
Noname manuscript No.
(will be inserted by the editor)

An Exploratory Study of the Impact of Antipatterns
on Class Change- and Fault-Proneness

Foutse Khomh, Massimiliano Di Penta,
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Abstract

Context: Antipatterns are poor design choices that are conjectured to make object-

oriented systems harder to maintain.

Aim: We investigate the impact of antipatterns on classes in object-oriented systems

by studying the relation between the presence of antipatterns and the change- and

fault-proneness of the classes.

Method: We detect 13 antipatterns in 54 releases of ArgoUML, Eclipse, Mylyn,

and Rhino, and analyse (1) to what extent classes participating in antipatterns have

higher odds to change or to be subject to fault-fixing than other classes, (2) to what

extent these odds (if higher) are due to the sizes of the classes or to the presence of

antipatterns, and (3) what kinds of changes affect classes participating in antipatterns.

Results: We show that, in almost all releases of the four systems, classes participat-

ing in antipatterns are more change- and fault-prone than others. We also show that

size alone cannot explain the higher odds of classes with antipatterns to underwent a

(fault-fixing) change than other classes. Finally, we show that structural changes affect

more classes with antipatterns than others. We provide qualitative explanations of the
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increase of change- and fault-proneness in classes participating in antipatterns using

release notes and bug reports.

Conclusions: The obtained results justify a posteriori previous work on the specifi-

cation and detection of antipatterns and could help to better focus quality assurance

and testing activities.

Keywords Antipatterns, Mining Software Repositories, Empirical Software Engi-

neering.

1 Context and Problem

Antipatterns—such as those presented in [6]—have been proposed to embody poor de-

sign choices. These antipatterns stem from experienced software developers’ expertise

and are conjectured in the literature to negatively impact systems by making classes

more change-prone and–or fault-prone. They are opposite to design patterns [18], i.e.,

they identify “poor” solutions to recurring design problems, for example Brown’s 40

antipatterns describe the most common pitfalls in the software industry [6]. They are

generally introduced by developers not having sufficient knowledge and–or experience

in solving a particular problem or having misapplied some design patterns. Despite the

many studies on antipatterns summarised in Section 6, only a few studies empirically

analysed the impact of antipatterns on source code-related phenomena [5,36], in par-

ticular class change- and fault-proneness, even though such phenomena directly impact

the developers’ work.

Examples of Antipatterns. In practice, antipatterns are in-between design and im-

plementation: they concern the design of one or more classes, but they concretely

manifest themselves in the source code as classes through specific code smells [17]. Of-

ten, antipatterns are defined in terms of thresholds imposed on metric values [30,41].

An example of antipattern is the LazyClass, which occurs when a class does too little,

i.e., has few responsibilities in a system. A LazyClass is a class with few methods and

fields; its methods have little complexity. It often stems from speculative generality

during a system design and–or implementation.

Another example of antipattern is the MessageChain, which occurs when the reali-

sation of a functionality of a class requires a long chain of method invocations between

objects of different classes. A MessageChain is conjectured to impact change- and fault-

proneness because of the high number of indirections. Classes using message chains are

detected by computing the number of transitive invocations of a class to other classes.

The two previous antipatterns are quite simple. A more complex example of an-

tipattern is the Blob. A Blob, also called God Class, is a large and complex class that

centralises the behaviour of a portion of a system and only uses other classes as data

holders, i.e., data classes. A Blob prevents the use of polymorphism through inheri-

tance, making changes more complex and risk-prone. A class is a Blob if it has a low

cohesion, it is large, some of its method names recall procedural programming, and it

is associated to data classes, which only provide fields and–or accessors to their fields.

Goal and Process. In this paper, using data mined from version control systems, we

study whether classes participating in an antipattern have an increased likelihood to

change than other classes between any two given releases. Also, by combining data from

version control and issue-tracking systems, we assess whether classes participating in
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Table 1 Summary of the characteristics of the analysed systems.

Systems Releases (#) Classes LOCs Changes
Fault-fixing
Changes

ArgoUML 0.10.1–0.26.2 (10) 792–1,841 128,585–316,971 40,409 2,064
Eclipse 1.0–3.3.1 (13) 4,647–17,167 781,480–3,756,164 196,193 24,335
Mylyn 1.0.1–3.1.1 (18) 1,625–2,762 207,436–276,401 36,328 118
Rhino 1.4R3–1.6R6 (13) 89–270 30,748–79,406 6,925 1,068

antipatterns have a higher likelihood than others to be involved in issues documenting

faults; we use a set of faults that, in some cases, have been manually validated by a

third-party, as explained in Section 2. We also study the possible effect of class sizes on

the results of our study by comparing the sizes of classes participating in antipatterns

with those of other classes. Finally, we study the kinds of changes affecting classes

participating in antipatterns.

Study. We perform the study on 10 releases of ArgoUML, 13 of Eclipse, 18 of Mylyn,

and 13 of Rhino, and across the changes and fault-fixing changes occurring between

the releases. We detect 13 antipatterns in the classes of these systems (see Section

2.2) to investigate their relations with change- and fault-proneness. We show that

antipatterns do have a negative impact on class change- and fault-proneness and that

certain kinds of antipatterns do have a higher impact than others. We also show that

size alone cannot explain the higher change- and fault-proneness of classes participating

in antipatterns. We finally discuss the kinds of changes that affect classes participating

or not in antipatterns, i.e., addition/deletion of methods/attributes, changes of method

signatures and method implementation.

Relevance. Understanding if antipatterns increase the likelihood of classes to change

or to be subject to fault-fixing is important from both researchers’ and practitioners’

points of view. We show that the presence of antipatterns is related to an increase of

class change- and fault-proneness. We also bring evidence that, like design patterns

[2,4,12,45], particular kinds of antipatterns are more correlated to change- and fault-

proneness than others. Therefore, within the limits of its threats to validity, this study

provides quantitative evidence that antipatterns indeed may affect the developers’ work

negatively and, thus possibly, software evolution. Thus, we justify a posteriori previous

work on antipatterns and prove to be true the conjecture from the literature on the

negative impact of antipatterns.

We also provide evidence to practitioners—developers, quality assurance personnel,

and managers—of the importance and usefulness of antipattern detection techniques

to assess class change- and fault-proneness. With the availability of such information,

a tester could decide to focus on classes participating in antipatterns, because she

knows that such classes are likely to contain faults. Similarly, a manager could use

such techniques to assess the volume of classes participating in antipatterns in a to-be-

acquired system and, thus, adjust her offer and forecast the system cost-of-ownership

and–or plan for refactorings.

Organisation. Section 2 describes the empirical study definition and design. Section 3

presents the study results. Section 4 and 5 discusses the results and the threats to their

validity. Section 6 relates our study with previous work. Finally, Section 7 concludes

the paper and outlines future work.
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2 Study Definition and Design

The goal of our study is to investigate the relation between classes participating in

antipatterns and their change- and fault-proneness as well as the kinds of changes im-

pacting antipatterns. The quality focus is the source code change- and fault-proneness,

which, if high, can have a concrete effect on developers’ effort and on the overall project

development and maintenance cost and time.

The perspective is that of researchers, interested in the relation between antipat-

terns and evolution phenomena in software systems. Also, results can be of interest to

developers, who perform development or maintenance activities and need to take into

account and forecast their effort, and to testers, who need to know which classes are

important to test. Finally, they can be of interest to managers and–or quality assur-

ance personnel, who could use antipattern detection techniques to assess the future

changes and faults of in-house or to-be-acquired source code to better quantify its

cost-of-ownership.

The context of this study consists in the change history and issue-tracking systems

of four Java systems1. ArgoUML is an open source UML-based system design tool.

Eclipse is an open-source integrated development environment. It is a platform used

both in open-source communities and in industry. Mylyn is a plug-in for Eclipse, which

aims at reducing information overload and making developers’ multi-tasking easier.

Rhino is an open-source implementation of a JavaScript interpreter.

The four systems have different sizes and belong to different domains. Eclipse is

a large system (release 3.3.1 is larger than 3.5 MLOCs) and, therefore, close to the

size of many real industrial systems. It is also developed partly by a commercial com-

pany, IBM, and thus is likely to embody industrial practices. ArgoUML, Mylyn, and

Rhino have wide ranges of sizes, are open-source, and also have different architectures.

Specifically, ArgoUML is a monolithic system, Eclipse has a plugin-based architec-

ture, Mylyn is an Eclipse plugin, and Rhino a component of a larger system, i.e.,

the Mozilla/Firefox Web browser. Previous studies—performed also on ArgoUML and

Eclipse—suggested that systems exhibiting different architectures exhibited different

change-proneness and underwent different kinds of changes [2,12].

Table 1 summarises the main characteristics of the systems: the first and last anal-

ysed releases, the numbers of releases considered, the system sizes ranges in LOCs, and

the overall numbers of considered changes and fault-fixing changes. (Detailed figures

are available in a technical report [23]; fault classification for Mylyn is only available

for the first three releases [14].)

