Empirical Software Engineering manuscript No.
(will be inserted by the editor)

An Exploratory Study of API Changes and Usages based
on Apache and Eclipse Ecosystems

Wei Wu - Foutse Khomh - Bram Adams -
Yann-Gaél Guéhéneuc - Giuliano Antoniol

Received: date / Accepted: date

Abstract Frameworks are widely used in modern software development to reduce
development costs. They are accessed through their Application Programming
Interfaces (APIs), which specify the contracts with client programs. When frame-
works evolve, API backward-compatibility cannot always be guaranteed and client
programs must upgrade to use the new releases. Because framework upgrades are
not cost-free, observing API changes and usages together at fine-grained levels
is necessary to help developers understand, assess, and forecast the cost of each
framework upgrade. Whereas previous work studied API changes in frameworks
and APT usages in client programs separately, we analyse and classify API changes
and usages together in 22 framework releases from the Apache and Eclipse ecosys-
tems and their client programs. We find that (1) missing classes and methods
happen more often in frameworks and affect client programs more often than the
other API change types do, (2) missing interfaces occur rarely in frameworks but
affect client programs often, (3) framework APIs are used on average in 35% of
client classes and interfaces, (4) most of such usages could be encapsulated locally
and reduced in number, and (5) about 11% of APIs usages could cause ripple
effects in client programs when these APIs change. Based on these findings, we
provide suggestions for developers and researchers to reduce the impact of API
evolution.

1 Introduction

Object-oriented frameworks are widely used in software systems today [1]. They
reduce development time and increase the user-perceived quality of programs
through the reuse of existing code, which should be reliable and stable [2]. As
an added benefit, frameworks are updated by their developers [3] to cope with
new requirements or patch security vulnerabilities, while the users of frameworks
can focus on their own client programs.

Wei Wu, Foutse Khomh, Bram Adams, Yann-Gaél Guéhéneuc, Giuliano Antoniol,
DGIGL, Ecole Polytechnique de Montréal, Canada

2 Wei Wu et al.

However, client-program developers must also upgrade regularly to new releases
of frameworks in addition to maintaining their own programs. New releases of
frameworks include bug fixes and new features and also protect client programs
from security issues. These framework upgrades can be costly: Raemaekers et al.
[1] report about the upgrade of the authentication framework of a software system
that ended up consuming a whole week of work, even though developers were using
automated tests to verify their upgraded client program. In Linux Debian, it took
developers seven weeks to upgrade Perl from 5.10 to 5.12%.

Frameworks are used by client programs through their Application Program-
ming Interfaces (APIs), which specify sets of functionalities. Adapting to API
changes is the first task that client-program developers must perform in the up-
grading process. This task—and its cost—depends on both the types of API
change, i.e., which and how APIs are changed between two releases of a frame-
work, and on the API usages in client programs, i.e., how and how much these
changed APIs are used.

For example, developers can easily adapt their client programs to a new frame-
work version that moved a class from one package to another, if it is used only
locally in one method, where the opposite holds for a new version that removes
of a class that is being used as parameter type in dozens of methods. To adapt
to the latter change, developers must find a replacement for the removed class,
re-implement it, or modify all their methods, while to adapt to the former, they
only need to update the package name of the class in one file. This example shows
that, given the sheer numbers and sizes of today’s frameworks and client programs
and given the sizes and distributions (space, time) of today’s development teams,
developers face challenges assessing the impact of API changes.

Hence, developers need tools to collect facts about both API changes between
framework releases and API usages in their client programs to assess API changes
and upgrade costs. However, to the best of our knowledge, most previous works
and existing tools focus either on API changes or API usages, separately. Des
Rivieres? discussed in detail API contract compatibility and classified API changes
according to the elements of Java APIs, such as package, class, method, and so
on. However, he did not investigate the distributions of API change types in client
programs. Dietrich et al. [4] investigated the differences between Java compile-
time and link-time compatibility in the Qualitas corpus [5] and reported that
such incompatibilities exist but affect client programs rarely. Businge et al. and
others [6-8] studied API usages but did not consider potential changes in these us-
ages caused by framework evolution. Existing tools help developers either for API
change detection, (e.g., Java API Compliance Checkers) or API usage detection
(e.g., Tattletale?), but not both. Only few works studied API changes and usages
together. Besides Dietrich et al. [4], Robbes et al. [9] conducted a study on how
developers react to API deprecation in the Smalltalk Squeak/Pharo ecosystem.
Their work is limited to one specific API change.

Therefore, we propose ACUA (API Change and Usage Auditor) [10] to analyse
API changes and usages together in Java frameworks and client programs. On the

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=619117
http://wiki.eclipse.org/Evolving_Java-based_APIs_2/
http://ispras.linuxbase.org/index.php/Java_API_Compliance_Checker

1
2
3
4 http://tattletale.jboss.org/

API Changes and Usages in Apache and Eclipse 3

one hand, ACUA uses Des Rivieres’ definitions of API change types?, considering
public and protected Java software entities, such as classes, interfaces and methods,
as APIs.

Since the three types of APIs are the most important program entities [11],
ACUA detects their change types instead of the whole Des Rivieres’ classifications.
On the other hand, ACUA considers five possible usages of framework APIs inside
the APIs of a client program: (1) extending framework classes, (2) implementing
framework interfaces, and using framework reference types either as (3) generic
types in templates, (4) method return types, and—or (5) formal parameter types.

We call these five types of API usages API-injection usages because frame-
work APIs become part of (“are injected into”) the APIs of the client programs.
API-injection usages are different from local API usages, e.g., in method bodies
as illustrated in the example before. Upon changes to the framework APIs, lo-
cal API changes would require only local changes to the client-program method
bodies while API-injection usages would require changes to any client methods
using the methods and—or reference types of the client programs that depend on
the framework APIs. In other words, these changes would propagate through the
API-injection usages to other parts of the client programs and hence potentially
would be more costly.

ACUA can report which APIs are changed between two releases of a framework
are used in client programs, where and how this is done. With these lists of used
APIs and categorised API changes, developers can assess the extent of the changes
needed to adapt their client programs, while researchers can know which types of
API change types impact more frequently client programs and, hence, propose
mitigating techniques: we will discuss how encapsulating framework APIs with
composition [12] could reduce the impact of API changes and how existing API
change-rule building approaches, such as SemDiff [13] and AURA [14], can help
developers find replacements to missing classes and methods.

We apply ACUA on 22 framework releases within two ecosystems, Apache and
Eclipse, and their internal and third-party client programs. We find that the most
common types of API change are missing classes and methods. We also find that
those two changes affect client programs more often than the other types of API
changes. The other common API change types in frameworks differ from those
affecting client programs the most, which is important when documenting API
changes or developing tools to support framework upgrading.

On average, in our data set, the APIs of a framework are used by 35% of
its client classes and interfaces, but most of such usages could be eliminated by
applying certain design patterns, such as Adapter and Facade [2]. About 14% and
8% of the APIs in the Apache and Eclipse frameworks in our data set, respectively,
are injected in the client program APIs. Also, we find that there is a correlation
between API changes and API-injection usages in Apache internal client programs
where Add Abstract Method, Moved Interface, and Change Type Kind are the
three API change types that impact framework APIs injected into client program
APIs.

The remainder of the paper is organised as follows. Section 2 introduces back-
ground information. Section 3 describes ACUA, the tool used in the exploratory
study. Section 4 presents the data sets and reports the results of the study. Section
5 discusses threats to validity while Section 6 summarises and contrasts our work
with previous work. Finally, Section 7 concludes and introduces future work.

4 Wei Wu et al.

2 Background

In this section, we first present the background information about API changes and
usages, the definitions, and the statistical tests related to this study and introduce
the research questions in the end.

2.1 API Changes

Frameworks provide their services through APIs. These APIs may change during
the evolution of frameworks. Based on the Java Language Specification® and his
experience within the development of Eclipse, Des Rivieres? reported whether
an API change may cause binary incompatibility (i.e., the class files of a client
program cannot be linked to the new release of a framework without recompilation)
or source incompatibility (i.e., there are errors when the client program source code
is compiled against the new release of a framework).

Most API changes cause both binary and source incompatibilities. Only in a
few particular cases, either binary-only or source-only incompatibilities appear,
as discussed by Dietrich et al. [4]. For example, if an API method in a frame-
work changes its return type in the new release to a subtype of the current return
type, the change would be source compatible but binary incompatible, because the
Java language specification (like those of other programming languages: C++, D,
Scala...) allows the covariance of return types but the JVM uses the exact return
type during the linking process. An example of binary compatible but source in-
compatible API changes is adding a checked exception to an API method, because
the JVM does not consider exceptions as a part of the method descriptors during
the linking process, while the Java compiler checks them during the compilation
process.

A preliminary analysis of the changes in the two ecosystems of interest in
this paper, Apache and Eclipse, convinced us that such binary-incompatible-only
changes are rare (less than 5% of total changes), hence we do not consider distin-
guishing these two types of API changes.

Des Rivieres? categorised API changes into 149 types. Previous approaches and
tools chose a subset of these API changes, such as the one by Dig et al. [15] (seven
changes types, including class and method renames) or Java ACC® (16 changes
types, including field and method modifier changes). Among the 149 change types,
we choose to focus on changes pertaining to classes, interfaces, and methods be-
cause these three types of entities are fundamental to object-oriented programming
[11] and their incompatible changes from one release to the next would break client
programs. We reorganised these API changes into 23 categories according to their
potential impact on the developers of client programs. For example, we split Delete
API type from API package into Missing API Type and Moved API Type because any
modern IDE can help developers locate the replacements of the latter but none
can help systematically with the former.

Among the 23 considered API change types, 15 are at the class/interface level,
shown in Table 1, while the remaining eight are at the method level, shown in Table

5 https://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html
6 http://ispras.linuxbase.org/index.php/Java_API_Compliance_Checker

API Changes and Usages in Apache and Eclipse

Table 1: Description of framework API change types - class/interface level

ACUA

‘ Des Rivieres

MSC (Missing Class)

MST (Missing Interface)

MVC (Moved Class)

Delete API type from API package

MVT (Moved Interface)

CSIS

Contract SuperInterface Set
(Remove interfaces from the current type or parent types)

ESIS

Expand SuperInterface Set (direct or inherited)
(Add interfaces to the current type or parent types)

CTB (Change Type Bound)

Add, delete, or change type bounds of generic type parameter

Add generic type parameter

Delete generic type parameter

Re-order generic type parameters

CMC (Containing Method-level Changes)

Containing method level changes in Table 2

CTK

Change Type Kind of APIs:
(class, interface, enum, or annotation type)

DA Decrease Access: make public type in API package non-public
AAM Add Abstract API Method to class
CTF Change non-final To Final
CTA Change non-abstract To Abstract
CSCS Contract SuperClass Set
(Remove super class from the current type or parent types)
AMTI Add API Method to Interface
Table 2: Description of framework API change types - method-level
| ACUA [Des Rivieres ‘

Change method name

Delete API Method

Move API method up type hierarchy
Move API method down type hierarchy
Add or delete formal parameter
Change type of a formal parameter

MSM (Missing Method)

CFP (Change Formal Parameter)

CMTNS Change static Method To Non-Static
CMTS Change non-static Method To Static
CMTF Change non-final Method To Final
CMTA Change non-abstract Method To Abstract
CRT Change Result Type (including void)
Decrease Method Access:
DMA from public access to protected, default, or private access;

from protected access to default or private access

2, as part of the CMC (Containing Method-level Changes) category at class/inter-
face level. We do not detect method-level API changes accompanying the change
types MSC (Missing Classes) and MSI (Missing Interface), because there is no re-
liable way to automatically locate the counterparts of these classes and interfaces
in the new releases of frameworks.

