suite and describe its implementation in Java,
which uses several architectural, design, and language
patterns. Then, we take position on issues related to
pattern claims, choices, uses, and limits from our ex-
perience with pattern definition, formalisation, use for
reverse-engineering and for implementation.

1 Introduction

The PTIDEJ! project (Pattern Trace Identification,
Detection, and Enhancement in Java) aims at develop-
ing a tool suite to evaluate and to enhance the quality
of object-oriented programs, promoting the use of pat-
terns, at language-, design-, or architectural-level [4].

So far, the tool suite allows, through its user-
interface, to create a model of a program from its source
code, to identify micro-architectures similar to a design
pattern, and to call various generators, analyses, and
external tools on the program model. Figure 4, on the
last page, summarises the functioning of the tool suite.

The PTIDEJ project decomposes in:

e A meta-model, PADL (Pattern and Abstract-
level Description Language), to describe the struc-
ture of motifs—the “Solution” parts in pattern
definitions—and of object-oriented programs.

e A library of design motifs from design patterns
[6], including Chain of Responsibility, Composite,
Observer, Visitor. ..

e Several parsers to build models of programs from
different source code representations, including
AOL [1], C++ files and Java class files.

LPriDEJ stands for “breakfast” (in French argot) and is pro-
nounced “tE-dAzh (as in Pterodactyl and Déja vu).

e A library of software metrics, POM (Primitives,
Operators, Metrics), to compute well-known met-
rics on models of programs, such as Chidamber
and Kemerer’s metrics [3].

e A library of generators and analyses to be applied
on models of programs and of motifs.

e An explanation-based constraint solver [10],
PTIDEJ SOLVER, to identify micro-architectures
similar to motif models in program models.

e A dynamic analyser for Java, CAFFEINE, based
on a Prolog engine and the Java debug interface
to define relationships among classes precisely.

e A library of graphic widgets, PTIDEJ Ul, to dis-
play models of motifs, of programs, and dynamic
data from CAFFEINE.

e Several user-interfaces (see Figure 3 page 8 for an
example) to access the functionalities provided by
the PTIDEJ tool suite:

— Parse and create models of programs.

— Enhance models of programs with dynamic
data from program executions.

Visualise created models.

— Identify micro-architectures similar to a de-
sign motif model in a program model.

— Visualise the identified micro-architectures.

— Call generators (i.e., Java generator), anal-
yses (i.e., a systematic UML-like analysis),
and external tools (i.e., DOTTY) on models.

In Section 2, we summarise the implementation of
the PTIDEJ tool suite, focussing on the choice and use
of patterns. Then, in Section 3, we discuss pattern
claims, choices, uses, and limits. Finally, in Section 4,
we conclude with our positions on patterns and some
open questions we would like to discuss.

2 Implementation of Ptidej

In this section, we present the implementation of the
PTIDEJ tool suite, which uses architectural, design, and
language patterns. We focus on the main classes and
packages and on the patterns without specifying every
implementation details.

In particular, we do not detail two important tools of
the PTIDEJ tool suite: CAFFEINE and PTIDEJ SOLVER
because these tools have been described elsewhere (see
[8] and [9], respectively) and because these tools do not
participate directly to the architecture of the PTIDEJ
tool suite and thus to the patterns used.

2.1 Architecture

We chose a layered architecture to build the PTIDEJ
tool suite. A layered architecture allows us to build
generators, analyses, and user-interfaces on a stable
and well-tested meta-model.

Thus, we decompose the tool suite in two parts: One
part related to the PADL meta-model and one part
related to the PTIDEJ UI graphic framework.

The PTIDEJ tools suite is implemented 100% in
Java, using the ECLIPSE development platform [13]. It
decomposes in about 30 projects, 190 packages, 1,150
classes for 74,000 lines of code.

2.2 Design

The PADL Meta-Model. Figure 1 next page
shows a UML-like class diagram representing the ar-
chitectural layers corresponding to the PADL meta-
model, their main packages and classes, and the design
patterns used in the design.

The diagram decomposes in three horizontal parts
representing three different layers of services: First,
CPL (Common Ptidej Library); Then, PADL; Finally,
PADL CrLASSFILE CREATOR, PADL AOL CREATOR,
POM, and PADL ANALYSES.