We do not include release 2.1 of Eclipse in our study because we observed that the

number of committed changes and fixed faults between release 2.1 and 2.1.1 is about

one order of magnitude smaller than those numbers between any other two subsequent

releases. Also, the number of classes did not substantially change between 2.0, 2.1, and

2.1.1. Finally, the period of time between 2.1 and 2.1.1 is also shorter (three months)

than those between other pairs of releases. Thus, we preferred to consider the period

between releases 2.0 and 2.1.1 as one “release” for consistency.

For the four systems, it is relevant to study the relation between antipatterns,

change- and fault-proneness, and class sizes, because the percentages of classes partic-

ipating in antipatterns are not negligible. Figure 1 shows that these percentages vary

1 http://argouml.tigris.org/, http://www.eclipse.org, http://www.eclipse.org/
mylyn/, and http://www.mozilla.org/rhino/
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Fig. 1 Percentages of classes participating in antipatterns in the releases of the four systems.

Table 2 Distribution of antipatterns in the analysed releases.

Antipatterns

Number of Antipatterns in First and Last Releases
(in parentheses, the percentages of participating classes)

A
rg

o
U
M

L

E
c
li
p
se

M
y
ly
n

R
h
in
o

AntiSingleton 352 (44.44)–3 (0.16) 330 (7.10)–1784 (10.39) 4 (0.25)–127 (4.60) 16 (17.98)–1 (0.37)
Blob 26 (3.28)–116 (6.30) 600 (12.91)–2,194 (12.78) 40 (2.46)–93 (3.37) 0 (0)–0 (0)
CDSBP 136 (17.17)–51 (2.77) 382 (8.22)–2,285 (13.31) 61 (3.75)–183 (6.63) 4 (4.49)–17 (6.30)
ComplexClass 42 (5.30)–103 (5.59) 511 (11.00)–2,125 (12.38) 29 (1.78)–72 (2.61) 6 (6.74)–14 (5.56)
LargeClass 56 (7.07)–166 (9.02) 1 (0.02)–8 (0.05) 43 (2.65)–99 (3.58) 9 (10.11)–19 (7.04)
LazyClass 16 (2.02)–44 (2.39) 2,403 (51.71)–8,561 (49.87) 2 (0.12)–18 (0.65) 4 (4.49)–9 (3.33)
LongMethod 172 (21.72)–348 (18.90) 2,372 (51.04)–7,956 (46.34) 134 (8.25)–349 (12.64) 14 (15.73)–35 (12.96)
LPL 195 (24.62)–300 (16.30) 1,087 (23.39)–3,233 (18.83) 43 (2.65)–95 (3.44) 9 (10.11)–8 (2.96)
MessageChain 79 (9.97)–166 (9.02) 1,043 (22.44)–3,041 (17.71) 70 (4.31)–181 (6.55) 20 (22.47)–66 (24.44)
RPB 105 (13.26)–574 (31.18) 397 (8.54)–2,582 (15.04) 45 (2.77)–290 (10.50) 5 (5.62)–11 (4.07)
SpaghettiCode 9 (1.14)–22 (1.20) 2 (0.04)–1 (0.01) 12 (0.74)–39 (1.41) 0 (0.00)–2 (0.74)
SG 0 (0.00)–0 (0.00) 54 (1.16)–228 (1.33) 0 (0.00)–0 (0.00) 0 (0.00)–0 (0.00)
SwissArmyKnife 0 (0.00)–0 (0.00) 67 (1.44)–96 (0.56) 1 (0.06)–0 (0.00) 0 (0.00)–0 (0.00)

across releases in the four systems and that it is always higher than 45%, with peaks as

high as 80%. We further report that classes participating in antipatterns participate,

in average, to 2 antipatterns in ArgoUML, 3 in Eclipse, 2 in Mylyn, and 2 in Rhino and

to, in maximum, between 7 and 9 antipatterns in ArgoUML, 13 and 24 antipatterns in

Eclipse, 6 and 7 antipatterns in Mylyn, and 5 and 7 antipatterns in Rhino. (Detailed

data is available elsewhere [23].)

Table 2 shows the distribution of the antipatterns of interest, detailed in Section

2.2. A cell in the table reports on the left side of the dash (respectively, on its right),

the number of classes in the first release of a given system (respectively, its last), which

participates in a given antipattern, followed by their percentages with respect to the

total numbers of classes. For example, the cell at the intersection of the ArgoUML

column and the AntiSingleton row reports that in its first release, 352 classes were

AntiSingleton, representing 44.44% of the total number of its classes, while in the last

release, only 3 classes were AntiSingleton, representing 0.16% of the total number of
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its classes. Percentages go as high as 51.71% of classes participating in LazyClass in

the first release of Eclipse.

2.1 Research Questions

Our study aims at addressing six null hypotheses, specifically concerning the relations

between classes participating in antipatterns and their: change-proneness (RQ1 and

RQ2), fault-proneness (RQ3 and RQ4), size (RQ5), and kinds of changes (RQ6).

RQ1. What is the relation between antipatterns and change-proneness? We investigate

whether classes participating in at least one antipattern are more change-prone than

others, by testing the null hypothesis: H01: the proportion of classes undergoing at least

one change between two releases is not different between classes in antipatterns or not.

RQ2. What is the relation between kinds of antipatterns and change-proneness? We

analyse whether certain antipatterns imply more changes than others, by testing the

null hypothesis: H02: classes participating in certain antipatterns are not more change-

prone than others.

RQ3. What is the relation between antipatterns and fault-proneness? This research

question focuses on the relation between antipatterns and fault-fixing issues. The null

hypothesis is: H03: the proportion of classes undergoing at least one fault-fixing change

between two releases does not differ between classes participating or not in at least one

antipattern.

RQ4.What is the relation between particular kinds of antipatterns and fault-proneness?

We also analyse the influence of kinds of antipatterns on fault-proneness, by testing

the null hypothesis: H04: classes participating in certain kinds of antipatterns are not

more prone to fault-fixing than other classes.

RQ5. Does the presence of antipatterns in classes relate to the sizes of these classes?

This research question stems from El Emam et al. [15] findings showing that many

metrics correlate to size. Specifically, we study whether the higher change- and–or

fault-proneness of classes participating in antipatterns is due to their sizes (in terms of

LOCs) or to the presence of the antipatterns, by testing the hypothesis: H05: classes

participating in antipatterns are not larger than other classes.

RQ6. What kind of changes are performed on classes participating or not in an-

tipatterns? We study whether classes participating in antipatterns undergo more (or

less) structural changes (addition/removal/change of/to attributes, addition/removal

of methods, or changes to the methods signatures) than other kinds of changes by test-

ing the hypothesis: H06: classes participating in antipatterns do not undergo a number

of structural changes different than other kinds of changes.

Hypotheses H01 to H05 are one-tailed because we are interested in investigating

only whether antipatterns relate to an increase of change-proneness, fault-proneness,

and size. Hypothesis H06 is two-tailed because we investigate whether the presence of

antipatterns is related to a higher or a lower number of structural changes.
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2.2 Independent Variables

We use our previous approach, DECOR (Defect dEtection for CORrection) [30,40,41],

to specify and detect antipatterns. DECOR is based on a thorough domain analysis

of code smells and antipatterns in the literature, from which is built a domain-specific

language. This language uses rules to describes antipatterns, with different types of

properties: lexical (e.g., class names), structural (e.g., classes declaring public static

variables), internal (e.g., number of methods), and the relation among properties (e.g.,

association, aggregation, and composition relations among classes). Using this lan-

guage, DECOR proposes the descriptions of several antipatterns. It also provides algo-

rithms and a framework, DeTeX, to convert antipattern descriptions automatically into

detection algorithms. DeTeX allows detecting occurrences of antipatterns in systems

written in various object-oriented programming languages, such as Java.

Moha et al. [40] showed that the current detection algorithms obtained from DECOR

ensure 100% recall and have precisions between 41.1% and 87% for three antipat-

terns: Blob, SpaghettiCode, and SwissArmyKnife [40]. The detection algorithms for

these three antipatterns have an average accuracy of 99% for the Blob, of 89% for the

SpaghettiCode, and of 95% for the SwissArmyKnife; and a total average of 94%. In

the following, we focus on 13 antipatterns from [6,17]:

– AntiSingleton: A class that provides mutable class variables, which consequently

could be used as global variables.

– Blob: A class that is too large and not cohesive enough, that monopolises most of

the processing, takes most of the decisions, and is associated to data classes.

– ClassDataShouldBePrivate (CDSBP): A class that exposes its fields, thus violating

the principle of encapsulation.

– ComplexClass: A class that has (at least) one large and complex method, in terms

of cyclomatic complexity and LOCs.

– LargeClass: A class that has (at least) one large method, in term of LOCs.

– LazyClass: A class that has few fields and methods (with little complexity).

– LongMethod: A class that has a method that is overly long, in term of LOCs.

– LongParameterList (LPL): A class that has (at least) one method with a too long

list of parameters with respect to the average number of parameters per methods

in the system.