2.2 Measuring the Impact of API Changes

The above types of API changes do not have the same impact on the developers
of client programs. For example, adapting to the addition of a new int parameter
to an API method is different from adapting to the removal of an API method,
because for the latter, developers must find a replacement for the removed method
or reimplement it. Therefore, we define P.7~, as the percentage of API changes in

6 Wei Wu et al.

MSC: Missing Class (A)

Framework V1 CMC: Containing Method-level Changes (C & D)
Framework V2
A.a1() API Changes:
A.a2() B.b()
B.b() C.cint) Pyc=33% P,c=6T7%
C.c() D.d(float)
D.d() API Change Usages:

\ ClentA: Pyc, =100%
Client B PMSC7M7U _ 100%
Client B: PMSCfU — 50%

PMSCiMiU =67%

Client A

Xx(§
A.a();
A.a2();
B.b();
C.c();

XXX
A.al();
B.b();

}

}

Fig. 1: Measurement computation

a new framework version that are of type T', where T is a place holder for the API
change types defined in Tables 1 and 2. To calculate P.7~, we count the number
of changed APIs #T for each type T and the total number of changed APIs across
all types #ALL. Finally, we compute P.p~ as follows:

Peps = % (1)

Figure 1 shows an example of this calculation for one MSC (Missing Class) and
two CMC (Containing Method-level Changes). Therefore, the percentage of API
change types for MSC and CMC are Py;5¢c = 33% and Po o = 67%, respectively.

To observe the effects of each type of API change T on a client program, we
use the metric P.p~ g, which is similar to P.p~ but only considers the changes
to APIs affecting a client program. This yields a measure of the impact of each
API change type on client programs, computed using Equation (2).

H#T U
Pers v = m (2)

where #7T_U is the number of changed APIs of Type T used by client programs
and #ALL_U is the number of all changed APIs used by client programs.

Figure 1 also shows an example of P.p~ gy calculations. In this example, client
A uses only one changed API affected by MSC, while client B has two and is
affected by CMC additionally. At class level, M SC affects both clients A and B
once. Therefore, Py;gc 7 is 100% for A and Pyrsc iy is 50% for B. However at
method-level, the effect on B is more serious than that on A, because B uses two
methods while A only uses one.

To measure the effect of class/interface-level API changes of the type T on
client programs at method level, we define the metric P-p~ _ps_yy, which is similar
to P<r~_y, , but counts each individual method usage of a changed class/interface-
level API. Hence, we compute P.p~_p;_y using Equation (3).

HT_M_U
Persanv = gaiiw o ®)

In the example in Figure 1, Py;sc_av_y becomes 67% for client B while Pyysc v v
is still 100% for client A.

These metrics will help understand the relative frequency of different kinds of
API changes and their impact on the API clients.

API Changes and Usages in Apache and Eclipse 7

// Framework

class FrameworkClass {
public void method (FrameworkInterface frameworkInterface)
{ frameworkInterface.methodToImplement (); } }

interface FrameworkInterface{
public void methodTolmplement (); }

// Client — API usage types

class Ul implements FrameworkInterface{
public void methodTolmplement (){...} }

class U2 extends FrameworkClass {...}
class U3 <T extends FrameworkClass> { T u3(){...} }
class U4 { FrameworkClass ud (){...} }

class U5 {
void u5(FrameworkClass frameworkClass){
// U6 triggered by U5
frameworkClass.method (...); } }

class U6 {
private FrameworkClass frameworkClass = new FrameworkClass ();
void method_wrapper (){
frameworkClass.method (...);} }

// Client — API usage type effects
class OtherUsage {
// Directly affected by the changes to FrameworkClass.method
void method_affected (U2 u2){
u2.method (...);}
// Protected from the changes to FrameworkClass.method

void method_protected (U6 u6){
u6.method_wrapper (...);} }

Fig. 2: API usage example

Table 3: Description of framework API usage types

[Type | Framework API Usage [API-Injection [Encapsulable |
Ul Inheritance for inversion of control Yes No
U2 Optional inheritance Yes Yes
U3 As generic types Yes Yes
U4 As method return types Yes Yes
U5 As method formal parameter types Yes Yes
18[¢] In method implementations No Yes

2.3 API Usages

Developers use framework APIs in different ways. For example, frameworks can be
designed for the purpose of inversion of control (IOC) [2], i.e., client programs must
override or implement methods in the classes or interfaces defined in the frame-
works. Alternatively, some frameworks can also be used as libraries, i.e., client
programs can directly instantiate framework classes and invoke their methods.

8 Wei Wu et al.

Certain API usages expose client programs to API changes more than the
others. Class extensions and interface implementations are two inheritance-style
usages that require the understanding of the internal implementation of frame-
works and that propagate API changes from the framework to the client programs
[12]. Developers cannot avoid such usages if they want to benefit from the func-
tionalities of the frameworks, although they could favour composition [12] over
inheritance to encapsulate these usages and, thus, limit change propagation.

In Table 3, we define the six types of API usages that we want to study in
relation to API changes. We do not directly consider other usages, such as using
framework types as exceptions, because these usages are similar to U3 — U5. Each
APIT usage type has an example with the same name in Figure 2. Types U1 and U2
are inheritance-style usages. As shown by the example in Figure 2, U2.method()
is actually a framework API propagated around by the client program class U2.
If those APIs change, the affected subclasses and interface implementations will
propagate the changes to where they are used in the client programs, as shown in
method OtherUsage.method affected().

Developers cannot eliminate API inheritance-style usages completely because
of IOC. However, if a public or protected subclass, such as U2, extending a frame-
work class or implementing framework interfaces, does not override any methods
invoked inside the framework, it probably is an optional-inheritance, which can be
replaced with a composition [12]. Such a replacement encapsulates framework APIs
with client program classes to localise the changes of API and reduce their impact
on the other parts of client programs. An example of composition-style usage is the
use of framework classes/interfaces as private fields in client classes, only accessing
their APIs within the method implementations. Class U6 in Figure 2 illustrates a
composition-style usage: OtherUsage .method_protected() is not affected by frame-
work API changes because the class U6 wraps the framework API with a client
program API.

Besides inheritance-style API usages (U1 and U2), other usages (U3 — U5) in
client program APIs also propagate framework API changes inside the client pro-
grams by using framework APIs as generic types, method return types, or formal
parameter types. In U1 — U5 usages, these framework APIs become part of client
program APIs (classes, interfaces, and methods). Thus, we define U1 — U5 as API-
injection usages. Among these API-injection usages, Ul cannot be encapsulated
with composition because the client class is required to have the same API for the
purpose of IOC, while U2 — U5 could be. Therefore, we call U2 —Ub5 as encapsulable
API-injection usages. Replacing U2 — U5 API usages in client program APIs can
help reduce API change propagation more effectively than replacing U6 while up-
grading frameworks, because U6 only exists in the implementation code of client
programs and does not propagate API changes.

It is worth noting that API-injection usages do not always propagate framework
API changes. For example, if the methods defined in a framework class are only
used inside a subclass of a client program, the usage (U1) is an API-injection
usage, but it does not (yet) propagate the framework class changes. However, client
program developers (especially new developers) may use the methods defined in
the framework classes in the future because it technically is not forbidden to use
them. In that case, this usage would propagate framework API changes. If client
programs keep evolving, more and more cases of propagating API-injection usages
will make framework upgrading difficult eventually.

API Changes and Usages in Apache and Eclipse 9

2.4 Measuring the Impact of Usage Types

Based on the above types of usage, we define a USage Ratio (USR) metric that
reflects the percentage of client program reference types which use framework
APIs directly. The lower the value of USR, the easier it will be for developers to
adapt API changes, since the client application is coupled less to the APIs. In the
example in Figure 2, the USR of the framework in the client is 86% (six in seven
classes).

7 Client Reference Types Using Framework APIs

USR = # Total Client Reference Types

(4)

To investigate the API-injection usages in client programs, we define two met-
rics. First, we define the Ideal USage Ratio (IUSR) metric to compute the lowest
USR value that a client program can reach while still being able to integrate
into frameworks. Here, #Client Reference Types With Ul is computed using the
number of client reference types that override framework methods called inside
frameworks, i.e., API usages for IOC that cannot be encapsulated using compo-
sition. Therefore, in practice, the lowest USR. value usually is slightly larger than
TUSR, because there may be classes implementing the compositions for U2 — U6
usages besides the classes of U1 usage.

Client Reference Types With Ul

IUSR =
Total Client Reference Types

()

In the example in Figure 2, FrameworkClass is a framework class and FrameworkInter
face is a framework interface for IOC. The client program has seven classes. Among
them, the only U1 case is the class connecting with the framework through IOC.
Therefore, the IUSR value of the framework in this client program is 14% (1/7).

Second, as shown in Table 3, U2—U5 inject framework APIs into client program
APIs, but in contrast to U1, can be encapsulated by composition to localise API
changes. Some cases of U6 may also be caused by U2 — U5, for example, in the
method U5.u5(...) in Figure 2. Therefore, reducing the cases of encapsulable
API-injection usage is an effective way to decrease USR.

For this reason, we define the Encapsulable API-Injection Ratio (EAR) to
measure the number of API usages that propagate API changes but could be
avoided. A lower value of EAR means less API change propagations.

Client Reference Types With U2 — U5

FEAR =
R # Total Client Reference Types

(6)

With these three metrics, developers can assess the impact of framework API
changes. A large difference between USR and IUSR or a high EAR value would
indicate that large percentages of API usages are not due to IOC and can be
reduced through composition.

2.5 Measuring the Correlation between API change and Encapsulable
API-injection Usage

If API changes are correlated with the encapsulable API-injection usages, it in-
dicates that API changes are propagated in client programs and developers can

10 Wei Wu et al.

control the propagating by encapsulate API usages through composition. To in-
vestigate if there is such a correlation, we first divide API usages into two groups:
U2—-U5 and {U1, U6}. Then, we check in each group what percentage of usage are
affected by the different types of API changes defined in in Table 1 and Table 2.
Next, we apply Pearson’s Chi-squared [16] and Fisher’s exact test [17] to verify if
U2—-Ub and API change are dependent. We apply both Pearson’s Chi-squared and
Fisher’s exact tests, because the former requires a larger numbers of observations
than the latter. We want to verify if there is any difference between the two tests
on our data set.

If API changes and encapsulable API-injection usages are dependent, we fur-
ther compute the Odds Ratios [18] of the different types of API changes to assess
which changes are more likely to be applied to U2 — U5 than to others. An odds
ratio measures the odds of an event causing an outcome in comparison to the odds
of another event to cause this outcome. If the value of the odds ratio is greater
than one, the one event is more likely to cause the outcome than the other event.
We compute the odds of a specific API-change type applying to the encapsulable
API-injection usages in comparison to its odds happening to the other change
types. Depending on which change types tend to occur most with U2 — U5, it
might be more or less interesting to refactor U2 — U5.

2.6 Summary

Using the concepts introduced above, we conduct a study to answer five research
questions:

— RQ1: How often does each type of API change happen in frameworks? (P.r-)

— RQ2: How often does each type of API change affect client programs? (Pcps _t7
and Pors a7 v)

— RQ3: How widely are APIs used in the client programs? (USR)

— RQ4: What percentage of framework API usages are the API-injection usages?
(IUSR and EAR)

— RQ5: Which type of API change affects the encapsulable API-injection usages
more often?

These research questions are related to different aspects of API evolution as
shown in Figure 3. RQ1 is about API changes during framework API evolution.
RQ2 is about the effect of the API changes on client programs. RQ3 is about
framework API usages in client programs. RQ4 analyses the potential for reducing
API change impact on client programs. RQ5 combines the findings of RQ4 with the
distribution of change types of RQ2 to understand the actual degree of propagation
of API changes in client programs.