The first layer, CPL, declares utility classes and li-
braries used across the whole PTIDEJ tool suite, such
as CFPARSE [7] and JAVASSIST [2]. In particular, this
layer declares the ClassLoader and SubtypeLoader
classes, which we use to handle files and directories
uniformly. This layer also declares the util.awt pack-
age, which classes are used to handle user interaction
in various places. The dependency on JAVA AWT does
not prohibit independence from the graphic library be-
cause JAVA AWT is always present in our target run-
time settings (J2SE or J2EE, not J2ME).

The second layer, PADL, declares the meta-model
to describe models of programs and of motifs. The

meta-model defines several constituents (for example,
IIdiomLevelModel, IMethod) that are interfaces which
implementations are combined to describe structural
models of programs and of patterns (and subsets of
their behaviours).

The constituents of the meta-model are loaded in
the tool suite dynamically: The implementations of the
IFileRepository interface serves to access the con-
stituents uniformly whether they are available in the
form of class-files, of a JAR file...

The padl.kernel and padl.kernel.impl packages
declares respectively the types of the constituents (as
Java interfaces, hence the ‘I’ in front of each name)
and their implementations. We use the Abstract Fac-
tory design pattern to manage the concrete instanti-
ation of the constituents, the concrete factory, class
Factory, follows the Singleton design pattern. We use
the Builder design pattern to let the parsers choose the
constituents to instantiate, through the Builder class.
We use the Visitor design pattern to offer a standard
mean to iterate over a model or a subset of a model, the
padl.visitor package provides default visitors. The
padl.pattern and padl.pattern.repository pack-
ages define several prototypal models of well-known
design motifs, which we can clone and parameterise,
using the Prototype design pattern.

The third layer contains several separate projects:

e Parsers for Java class-files and AOL files (PADL
JavAa and AOL CREATOR). These parsers are in-
dependent of the meta-model and new parsers for
other programming languages can be added seam-
lessly using the Builder design pattern.

e A metric computation framework (POM), in
which we use the Singleton design pattern. POM
decomposes in a set of primitives defined in terms
of the meta-model constituents. These primitives
are combined using set operators to define metrics.

e A repository of analyses based on the meta-model,
in which we use a simpler version of the Command
design pattern. An analyse is invoked on a model
of a program or of a pattern and returns a (poten-
tially modified) model when the analysis is done.
Reflection is used by the repository to build the
list of available analyses dynamically.

The Ptidej Ul Graphic Framework. Figure 2
page 5 shows a UML-like class diagram representing
the architectural layers corresponding to the PTIDEJ
UI graphic framework and PTIDEJ user-interfaces,
their main packages and classes, and the design pat-
terns used in the design.

Bueyin

]

nn

TdD

T

203TSTA 23810U0D

I0jeJouaDIuIBISUODIRAI0SPNd

ojeseusnulewogieniosiopnd

sisAjeugped

ABejeias

Asoysodegonsin
Kioysodayussned
oysodeyalIneoq

(Krousodegiuemnsuod

Inn‘jped

1

usened ubisep
adAiooid

" adk303014 e3030U00
H 125q0 | |oleipe sdk30701d

[poutawAiooey

isuodseyjoureyd

IepopyusenEdieInions

|opopuIsHed|euoneaId

IopouIBHEd R INOINRYOG

wianed ubisap

uojelBuis

useped uBisep)
“<_Miopesensay - sionpora

SURRNECEEEEL

sjusweTy ©3910U0) \

\
539npoId 93870U0D \

Rz030e4 93930U0D

10s59001dEIRQIRUIAIXT

T03TSTA

0jeaId|apopIaAaTwoIpIl

IoPOIeAR O]

Iped

Tavd

4

wiened ubisep
ABajens

|sishieuy

Kionsodarsishjeueped

sisAjeue’jped

[
sesATeuvy 1Tavd

1

usened ubisep
uojeibuis

sioleiedo

wod soujawrwod

1
WOd

1

xa|[r101ea10°|ped

\

a8pTTRg 23230U0D

nn-ojeaso’|ped

| E—

101e819710V

dnoeael*101ea10°|ped J1ojeasojped

0jea103|134sse|0ale|duod

J1ojeasoped

10}e19°|ped

| E—

|
Io3eaI1d TOY TAVd

1

| I
I03e8I) STTASSETD TAYd

Figure 1. The PADL meta-model layers

As with the PADL meta-model, the diagram de-
composes in horizontal parts representing four different
layers of services: First, PTIDEJ UI; Then, PTiDEJ Ul
PriMITIVES for AWT and SWT; PTipEJ Ul VIEWER
and its EXTENSIONS; Finally, PTiDEJ Ul VIEWER
PLUGIN, APPLET, and STANDALONE.