– MessageChain: A class that uses a long chain of method invocations to realise (at

least) one of its functionality.

– RefusedParentBequest (RPB): A class that redefines inherited method using empty

bodies, thus breaking polymorphism.

– SpaghettiCode: A class declaring long methods with no parameters and using global

variables. These methods interact too much using complex decision algorithms. This

class does not exploit and prevents the use of polymorphism and inheritance.

– SpeculativeGenerality (SG): A class that is defined as abstract but that has very

few children, which do not make use of its methods.

– SwissArmyKnife: A class whose methods can be divided in disjunct set of many

methods, thus providing many different unrelated functionalities.

We choose only these antipatterns because (1) they are well-described by Brown [6],

(2) we could find enough of their occurrences in several releases of several of the studied

systems, and (3) they are representative of design and implementation problems with
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data, complexity, size, and the features provided by classes. The specifications of these

antipatterns are outside of the scope of this paper and available in [29].

Our independent variables are the number of classes participating in the 13 an-

tipatterns. In our computations, we use variables APi,j,k, which indicate the number

of times that a class i participates in an antipattern j in a release k. For RQ1 and

RQ3, we aggregate these variables into a Boolean variable APi,k indicating if a class i

participates or not in any antipattern.

2.3 Dependent Variables

Dependent variables measure the phenomena related to classes participating in an-

tipatterns.

RQ1 and RQ2. Change-proneness refers to whether a class underwent at least a

change between release k (in which it was participating in some antipatterns) and the

subsequent release k+1. Changes are identified, for each class in a system, by looking

at commits in their control-version systems (CVS or SVN). For the sake of simplicity,

we assumed to have one class per file. This assumption could introduce an error in

case of non-public top-level classes and inner classes. We did not find any inner class

participating in any antipattern in the analysed releases of the systems. Non-public

top-level classes are rare and did not participate in any antipattern.

RQ3 and RQ4. Fault-proneness refer to whether a class underwent at least a fault-

fixing change between releases k and k+1. Fault fixing changes are documented in text

reports that describe different kinds of problems in a system. They are usually posted

in issue-tracking systems—e.g., Bugzilla for the four studied systems—by users and

developers to warn their community of pending issues with its functionalities; issues in

these systems deal with different kinds of change requests: fixing faults, adding features,

restructuring, and so on. We trace faults/issues to changes by matching their IDs in

the commits [16].

For Mylyn and Rhino, we consider a set of manually-validated and publicly-available

faults [14]. For ArgoUML, issues dealing with fixing faults are marked as “DEFECT”

in the issue tracking system2. For Eclipse, such a “DEFECT” tag was not used and,

given the high number of issues (34,634 between releases 1.0 and 3.4), a manual classifi-

cation is not practical. Thus, we consider issues posted on the Eclipse Bugzilla that (1)

are referred to as “Bug <issueID>” in the CVS commits, (2) have the Resolution field

set to “FIXED” or the Status field set to “CLOSED”, i.e., they indeed required some

changes, and (3) are not tagged as “Enhancement” in the Severity field. Our choice,

however, does not guarantee that all the considered issues are fault-fixing issues.

RQ5. We measure the sizes of classes participating or not in antipatterns using their

LOCs, excluding comments and blank lines. Each classes is associated with its size,

the total number of antipatterns and the kinds of antipatterns in which it participates.

Abstract and native methods and methods declared in interfaces count for zero LOC

as they do not have a body (or have a body not implemented in Java).

RQ6. We count the number of structural and non-structural changes occurring in

antipattern classes vs. other classes between two releases k and k + 1. As in previous

2 http://argouml.tigris.org/issues
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work [2,12], we consider as structural changes those changes that would alter the class

interface, i.e., addition/removal/change of/to attributes, addition/removal of methods,

or changes to the method signatures, i.e., change of return type, exception(s) being

thrown, parameter type, addition/removal/change of parameters. We consider as non-

structual changes those related to method bodies. Changes were identified using an

analyzer developed with JavaCC3 (and used in our previous work), which extracts class

diagram models from source code, and a Perl script, which identifies differences between

two models. Further kinds of changes—e.g., those modifying exception-handling code—

could also be considered, although we opt for a lightweight analysis because (1) we

perform it on all revisions of all classes and (2) our focus is to identify the main

changes affecting classes participating in antipatterns.

2.4 Analysis Method

RQ1 and RQ3. We study whether changes to and faults in a class are related to the

class participating in antipatterns, regardless of the kinds of antipatterns. Therefore,

we test whether the proportions of classes exhibiting (or not) at least one change/fault

significantly vary between classes participating in antipatterns and other classes. We

use Fisher’s exact test [13] for H01 and H03. We did not consider releases where either

only antipattern or non-antipattern classes changed because of a very small number of

changes (e.g., less than 10).

We also compute the odds ratio (OR) [13] indicating the likelihood of an event to

occur, e.g., change. OR is defined as the ratio of the odds p of an event occurring in one

sample, i.e., the set of classes participating in some antipatterns (experimental group),

to the odds q of it occurring in the other sample, i.e., the set of classes participating

in no antipattern (control group): OR =
p/(1−p)
q/(1−q)

. An odds ratio of 1 indicates that

the event (e.g., change) is equally likely in both samples. OR > 1 indicates that the

event is more likely in the first sample (experimental group of classes participating in

some antipatterns) while an OR < 1 indicates the opposite (control group of classes

not participating in any antipatterns).

RQ2 and RQ4. We want to understand the relation of specific kinds of antipatterns

with changes and faults. Let us focus on RQ2 and changes. We use a logistic regression

model [20] to correlate the presence of antipatterns with changes. While in other con-

texts, e.g., [19], such a model was used for prediction purposes; as in [36,45], we use

it as an alternative to the Analysis Of Variance (ANOVA) for dichotomous dependent

variables to test H02 and H04.

In a logistic regression model, the dependent variable is commonly a dichotomous

variable and, thus, it assumes only two values {0, 1}, e.g., changed or not. The multi-

variate logistic regression model is based on the formula:

π(X1,X2, . . . , Xn) =
eC0+C1·X1+...+Cn·Xn

1 + eC0+C1·X1+...+Cn·Xn
(1)

where:

– Xi are characteristics describing the modelled phenomenon, in our case the number

of classes participating in an antipattern of kind i.

3 http://javacc.dev.java.net/
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– 0 ≤ π ≤ 1 is a value on the logistic regression curve. The closer the value is to 1,

the higher is the probability that a class participating in this kind of antipattern

underwent a change.

Then, we count, for each antipattern, the number of times that, across the analysed

releases, the p-values obtained by the logistic regression are significant. We use t = 75%

(as in current state of the art literature [10,44]) to assess whether classes participating

in a specific kind of antipattern have significantly greater odds to change than others:

If these classes are more likely to change in more than t releases, then we say that this

antipattern has a significant impact on increasing the change-proneness.

RQ5. We perform the analysis related to RQ5 in three steps. First, we compare, for

each release, the average size of (1) classes participating in at least one antipattern

and (2) classes participating in no antipattern. We use the Mann-Whitney test and

compute Cohen d effect size [9]. For independent samples and unpaired analyses, the

Cohen d effect size is the difference between the means M1 and M2 divided by the

pooled standard deviation σ =
√

(σ2
1 + σ2

2)/2 of both groups: d = (M1 −M2)/σ. The

effect size is small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8, and large for d ≥ 0.8

[9]. We expect the test results to be statistically significant and the odds ratios to be

greater or equal to 1 because many antipatterns are, according to their definitions,

related to size, e.g., Blob, ComplexClass, and LargeClass.

Second, we perform the same test and compute the same odds ratios between

the set of classes participating in each antipattern and those not participating in any

antipattern. We expect that, for some antipatterns, the test would not be significant

and–or the odds ratios would be lower than 1. Indeed, while the definitions of some

antipatterns directly relate to their size, others specifically target small classes, e.g.,

LazyClass, or are orthogonal to size, e.g., ClassDataShouldBePrivate.

Third, we again perform Fisher’s exact test and compute the odds ratios between

large classes participating or not to size-related antipatterns, i.e., Blob, ComplexClass,

and LargeClass. We single out the classes whose sizes are greater than the 75% per-

centile and divide them in two sets: those participating in the considered antipatterns

and those that do not participate in these antipatterns. We expect that classes partici-

pating in Blob, ComplexClass, and LargeClass antipatterns are not significantly larger

than the largest classes.

RQ6.We again use Fisher’s exact test to compare the proportions of structural changes

in classes participating in antipatterns with those of non-structural changes, also in

classes not participating in any antipattern.

3 Study Results

This section reports the results of our empirical study, which are further discussed in

Section 4. Detailed results can be found in a technical report [23] while raw data is

available on-line4.