Before discussing how we answer these research questions in the context of a
case study on frameworks in the Apache and Eclipse ecosystems, we first present
the ACUA tool [10] that we have developed to measure the metrics above.

3 ACUA

The functional modules of ACUA are shown in Figure 4. Elements with gray
background are the modules of ACUA and those with white background are the

API Changes and Usages in Apache and Eclipse 11

RQ1
Framework Framework
V1 V2

A

RQ3 RQ2

Client A RQ4 Client B RQ5

Fig. 3: Relations between research questions and API Evolution

Jars of Framework API change
Maven Frameworks API Change
Repo I~ to Upgrade > > Models Analyser > reports
Framework _ Model \-{\

Dependency Builder

Analyser
POM files of i
Client Jars Client Models API Usage
two releases —» > il > Analyser

‘ Post Processors

Data for Data for Data for Other
Summarization Visualization Analyses

Fig. 4: ACUA Modules

API Usage
Reports

inputs and outputs of each module. We detail the API change and usage detection
algorithms of ACUA below. We describe the ACUA work-flow and its inputs and
outputs with a running example.

3.1 Inputs
3.1.1 Maven projects

For frameworks and their client programs managed as Maven projects, ACUA
takes the Maven POM (Project Object Model) configuration files of two releases
of a framework as inputs, because ACUA analyses API changes between the two
releases. Maven is a project management tool from the Apache Software Founda-
tion”. Maven projects store the information about the dependencies between client
programs and frameworks in POM files. The advantage of using Maven POM files
is that Maven is widely used in software development and provides the complete
information required by ACUA, such as dependencies and Jar file locations.

3.1.2 Other projects

We convert non-Maven projects with dependency information, such as Eclipse
plug-ins, to Maven projects to be analysed by ACUA. For example, the depen-
dency information of Eclipse plugins are managed in two ways. From Eclipse 1.x to

7 http://maven.apache.org/

12 Wei Wu et al.

3.0, the required plug-ins are specified under the requires node in the plugin.xml
file contained in the plug-in folders. From Eclipse 3.1 to 4.x, the plug-in depen-
dencies are configured in the Require-Bundle or Import-Package sections of the
MANIFEST.MF files of the Jar files. We use the two formats of dependency information
in Eclipse plug-ins, convert them into POM files and install the generated POM
files and corresponding plug-in Jars into the Maven repository, so that Eclipse
plug-ins can be processed uniformly as Maven projects. For non-Maven programs
whose dependencies do not always have version information, like projects managed
by Apache Ant, ACUA users would need to complete the version information.

3.2 Framework Dependency Analyser

The Framework Dependency Analyser (FDA) uses the information in POM files
to detect the changes in framework versions. FDA then connects to a remote or
local Maven repository to download the Jar files of the corresponding versions of
the frameworks and the client program. FDA interacts with a Maven repository
through the Aether library®.

3.3 Model Builder

Next, the Model Builder parses the Jar files of the frameworks and the client
programs to build the models containing reference types, method definitions, call
and inheritance relations of framework and client program releases, according to
a custom meta-model. The Model builder uses the ASM Java bytecode analysis
framework® to extract the model data from the Jar files.

3.4 API Change Analyser

Taking the models of frameworks built by the Model Builder as input, the API
Change Analyser (ACA) detects the API changes between the two framework
releases and classifies them into the types presented in Section 2. ACA outputs
the classified API changes in the form of API change reports for the two releases
of each framework.

ACA detects API changes between two releases of a framework at type (classes
and interfaces) level and method-level. To analyse type-level API changes, ACA
first classifies the types of two releases of a framework into four categories as shown
in Table 4 and detects API change types based on these categories. The names of
classes and interfaces contain their package names and type names, but ignore the
kind of type (class or interface), modifiers, and generic type parameters. Hence,
an interface in O3B may become a class in N3B with the same name. Also, a class
with the same name in O3B and N3B may contain method-level changes.

Then, ACA checks if the classes and interfaces in O30 have counterparts in
the NIN with the same type names, but different package names. Those having

8 http://www.eclipse.org/aether/
9 http://asm.ow2.org/

API Changes and Usages in Apache and Eclipse 13

Table 4: Categories of classes and interfaces

Classes and interfaces

Releases | With same names in both releases [With names only in one release |
[Old [O3B (Old version existing in both) | O30 (Existing only in old) |
[New | NJB (New version existing in both) | NIN (Existing only in new) |

such counterparts are classified as Moved types (classes, interfaces) and the rest
are classified as missing types.

Next, ACA checks the classes and interfaces in O3B and N3B to detect the
types of the other type-level API changes. Figure 5 is the flowchart of the type-level
API change detection algorithm.

For classes and interfaces in O3B, ACA detects method-level API changes as
follows. First, ACA checks if there is another method with the same name in N3B.
If there is not, ACA classifies the method as a Missing Method. If there is one,
ACA checks if the other method-level API changes happened to the method. The
flowchart of the method-level detection algorithm is shown in Figure 6.

As shown in the two flowcharts, a changed API can belong to more than one
API change type. For example, changes “added field to interface” and “added
method to interface” can happen to the same interface.

3.5 API Usage Analyser

Based on the models of client and the API change reports generated by ACA,
the API Usage Analyser (AUA) detects which, where, and how the APIs of the
frameworks are used in the client programs, then verifies if the used APIs are
changed in the new releases of the frameworks and/or affected by some types of
API changes. As the output, AUA generates API usage reports for each framework
including how the used APIs are affected by API changes.

AUA checks which and how APIs are used by analysing API type inheritance
and API method invocations in client programs. It reports the usage types U1 —-U6
mentioned in Table 3, using the detection algorithm shown in Figure 7. For a given
framework and one of its client programs, AUA first checks if the classes/interfaces
in the client program inherit classes/interfaces from the framework. For those that
inherit, AUA further checks if the inheritance is for IOC (Inversion Of Control),
then classifies those for IOC as U1 and the others as U2. Then, AUA collects the
client program classes/interfaces that uses framework classes/interfaces as generic
types and classifies them as U3. Next, AUA examines all the methods defined
in client program classes/interfaces to detect U4 — U6, by verifying if framework
classes/interfaces are used as return type, formal parameters or inside methods.

Besides identifying API usage types, AUA also checks if the used APIs are
changed in the next releases of the framework by means of the outputs of the API
Change Analyser. For each change, the type of API change is identified as well.

Wei Wu et al.

14

Each Type in
Old Release

A type with the same
package and type name
in new release?

Between the two types with the same
package and type name in both releases

Add Moved Type
with the same (MVC & MVI) to
type name in API Change

ew release” Report

Add Missing Type
(MSC & MSI) to
API Change
Report

maller Supe
Interface Se

Add CSIS to API
Change Report

Add ESIS to API
Change Report

Generic Type
Bond

Add CTB to API
Change Report

ith Change:
Method

Add CMC to API
Change Report

Detect Method
Level Changes
(Figure 5)

>

Same Kind

Both Class

Both Interface

Add CTK to API
Change Report

Decrease
Access

Add DA to API
Change Report

Add Abstra
Method

Add AAM to API
Change Report

Add CTF to API
Change Report

Change to
Abstract

Add CTA to API
Change Report

maller Supel
Class Set

Add CSCS to API
Change Report

Add Method to
Interface

Add AMTI to API
Change Report

Fig. 5: Type-level API change detection (Acronyms defined in Table 1)

API Changes and Usages in Apache and Eclipse

15

Each Method in
the Old Version
of a Type
Existing in Both
Releases

ethods with the same
type and method names
in both releases

Add MSM to API
Change Report

Add CFP to API
Change Report

Method to

Add CMTNS to
API| Change
Report

Change
Method to
Static

Add CMTS to API
Change Report

Add CMTF to API
Change Report

Change to
Abstract

Add CMTA to API
Change Report

Add CRT to API
Change Report

Decrease
Method Access

Add DMA to API
Change Report

Fig. 6: Method-level API change detection (Acronyms defined in Table 2)

3.6 Running Example

To illustrate our approach, we describe the work flow of ACUA using solr-core

10

version 3.6.2 as a running example. Solr is an open source search platform based
on Apache Lucene!l. One framework used by solr-core v3.6.2 is lucene-core v3.6.2
and the Solr development team wants to upgrade to lucene-core v4.0.0 in the next
release v4.0.0 of Solr. We assume that Solr developers use ACUA to collect the

10 http://lucene.apache.org/solr/

11 http://lucene.apache.org/

16 Wei Wu et al.

Each Framework Framework
Client Models API Change
Type Reports

nherits a
Framework
Type?

Uses Framewo
Types as Generic
Type?

For each
Method in the
Client Type

Add U5 to API
Usage Report

tUses Framewol
APls in Method

Add U6 to API
Usage Report

Fig. 7: API usage detection algorithm

information about the API changes between lucene-core v3.6.2 and v4.0.0 and how
the changes are used in Solr v3.6.2, because they need to plan the upgrading task
accordingly.

Solr developers would first create a POM file for v4.0.0 in which the version
of lucene-core is changed to v4.0.0. A snippet of the POM file is shown in Figure
8. In this POM file, the releases of solr-core and lucene-core are represented by
<groupld>, <artifactId>, and <version>. The release information of lucene-core
is under the <dependency> node, while that of solr-core is at the root level.

Then, the Solr developers run ACUA with the two POM files of Solr, v3.6.2
and v4.0.0, respectively. ACUA detects the version changes in lucene-core (v3.6.2
to v4.0.0), then analyses the Jar files of the two releases of lucene-core and solr-
core v3.6.2 to generate API change and API usage reports for them. To facilitate
post-processing, API change and API usage reports are in XML format.

Figure 9 shows part of the API change report for lucene-core v3.6.2 to v4.0.0.
This report stores the information of the two releases of frameworks, the types of

API Changes and Usages in Apache and Eclipse 17

<groupld>org.apache.solr</groupld>
<artifactId>solr—core</artifactId>
<version>4.0.0</version>

<dependencies>
<dependency>
<groupld>org.apache.lucene</groupld>
<artifactId>lucene—core</artifactId>
<version>4.0.0</version>
</dependency>

Fig. 8: Snippet of solr-core v4.0.0 POM file

<Incompatibilities>
<programName>
org.apache.lucene:lucene —core
</programName>
<oldVersion>3.6.2</oldVersion>
<newVersion>4.0.0</newVersion>
<incompatibilities>
<type>AddAbstractMethod</type>
<instances>
<level>type</level>
<oldAPI>
class org.apache.lucene.analysis.Analyzer
</oldAPI>
</instances>
</incompatibilities>
</Incompatibilities>

Fig. 9: Snippet of lucene-core v3.6.2-v4.0.0 API change report

API changes, the levels and the changed APIs in specific XML nodes. Developers
can search, and analyse the API changes according to the information that they
are interested in.

Figure 10 shows the API usage report, which lists the information of the client
program and of the two releases of the framework to upgrade, the used APIs, the
types of the usages and the change types affecting the APIs in the new release of
the framework.

ACUA also provides post-process modules to convert the reports to plain text
format and to summarise the contents in the reports for statistical analysis or
visualisation. As shown in Section 4.2, developers can process the API change and
API usage reports and visualise the distributions of the types of API changes in
the frameworks, then compare them with those of the distributions of the types
of API changes used in the client programs.

4 Case Study

In this section, we present the results of an empirical case study on the research
questions from Section 2. First, we discuss the data set that we used.