The first layer, PTIDEJ UI, declares the graphic wid-
gets used to display models of programs and of motifs.
The Canvas class, along with the ptidej.ui.event
and ptidej.ui.canvas.event packages, handles
graphic representations of models and manages events
using the Observer design pattern. The Canvas class
accepts any implementations of the IDrawable and
ISelectable (if appropriate) interfaces, which the
ptidej.ui.kernel package provides to represent con-
stituents of the meta-model graphically. Classes in
the ptidej.ui.kernel package are independent of any
graphic library through the graphic primitives from
the ptidej.ui.primitive package, which are instan-
tiated indirectly using the Abstract Factory design pat-
tern. We use the Builder design pattern to build a
graphic representation of a model with the Builder
class. We use the Strategy design pattern to offer sev-
eral layout algorithms through implementations of the
IGraphLayout interface.

The second layer declares two implemen-
tations of the graphic primitives in package
ptidej.ui.primitive, for Java AWT and for
SWT (the graphic library particular to the ECLIPSE
platform [13]). We use the Abstract Factory design
pattern to manage instantiations.

The third layer declares user-interface utility classes,
with PTIDEJ Ul VIEWER, and offers an extension
mechanism to graphic representations of models of pro-
grams and of motifs, in PTIDEJ] Ul VIEWER EXTEN-
SIONS. The ptidej.viewer package declares state
holders for models and their graphic representations,
including micro-architectures similar to patterns. The
ptidej.viewer.event package allows broadcasting
changes to the data by applying the Observer de-
sign pattern. We use the Strategy design pattern to
build the IExtension and Repository classes and
the ptidej.viewer.extension.repository package
to offer extensions to graphic representations.

The fourth layer declares three user-interfaces, re-
spectively, as an ECLIPSE plug-in, as a Java stand-
alone program (see Figure 3 page 8), and as a Java
applet. User-interfaces are responsible for providing
a graphic-dependent canvas that forwards appropri-
ate messages to the Canvas class and for using the
correct graphic primitives concrete factory. (The ap-
plet user-interface reuses the canvas of the stand-alone
user-interface). They can implement functionalities to

build and to manage models of programs and of mo-
tifs, their graphic representations, model analyses, and
user-interface extensions.

2.3 ldioms

Idioms are language-level patterns. They are com-
monly used in many programming languages to prop-
agate “good” programming styles.

We follow idioms advocated by the Java community,
see for example java.sun.com/docs/codeconv/html/
CodeConvTOC.doc.html. In addition, we promote:

e The use of the English language in class/method/
field declarations as well as in documentation.

e A common formatting style, using the ECLIPSE
Java source code formatter.

e A consistent commenting of the code.

e Consistent naming conventions for parameters, in-
stance/local variables, class variables, and con-
stants.

e A minimality in the imports: No “star” imports.

e The declaration of all instance variables as private.

e The systematic qualification of method calls and
field accesses, using this for instance attributes

or the class-name for class attributes.

e The systematic use of the final keyword for class/
field /parameter/local variable declarations.

e The systematic use of the Iterator design pattern
rather than for loop to iterate over lists.

e The systematic use of the finally clause when
handling exceptions.

e The use of stricter compilation rules, in particular
for unused private methods/fields and unused local
variables

3 Discussions on Patterns

We now attempt to provide answers to questions re-
garding patterns from our experience in using patterns
to build a tool suite to detect patterns.

| wenedubisep | fiosoes ssexasaw
~._Aioney pensay 7=~

5%

! axequon
ludesoiepon

s308Lans

soTboIRIIS |
a3ez0u00 |

sa3TSSA0

joquiAguopsoduiod) inoketaiduwis

4euaysiydes) (517

T8PTTNG 83870U0D
aaprTng

ionnjosdnoin joquiAguoneBeiBBy|

pnd sishjeuerin‘fopnd infepud
In [opTad - 1
comrorona ssxouon
[N — m |
v v
s s weuonnios
—
IMS seAT3TWTIAd IN [epTid IMV S®AT3TWIXd IN [epTad 4
{ wesdutop }
N . B s303fqng 83830U0H