4 http://www.ptidej.net/downloads/experiments/emse10
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Table 3 Change-proneness ORs. Releases where Fisher’s exact test did not show significant
differences are highlighted in gray; ORs< 1 are also highlighted in gray.
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0.10.1 4.17 1.0 1.13 1.0.1 10.51 1.4R3 10.41
0.12 7.16 2.0 0.75 2.0M1 10.37 1.5R1 17.98
0.14 6.22 2.1.1 2.59 2.0M2 7.38 1.5R2 17.37
0.16 15.84 2.1.2 1.42 2.0M3 206.60 1.5R3 15.71
0.18.1 10.00 2.1.3 1.15 2.0 14.17 1.5R4 16.19
0.20 26.54 3.0 0.88 2.1 10.89 1.5R41 30.71
0.22 8.83 3.0.1 0.86 2.2.0 11.10 1.5R5 15.51
0.24 15.40 3.0.2 0.89 2.3.0 9.83 1.6R1 24.73
0.26 3.98 3.2 2.19 2.3.1 7.66 1.6R2 12.69
0.26.2 6.75 3.2.1 1.94 2.3.2 24.38 1.6R3 19.95

3.2.2 1.47 3.0.0 9.45 1.6R4 33.05
3.3 2.43 3.0.1 9.85 1.6R5 19.97
3.3.1 1.42 3.0.2 5.31 1.6R6 20.56

3.0.3 8.18
3.0.4 3.77
3.0.5 4.96
3.1.0 10.53
3.1.1 5.59

3.1 RQ1: What is the relation between antipatterns and change-proneness?

Table 3 summarises the odds ratios when testing H01. Each row shows, for each system,

a release number and the ORs of classes participating in at least one antipattern in

that release to exhibit at least one change before the next release. In all releases, except

Eclipse 1.0, Fisher’s exact test indicates a significant difference of proportions between

change-prone classes among those participating and not in antipatterns.

Odds ratios vary across systems and, within each system, across releases. While in

few cases, ORs are close to 1, i.e., the odds is even that a class participating in an

antipattern changes or not, in some pairs of systems/releases, such as ArgoUML 0.20,

Mylyn 2.0M3, or Rhino 1.5R41, ORs are greater than 25. Overall, ORs for Eclipse are

lower than those of other systems, by one or two orders of magnitude. The odd ratios

of classes participating in some antipatterns to change are, in most cases, higher than

that of other classes.

We therefore conclude that, in most cases, there is a relation between antipatterns

and change-proneness: a greater proportion of classes participating in antipatterns

change with respect to other classes. The rejection of H01 and the ORs provide a

posteriori concrete evidence of the impact of antipatterns on change-proneness.

3.2 RQ2: What is the relation between kinds of antipatterns and change-proneness?

Table 4 summarises the results of the logistic regression for the relations between

change-proneness and the different kinds of antipatterns. A cell in the table reports
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Table 4 Number (percentage) of releases where each antipattern significantly correlates with
change-proneness.

Antipatterns

Change Proneness
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AntiSingleton 8 (80%) 5 (38%) 7 (39%) –
Blob 2 (20%) 8 (62%) 9 (50%) –
CDSBP 3 (30%) 7 (54%) 9 (50%) 6 (46%)
ComplexClass 2 (20%) 12 (92%) 2 (11%) –
LargeClass 2 (20%) – 4 (22%) 4 (31%)
LazyClass 5 (50%) 12 (92%) 3 (17%) 1 (8%)
LongMethod 10 (100%) 12 (92%) 17 (94%) 5 (38%)
LPL 9 (90%) 10 (77%) 7 (39%) 3 (23%)
MessageChain 10 (100%) 12 (92%) 18 (100%) 13 (100%)
RPB 9 (90%) 6 (46%) 10 (56%) 5 (38%)
SpaghettiCode – – – –
SG – 3 (23%) 6 (33%) 1 (8%)
SwissArmyKnife – 6 (46%) – –

the number (and percentage) of releases, for a given system, in which the participation

of classes in a given antipattern significantly correlate with change-proneness. For ex-

ample, the cell at the intersection of the ArgoUML column and the AntiSingleton row

indicates that, in 8 releases of ArgoUML out of 10 (80%), classes participating in the

AntiSingleton antipattern were significantly more change-prone than other classes.

From Table 4, we can reject H02 for some antipatterns, i.e., for antipatterns that

are significantly correlated to change-proneness in at least 75% of the releases, high-

lighted in gray. Following our analysis method, only MessageChain has a significant

impact on change-proneness in all systems: classes participating in this antipattern are

more likely to change than classes participating in other or no antipattern in more than

75% of the releases. Other antipatterns have significant impact on a subset of the sys-

tems: LongMethod in ArgoUML, Eclipse, and Mylyn; LongParameterList in ArgoUML

and Eclipse; AntiSingleton and RefusedParentBequest in ArgoUML; Complexclass and

LazyClass in Eclipse.

We conclude that there is a relation between kinds of antipatterns and change-

proneness but not for all antipatterns and not consistently across systems and releases.

3.3 RQ3: What is the relation between antipatterns and fault-proneness?

Table 5 summarises Fisher’s exact test results and ORs for H03. Similarly to Table 3,

each row shows, for each system, a release number and the ORs of classes participating

to at least one antipattern in that release to exhibit at least one fault-fixing change

before the next release. The differences in proportions are significant and thus we can

reject H03 in all cases. The proportion of classes participating in antipatterns and

reported in faults is between 1.32 and 31.29 times larger than that of other classes.

Odds ratios for faults are not always higher than those for changes: although classes

participating in antipatterns are more likely to exhibit fault-fixing changes than other

classes, they seem to be even more likely to undergo restructuring changes in addition

to fault-fixing changes than other classes.

Therefore, we conclude that there is a relation between antipatterns and fault-

proneness; although this relation is not as strong as the relation with change-proneness.
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Table 5 Fault-proneness ORs. Releases where Fisher’s exact test did not show significant
differences are highlighted in gray.
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0.10.1 4.43 1.0 1.14 1.0.1 10.45 1.4R3 6.44
0.12 4.87 2.0 2.06 2.0M1 17.70 1.5R1 31.29
0.14 17.53 2.1.1 2.19 2.0M2 >>300 1.5R2 –
0.16 6.58 2.1.2 2.27 2.0M3 – 1.5R3 13.93
0.18.1 5.33 2.1.3 2.75 2.0 – 1.5R4 9.06
0.20 4.95 3.0 3.30 2.1 – 1.5R41 30.05
0.22 9.42 3.0.1 2.12 2.2.0 – 1.5R5 10.57
0.24 2.25 3.0.2 1.75 2.3.0 – 1.6R1 29.26
0.26 8.08 3.2 3.55 2.3.1 – 1.6R2 –
0.26.2 9.73 3.2.1 2.54 2.3.2 – 1.6R3 –

3.2.2 2.41 3.0.0 – 1.6R4 23.00
3.3 2.90 3.0.1 – 1.6R5 13.29
3.3.1 1.17 3.0.2 – 1.6R6 –

3.0.3 –
3.0.4 –
3.0.5 –
3.1.0 –
3.1.1 –

Table 6 Number (percentage) of releases where each antipattern significantly correlates with
fault-proneness.

Antipatterns

Fault Proneness

A
rg

o
U
M

L

E
c
li
p
se

M
y
ly
n

R
h
in
o

AntiSingleton 5 (50%) 11 (84%) – –
Blob 1 (10%) 6 (46%) – –
CDSBP 2 (20%) 7 (54%) 2 (66%) 3 (33%)
ComplexClass – 13 (100%) 1 (33%) –
LargeClass 3 (30%) – – 3 (33%)
LazyClass – 12 (92%) – 2 (22%)
LongMethod 1 (10%) 13 (100%) – 3 (33%)
LPL 5 (50%) 7 (54%) 2 (66%) 3 (33%)
MessageChain 7 (70%) 10 (77%) 1 (33%) 7 (78%)
RPB 4 (40%) 3 (23%) 1 (33%) –
SpaghettiCode – – – –
SG – 3 (23%) – 1 (11%)
SwissArmyKnife – 3 (23%) – –

3.4 RQ4: What is the relation between particular kinds of antipatterns and

fault-proneness?

Table 6 reports the results of the logistic regression for the relations between fault-

proneness and kinds of antipatterns. Similarly to Table 4, a cell in the table reports the

number (and percentage) of releases, for a given system, in which the participation of

classes in a given antipattern significantly correlates with fault-proneness. For Mylyn,

we could analyse only 3 releases for fault-proneness and for Rhino, only 9 releases,
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because of the limited number of faults occurring in some releases (< 10). We can reject

H04 for MessageChain in Eclipse and Rhino; AntiSingleton, ComplexClass, LazyClass,

and LongMethod in Eclipse.

We conclude that there is a relation between kinds of antipatterns and fault-proneness

but not for all antipatterns and not consistently across systems and releases.