18 Wei Wu et al.

<exposureReport>
<clientName>
org.apache.solr:solr —core
</clientName>
<clientVersion>3.6.2</clientVersion>
<frameworkName>
org.apache.lucene:lucene —core
</frameworkName>
<oldVersion>3.6.2</oldVersion>
<newVersion>4.0.0</newVersion>
<apiUsages>
<type>EXTENSION</type>
<apiUsages>
<oldAPI>
class org.apache.lucene.analysis.Analyzer
</oldAPI>
<invokedInFramework>
true
</invokedInFramework>
<instances>
<entities>
class org.apache.solr.analysis.TokenizerChain
</entities>
<incompatibilityType>
AddAbstractMethod
</incompatibility Type>
</instances>

</apiUsages>
</apiUsages>
</exposureReport>

Fig. 10: Snippet of solr-core v3.6.2 API usage report on lucene-core v3.6.2-v4.0.0

4.1 Data Set Description

We use two popular framework ecosystems as the dataset in our case study, i.e.,
Apache!? and Eclipse SDKs'2. The frameworks provided by these two ecosystems
are widely used in open-source software development and have evolved during the
last two decades with structured dependency and version information between
client programs and frameworks. Such dependency and version information is es-
sential to study API changes and usages together.

A program can be both a client of some frameworks and a framework used
by another programs [19]. In our study, if a program exists in the dependencies
of other programs, we treat it as a framework and analyse its API changes. If
the program also depends on other programs, we analyse the APIs that it uses
as a client. It is also possible that a program is only a framework or only a client
program.

Since developers of client programs inside the framework’s own ecosystem (“in-
ternal client”) potentially have more knowledge about the framework than develop-
ers of client programs outside the ecosystem (“third party client”), this may affect
the way the developers use the frameworks and deal with API changes. Hence, we
study the internal and third-party client programs of Apache and Eclipse frame-
works separately. We describe how to distinguish internal and third-party client
programs for the two ecosystems below.

12 http://search.maven.org/
13 http://marketplace.eclipse.org/

API Changes and Usages in Apache and Eclipse

19

Table 5: Eclipse data set

Frameworks ‘ Releases ‘ # Internal Clients ‘ # Third-party Clients ‘
org.eclipse.core.runtime | 3.1.0 47 13
org.eclipse.jdt.core 3.2.0.v_671 9 9
org.eclipse.ui.editors 3.2.0.v20060605-1400 6 3
. . 3.1.0 4 1
org.eclipse.jface 3.2.0.120060605-1400 7 2
org.eclipse.team.core 2.1.0 7 1
2.1.0 3 1
. . . 3.1.0 3 3
org-eclipse.jdt.ui 3.2.0.v20060605-1400 7 3
3.3.0.v20070607-0010 5 3
org.eclipse.debug.ui 3.2.0.v20060605 5 2
Distinct Clients 55 13

For the Eclipse ecosystem, we consider the Eclipse plug-ins as frameworks and
client programs. An Eclipse SDK is a package of Eclipse plug-ins. Different kinds of
Eclipse SDK exist, such as Eclipse SDK Classic, Eclipse SDK for Java developers,
or Eclipse SDK for C/C++ developers. Eclipse SDK and Eclipse plug-ins have
independent versions. For example, Eclipse SDK 3.3 may include a plug-in with
the version of 3.1.

Eclipse does not have a central repository, like Maven, to host the release
history of its plug-ins individually. Therefore, we downloaded 16 releases of Eclipse
SDK Classic (1.0-4.3) and extracted the contained plug-in releases as the internal
client programs and frameworks of Eclipse. The total number of plug-ins in the 16
releases of Eclipse SDK is 145 with 1,017 releases.

To identify Eclipse third-party client programs, we reuse previous work by
Businge et al. [20], who studied the evolution of 21 Eclipse third-party plug-ins.
However, not all of these 21 plug-ins analysed by Businge et al. have an explicit
mapping between their versions and the Eclipse SDK versions. Consequently, we
considered only the 15 plug-ins out of the 21 previously studied that have an
explicit mapping to Eclipse SDK versions on their host Web sites. These 15 plug-
ins account for 41 releases. We manually downloaded these third-party plug-ins
and use them as third-party client programs for Eclipse frameworks.

To assess the differences between the API usages in internal and third-party
client programs, we sort Eclipse framework releases by their numbers of changed
APIs used by both their internal and third-party client programs. Only 11 Eclipse
framework releases had changed APIs used by both internal and third-party client
programs. Therefore, we use these 11 Eclipse framework releases, their 55 internal
client programs (88 releases), and 13 third-party client programs (28 releases), as
Eclipse data set. The names of the frameworks and the number of client programs
are in Table 5. The complete list of client programs is available on-line'?.

For the Apache frameworks and their client programs, we started building our
data set from a snapshot of the Maven central repository taken in November 2012,
which contains more than 36,000 projects from both Apache and other providers.
We distinguish the projects whose IDs start with “org.apache” as Apache frame-
works or internal client programs and other projects as potential third-party client

4 http://www.ptidej.net/downloads/replications/emse2015-api-change-usage/

20 Wei Wu et al.

Table 6: Apache data set

‘ Frameworks ‘ Releases ‘ # Internal Clients ‘ # Third-party Clients ‘
org.apache.ws.commons.axiom:axiom-api 1.2.13 15 3
org.apache.lucene:lucene-core 2.0.0 21 2

3.6.2 22 5

org.apache.maven.scm:maven-scm-api 1.4 30 2
. e 1.4.1 4 1
org.apache.felix:org.apache.felix.framework 399 I 5
org.apache.tika:tika-parsers 0.9 4 1
org.apache.thrift:libthrift 0.7.0 10 5
org.apache.maven.doxia:doxia-module-xhtml | 1.0 6 2
org.apache.pdfbox:pdfbox 1.6.0 4 5
org.apache.tiles:tiles-servlet 2.2.2 5 1
Distinct Clients 116 29

Table 7: Summary of the whole data set

[[Apache Ecosystem [Eclipse Ecosystem

Framework Releases 11 11
Framework Classes (All Releases) 2,930 17,469
Internal Clients 116 55
Internal Clients Releases 182 88
Internal Clients Classes (All Releases) 38,092 57,181
Third-party Clients 29 13
Third-party Clients Releases 126 28
Third-party Clients Classes (All Releases) 22,361 3,866

programs. We analysed the API changes and usages between the 36,000 projects.
Then, following the same criteria as for Eclipse, we choose the top-11 Apache
framework releases that have the most changed APIs used by both internal and
third-party client programs. Consequently, the Apache data set contains 11 Apache
framework releases, 116 internal client programs (182 releases), and 29 third-party
client programs (126) releases. The names of the frameworks and the number of

client programs are in Table 6 and the complete list of client programs is on-line'4.

A client program may use more than one framework. For example, org.eclipse.
ant.ui:3.1.0 uses both org.eclipse.core.runtime:3.1.0 and org.eclipse.jdt.
ui:3.1.0. Therefore, the total number of client programs is smaller than the sum of
the client program counts of each framework release. A framework release can also
be used by more than one release of a client program. We consider such overlapping
usages of an API between releases as one usage to avoid double-counting. For exam-
ple, we count the implementation of a framework interface of org.apache.lucene:
lucene-core:2.0.0 in org.apache. jackrabbit:jackrabbit-core 1.2.1 and 1.2.2 as
one interface implementation.

Table 7 summarises the sizes of our data set and we will show in Section 6 that
this is the largest of such data sets used thus far to study API change types and
usages.

API Changes and Usages in Apache and Eclipse

21

50 -) 60 -
B Apache B Apache
O Eclipse 504 O Eclipse
401
404
301
g &30
20 A
20 A
Ll |
Jerdl oo _dlod.l Nl I, i1
§;mggmux<goaoso o ﬁ: L 0 u = < S
(a) (b)
Fig. 11: Pps of API changes at type (a) and method (b) level
Table 8: Numbers of API changes and usages
Frameworks Apache Eclipse
API Type-level [Method-level | Type-level [Method-level
Changes 807 1,403 2,731 3,393
Usagos Internal 493 (61%) 378 (27%) 96 (4%) 13 (1%)
8% "Third-party | 77 (10%) 58 (4%) 35 (1%) 25 (1%)
4.2 Results

For each research question, we present its motivation, the approach used, and our
findings. We also discuss existing or possible approaches to help developers deal
with API changes and usages, respectively.

RQ1: How often does each type of API change happen in frameworks?

Motivation: Different types of API changes may have different impacts on client
programs. Knowing which types of API changes happen the most in frameworks
is important for client program developers and software engineering researchers.
Client program developers could take more precautions against frequent API
change types, while researchers could develop approaches and tools to ease API
changes that occur more often. While previous work studied API change types
from different perspectives on various data sets [21-23], this study is a quasi-
replication of previous studies to investigates API change types on a much larger
scale, providing more generalisable results.

Approach: We compute the metric Pr, i.e., the percentage of different API change
types, to answer this research question.

22 Wei Wu et al.

Findings: At class/interface-level, the total number of API changes are 807 and
2,731 while there are 1,403 and 3,393 method-level API changes for Apache and
Eclipse frameworks, respectively, as shown in Table 8.

The percentages in the usage rows are the ratio between the number of the
usages of the APIs which are changed in the next releases of the frameworks and
the total number of APIs changes in the next releases of the frameworks.

CMC (Containing Method-level Changes) and MSC (Missing Class) are the
most frequent class/interface-level API changes in both Apache and Eclipse ecosys-
tems, as shown in Figure 11(a). The CMC percentage are similar in both ecosys-
tems, while the MSC percentage of Eclipse frameworks is about 10% lower than
that of Apache frameworks. Eclipse frameworks are more likely to remove su-
per classes of their classes (CSCS), while Apache frameworks remove super inter-
faces more often (CSIS). The other class/interface-level API changes occur in both
ecosystems with almost the same frequency.

In the classes and interfaces with CMC, both ecosystems see similar method-
level API changes, as shown in Figure 11(b). The top four types of API changes are
MSM (Missing Method), CFP (Change Formal Parameter), CRT (Change Return
Type), and DMA (Decrease Method Access). These changes cover 98% of the total
number of method-level API changes.

Discussion MSC and MSM occur more often than the other types of API changes
in the frameworks of both ecosystems. These changes may be caused by renaming
or removing. Although renaming is relatively easy to adapt to, finding the correct
replacements for a large number of renamed methods or classes is time-consuming.
The adaptation of client programs to removed APIs is even more challenging. This
finding confirms the results reported by Dig and Johnson [22], while Cossette and
Walker [21] and Xing and Stroulia [23] do not report data corresponding to the
API change types in their studies. However, not all changed APIs may affect the
client program, which we will verify in RQ2.

If APIs still have the same reference types or method names after being
changed, finding a replacement is easier for client-program developers because
modern IDEs, such as Eclipse, support searching by name effectively. However, in
case reference type names have changed, developers must spend considerable time
identifying a suitable starting point for their upgrade, because there is no reliable
way to locate the replacements of reference types with different names. Although
IDEs support fuzzy searches and there exist approaches to generate API change
rules, neither are 100% accurate [13,14,24]. In such cases, developers must find
the replacements of the missing classes, interfaces, and methods manually.

For unavoidable API name changes, effective documentation can ease the up-
grading process. Especially more detailed descriptions about where and when the
new APIs are used in the new releases of frameworks is necessary for inheritance-
style usage. Although it is time-consuming to provide detailed documentations for
frameworks, even imperfect change rules generated by tools [13,14,24-26] could
already help developers find a replacement for missing APIs and could be used as
supplement to insufficient documentation, as shown by a recent empirical study
[27]. An alternative source for documentation could be generated during code-
refactoring process, as Dig et al. [22] showed that more than 80% of API changes
are caused by refactoring.