SISy ~.__ Aboens - !

sa0afans

loje1ousnIeddwiAavo - -
uiened ujsop
puewWO)

soge3s

P

Loeseusnnog

uojsualxa-semalnfepnd

—

s3xe3uoD

SUOTSUSIXH I9MSTA IN [9pTad

L JOMBIAIONSIA |
somorn

uonnjos

Bunuud-inokefepnd JUIe1ISU09°3109 1aMalA fopnd nn-iamaia‘fopnd youeas-samainfopnd 1043u09 19malAfopnd
uswnoogaIdwiSPaUIPON | I [E—
W 7 W e
, e~
| | _
adwexa-jejdde-samain-fopnd 10|dde-semainfopnd yseids-iomain-fopnd nokeysemainfopnd 2100 19main‘fopnd 1omain-fopnd invemain-fopnd Joypariemaln‘fopnd uopoe-seman-fopnd semain-fopnd

Jo1ddy 19maTA In [epTad suoTepuels ISMSTA IN [epTid uthnigd I9maTA IN (9pTad 4

Figure 2. The Ptidej Ul graphic framework and user-interfaces

Are the various claims related to building any
system from patterns reasonable? In our under-
standing, the claims regarding patterns and software
development concerns the flexibility, the reusability,
and the understandability of the program implemen-
tations from the developers’ point of view.

We agree that using patterns, either at architectural,
design, or language levels, makes a program implemen-
tation more flexible and reusable (ease of adding and—
or modifying behaviour of the program).

However, we are uncertain about the increase or de-
crease of understandability of the program implemen-
tation. On the one hand, with a knowledge on pat-
terns and on the patterns used in a particular imple-
mentation, a developer can grasp quickly the collabo-
rations between various parts of the program. On the
other hand, (1) developers need to be really comfort-
able with many patterns before they can take advan-
tage of their knowledge and (2) documentation does
not often describe explicitly used patterns and their
automated identification is a difficult problem.

Thus, we believe that most claims about patterns
are reasonable but others are still overrated because of
the lack in teaching and in tooling.

What do we mean when we say “systems of pat-
terns”? We think of a system of patterns as a set
of patterns that can collaborate together without too
many contradicting intents and implementations.

Thus, we believe that subsets of the design patterns
from the Gang of Four [6] form systems of patterns
because they can be used in combination without con-
flicts, for example, Abstract Factory, Builder, and Sin-
gleton. However, all the design patterns do not form a
system of patterns because of conflicting intents.

The difficulty to define systems of pattern rest prin-
cipally on the lack of formalisation of the patterns, in
particular of the “Intent”, “Motivation”, and—or “Con-
sequences” parts of pattern definitions.

Thus, we believe that the pattern community must
strive to formalise patterns better (not only their mo-
tifs, i.e., their “Solution” parts) to provide unambigu-
ous means to relate patterns with one another.

What are the various claims related to patterns
composition; Are they true? In our understand-
ing, the claims regarding pattern composition concerns
the possibility to compose patterns and the composi-
tion flexibility, reusability, and understandability.

We believe that these claims relate to systems of
patterns. Indeed, within a system of patterns, pat-
terns can be composed while retaining their qualities,

while among different systems of patterns, some pat-
terns may conflict and thus reduce flexibility, reusabil-
ity, and understandability.

We performed an experience with bachelor students
to identify design patterns in several program imple-
mentations. We obtained best results when the stu-
dents actually looked for one design pattern and then
used the “Pattern Map” in the GoF’s book to look for
other related design patterns, which comfort our idea
that composition relates to systems of patterns.

However, the concrete demonstration of pattern
composition, apart from actual experiences, requires
an extensive formalisation of patterns.

If someone would like to build a system from
patterns, how do you select patterns? We
strongly believe in the piecemeal growth of program im-
plementations [5]. A program implementation evolves
in time with maintenance and the needs for patterns
may appear and disappear, and so do patterns.

In the development of the PTIDEJ tool suite, we be-
gun with a very simple and straightforward implemen-
tation of the meta-model and, as work progressed, we
used various patterns to increase flexibility, reusability,
and understandability.

What kind of patterns should one select to build
a system from patterns? As we advocate piece-
meal growth of program implementation, we believe
that developers should use any appropriate patterns
for the task at hand.