3.5 RQ5: Do the presence of antipatterns in classes relate to the sizes of these classes?

We found that, as expected, classes participating in some specific kinds of antipatterns

are significantly larger than classes not participating in antipatterns (with a medium

to large effect size). (Detailed results are reported in the technical report [23].) Yet, we

observe the following exceptions:

– Classes participating in AntiSingleton are not significantly larger than classes not

participating in any antipattern in 10 out of 18 Mylyn releases;

– Classes participating in LazyClass are significantly smaller than other classes in

all the analysed releases of ArgoUML, Mylyn, and Rhino. This observation was

expected because, by definition, LazyClasses are small;

– Classes participating in RefusedParentBequest are not significantly larger than

classes not participating in any antipattern in 1 out of 10 ArgoUML releases, 15

out of 18 Mylyn releases, and 9 out of 13 Rhino releases;

– Classes participating in SpeculativeGenerality are not significantly larger than

classes not participating in any antipattern in 5 out of 10 ArgoUML releases, all

18 Mylyn releases, and all 13 Rhino releases.

In Eclipse, all kinds of antipatterns have a significantly larger size than classes not

participating in any antipattern, although for the above-mentioned antipatterns the

effect size was generally small while for the others it was medium to small.

Table 7 ORs of change- and fault-proneness for large classes participating in the Blob, Large-
Class, ComplexClass antipatterns with respect to large classes not participating in any antipat-
tern (highlighted values indicate statistical significance of the Fisher’s exact test).

ArgoUML Eclipse Mylyn Rhino

Rel.
ORs ORs

Rel.
ORs ORs

Rel.
ORs ORs

Rel.
ORs ORs

(Changes) (Faults) (Changes) (Faults) (Changes) (Faults) (Changes) (Faults)
0.10.1 – – 1.0 0.98 3.07 1.0.1 0.92 1.09 1.4R3 – –
0.12 – 0.79 2.0 0.73 0.86 2.0M1 5.60 – 1.5R1 – –
0.14 7.81 – 2.1.1 1.79 0.91 2.0M2 1.46 – 1.5R2 5.76 –
0.16 – 3.41 2.1.2 1.78 2.20 2.0M3 – 1.5R3 5.51 17.72
0.18.1 2.32 3.05 2.1.3 1.58 1.04 2.0.0 2.56 1.5R4 – –
0.20 – 0.45 3.0 1.22 1.86 2.1 1.17 1.5R41 – –
0.22 2.64 0.57 3.0.1 0.96 2.01 2.2.0 2.85 1.5R5 3.10 13.52
0.24 5.26 – 3.0.2 0.93 1.08 2.3.0 0.77 1.6R1 1.67 13.52
0.26.2 3.46 1.85 3.2 2.18 3.46 2.3.1 3.89 1.6R2 8.53 –
0.26 3.10 1.32 3.2.1 2.56 2.24 2.3.2 3.95 1.6R3 2.30 –

3.2.2 1.52 2.14 3.0.0 5.39 1.6R4 – –
3.3 8.08 – 3.0.1 1.16 1.6R5 3.63 4.19
3.3.1 2.48 1.35 3.0.2 2.89 1.6R6 – –

3.0.3 1.04
3.0.4 1.66
3.0.5 2.38
3.1.0 –
3.1.1 3.27

Finally, Table 7 reports results of the Fisher’s exact test (highlighted ORs are

statistically significant), comparing change- and fault-proneness of classes having a

size greater than the 75% percentile of the overall size distribution and participating or



15

not in the Blob, ComplexClass, and LargeClass antipatterns. For example, for Eclipse

release 1.0, the ORs of large classes participating (or not) to Blob, ComplexClass, and

LargeClass are 0.98 for change-proneness and 2.12 for fault-proneness. ORs are greater

to 1 in:

1. ArgoUML: 6 out of 10 releases for change-proneness and 4 out of 7 releases for

fault-proneness;

2. Eclipse: 9 out of 13 releases for change-proneness and 8 out of 13 releases for fault-

proneness (plus 2 other cases where the ORs are just above one);

3. Mylyn: 13 out of 15 releases for change-proneness (plus another case where the ORs

is just above one), while it was not possible to get statistically-significant results

for fault-proneness, due to the limited number of detected occurrences;

4. Rhino: 7 out of 8 releases for change-proneness and 4 out of 5 releases for fault-

proneness.

However, the Fisher’s exact test only reported statistical significance in a small

number of cases—due to the limited number of classes having a size above the 75%

percentile of the distribution.

ORs are always above one (in most cases above two) and reach 13.66 every time

the Fisher’s exact test found a statistically-significant difference in the proportions

of changes and fault-fixing changes between classes participating or not in size-related

antipatterns. Therefore, large classes participating in antipatterns change more and are

more fault-prone than large classes not participating in any antipatterns.

We conclude that classes participating in antipatterns are generally larger than

other classes. This conclusion was expected because, many antipatterns, such as Blob,

ComplexClass, LargeClass, or LongMethod, stem from an excessively large size and of

other negative characteristics of the classes. We also conclude that, except for some

releases of the analysed systems, some kinds of antipatterns (AntiSingleton, LazyClass,

RefusedParentBequest, and SpeculativeGenerality) describe symptoms of poor design

that are unrelated to size.

We thus generally conclude that some kinds of antipatterns are related to size as

expected by their definitions but size only does not explain the classes greater change-

and fault-proneness.

3.6 RQ6: What kind of changes are performed on classes participating or not in

antipatterns?

While studying the relation between kinds of antipatterns and change- and fault-

proneness, we also studied the kinds of changes impacting classes participating in

antipatterns. Table 8 reports Fisher’s exact test results and odds ratios for the propor-

tions of structural changes to classes participating in antipatterns with respect to those

of other classes. For simplicity’s sake, and because there are no substantial variations

across releases, we report results obtained by aggregating data from the whole history

of each system, rather than for each release separately.

Table 8 shows that classes participating in antipatterns in Rhino do not undergo

more structural changes than other changes: it is a small system and, therefore, the

different kinds of changes may occur to any class. Although, we can reject H06 for

Eclipse, the OR ≈ 1 downplays this rejection, which we explain by the extensive use

of inheritance in Eclipse [2], leading to few structural changes to classes.
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Table 8 Proportion of changes to antipattern classes vs. other classes: Fisher’s exact test
result and ORs.

Systems p-values ORs
ArgoUML < 0.01 1.22
Eclipse < 0.01 1.03
Mylyn < 0.01 1.19
Rhino 0.08 1.04

Table 9 Summary of our findings.
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Explanations
RQ1 X ∼ X X Future changes could impact several

classes
RQ2 – LongMethod X X X × Complex code likely requires more

changes
RQ2 – MessageChains X X X X Chains of messages possibly increase

the change impact
RQ3 X X X X Antipatterns may increase the risk

that developers introduce faults
RQ4 – MessageChains × X × X Long chains of messages reduce the de-

velopers’ view of the context, which
may lead to more faults

RQ5 X X X X Size, per se, does not explain the
change-/fault-proneness of classes par-
ticipating in antipatterns

RQ6 X X X X Classes participating in antipatterns
are more subject to changes impacting
their interface and, thus, possibly their
change- and fault-proneness

Detailed analysis for different kinds of antipatterns reveal that, for all antipat-

terns except LazyClass in ArgoUML, Mylyn, and Rhino, and RefusedParentBequest

in Eclipse, classes participating in antipatterns undergo more structural changes than

others changes (e.g., changes in the method implementations). The methods implemen-

tations of LazyClasses, as reported in Section 3.2, change to increase their behaviour.

Changes in the method organisations and implementations of RefusedParentBequest

are generally performed to correct them.

We conclude that structural changes occur more often on classes participating to

antipatterns than other changes.

4 Discussion

We now discuss the results using the releases’ histories. We also discuss the relation be-

tween antipattern and developers’ intent and refactoring activities. Table 9 summarises

our findings.
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4.1 Correlations among Antipatterns

We analysed whether a correlation exists between the presence of different antipatterns

and, hence, between the rules and metrics used in their definitions (i.e., the metrics

thresholds and values in each revisions of each system). We used the non-parametric

Spearman correlation, which results indicate that Blob, ComplexClass, and LargeClass

are lowly correlated (0.5 < ρ < 0.7 [9]) in all releases of ArgoUML, Mylyn, and Rhino,

but in none of Eclipse. For all other antipatterns and releases, we obtained no correla-

tion among antipatterns (ρ ≪ 0.5). We expected that we would not find correlations

among antipatterns because their definitions are different and capture different types

of design pitfalls. We also analysed whether we could find a correlation between the

presence of different antipatterns and traditional object-oriented metrics, such as Chi-

damber and Kemerer’s metric suite. As expected, we could not find a correlation that

was consistent across the systems and their releases because antipatterns are higher

level than metrics, thus showing that antipatterns, albeit detected using metrics, bring

different information to developers than metrics.

4.2 Statistical Significance/Unexpected ratios

Tables 3 and 5 show that, in most cases, classes belonging to antipatterns are more

change- and fault-prone than others. However, there is a case were H01 could not be

rejected for lack of statistical significance and four cases with unexpected ORs, which

indicate that classes participating in antipatterns changed less than others (highlighted

in the tables).