API Changes and Usages in Apache and Eclipse 23

The differences between the numbers of changed APIs between Apache and
Eclipse frameworks may be due to our choice of considering different wversions
of the Eclipse SDK while Apache frameworks do not follow the same versioning
principle.

RQ2: How often does each type of API change affect client programs?

Motiwation: Knowing how APIs change in frameworks, we investigate if these
changed APIs affect client programs. If the answer is no, it would be a proof that
framework developers avoid changing APIs used by client programs. If the answer
is yes, framework developers might not be able to ease client program adaptation
by keeping APIs stable all the time and client-program developers should be care-
ful in isolating APIs in their programs (through the use of Faades, for example)
to minimise the impact of the API changes.

Therefore, on the one hand, framework developers should provide special docu-
mentations to help client-program developers to upgrade their programs whenever
APT changes occur during a framework evolution (not only documentation about
the new APIs) while, on the other hand, client-program developers should iso-
late API usages using language mechanism and design strategies at their disposal:
method wrappers, delegates, and the Abstract Factory and Faade design patterns.

Researchers could also develop techniques and tools to ease the upgrading
process of client programs to adapt to such frequent changes. There was no answer
to this question base on large-scale analyses of API change and usage together yet.

Approach: We cross-reference API usages with API change types and calculate
Pr _y, i.e., the percentage of a specific API change type affecting a client program,
and Pr_pr v, i.e., Pr_y restricted to methods, to answer this research question.

Findings: CMC (Containing Method-level Changes) and MSC (Missing Classes)
again affect client programs more often than the other API changes, as shown
in Figures 12(a). The influence of these two types of API changes is similar on
internal client programs while CMC affects third-party client programs more often
than MSC.

MSI (Missing Interfaces) affects Eclipse internal client programs substantially,
yet does not occur often in frameworks (17% of Pyrsr_y vs. 3% of Pyygr) as shown
in Figure 12(a). Furthermore, when taking the used methods of the interfaces
affected by MSI into account, MSI again affects Apache internal client programs
substantially, yet does not occur often in Apache frameworks as well (24% of
Prrsropu vs. 3% of Pygr) as shown in Figure 12(b).

The method-level API changes in the classes/interfaces under CMC affect client
programs almost to a same degree as they happen in frameworks with two main
differences. The first is that DMA (Decrease Method Access) rarely affects client
programs. The second is that Apache client programs are more often affected by
CFP (Change Formal Parameters) while Eclipse client programs are more often
affected by MSM (Missing Method).

The numbers of API changes affecting client programs are much lower than
those actually happening in frameworks, as shown in Table 9. Hence, despite of
the large number of API changes in Eclipse frameworks, few of them affect client
programs, which is good news for both client and framework developers.

24 Wei Wu et al.

70 A 70 A
Apache Internal Apache Internal
601 = Apache Third—-party 601 = Apache Third—-party
O Eclipse Internal O Eclipse Internal
507 g Eclipse Third—party 507 o Eclipse Third-party
401 401
304 fl 30 A
20 20 1
10 1 gﬂ 101 jﬂ ad]
0- Lﬂugm iﬁﬂ;iiii Eﬂuﬂ il 0- LLJ:|:|:| - all Gl
SENNLSOLXYXISNO5HO0OSO SENUCOLXYXINOHOSO
OpbEFREFEFOFO2S OphEkFEEFEFAF02S
5(5880000 f2=2=3 5:5880000 92=2=3

Fig. 12: Type-level API changes affecting client programs ((a) Pr_y and (b)
Pr_mu)

80
Apache Internal
Apache Third-party
Eclipse Internal
Eclipse Third-party

60

20

(%)

ey

o 1S}
CFP S (] O O §

S 1 /2 S SR
iR =

SEEEEEE

5 3 535 e =
(a)

Fig. 13: Method-level API changes used in client programs (Pr_r7)

Discussion Similar to what we observed in API changes, CMC and MSC also affect
client programs more often. This finding shows that framework developers should
be concerned about the impact of those API changes and adopt countermeasures
such as more detailed upgrading documents. As mentioned earlier, client program
developers could use tools [13,24-26,14] that build API change rules to ease the
upgrading process when documentation is not available.

We also noticed that MSI affects internal client programs often, which may
be caused by internal client programs more likely to integrate with frameworks
through I10C.

Eclipse Provisional API Guidelines distinguish official and internal APIs. This
guideline may contribute to the observation that less API changes in Eclipse

API Changes and Usages in Apache and Eclipse 25

Table 9: Number of type-level API changes affecting client programs (#7_-U and
H#T_M_U)

Framework Apache Eclipse
API HTU | #T MU | #TU | #T_MU
Usage Internal 493 1,453 96 232
Third-party id 137 35 47

frameworks affect client programs. On the one hand, Eclipse framework developers
change official APIs less often. On the other hand, client program developers use
internal APIs less often as well.

Furthermore, we observe that, overall, only a small percentage of APIs used
in client programs were changed during framework evolution in our study. This
observation may be due to us considering only API changes between consecutive
releases of frameworks. While, we would expect that, in general, only a small
number of APIs change between consecutive releases, occasionally, a large number
of changes can happen between consecutive releases, as shown in Figure 14. For
example, the large number of API changes between v3.2.2 and 4.0.0 is due to
implementing many features of the then newly-released OSGi v4.3, its underlying
framework'®. Moreover, in practice, the version gap between framework releases
can be larger than what we observed in this work because developers may have to
upgrade multiple frameworks at the same time, as shown by Raemaekers et al. [1],
which would make the problem of upgrading framework APIs even more critical.

RQ3: How widely are APIs used in the client programs?

Motivation: Like any other software artefact, frameworks are evolved very often
and client programs must keep upgrading in order to use new functions or patch
security vulnerabilities. Knowing how widely APIs are used in client programs will
help developers estimate the impact of API changes. For example, a changed API
used in many locations in client programs may cause the Shotgun Surgery [28]
code smell, i.e., many little changes in multiple classes, which would result in high
upgrade costs.

Approach: We use two metrics to answer this research question: USR (USage Ra-
tio) and IUSR (Ideal USage Ratio). The former represents the current status of
APT usages while the latter reflects the minimum achievable API usages. We use
the Mann-Whitney-Wilcoxon test [29] to verify if the USRs and TUSRs between
Apache and Eclipse internal and third-party client programs are statistically signif-
icantly different. The Mann-Whitney test is non-parametric and does not require
the knowledge of the distributions of the data. Besides Mann-Whitney-Wilcoxon
test, we also show the results in a beanplot that visualises the density of the data.

15 http://svn.apache.org/repos/asf/felix/releases/org.apache.felix.framework-4.
0.0/doc/changelog.txt

26 Wei Wu et al.

2500

2000 —+

methods

=

500

ged

1000 — =]

Num of chan
]

500

) ol

OrMIO—ANO—T1O—TO—T1O—TANMINOANMILNONONO—ANO—ANMO

ANANNANNNMNMNMMOMMMMMMMOMOMSIT T
Releases

Fig. 14: Accumulated number of changed methods of org.apache.felix.framework
Table 10: Amount of inheritance- and composition-usages

Apache Eclipse Total

Client Programs | Internal | Third-party | Internal | Third-party
Inheritance 3430 193 2848 145 6616
Composition 2040 522 8995 583 12100

Findings: The medians of the USRs are 38% and 32% in Apache and Eclipse
client programs, respectively. However, the median of the IUSRs are 0% and 1%
for the client programs of the two ecosystems, respectively. Almost all USRs and
TUSRs between internal and third-party client programs are statistically different
as shown in Table 11 and in Figure 15, with the USRs/IUSRs of third-party
client programs being smaller than those of internal client programs. Although the
difference of the USRs between Apache internal and third-party client programs
are not significant, the p-value is still low (0.06).

The USRs of third-party programs are statistically different between Apache
and Eclipse ecosystems, with those of Eclipse being lower than those of Apache.
However, the other USR/IUSR differences between internal client programs of the
two ecosystems are not significant.

Discussion In most cases, the USRs and TUSRs of internal client programs are
higher than those of third-party client programs, but both can reach 100%, which

API Changes and Usages in Apache and Eclipse 27

80 100 120
|

80 100 120
L L

60
L
L

60

USR (%)

USR (%)
40

40

20
L
20
L

0
L
0
L

- -
T T
Apache + Eclipse Apache + Eclipse
Client Program # Client Program #
(a) Apache vs. Eclipse internal (b) Apache vs. Eclipse third-party
o
]
j=3
84
(=] —
84
=
9
o «©
g4
3
5 59
S5 24 =}
o
o N
S
o
o4
*
T T
Internal + Third—party Internal + Third-party
Client Program # Client Program #

(c) Apache internal vs. third-party (d) Eclipse internal vs. third-party

Fig. 15: Usage Ratios (USRs)

would mean that all classes and interfaces of these client programs could be af-
fected by API changes. Widely-spread API usages are more difficult to adapt to
API changes. Client developers should keep monitoring the USRs of their client
programs and keep their values as low as possible. The difference between USR
and IUSR shows the room for reducing API usages.

IUSR is the lower boundary of USR, with the ratio between inheritance- and
composition-usages is about 1 to 2. The difference between IUSRs and USRs shows
that composition-usages can replace most of the inheritance usages that are not
used for IOC. However, there might be additional costs to reach the minimum
value of USRs, i.e., the ideal usage ratios (IUSRs), for all the frameworks, because
composition-style usages require extra effort of client program developers to en-
capsulate framework APIs instead of using them directly. Developers may decide
on how tight the coupling between their programs and a framework should be,
according to the stability of the frameworks or resource constraints, such as devel-
opment time period. For stable frameworks, developers could consider coping with
the current USR level as those APIs will rarely change between releases. Instead,
client developers should reduce USRs for unstable or obsolete frameworks, as this
will probably minimise the changes required to upgrade to a new release.

28 Wei Wu et al.

Table 11: Mann-Whitney-Wilcoxon test results on USR and TUSR

value Apache vs. Eclipse Internal vs. Third-party
p Internal | Third-party | Apache Eclipse
USR 0.11 < 0.05 0.06 < 0.05
TUSR 0.70 0.44 < 0.05 < 0.05
8 { < A
81 | g1
g8 ‘ g
o x Q-
[} [} <
ER-g E;
-
o | ER -
o] J 2
Apache ‘+ Eclipse Apache L Eclipse
Client Program # Client Program #
(a) Apache vs. Eclipse internal (b) Apache vs. Eclipse third-party

60
!
IUSR (%)
30
!

IUSR (%)
20
!

40
L

20
L
10
L

|
° :j o
T T
Internal + Third—party Internal + Third—-party
Client Program # Client Program #

(c) Apache internal vs. third-party (d) Eclipse internal vs. third-party

Fig. 16: Ideal Usage Ratios (IUSRs)

RQ4: What percentage of framework API usages are the API-injection usages?

Motivation: We found that, on average, there is more than 30% difference between
USR and IUSR in client programs of the frameworks in the two ecosystems. As
discussed in Section 2, the difference can be caused and amplified by U2 — U5 in
Table 3. It is important to know how much of the API usages belong to U2 — U5,
since avoiding such usages could be an efficient way to reduce USRs of client
programs.

Approach: We use EAR (Encapsulable API-Injection Ratio), the proportion of
U2-U5 in total API usage, to answer this research question. We also use the Mann-

API Changes and Usages in Apache and Eclipse 29

100
.
100
|
oA

80
L
80
L

60
60
L

EAR (%)
EAR (%)
40

20
20
L

0
I

T T
Apache + Eclipse Apache + Eclipse

Client Program # Client Program #
(a) Apache vs. Eclipse internal (b) Apache vs. Eclipse third-party
g 81
=
8 2
SN €ol
z g
wu - w
o |
«
o |
N
o+ 1
T T
Internal + Third—party Internal + Third-party
Client Program # Client Program #

(c) Apache internal vs. third-party (d) Eclipse internal vs. third-party
Fig. 17: Encapsulable API-Injection Ratios (EARs)

Table 12: Mann-Whitney-Wilcoxon test results on EAR

value Apache vs. Eclipse Internal vs. Third-party
b- Internal | Third-party | Apache Eclipse
EAR 0.58 0.32 0.66 0.07

Whitney-Wilcoxon test [29] to verify if the EARs between Apache and Eclipse
internal and third-party client programs are statistically different.