The difficulty of such an approach resides in the pos-
sible lack of knowledge on useful patterns and, thus, in
the need of pattern education.

Is there a guideline for the selection process?
We found useful to compare possibly competing pat-
terns when selecting patterns. In particular, we use
our knowledge of patterns and a tool, DP TUTOR [12],
to assess the adequation of one pattern or another in a
specific context.

Are there any existing techniques for inte-
grating patterns into traditional development
cycles? We use and we promote two techniques
to integrate pattern in development cycle: Reverse-
engineering and refactorings.

Our tool suite assume that a better understanding
of a program implementation at the design and archi-
tectural levels helps in applying patterns and, thus, in
bringing flexibility, reusability, and understanding.

We concur with Kerievsky [11] that refactorings are
a mean to integrate patterns seamlessly with software
development cycles.

4 Position and Conclusion

Our position is that, as a community, we must pro-
mote patterns in our software development and, as im-
portantly, in our teaching. We must work on pattern
formalisation and develop tools to identify and to apply
patterns. Thus, we can promote flexibility, reusability,
and understandability—important qualities indeed—in
program implementations.

We would like to discuss the interests, opportunities,
and techniques of identifying and of detecting patterns
(semi-)automatically. We would like also to discuss
pattern education.

Also, we are concerned with the terminology sur-
rounding patterns: “leitmotiv”, “motifs”, “instance”,
“occurrence” are but a few of the terms used to talk
about patterns, most of them with no clear definition.
We believe that the community must clearly defines
these terms if we want to be able to compare related
work on a common basis.

Acknowledgement

The author thank gratefully Hervé Albin-Amiot for
his early work on the meta-model and all the stu-
dents who participated so far in the development of the
PTIDEJ tool suite: Salime Bensemmane, Ward Flores,
Denise Gbetibouo, Jean-Yves Guyomarc’h, Duc-Loc
Huyhn, Khashayar Khosravi, Lulzim Laloshi, Naouel
Moha, Emmanuelle Orcel, Samah Rached, Sébastien
Robidoux, Driton Salihu, Iyadh Sidhom, Faycal Skhiri,
Yves Bia Toe, and Farouk Zaidi.

References

[1] Giuliano Antoniol, Roberto Fiutem, and
L. Cristoforetti. Design pattern recovery in
object-oriented software. In Scott Tilley and
Giuseppe Visaggio, editors, proceedings of the
6" International Workshop on Program Compre-
hension, pages 1563-160. IEEE Computer Society
Press, June 1998.

[2] Shigeru Chiba. Javassist — A reflection-based
programming wizard for Java. In Jean-Charles
Fabre and Shigeru Chiba, editors, proceedings of
the OOPSLA workshop on Reflective Program-
ming in C++ and Java. Center for Computational

[5]

[10]

[11]

[12]

[13]

Physics, University of Tsukuba, October 1998.
UTCCP Report 98-4.

Shyam R. Chidamber and Chris F. Kemerer. A
metrics suite for object-oriented design. Techni-
cal Report E53-315, MIT Sloan School of Man-
agement, December 1993.

Amnon H. Eden and Rick Kazman. Architecture,
design, implementation. In Laurie Dillon and Wal-
ter Tichy, editors, proceedings of the 25" Interna-
tional Conference on Software Engineering, pages

149-159. ACM Press, May 2003.

Richard P. Gabriel. Patterns of Software: Tales
from the Software Community. Oxford University
Press, 1% edition, April 1996.

Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns — Elements
of Reusable Object-Oriented Software. Addison-
Wesley, 15! edition, 1994.

Matt Greenwood. CFParse Distribution. IBM Al-
phaWorks, September 2000.

Yann-Gaél Guéhéneuc, Rémi Douence, and
Narendra Jussien. No Java without Caffeine — A
tool for dynamic analysis of Java programs. In
Wolfgang Emmerich and Dave Wile, editors, pro-
ceedings of the 171" conference on Automated Soft-
ware Engineering, pages 117-126. IEEE Computer
Society Press, September 2002.

Yann-Gaél Guéhéneuc and Narendra Jussien. Us-
ing explanations for design-patterns identification.
In Christian Bessiere, editor, proceedings of the 15
IJCAI workshop on Modeling and Solving Prob-
lems with Constraints, pages 57—64. AAAT Press,
August 2001.