We explain the lack of statistical significance for Eclipse 1.0 by the major changes

between releases 1.0 and 2.0, which imply that many classes were added/changed

(Eclipse size increased from 781 to 1,250 KLOCs and 4,647 to 6,742 classes), irre-

spective of their participation in antipatterns.

The first case with an unexpected OR concerns classes having changed between

Eclipse 2.0 and 2.1.1, with OR = 0.75. Eclipse 2.1 introduced several new features with

respect to 2.0, including navigation history, sticky hovers, prominent status indication,

and so on.

The second, third, and fourth cases concern classes having changed between releases

3.0 and 3.2. Eclipse 3.0 was a major improvement over the 2.x series, with a new

runtime platform implementing the OSGi R3.0 specifications5 to become a Rich Client

Platform and support any type of tooling (not necessarily an IDE). Eclipse 3 had many

problems at first, corrected in the subsequent 3.0.1, 3.0.2, and 3.2 releases. No less than

15, 153 − 11, 166 = 3, 987 classes were added between 3.0 and 3.2, which did not only

participate to antipatterns. Eclipse size increased by 3, 271− 2, 260 = 1, 011 KLOCs.

4.3 Changes/Faults Odds Ratios

For ArgoUML, change-proneness ORs are never smaller than 3.98. The highest OR

occurs between releases 0.20 and 0.22, period during which a major restructuring6

5 http://www.eclipse.org/osgi/
6 http://argouml.tigris.org/servlets/NewsItemView?newsItemID=1675
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took place with many faults fixed and 293 issues resolved. ORs for fault-fixing are high

but often lower than those for change-proneness, which suggests that antipatterns are

potential symptoms of change-proneness, but not necessarily of fault-proneness: they

make a system harder to maintain because future changes will likely impact several

classes, but only indirectly impact fault-proneness. The highest fault-related OR occurs

between releases 0.14 and 0.16, period during which many fault-fixing activities took

place. Release 0.16 is the release with the highest number of fault-fixing changes [23]:

851, the second-highest is release 0.26 with 591.

For Eclipse, we found lower ORs than those of other systems for both change- and

fault-proneness. We explain such a difference by the fact that ∼ 80% of Eclipse classes

participate in at least one antipattern, with a higher proportion of these classes to be

LazyClasses (e.g., 51.71% in the first release). Therefore, we expected to find lower

ORs because Eclipse includes many more classes participating in antipatterns than

not. The high proportion of LazyClasses conforms to the results of previous studies [2],

which observed that Eclipse is designed to evolve through sub-classing, which, in turn,

leads to a lower class change-proneness.

Eclipse is the only system with greater ORs for fault/issue- than change-proneness.

We recall that we considered issues, as discussed in Section 2.3, and that as discussed

in our previous study [1], a majority of Eclipse issues are likely not related to faults

but to other maintenance activities, such as restructuring. Thus, it is consistent to find

more classes impacted by issues with respect to faults only.

Verifying H01 for Mylyn between releases 2.0M3 and 2.0 results in an extreme

OR = 206.60, which we explain by the amount of issues fixed between the releases:

3047. Table 5 shows that antipatterns are correlated with fault-fixing changes. The

OR reflects this relation plus that with other changes unrelated to faults, such as

restructuring, which impacted classes in antipatterns.

For Rhino, ORs for change-proneness range between 10.41 in release 1.4R3 and

33.05 in 1.6R4, two numbers which we explain by (1) the number of new features added

in release 1.5R1: many classes not participating in antipatterns were added/changed

and (2) the number of issues between releases 1.6R3, 1.6R4, and 1.6R5: respectively

4, 7, and 248. More faults have been filled against 1.6R4 than other releases, thus

explaining the change of ORs.

4.4 Kinds of Antipatterns and Changes/Faults

Tables 4 and 6 show that antipatterns impact change- and fault-proneness but that

we could not reject H02 or H04 for all of them, in particular LargeClass, Blob, Class-

DataShouldBePrivate, SpaghettiCode, SpeculativeGenerality, and SwissArmyKnife. We

explain this fact by the low number of classes participating in these antipatterns; for ex-

amples, on average, in Eclipse, there are 479 LargeClasses for 11,618 classes per release

and in ArgoUML, 80 for 960 classes per release [23]. The number of occurrences of the

SpaghettiCode is even lower, with, on average, 2 per Eclipse release. No SpaghettiCode

was found in ArgoUML, Mylyn, and Rhino.

Eclipse, ArgoUML, Mylyn, and Rhino use extensively object orientation. They

“divide to conquer”, which helps to avoid: Blob, which is a class that knows/does

7 http://eclipse.org/mylyn/new/new-2.0.html
8 https://bugzilla.mozilla.org/buglist.cgi?query_format=specific&order=

relevance+desc&bug_status=__all__&product=Rhino&content={1.6R3|1.6R4|1.6R5}
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too much; LargeClass and SwissArmyKnife, which are complex classes that provides

too many services; and SpeculativeGenerality, which is an abstract class with very

few children. The use of polymorphism and encapsulation explains the few number

of ClassDataShouldBePrivate, which occurs when the data encapsulated by a class is

public, as well as the SpaghettiCode, which is a class with too many long methods with

too many branches.

Among the remaining antipatterns, we rejected, for MessageChain, H02 for all

systems and H04 for Eclipse and Rhino. The MessageChain antipattern characterises

classes that use long chains of calls to perform their functionality, which makes them

dependent on classes “far” from each other. Finding many occurrences of the Mes-

sageChain is not surprising in Eclipse and Rhino. Eclipse has thousands of classes;

developers fixing issues are likely to touch many classes because of their dependen-

cies with one another and the likelihood of faults related to these dependencies is high.

Rhino is small but the classes forming its parse tree and interpreter are tightly coupled.

The other antipatterns satisfy the conditions to reject H02 or H04 for at least one

system. By tracking their occurrences through releases, we found that antipatterns

are generally removed from the systems while new ones are introduced. Thus, some

antipatterns are in small number or are absent in some releases; thus, the logistic

regression analysis indicated that some antipatterns are statistically significant only in

some releases.

Classes participating in the antipatterns ComplexClass and LazyClass are more

change- and fault-prone than others in Eclipse. ComplexClass characterises classes

with a higher number of complex methods than the average class, thus developers

adding new features or fixing issues are more likely to touch these classes, which con-

sequently increases their likelihood to have faults. This observation confirms Fowler

and Brown’s warnings about complex classes. Lazy classes tend to be removed or

changed to increase their behaviour, while others are introduced: there were 2,765 lazy

classes in Eclipse 1.0 (59% of the system), 8,967 in 3.3.1 (52%). Class org.eclipse-

.search.internal.core.SearchScope, for example, was a lazy class in 1.0 but, in 3.0,

2 methods and 2 constructors were added and the inner class WorkbenchScope was re-

moved. New lazy classes, e.g., org.eclipse.team.internal.ccvs.ui.actions.Show-

EditorsAction, were introduced.

Classes participating in AntiSingleton are more fault/issue-prone in Eclipse and

more change-prone in ArgoUML than other classes. They are generally removed from

the system or changed. In Eclipse, 16% of the AntiSingleton classes were removed

between releases 1.0 and 3.0 and only 53% of the classes were still AntiSingleton in

that release; the other classes were changed. For example, all methods of org.ecli-

pse.compare.internal.CompareWithEditionAction, an AntiSingleton, were removed

between releases 1.0 and 3.0 and the class became a LazyClass with no behaviour.

We can reject H02 for LongMethod for ArgoUML, Eclipse, and Mylyn, and H04

for Eclipse. LongMethod classes are more change-prone than any other class, and more

fault-prone than other Eclipse classes, possibly because such classes are complex and

thus more likely to change to fix issues. Faults are also more likely to be introduced when

changing these classes due to their complexity. Moreover, we observe that LongMethod

classes keep on participating in this antipattern during their evolution and are, in

general, central to the system core features. Previous studies, e.g., [2], confirm that

central classes are more change-prone.

Classes participating in RefusedParentBequest are more change-prone than others

in ArgoUML, possibly due to the need for re-organising badly organised hierarchies:
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this antipattern occurs when a subclass does not use attributes and–or public/pro-

tected methods inherited from its parent. We expected this results because ArgoUML

implements deep hierarchies of models, diagram elements, and tools.

Although classes participating in antipatterns are more change- and fault-prone

than other classes; in some situations, an antipattern may be the best and possibly

only way to implement some requirements and–or functionalities. For example, one

of the LargeClass in Eclipse is class org.eclipse.swt.internal.win32.OS, which is

the unique access point to the underlying Windows platform for the Standard Wid-

get Toolkit. While the class is large, it provides a unique access point to non-object-

oriented, platform-dependent resources, thus increasing portability and possibly effi-

ciency.

5 Threats to Validity

With our study, we show that antipatterns do impact the change- and fault-proneness

of classes and that certain kinds of antipatterns have a greater impact than others.