Findings: The values of EARs are not statistically different between Apache and
Eclipse client programs, with medians of EARs of 14% and 8%, respectively, as
shown in Table 12 and in Figure 17.

Discussion As recommended by Bloch [12], composition-style usage can encapsu-
late framework APIs and prevent propagating their changes. Also, composition-
style usage avoids the fragile base class problem [30] affecting client programs, while
internal changes in base classes could break client programs, even if there is no API

30 Wei Wu et al.

change. Approaches and tools that help developers for such specific encapsulation
tasks are interesting for researchers in software engineering.

Inheritance-style usage or U1 also is not avoidable, because many frameworks
are designed for IOC. However, developers can still protect client programs by
loosening the coupling to framework APIs: The Facade or Adapter patterns [2]
can provide a buffer layer between client programs and frameworks, enabling client
programs and frameworks to evolve relatively independently.

The reduction of framework API usage in client programs can then be illus-
trated in Figure 18. Ideally, client programs should only keep U1l and U6 and
encapsulate U2 — U5 with composition-style usage. Tools like ACUA [10] can help
developers by identifying U2 — U5 usages. Modern IDEs, such as Eclipse, also pro-
vide refactoring tools, for example to extract methods from other pieces of code.
These refactoring tools would help developers apply series of refactorings to ex-
tract code that uses framework APIs into one single class. For example, the class
org.eclipse.swt.internal.win32.0S of Eclipse!® is a class encapsulating all the
API calls from SWT to the underlying Win32 platform.

Developing automated refactoring tools for the reduction of API usage is an
open problem [31]. However, Shah et al. [32] demonstrated that Introduce Factory
and Move refactorings provided by the Eclipse IDE can be used to reduce the
dependencies in Java programs automatically. Their work is an example of the
feasibility of using automated tools to reduce U2 — U5 API usages.

RQ5: Which type of API change affects the encapsulable API-injection usages more
often?

Motivation: API-injection usages, i.e., U2 — U5, can propagate framework API
changes to other parts of the client programs. However, the effort of client pro-
gram developers to adapt to API changes depends on the API change types. We
study the types of API changes that affect the injected client program APIs to
understand their prevalence and potential impact.

Approach: We first verify if the API changes and U2 — U5 are correlated with
Pearson’s Chi-squared and Fisher’s exact tests. If the answer is positive, we further
investigate which types of API changes affect U2 — U5 more often than the others
with Odds Ratio of the different types of API changes.

We use CMC (Containing Method-level Changes) as the reference group to
compute the Odds Ratio, because CMC is the most frequent API change. The
Odds Ratio of CMC is one, the API change types with Odds Ratios greater than
one are considered more common while those with Odds Ratios less than one are
less common.

Findings: The statistical test results in Table 13 show that, for Apache internal
clients, only encapsulable API-injection usages (U2 — U5) are correlated to API
changes. As shown in Table 14, CMC, MSC (Missing Classes), and CSIS (Contract
SuperInterface Set) have the largest numbers of API-injection usages. AAM (Add
Abstract Method), MVI (Moved Interface), and CTK (Change Type Kind) are
the three API change types that are always used in U2 — Ub.

16 nttp://www.docjar.com/docs/api/org/eclipse/swt/internal/win32/0S.html

API Changes and Usages in Apache and Eclipse

31

Reality

Inheritance for I0C
(C)

Optional inheritance
(U2)

Other API-injection usages
(U3-U5)

No usage of framework APIs

Recomm

ended

Inheritance for IOC

(u1

)

No usage of framework APls

‘ Exposed to framework API changes and propagating ‘

Not exposed to framework API changes

Fig. 18: API usage recommendation

Table 13: Correlations between encapsulable API-injection usages

value Apache Eclipse
p-vali Internal [Third-party | Internal | Third-party
Chi-Square < 0.05 0.52 0.20 0.12
Fisher’s Exact < 0.05 0.62 0.21 0.43

Table 14: Odds ratio of API change types in Apache internal client programs

[API change types [U2 — U5 usages [U1 and U6 usages [Odds ratio]

AAM 10 0 Inf
MVI 3 0 Inf
CTK 2 0 Inf
CSIS 26 5 1.47
CMC 60 17 1.00
MVC 7 2 0.99
CSCS 7 2 0.99
CTN 4 2 0.57
AMI 11 7 0.45
MSC 29 23 0.36
MSI 8 15 0.15

32 Wei Wu et al.

Discussion The correlation between encapsulable API-injection usages in Apache
internal client programs may be caused by the fact that Apache does not have
an explicit policy to regulate API changes, while Eclipse has Provisional API
Guidelines. Hence, Apache framework developers have more freedom to change
APIs than Eclipse framework developers. Being injected in the client program
APIs may be a factor causing CMC and MSC to affect client programs more
frequently. Although AAM, MVI, and CTK are always used in U2 — U5, these
three API change types are easier to adapt than MSC and MSM, which are the
main causes of CMC.

4.3 Summary

The goal of our study is to better understand how APIs are changed and used on
a large scale, so both framework and client program developers can mitigate the
impact of API changes pro-actively. Analysis of the top-11 framework releases from
Apache and Eclipse SDKs with the most changed APIs affecting their internal and
third party client programs, showed that:

— Framework developers should be more disciplined to avoid removing or chang-
ing the names of reference types and methods used as APIs. We found that
Missing classes (MSC) and methods (MSM) are the most frequent API changes
and they affect client programs more often. Comparing to other API changes,
such as removing method parameters, these two types of API changes require
developers to search for replacements or to reimplement the changed APIs. For
unavoidable API name changes, framework developers should provide detailed
documentation to guide client program developers to upgrade, with the help
of API change rule detection tools.

— Framework developers should have clear policies about which APIs are ac-
cessible and stable. For example, Eclipse Provisional API Guidelines distin-
guish between official and internal APIs. This distinction explains why API
changes in Eclipse frameworks affect less client programs than those in Apache
frameworks. As shown in Table 8, Eclipse frameworks have more API changes
than Apache frameworks, but less API changes affecting client programs than
Apache frameworks.

— A common solution for client developers to contain API usage within isolated
parts of their code, is to use composition, as changes to widely-spread APT us-
ages are more difficult to adapt to. We found that the median of the ideal usage
ratios (IUSRs), which represent the API usages for inversion of control (I0C),
are 0% and 1% for the client programs of Apache and Eclipse client programs,
while the medians of USRs for all API usages, are 38% and 32% for the client
programs of the two ecosystems, respectively. The differences between ITUSRs
and USRs show that client program developers can encapsulate their unneces-
sary API usages (i.e., usages not performed because of IOC) with composition
to reduce USRs. However, there might be additional cost to reach the lower
boundary of USRs, i.e., the ideal usage ratios (IUSRs), because composition-
style usages require the extra effort of client program developers to encapsulate
framework APIs instead of using them directly. Developers should decide on
how tight the coupling between their programs and a framework should be,

API Changes and Usages in Apache and Eclipse 33

according to the stability of the frameworks and resource constraints, such as
the development time period.

5 Threats to Validity

Our study, its results, and our conclusions are subject to several threats to their
validity [29], which we discuss below.

Construct Validity verifies that the observations really reflect the theory, i.e., whether
the treatment reflects the cause and the outcome reflects the effects. We wanted
to observe whether different API change types occur in frameworks and affect
client programs differently, depending on their usages of the APIs. Therefore, we
chose one categorisation of API changes and usages among different possibilities.
As the basis of our analysis, we followed a categorisation proposed by experienced
practitioners?.

Internal Validity verifies that the outcome is really caused by the treatment. There
may be errors in the tool used to collect data in our study or the tool may over-
look some of the categories of changes types and usages. We carefully tested our
tool, ACUA, and wrote several unit and regression tests. During data analysis,
we did not observe inconsistent or conflicting results. We also described ACUA
algorithms in detail to help with future replication by other researchers. Finally,
our implementation of ACUA is available on-line'4.

ACUA does not analyse API usages via Java reflection because this would
require inferring the types and methods described by Strings either through so-
phisticated, and costly, static analyses or through incomplete dynamic analyses.
However, a search for uses of the Java reflection API convinced us that such cases
are very rare with respect to the number of non-reflective APT calls, most likely
for performance reasons. Therefore, this limitation does not have an observable
effect on our results.

In the API change detection algorithm, we consider that a class (or an interface,
respectively) is moved to another package in the new release of a framework if (1)
the class does not exist in the same package in the new release and (2) a class with
the same simple name is added to another package in the new release. Since the
deleted and added classes can have the same name but irrelevant, ACUA could
generate false positive class/interface moves. We randomly sampled 10% of about
174 class/interface moves and did not find any false positive.

Reliability validity threats concern the possibility of replicating this study. We at-
tempted to provide all the necessary details about our study to help others to
replicate it. In particular, all studied programs are publicly available. ACUA and
the raw data used in this study are freely available on-line®?.

External Validity verifies that the results of a study are generalisable. We only
analysed Java frameworks of Apache and Eclipse. Although popular and large,
these frameworks are not representative of the general population of frameworks
in Java and in other programming languages.

34 Wei Wu et al.

Because Eclipse does not have a central repository, like the Maven central
repository for Apache, and because we cannot know the general population of all
client programs (even with a central repository), all the results and conclusions
of our study are only valid in the context of our data set. Yet, we performed to
date the largest study on API changes and usages and, as such, our results and
conclusion can be helpful to practitioners and researchers.

Finally, many client programs are also frameworks. The lack of clear difference
between API usages in frameworks and “pure” client programs may affect our
results. Future work should distinguish frameworks from “pure” client programs
and assess their differences in terms of API changes and usages.

6 Related Work

Researchers studied framework APIs from different perspectives: change mapping
[33,24,26,14], documentation [34-36], teaching/learning [37-39], usage examples
[40,41], refactoring [42,43], stability measurement [44,1], migration [45,46], Web
APIT evolution [47]. In the following, we present work related to API changes, API
usages, and the combination of both. We also compare ACUA to existing tools
and summarise the difference between our work and previous works and tools, as
shown in Table 16 and Table 17.

6.1 API Changes

Des Rivieres? discussed in detail API contract compatibility and classified API
changes according to the elements of the Java APIs, such as package, class, method,
and so on. He did not investigate which API change types occur in frameworks
and client programs. We base the categorisation of API change types in ACUA on
this previous work.

Raemackers et al. [48] investigated whether the developers of the frameworks in
the Maven central repository follow the semantic versioning rule, which suggests
that the version format be MAJOR.MINOR.PATCH. According to this version
format, only MAJOR versions should introduce incompatible API changes. Yet,
they found that the semantic versioning rule is not enforced in the frameworks
hosted in the Maven central repository and that MINOR and PATCH versions of
some frameworks introduced incompatible API changes. We drew inspiration from
this previous work to study the distribution of API changes in frameworks and
their impact on API usages in client programs.

Hou and Yao [3] classified API changes in AWT and Swing according to do-
mains and design intentions. They identified eight design intentions for the API
changes in these two JDK packages, e.g., changes in naming conventions or changes
to introduce a new concept. They found that the proportion of changed APIs is
small but feature redesign is an important cause of API changes. They did not
study the impact of the API change types on client programs using AWT or Swing.