Narendra Jussien. e-Constraints: Explanation-
based constraint programming. In Barry
O’Sullivan and Eugene Freuder, editors, 1% CP
workshop on User-Interaction in Constraint Sat-
isfaction, December 2001.

Joshua Kerievsky. Refactoring to Patterns. Addi-
son Wesley, 1 edition, August 2004.

Olivier Motelet. An intelligent tutoring system to
help OO system designers using design patterns.
Master’s thesis, Vrije Universitét, 1999.

Object Technology International, Inc. / IBM.
Eclipse platform — A universal tool platform, July
2001.

ej U Yiewer (ConstraintYiewer) ¥1.0

w3
[
“racess
Figure.
Pl
Citeriacers
Handle
=

4
e
=

acer
ool

Drau Sppliation

Graphic representation of
the model of a program

Composite
 Automatic solver
* cornbinatorial automatic solver

" Simple automatic solver
— Plidej Solver 3
" AC-4 problem

& Custam proklem

Generate program rmodel

Ll

Gengrate solver execulion data

Find similar micro-architectures | Help |
— Plidej Solver 4

Find similar micro-architectures | Help |
— Metrical Ptidej Sohver 4

Find similar misro-architsctures | Help |

4

ul
- [Standar Drawingviem

b
I

Micro-architecture 3632 similar at 19% with Composite design patiem
Component= GH.ifa.draw framework. Figure
Composite = CH.ifa.draw.standard.CompositeFigure
Leat1 = CH.ifa.draw.figures. PolyLineFigure

— Plidej Solvers

Load similar micro-architectures

List similar micro-architectures

TrandardDraving

Leat 2= CH.ifa.draw.figures AttributeFigure |
7s] Leal3= CH.ifa draw.standard.DecoratorFigure Rermove all similat micro-architectures |
! Leaf 4= CH.ifa draw.standard. StandardDrawing
! Leal-5 = CH.Ifa.draw.standard AbstraciFigure MEIR AT Hiacs] |
! |
| Mame = Composite design pattern
} HComrmand = Composite, Component | EOE
; T JavaxLXClass ¢, javalXClass o2 | LigsBaties et inlEs |
! ©1.setSuperclass(cZ. getNameg)throw new RuntimeException Gofaponent shou Ve R Bt |
! Tomp|
i (e Add Javale (clags) |
;
| L o Add JAR Tlle (a0 |
| Add Java package (class) |
3 Add =+ il (epp) |
L = Add ADL Nl Canly |
- Save Ptidej praject |
Systematic UML Hep |

AQL models comparison

Model difference highlishter (from methods)

Model difference highlighter (from classes)

SugiBis | hew |
POM-based metrics |

Adjacency matrix (OADymPPas) | hew |
Adjacency matri (nfovis) | Help |
Diotty | hew |

Interface to call generators,
anayses, and external tools
on a program model

I~ Ghost entities display

I~ Fully qualified names

I Method names

I” Field names

¥ Hierarchy display

I~ Hierarchy narmes

I Container Composition display
™ Cantainer Composition names
I™ Container Aggregation display
I~ Container Aggreation names
I~ Compositian display

I™ Composition names

T Aggregation display

I™ Aggregation hames

I~ Association display

™ Association harmes

I~ Use display

™ Use names

T Creation display

I™ Creation names

|dHotDraw v 1 (subset)

Graphic representation of

amicro-architecture smilar

to the Composite design motif

Interface to call Ptidg Solver

Interface to parse and to create

amodel of aprogram /

Interface to control the graphic
representation of a program model

Figure 3. Ptidej interface
8

Plidej Ul Viewer (Constraintviewer) v1.0

&1

ssheue JosiNsy <——

v ssApuy

indui

SINNYOR 01N <<——

BAIS bpid

< Indul

SANEAILPIN <——

NOd

indul

jopow
weJboud

peoLeUU3

ndino —|

JORIUEISUI

N
N

indui
Jossao01d
erp le Indul
[euRIX3
flozallatl
fppow-epw

1avd

.

a%el
UoNN%BXe
weliboid

ppow
weliboid

ndino —|

|uRyed

9pod
jec]ve)

namno

B|idwod

ndino —|

22Tl
pue
6kd

ndui

ndui

3p00
20IN0S

Figure 4. Use of the Ptidej tool suite