However, we do not claim that antipatterns cause changes and faults. Indeed, our

study cannot say anything about the reasons for classes to have antipatterns and,

consequently, the reasons for changes/faults to occur/appear in these classes. We only

empirically verified that classes with antipatterns are more change- and fault-prone

that others, thus confirming the conjecture in the literature.

In addition, some parts of the source code of a system will always change as new

functionalities are added and as faults are fixed. Thus, we cannot use only the corre-

lation between antipatterns and change proneness to predict which classes will change

in the future. Indeed, the fact that some classes are more likely to change in a release

has complex reasons that are beyond the scope of this paper, as already noted by

Zimmermann et al. [50].

We now discuss the threats to validity of our study following the guidelines for case

study research [48]. Construct validity threats concern the relation between theory and

observation; in this study, they are mainly due to measurement errors. The identifica-

tion of changes is reliable because based on the CVS/SVN change logs. Yet, it may not

reflect exactly the commits related to a (fault-fixing) change and developers’ efforts

accurately because developers follow different patterns for committing their changes,

e.g., from committing changes as faults are fixed to committing all changes once a

week. However, these varying patterns do not affect our measure of change-proneness

because we just observed whether a class underwent at least one change during a given

period of time.

We were able to identify fault-fixing changes for ArgoUML, Mylyn, and Rhino

using an existing classification [14]. The only cases where some fixed issues might

not be related to faults is Eclipse, as we pointed out in our previous work [1]. We

mitigated the use of possibly erroneous faults by discarding issues explicitly labeled as

“Enhancements” and focusing on issues marked as “FIXED” or “CLOSED” because

they required some changes. It is unlikely, in Eclipse, that hard-to-fix issues would stay

longer “OPENED” than others, because Eclipse is being backed up by IBM, which

strives to offer a stable product.

We did not include release 2.1 of Eclipse but its inclusion is unlikely to change our

results: between releases 1.0 and 2.0, we observed 11,632 class change commits, and

1,541 fault fixings; between 2.0 and 2.1, 21,211 class change commits and 1,756 fault
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fixing; while between 2.1 and 2.1.1 only 3,664 change commits and 240 fault fixings.

We thus observed that the number of committed changes and fixed faults between

release 2.1 and 2.1.1 is about one order of magnitude smaller than those numbers

between any other two subsequent releases. Moreover, we analyzed the odds ratios of

classes participating in antipatterns to exhibit changes/faults, with respect to classes

not participating in antipatterns, between releases 2.1 and 2.1.1. The Fischer’s exact

test indicated a significant difference, with odds ratios of 2.59 for change proneness and

of 1.59 for fault proneness, thus consistent with the results obtained when analyzing

other pairs of subsequent releases.

Finally, we observe that DECOR includes its authors’ subjective understanding

of the antipatterns and that the accuracy of its detection algorithms is not perfect

[40]. DECOR accuracy impacts our results because we may have classified a class not

participating in an antipattern as participating in it and vice-versa. Other techniques

and tools should be used to confirm our findings.

Threats to internal validity do not affect this study, being an exploratory study [48].

We do not claim causation, but relate the presence of antipatterns with the occurrences

of changes, faults, and issues. Nevertheless, we tried to explain—by looking at specific

changes, commit notes, and change histories—why some antipatterns could have been

the cause of changes/issues/faults. We are aware that antipatterns can be dependent to

each other and relied on the logistic regression model-building procedure to select the

subset of non-correlated antipatterns. When studying antipatterns, we did not exclude

that, in a particular context, an antipattern can be the best way to implement or

design a (part of a) system. For example, automatically-generated parsers are often

Spaghetti Code, i.e., very large classes with a high number of very long methods with

many branches. However, this observation does not impact our study because we only

consider antipatterns as warnings.

Conclusion validity threats concern the relation between the treatment and the

outcome. We paid attention not to violate assumptions of the performed statistical

tests. Also, we mainly used non-parametric tests that do not require to make assump-

tion about the data set distribution. For Mylyn, we are aware that fault-proneness is

analysed on only 3 releases for which the manual fault classification is available [14],

thus it would be difficult to draw strong conclusions for this system about the relation

between antipatterns and fault-proneness.

Reliability validity threats concern the possibility of replicating this study. We at-

tempted to provide all the necessary details to replicate our study. Moreover, the source

code repositories and issue-tracking systems of the studied systems are available to ob-

tain the same data. The raw data used to compute the statistics is available on-line4.

Threats to external validity concern the possibility to generalise our results. First,

we studied four systems having different sizes and belonging to different domains. Nev-

ertheless, further validation on a larger set of systems is desirable, considering systems

from different domains, as well as several systems from the same domain, to better

analyze the cross-domain and inter-domain influence of antipatterns on change- and

fault-proneness. Second, we used a particular yet representative subset of antipatterns.

Different antipatterns could lead to different results in future work.
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6 Related Work

We now discuss work on antipatterns, design patterns, and metrics, in relation to

software evolution.

Code Smells/Antipatterns Definition and Detection. The first book on “an-

tipatterns” in object-oriented development was written in 1995 by Webster [47]; his

contribution includes conceptual, political, coding, and quality-assurance problems.

Riel [34] defined 61 heuristics characterising good object-oriented programming to as-

sess a system quality manually and improve its design and implementation. Beck [17]

defined 22 code smells, suggesting where developers should apply refactorings. Mäntylä

[27] and Wake [46] proposed classifications for code smells. Brown et al. [6] described 40

antipatterns, including the well-known Blob and Spaghetti Code. These books provide

in-depth views on heuristics, code smells, and antipatterns aimed at industrial and aca-

demic audiences. They are the basis of all approaches to detect (semi-)automatically

code smells and antipatterns, such as DECOR [40] used in this study.

Several approaches to specify and detect code smells and antipatterns exist in the

literature. They range from manual approaches, based on inspection techniques [42],

to metric-based heuristics [28,31,33], using rules and thresholds on various metrics or

Bayesian belief networks [39].

Some approaches for complex software analysis use visualisation [11,35]. Visualisa-

tion is an interesting compromise between fully automatic detection techniques, which

are efficient but loose track of the context, and manual inspections, which are slow

and subjective [24]. However, visualisation requires human expertise and is thus time-

consuming. Other approaches perform fully automatic detection and use visualisation

techniques to present their results [25,43].

This previous work significantly contributed to the specification and detection of

antipatterns. The approach used in this study, DECOR, builds on this previous work

to offer a method to specify and automatically detect antipatterns.

Code Smells/Antipatterns and Software Evolution. Deligiannis et al. [21,22]

proposed the first quantitative study of the relation between antipatterns and software

quality. They performed a controlled experiments with 20 students on two systems to

understand the impact of God Classes on the understandability and maintainability of

systems. The results of their study suggested that God Classes affect the evolution of

design structures and considerably affects the subjects’ use of inheritance.

Du Bois et al. [5] showed that the decomposition of God Classes into a number of

collaborating classes using well-known refactorings can improve comprehension. They

did not consider source code evolution phenomena.

Li et al. [26] investigated the relationship between the probability of a class to be

faulty and some antipatterns based on three versions of Eclipse and showed that classes

with the antipatterns God Class, Shotgun Surgery, and Long Method have a higher

probability to be faulty than other classes. They concluded on the need for broader

studies to validate their results. We provide such a broader study by studying the

impact of 13 antipatterns on change- and fault-proneness in four systems.

Olbrich et al. [32], analysed the historical data of Lucene and Xerces over several

years and concluded that God Classes and Shotgun Surgery have a higher change

frequency than other classes; with God Classes featuring more changes. They neither

performed an analysis to control the effect of the size on their results nor studied the

kinds of changes affecting these antipatterns.
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Using Azureus and Eclipse, Khomh et al. [36] studied the impact of classes with

code smells on change-proneness and the particular impact of certain code smells. They

showed that the likelihood for classes with code smells to change is very high, except

in a few explainable cases. Some of the studied code smells are similar to some of the

antipatterns studied in this paper, although antipatterns identify poor design solutions

at a higher level of abstraction than code smells. Considering that code smells make

classes more change-prone, it is natural that classes having antipatterns are also more

change-prone than classes without antipattern. However, the study reported in this

paper was necessary to confirm this relation because previous work did not test the

different impact between having one, two, or more particular code smells. It could

have been possible that having some combinations of code smells could have rendered

classes more difficult to change and, consequently, less change-prone than others. Also,

in this paper, we add three additional systems (ArgoUML, Mylyn, and Rhino), we

study fault-proneness in addition to change-proneness, and we analyse the particular

kinds of changes occurring on classes participating in certain antipatterns.

This previous work raised the awareness of the community towards the impact of

code smells and antipatterns on software development. We build on this previous work

and propose a more detailed and extensive empirical study of the impact of antipatterns

on code evolution phenomena.