Cossette and Walker [21] investigated manually the binary incompatibility be-
tween 16 pairs of releases of three Java systems (Struts, Logdj, an JDOM). Ac-
cording to the easiness to adapt to API changes, they classified API changes into
three categories: fully automatable, partially automatable, and hard to automate.

API Changes and Usages in Apache and Eclipse 35

They reported the purposes of API changes from a different perspective than that
of [3], e.g., exposing internal implementation or generalizing. Although detailed
and insightful, manual investigation is hard to apply on larger scale.

Other works, such as the work by Dig et al. [15] and Xing and Stroulia [23]
also discussed API change types. Yet, these works considered more coarse-grained
API change types than the ones in the work by Des Riviéres 2, on which we base
ACUA. Also, they do not study or report the distributions of API change types
in between framework releases and their impact on API usages.

There is a large body of work on identifying changes between two versions
of a programs or framework. For example, Xing and Stroulia [49] proposed an
approach to match methods between two versions of a framework to help developer
understand the changes between the two versions and, ultimately, to ease the
upgrading of their client programs. Many approaches exist [13,24,50,14], but these
are not directly related to the analysis of API changes and usages.

6.2 API Usages

Lammel et al. [7] conducted a large-scale AST-based analysis on framework-style
and library-style API usages in the Ant Java projects hosted in the SourceForge
Repository!”. They were the first to study API usages on a large-scale. They
observed that the number of APIs grows with framework sizes, that less than
half of the APIs are used by client programs, and that half of the frameworks
are used in “framework-style” (Inversion of Control). Our study of API changes
and usages is inspired by and extends this work, although we parsed Java class-
files instead of source code because JAR files are usually readily available and,
thus, we can study a larger data set. We analysed Maven projects instead of Ant
projects because, thanks to Maven central repository, we could download both
frameworks and their client programs and also identify all dependencies. We fully
automated the fact-extraction process (the tool is available on-line'?), investigated
API changes types and usages together, and studied the encapsulation of APIs to
avoid change-propagations.

De Roover et al. [8] conducted a multi-perspective analysis of API usages in
the Qualitas corpus [5]. They first extended this corpus with information about
the dependencies, API names, domains, and facets (groups of sub-functions of
frameworks) and named this extension the QuaAtlas (Qualitas API Atlas). They
then explored APIT usages in QuaAtlas from different perspectives and presented
insights on these usages. They also proposed a Web-based tool, Exapus, for devel-
opers to explore API usages. In our study, we relate API usages with API changes
and focus on upgrading effort.

Other researchers studied API usages from different points of view. The tool
SpotWeb developed by Thummalapenta and Xie [39] can identify frequently-used
and rarely-used framework APIs by mining open-source software repositories. It
does not directly allow understanding the impact of APIs changes on their usages.

Kawrykow and Robillard [40] proposed an approach to detect redundant code,
i.e., pieces of code in client programs that imitate implementations of APIs in
frameworks and, thus, that could be replaced by API calls. Their approach cannot

17 nttp://sourceforge.net/

36 Wei Wu et al.

be used readily to compute the distributions of API changes and usages, and the
impact of the change types, across releases of frameworks.

LibSync [51] helps developers learn complex APIs and adapt their client pro-
grams to changes by mining usage change patterns in client programs that have
been upgraded already. It is useful for developers but does not provide informa-
tion about the types of changes and their impact on APT usages. Also, it does not
provide advice to limit change propagations. Another technique, APIMiner [52]
helps developers by extracting examples of API usages using program slicing.

Businge et al. [6] studied 512 Eclipse Third-Party Plug-ins (ETPs) and their
usages of Eclipse internal and official APIs. They observed that 44% of these ETPs
use internal Eclipse APIs and that ETP developers continue to use these internal
APIs even when evolving their plug-ins. They thus showed that API usages may
have an important impact on upgrading costs but did not relate the observed
usages with change types.

6.3 API Changes and Usages

Few previous work studied API changes and usages together. Dietrich et al. [4] in-
vestigated the differences between Java compile-time and link-time compatibility
and their influences on client programs. They analysed 564 releases of 109 pro-
grams from the Qualitas corpus [5], excluding those from Eclipse and Azureus.
They found that 75% of upgrades have link-time incompatibilities. Some incom-
patibilities also exist at compile-time but only affect eight client programs. They
did not consider finer-grained change types and did not recommend measures to
minimise upgrading costs.

Robbes et al. [9] conducted a study on API deprecation in the Smalltalk Squeak
and Pharo ecosystems and observed its impact on developers. They analysed 577
and 186 deprecated methods and classes, respectively, and discovered that 14%
of the deprecated methods and 7% of the deprecated classes caused changes in at
least one project. The median of the developers’ reaction time to changes was two
weeks. Yet, they also observed that only about 20% of affected projects reacted to
deprecated APIs. They did not consider other type of changes, besides deprecation,
and studied a less popular language, while we consider a much larger data set by
considering frameworks and client programs in Java.

6.4 Other Tools

Besides research approaches, there are also other tools from the open-source soft-
ware community analysing API change or usage in Java programs. The differences
between these tools and ACUA are summarised in Table 15.

Animal Sniffer'® verifies if a program is compatible with the APIs of dependent
frameworks. It analyses both API changes and usages, but only checks which
APIs are changed or used, not how (much) they are changed or used. Similar to
Animal Sniffer, Clirr'® tries to identify both binary and source incompatible API

18 http://mojo.codehaus.org/animal-sniffer/
19 nttp://mojo.codehaus.org/clirr-maven-plugin/index.html

API Changes and Usages in Apache and Eclipse 37

Table 15: Tool comparison

API

Changes | Change Types | Usages | Usage Types
Animal Sniffer Yes No Yes No
Clirr Yes Yes No No
Java ACC Yes Yes No No
JAPITools Yes NA No No
JBoss Tattletale No No Class No
JDiff Yes Yes No No
ACUA Yes Yes Yes Yes

changes between two releases of a framework. It does not analyse API usages. Java
API Compliance Checker (Java ACC)2?° is a Java API backward-compatibility
verification tool. Similarly to ACUA, it is based on the API change classification
of Des Rivieres 2 but it does not identify API usages. JDiff?! and JAPITools?? are
two tools similar to Java ACC, but they detect more coarse-grained API change
types. Tattletale?? is a tool developed by JBoss to analyse JAR, WAR, and EAR
file dependencies in Java projects to minimise the number of dependencies and
eliminate duplicated class files. Tattletale works mainly at class level and does not
analyse API usages in details nor does it consider API changes.

6.5 Summary

We drew inspiration from this previous work and bring the following contributions.
We conducted an automated analysis on both API changes and usages in the
frameworks and client programs of two popular framework ecosystems: Apache
and Eclipse. Table 7 shows that the presented results pertain to 22 frameworks,
213 client programs, 424 releases of these programs, for a total of 141,899 classes.
These frameworks and client programs are selected by analysing 36,000 projects
from Maven central repository and 16 releases of Eclipse SDK classic, which make
it the largest study on the topic of APIs changes to date.

We grouped the API changes according to Des Rivieres’ classification and
investigated how these API change types affect client programs depending on the
usages of the APIs by these programs.

We confirmed the findings in Raemaekers et al. [48] and Dietrich et al. [4] that
developers remove classes and methods very often. Because other API change types
are different between ours and the previous studies or the other previous studies
do not report the distribution of API change types, we cannot compare our results
with theirs. We also identified the client program classes or interfaces that are
currently exposed to and can be protected from API changes. Our study contribute
to provide more empirical data about the reality of API changes and usages. Thus,
future work could build on this work to propose automated refactorings to protect

http://ispras.linuxbase.org/index.php/Java_API_Compliance_Checker
2l nttp://jdiff.org/

22 nttp://wuw.sab39.org/Software/Japitools/42/

23 http://tattletale.jboss.org/

38 Wei Wu et al.

client programs from change propagation, but also could study further types of
changes and their impact on API usages in these and other ecosystems.

7 Conclusion

When frameworks evolve, the APIs that they provide may change between releases.
Upgrading to new releases of frameworks is costly for developers of client programs,
but delaying upgrading prevents developers from benefiting bug fixes, new features,
and security patches. Differences in API usages affect upgrade costs differently.

We follow Des Rivieres’ definitions 2 of API change types and consider public
and protected Java software entities, such as classes and methods, as APIs. We
also consider five types of API usages, which we call API-injection, because they
can propagate API changes within client programs and increase API usages, i.e.,
the framework APIs are injected in the client program APIs.

Based on these definitions, we develop a tool to analyse API changes and usages
together, ACUA. Using ACUA, we conduct an exploratory study on API changes
and usages in the frameworks of the Apache and Eclipse ecosystems and some of
their client programs. We build a data set composed of 11 framework releases from
Apache and Eclipse, which represent 20,399 classes, 171 internal client programs,
which include 95,273 classes, and 42 third-party client programs, composed of
26,227 classes.

In this data set, we observe the following facts. (1) Missing classes and methods
happen most often in new framework releases and affect client programs more often
as well than the other API changes. Missing Interfaces are rare in frameworks but
affect client programs often. The API change types at method level occur in new
framework release and affect the client programs almost with the same frequency.
(2) On average, the APIs of a framework are used in 35% of the classes and
interfaces of a client program. (3) We also observe that most of these usages could
be reduced through refactorings. (4) About 14% and 8% of APIs in Apache and
Eclipse frameworks are injected into client program APIs and can be encapsulated
with client program APIs. Such encapsulation seems to be the most efficient way
to reduce general framework API usage in client programs. (5) API changes and
encapsulable API-injection usages are correlated only in Apache internal programs.
This correlation may be caused by Apache not having explicit policy to regulate
API changes.

Based on our observations, we suggest that client-program developers use tools
such as ACUA to analyse their framework API usages regularly to plan proactive
framework upgrades and to apply patterns like the Adapter or Facade design
patterns to control API change-propagation. For framework developers, we suggest
to avoid APT changes that occur in client programs more often than others and that
are more difficult to accommodate for client-program developers. Alternatively,
framework developers should provide more detailed documentations regarding the
API changes to help client-program developers. Empirical studies to quantitatively
evaluate and exploit the benefits of ACUA in supporting framework upgrading are
future work.

API Changes and Usages in Apache and Eclipse 39

Acknowledgements

We thank Daniel German for providing the Maven central repository snapshots.
This work has been partly funded by FQRNT, NSERC, and the Canada Research
Chair on Patterns in Mixed-language Systems. We thank the anonymous reviewers
for their invaluable comments on previous versions of this paper.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software library stability
through historical version analysis,” in Proceedings of the 2012 IEEE International Con-
ference on Software Maintenance (ICSM), ser. ICSM ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 378-387.

. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

. D. Hou and X. Yao, “Exploring the intent behind api evolution: A case study,” in WCRE,

2011, pp. 131-140.

. J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical study into evolution

problems in java programs caused by library upgrades,” in CSMR-WCRE, 2014, pp. 64-73.

. E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble,

“Qualitas corpus: A curated collection of java code for empirical studies,” in 2010 Asia
Pacific Software Engineering Conference (APSEC2010), Dec. 2010, pp. 336-345.

. J. Businge, A. Serebrenik, and M. van den Brand, “Eclipse api usage: the good and the

bad,” Software Quality Journal, pp. 1-35, 2013.

. R. Lammel, E. Pek, and J. Starek, “Large-scale, ast-based api-usage analysis of open-source

java projects,” in Proceedings of the 2011 ACM Symposium on Applied Computing, ser.
SAC ’11. New York, NY, USA: ACM, 2011, pp. 1317-1324.

. C. D. Roover, R. Lammel, and E. Pek, “Multi-dimensional exploration of api usage,” in

ICPC, 2013, pp. 152-161.