Design Patterns and Software Evolution. While antipatterns are poor design

choices, design patterns are recurring solutions to design problems, increasing reusabil-

ity, expandability, and understandability [18]. Several authors studied the impact of

design patterns on systems. Vokac [45] analysed the corrective maintenance of a large

commercial system over three years and compared the fault rates of classes that par-

ticipated in design patterns with those of other classes. He noticed that participating

classes were less fault-prone than others with differences in fault rates ranging from 63

percent to 154 percent on average. He also noticed that the Observer and Singleton

patterns are correlated with larger classes; that classes playing roles in Factory Method

were more compact, less coupled, and less fault-prone than others classes; and that no

clear tendency existed for Template Method. His work provided the first quantitative

evidence of a relationship between design patterns and the fault-proneness of systems.

Bieman et al. [4] analysed four small and one large systems to evaluate the impact

of design patterns on change-proneness and concluded that participating classes are

rather more change-prone. Khomh and Guéhéneuc [37] performed an empirical study

of the impact of the 23 design patterns from [18] on ten different quality characteristics

and concluded that patterns do not necessarily promote reusability, expandability, and

understandability. Other studies focused on the change-proneness and resilience to

change of design patterns [2] and of classes playing a specific role in design patterns

[12]. They concluded that design patterns and change-proneness are related.

In our previous work [38], we studied the impact on classes of playing zero, one,

and two or more roles in design motifs. We used several metrics, including the number

of past and future changes and the number of faults, to study the impact of playing

roles. We showed, using a representative population of classes, that classes playing one,

two or more roles are more change-prone than classes playing zero roles. We could not

find any statistically significant impact of playing one role vs. two roles on change-

and fault-proneness but classes playing two roles changed 1.52 times more than classes

playing one role. We can relate the impact on class change- and fault-proneness of

participating in two or more antipatterns with the impact of playing two or more roles
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in design motifs. Indeed, in both cases, the impacted classes are bigger than others

and play either a central role in the functioning of the system (design motifs) or in

the maintenance of the system (antipatterns). Future work should study the statistical

relations between design motifs and antipatterns.

While this previous work investigated the impact of design patterns, we study the

impact of antipatterns on code evolution phenomena. Vokac’s work inspired this study

in the use of logistic regression to analyse the correlations between antipatterns and

change- and fault-proneness.

Metrics and Software Evolution. Several studies, such as Basili et al.’s seminal

work [3], used metrics as quality indicators. Cartwright and Shepperd [7] conducted

on an industrial C++ system (over 133 KLOCs) an empirical study that supported

the hypothesis that classes in inheritance relations are more fault-prone than others.

Consequently, Chidamber and Kemerer (C&K) DIT and NOC metrics [8] could be

used to find classes likely to have higher fault rates. Gyimothy et al. [19] compared

the capability of sets of C&K metrics to predict fault-prone classes in Mozilla, using

logistic regression and other machine learning techniques. They concluded that CBO

is the most discriminating metric. They also found LOC to discriminate fault-prone

classes well. Zimmermann et al. [49] conducted an empirical study on Eclipse showing

that a combination of complexity metrics can predict faults and that the more complex

the code, the more faults. El Emam et al. [15] showed that, after controlling for the

confounding effect of size, the correlation between metrics and faults disappeared: many

metrics are correlated with size and, therefore, do not bring more information to predict

fault-proneness than size.

In our study, we relate change- and fault-proneness to antipatterns rather than to

metrics and control for the size effect. We do not claim that antipatterns are better

predictor of change- and fault-proneness than metrics: we use them as abstractions of

metrics, thus likely to be better indicators than metrics for developers because they

refer to specific design and implementation styles. Antipatterns can tell the developers

whether a design choice is “poor” or not, by means of thresholds defined over metrics

and of lexical information.

For example, the Blob is defined by imposing some empirical thresholds upon val-

ues of cohesion metrics and other metrics, as shown in Listing 1, suggesting to the

developers whether the class lack cohesiveness, is too large, and is associated to data

classes. If we were to provide developers only with the values of LCOM5, NAD, and

NMD, then they would have to judged by themselves whether such values are excessive

or not and warrant the classes has being tagged as a Blob.

1 R U L E _ C A R D : Blob {
2 R U L E : Blob { A S S O C : a s s o c i a t ed F R O M : mainClass O N E T O : DataClass M A N Y } ;
3 R U L E : mainClass { U N I O N LargeClassLowCohesion Cont ro l l e rC la s s } ;
4 R U L E : LargeClassLowCohesion { U N I O N LargeClass LowCohesion } ;
5 R U L E : LargeClass { ( M E T R I C : NMD + NAD, V E R Y _ H I G H , 0) } ;
6 R U L E : LowCohesion { ( M E T R I C : LCOM5, V E R Y _ H I G H , 20) } ;
7 R U L E : Cont ro l l e rC la s s { U N I O N

8 ( S E M A N T I C : M E T H O D N A M E , {Process , Control , Ctrl , Command, Cmd,
9 Proc , UI , Manage , Drive })

10 ( S E M A N T I C : C L A S S N A M E , {Process , Control , Ctrl , Command, Cmd,
11 Proc , UI , Manage , Drive , System , Subsystem }) } ;
12 R U L E : DataClass { ( S T R U C T : M E T H O D _ A C C E S S O R , 90) } ;
13 } ;

Listing 1 Specification of the Blob Antipattern
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Another important issue about the potential usefulness of antipatterns is whether

they provide more information than size. El Emam et al. [15] found that many metrics

are correlated to size, thus antipatterns could also be correlated to size because they

use metrics. However, as discussed in RQ5 (Section 3.5), we found that this is not

the case for many antipatterns, i.e., classes participating in some kinds of antipatterns

are not significantly larger than other classes. Moreover, large classes participating in

antipatterns are generally more change- and fault-prone than other large classes.

7 Conclusions and Future Work

In this paper, we provided empirical evidence of the negative impact of antipatterns

on classes change- and fault-proneness in four systems: ArgoUML, Eclipse, Mylyn, and

Rhino. We studied the odds ratios of changes, faults, and issues on classes participating

(or not) in 13 antipatterns in (overall) 54 releases of the four systems. We showed,

through the five research questions RQ1–4, that classes participating in antipatterns

are significantly more likely to be subject to changes and to be involved in fault-fixing

changes (issue-fixing changes for Eclipse) than other classes. We also showed that

size alone cannot explain the participation of classes to antipatterns with RQ5 and,

thus, that antipatterns bring additional, complementary information to developers to

analyse their systems. We also studied with RQ6 the kinds of changes that impacted

classes participating in antipatterns and other classes and found that, in ArgoUML

and Mylyn, structural changes are more likely to occur in classes participating in

antipatterns (although odds ratios are not high (≈ 1.2)) than in other classes, while it

is not the case for Eclipse and Rhino. Furthermore, we analysed the correlations among

antipatterns and found that the Blob, ComplexClass, and LargeClass are correlated

with one another in all releases of ArgoUML, Mylyn, and Rhino, but in none of Eclipse.

As expected, other antipatterns are unrelated.

This exploratory study provides, within the limits of its validity, evidence that

classes participating in antipatterns are more change- and fault/issue-prone than classes

not participating in antipatterns. The study also provides evidence to practitioners that

they should pay attention to systems with a high number of classes participating in

antipatterns, because these classes are more likely to contain faults and to be the

subject of their change efforts. More specifically, managers and developers can use

these results to guide maintenance activities: for example, they can recommend their

developers to avoid MessageChain as this antipattern is consistently related with high

fault and change rates.

Future work includes replicating this study on industrial systems, other than Eclipse,

on systems developed using different languages, and with different antipatterns. We are

also interested in studying to what extent similar systems—e.g., development environ-

ments, parser generators, productivity tools—exhibit similar relationships between the

presence of antipatterns and code change-/fault-proneness. We also plan to study the

categorisation of classes as change-prone, error-prone, or none, and compute Type I

and II errors to assess whether antipatterns perform better than metrics.

Future work also includes studying further the relations between antipatterns and

other characteristics of systems, such as their architecture and the use of design pat-

terns. Moreover, it would be desirable to use antipatterns—other than metrics—to

build more accurate/informative change- and fault-prediction methods. Last, but not

least, further investigation, devoted to mine change logs, mailing lists and issue re-
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ports, is desirable to seek evidence of cause–effect relationships between the presence of

antipatterns—or the need to remove them—and the class change- and fault-proneness.
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19. T. Gyimóthy, R. Ferenc, and I. Siket. Empirical validation of object-oriented metrics on

open source software for fault prediction. IEEE Trans. Software Eng., 31(10):897–910,
2005.

20. D. Hosmer and S. Lemeshow. Applied Logistic Regression (2nd Edition). Wiley, 2000.



27

21. D. Ignatios, S. Ioannis, A. Lefteris, R. Manos, and S. Martin. A controlled experiment
investigation of an object oriented design heuristic for maintainability. Journal of Systems
and Software, 65(2), February 2003.

22. D. Ignatios, S. Martin, R. Manos, and S. Ioannis. An empirical investigation of an object-
oriented design heuristic for maintainability. Journal of Systems and Software, 72(2),
2004.
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