. R. Robbes, M. Lungu, and D. Réthlisberger, “How do developers react to api deprecation?:

The case of a smalltalk ecosystem,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, ser. FSE ’12. New York,
NY, USA: ACM, 2012, pp. 56:1-56:11.

W. Wu, B. Adams, Y.-G. Guéhéneuc, and G. Antoniol, “Acua: Api change and usage
auditor,” in 4th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM), ser. SCAM’14, 2014.

N. Ali, Z. Sharafi, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical study on require-
ments traceability using eye-tracking,” in Proceedings of the International Conference on
Software Maintenance, ser. ICSM 2012, 2012.

J. Bloch, Effective Java (2nd Edition) (The Java Series), 2nd ed. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2008.

B. Dagenais and M. P. Robillard, “Recommending adaptive changes for framework evo-
lution,” ACM Transactions on Software Engineering and Methodology, vol. 20, no. 4, pp.
19:1-19:35, Sep. 2011.

W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid approach to identify
framework evolution,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010,
pp. 325-334.

D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated detection of refactorings
in evolving components,” in ECOOP ’06: Proceedings of the 20th European Conference
on Object-Oriented Programming. Springer Berlin / Heidelberg, July 2006.

K. Pearson, “On the criterion that a given system of deviations from the probable in the
case of a correlated system of variables is such that it can be reasonably supposed to
have arisen from random sampling,” Philosophical Magazine Series 5, vol. 50, no. 302, pp.
157-175, 1922.

R. A. Fisher, “On the interpretation of x? from contingency tables, and the calculation of
p,” Journal of the Royal Statistical Society, vol. 85, no. 1, pp. 87-94, Jan. 1922.

40

Wei Wu et al.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.
36.

37.

38.

. D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures (fourth

edition). Chapman & All, 2007.

G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella, “The evolution of
project inter-dependencies in a software ecosystem: The case of apache,” in Proceedings
of the 2013 IEEE International Conference on Software Maintenance, ser. ICSM ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 280-289.

J. Businge, A. Serebrenik, and M. van den Brand, “An empirical study of the evolution
of eclipse third-party plug-ins,” in Proceedings of the Joint ERCIM Workshop on Soft-
ware Evolution (EVOL) and International Workshop on Principles of Software Evolution
(IWPSE), ser. IWPSE-EVOL ’10. New York, NY, USA: ACM, 2010, pp. 63-72.

B. E. Cossette and R. J. Walker, “Seeking the ground truth: a retroactive study on the
evolution and migration of software libraries,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, ser. FSE '12. New
York, NY, USA: ACM, 2012, pp. 55:1-55:11.

D. Dig and R. Johnson, “How do apis evolve? a story of refactoring: Research articles,”
J. Softw. Maint. Evol., vol. 18, no. 2, pp. 83-107, 2006.

Z. Xing and E. Stroulia, “API-evolution support with diff-CatchUp,” IEEE Trans. Softw.
Eng., vol. 33, no. 12, pp. 818 — 836, December 2007.

M. Kim, D. Notkin, and D. Grossman, “Automatic inference of structural changes for
matching across program versions,” in ICSE ’07: Proceedings of the 29th international
conference on Software Engineering. Washington, DC, USA: IEEE Computer Society,
2007, pp. 333-343.

S. Kpodjedo, F. Ricca, P. Galinier, G. Antoniol, and Y.-G. Guéhéneuc, “Madmatch: Many-
to-many approximate diagram matching for design comparison,” IEEE Transactions on
Software Engineering, vol. 39, no. 8, pp. 1090-1111, 2013.

S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based matching approach to iden-
tification of framework evolution,” in Proceedings of 34th International Conference on
Software Engineering, ser. ICSE 2012, 2012, pp. 353-363.

W. Wu, A. Serveaux, Y.-G. Guéhéneuc, and G. Antoniol, “The impact of imperfect change
rules on framework api evolution identi

cation:an empirical study,” Empirical Software Engineering, vol. In Press, 2014.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999.

C. Wohlin, P. Runeson, and M. Hést, Fxperimentation in Software Engineering: An In-
troduction. Springer, 1999.

L. Mikhajlov and E. Sekerinski, “A study of the fragile base class problem.” in IN EURO-
PEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, ser. ECOOP’98.
Springer, 1998, pp. 355-382.

M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodorant: identification
and application of extract class refactorings,” in Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May
21-28, 2011, 2011, pp. 1037-1039.

S. M. A. Shah, J. Dietrich, and C. McCartin, “On the automation of dependency-breaking
refactorings in java,” in Proceedings of the 2013 IEEE International Conference on Soft-
ware Maintenance, ser. ICSM ’13. Washington, DC, USA: IEEE Computer Society, 2013,
pp. 160-169.

M. W. Godfrey and L. Zou, “Using origin analysis to detect merging and splitting of source
code entities,” IEEE Trans. Softw. Eng., vol. 31, no. 2, pp. 166-181, 2005.

D. Hou and L. Mo, “Content categorization of api discussions,” in ICSM, 2013, pp. 60-69.
W. Maalej and M. P. Robillard, “Patterns of knowledge in api reference documentation,”
IEEE Trans. Software Eng., vol. 39, no. 9, pp. 1264-1282, 2013.

L. Shi, H. Zhong, T. Xie, and M. Li, “An empirical study on evolution of API docu-
mentation,” in Proc. International Conference on Fundamental Approaches to Software
Engineering (FASE 2011), March-April 2011, pp. 416-431.

M. Linares-Véasquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshyvanyk, “How do
api changes trigger stack overflow discussions? a study on the android sdk,” in Proceedings
of the 22Nd International Conference on Program Comprehension, ser. ICPC 2014. New
York, NY, USA: ACM, 2014, pp. 83-94.

M. P. Robillard and R. DeLine, “A field study of api learning obstacles,” Empirical Soft-
ware Engineering, vol. 16, no. 6, pp. 703-732, 2011.

API Changes and Usages in Apache and Eclipse 41

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

S. Thummalapenta and T. Xie, “Spotweb: Detecting framework hotspots and coldspots
via mining open source code on the web,” in Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 327-336.

D. Kawrykow and M. P. Robillard, “Improving api usage through automatic detection
of redundant code,” in Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 111-122.

E. Moritz, M. L. Véasquez, D. Poshyvanyk, M. Grechanik, C. McMillan, and M. Gethers,
“Export: Detecting and visualizing api usages in large source code repositories,” in ASE,
2013, pp. 646—651.

D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen, “Refactoring-aware configuration
management for object-oriented programs,” in ICSE ’07: Proceedings of the 29th inter-
national conference on Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 427-436.

M. Kim, D. Cai, and S. Kim, “An empirical investigation into the role of api-level refac-
torings during software evolution,” in Proceedings of the 33rd International Conference
on Software Engineering, ser. ICSE '11. New York, NY, USA: ACM, 2011, pp. 151-160.
T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability and adoption
in the android ecosystem,” in Proceedings of the 2013 IEEE International Conference on
Software Maintenance, ser. ICSM ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 70-79.

T. Tonelli, K. Czarnecki, and R. Lammel, “Swing to SWT and back: Patterns for API
migration by wrapping,” in 26th IEEE International Conference on Software Maintenance
(ICSM 2010), September 12-18, 2010, Timisoara, Romania. IEEE Computer Society,
2010, pp. 1-10.

H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining api mapping for
language migration,” in Proceedings of the 82nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp.
195-204.

T. Espinha, A. Zaidman, and H.-G. Gross, “Web api growing pains: Stories from client
developers and their code,” in CSMR-WCRE, 2014, pp. 84-93.

S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning versus breaking
changes: a study of the maven repository,” in 14th IEEE International Working Con-
ference on Source Code Analysis and Manipulation (SCAM 2014). Victoria (Canada),
28-29 Sept. 2014. IEEE Computer Society, 2014.

Z. Xing and E. Stroulia, “Differencing logical uml models,” Autom. Softw. Eng., vol. 14,
no. 2, pp. 215-259, 2007.

T. Schéfer, J. Jonas, and M. Mezini, “Mining framework usage changes from instantia-
tion code,” in ICSE ’08: Proceedings of the 30th international conference on Software
engineering. New York, NY, USA: ACM, May 2008, pp. 471-480.

H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim, and T. N. Nguyen,
“A graph-based approach to api usage adaptation,” in Proceedings of the ACM interna-
tional conference on Object oriented programming systems languages and applications,
ser. OOPSLA ’10. New York, NY, USA: ACM, 2010, pp. 302-321.

J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting apis with exam-
ples: Lessons learned with the apiminer platform,” in WCRE. IEEE, 2013, pp. 401-408.

Table 16: API change and usage related studies 2-1

API API API Internal
change API usage change vs.
Goal Target System API change types type Detecting Tool usage type and third
distri- types distri- usage party
bution bution relation | usage
To investigate if the
developers of the 10 types of breaking and
R . e ; 2
Raemackers et al. [48] frameworks m Maven 22,205 prochts in Maven 10 types of non-breaking Yes Clirr No No No No
central repository follow central repository changes
the semantic versioning &
rule
To classify API changes oD th)'iie(cl::ledAypnliwaz(ildEd’ Manual
API Hou and Yao (3] according to domains Swing and AWT APIs v J No . No No No No
and design intentions subtypes according the analysis
) the chagne intention
To investigate how the S;itzazﬁl;tztiitli}:t?ble
Changes | Cossette and Walker [21] S::Se:;eti};a:eglsgses of g?r(u)ézl, Log4j, and and hard to automate No gllzrllu:;ls No No No No
frameworks according to the easiness Y
to adapt
. To present an algorithm Eclipse UI, JHotDraw, Seven types of Refactoring
Dig et al. [15] detecting refactorings and Struts refactorings No Crawler No No No No
To present an approach
Xing and Stroulia [23] recommending HTIMUnit and 30+ API changes causing No Diff-CatchUp No No No No

replacements for changed
APIs

JFreeChart

API migration problems

4z

e 90 AN TOAN

Table 17: API change and usage related studies 2-2

API API API Internal
change API usage change vs.
Goal Target System API change types type Detecting Tool usage type and third
distri- types distri- usage party
bution bution relation | usage
Framework-
like
To investigate how 6.286 projects in Self-developed and
API Lammel et al. [7] framework APIs are used i’ proj § s No No AST-Based library- | Yes No No
SourceForge repository .
on a large scale tool like
API
usages
Official
TO. investigate how 512 Eclipse third-party Self-developed API'
- third-party Eclipse L B tool and and in-
usages Businge et al. [6] R H plug-ins in SourceForge No No) Yes No No
plug-ins use Eclipse repositor Maunal ternal
APIs. posttory analysis API
usage
To investigate how 2,600 systems of two i‘iglltﬁlg:t’l;inﬁ\g{;:;d ?:(l)fl-c;illeloped
Robbes et al. [9] developers react to API software ecosystems in and methods marked as No Maunal No No Yes No
deprecation Smalltalk ¢ S ‘ e
deprecated analysis
To investigated the Binary incompatible but
differences between Java source compatible,
- compile-time and 109 programs from the binary compatible but ASM and
Both Dietrich et al. [4] link-time compatibility Qualitas corpus [5] source incompatibel, and Yes JaCC No No Yes No
and their influences on both incompatible
client programs. chagnes
36,000 projects in Maven APT-
To investigate API Ce;ltl'al l;e Josit‘or and 16 23 types based on the injection
This study changes and usages postiory classification of Yes ACUA usages Yes Yes Yes
releases of Eclipse SDK Rioiao2
together on large scale . Des™Rivieres and
Classic others

asdijoy pue sydedy ur sedes)) pue segury)) [V

€V

