
Noname manuscript No.
(will be inserted by the editor)

Fragile Base-class Problem, Problem?

Aminata Sabané · Yann-Gaël Guéhéneuc · Venera Arnaoudova ·
Giuliano Antoniol

Received: date / Accepted: date

Abstract The fragile base-class problem (FBCP) has

been described in the literature as a consequence of

“misusing” inheritance and composition in object-orien-

ted programming when (re)using frameworks. Many re-

search works have focused on preventing the FBCP by

proposing alternative mechanisms for reuse, but, to the

best of our knowledge, there is no previous research

work studying the prevalence and impact of the FBCP

in real-world software systems. The goal of our work is

thus twofold: (1) assess, in different systems, the preva-

lence of micro-architectures, called FBCS, that could

lead to two aspects of the FBCP, (2) investigate the re-

lation between the detected occurrences and the quality

of the systems in terms of change and fault proneness,

and (3) assess whether there exist bugs in these systems

that are related to the FBCP.

We therefore perform a quantitative and a quali-

tative study. Quantitatively, we analyse multiple ver-

sions of seven different open-source systems that use

58 different frameworks, resulting in 301 configurations.

We detect in these systems 112,263 FBCS occurrences

and we analyse whether classes playing the role of sub-
classes in FBCS occurrences are more change and–or

fault prone than other classes. Results show that classes

participating in the analysed FBCS are neither more

A. Sabané · Y.-G. Guéhéneuc · G. Antoniol
DGIGL, Ecole Polytechnique de Montréal, Montreal, Canada
E-mail: aminata.sabane@polymtl.ca

Y.-G. Guéhéneuc
E-mail: yann-gael.gueheneuc@polymtl.ca

Giuliano Antoniol
E-mail: antoniol@ieee.org

V. Arnaoudova
Washington State University , USA
E-mail: Venera.Arnaoudova@wsu.edu

likely to change nor more likely to have faults. Qualita-

tively, we conduct a survey to confirm/infirm that some

bugs are related to the FBCP. The survey involves 41

participants that analyse a total of 104 bugs of three

open-source systems. Results indicate that none of the

analysed bugs is related to the FBCP.

Thus, despite large, rigorous quantitative and quali-

tative studies, we must conclude that the two aspects of

the FBCP that we analyse may not be as problematic

in terms of change and fault-proneness as previously

thought in the literature. We propose reasons why the

FBCP may not be so prevalent in the analysed systems

and in other systems in general.

Keywords Inheritance · Overriding · Composition ·
Fragile base-class · Change proneness · Fault proneness ·
Empirical study

From an API point of view defining that a method

can be overridden is a stronger commitment that

defining that a method can be called

—Erich Gamma, June 6, 2005.

1 Introduction

Inheritance is one of the fundamental principles of object-

oriented programming, with abstraction, encapsulation,

polymorphism, and typing. It provides a powerful mech-

anism to extend and reuse classes. However, many au-

thors pointed out some problems with the use of inher-

itance. One of the problems that has been raised is the

so-called fragile base-class problem (FBCP). The prob-

lem was initially described in the context of component-

based systems (IBM, 1994; Williams and Kinde, 1994)

although its origins have been spotted earlier (Snyder,

2 Aminata Sabané et al.

1986; Taenzer et al., 1989; Kiczales and Lamping, 1992;

Hürsch, 1994) without being named “FBCP”.

The FBCP occurs when three conditions are met:

(1) a framework-defined base-class is inherited by a user-

defined sub-class, i.e., a class on which the developers

of the base-class have not necessary the control, (2)

the sub-class overrides some methods of the base-class,

and (3) the base-class calls one or more of these over-

ridden methods. Then, changes to either the sub-class

or the base-class could cause the instances of either

classes to behave unexpectedly. Only a study of the

base-class and sub-class together could reveal the cause

of the unexpected behaviour (Bloch, 2008), thus defeat-

ing the purpose of providing base-classes in frameworks

to be extended by user-defined sub-classes. Given the

size and complexity of today’s systems, the user-defined

sub-classes need not to be external to the organisation

developing the base-classes, i.e., lying on the border be-

tween a framework and a client system: in large systems
and–or over time, developers may change base-classes

or sub-classes within a same system internally and still

break the behaviour of either one unwillingly.

Mikhajlov and Sekerinski (1998) performed an au-

thoritative theoretical study of the FBCP, in which

they expressed the problem in terms of a flexibility

property and showed that restricting the use of inheri-

tance could alleviate the FBCP. However, the proposed

four restrictions constrain the changes that developers

can apply to base-classes and their sub-classes and are,

therefore, impossible to impose in practice. To the best

of our knowledge, no current existing developers’ IDE

seeks to impose such restrictions. Other authors pro-

posed different strategies to achieve the same results as

inheritance—code reuse and typing—while avoiding the

FBCP. These strategies include, for example, chang-

ing the semantics of the dispatch in object-oriented

programming languages to distinguish between “open”

and “non-open” methods (Aldrich, 2004). They also in-

clude designing inheritance hierarchies to prevent the

FBCP altogether, as suggested for example by Gamma

et al. (1995) and Bloch (2008). Typically, these strate-

gies suggest to favour composition over inheritance by

having classes implement interfaces (or pure virtual clas-

ses) for typing and delegate to instances of classes whose

code they want to reuse. The classes would then dele-

gate any appropriate calls to the composing instances to

benefit from their behaviour without risking the FBCP.

These previous works described the FBCP and pro-

posed solutions to avoid it theoretically and practi-

cally but did not provide any evidence of the preva-

lence of the FBCP and of its impact on systems. There-

fore, the question remains whether solutions to

the FBCP should be applied extensively. Conse-

quently, we pursue two lines of study to answer this

question. Quantitatively, we investigate the preva-
lence and impact of two aspects of the FBCP (mu-

tual recursion and call to an overridden method) in

real-world systems. We detect these two aspects using

static analyses of the code to identify specific micro-

architectures called in the following “fragile base-class

structures” (FBCS). We formally define the FBCS while

also providing a tool to detect their occurrences in sys-

tems. We observe the prevalence of FBCS occurrences

in existing systems and the relation between these oc-

currences and the change and fault proneness of their

participating classes. Qualitatively, we collect from

three open-source systems bugs that could be due to

the FBCP and ask participants to assess these bugs

and confirm/infirm whether these bugs are indeed due

to the FBCP. We thus answer these research questions:

– RQ1: Do FBCS occur in real-world configurations?

– RQ2: Do FBCS impact the change- and fault-prone-

ness of their participating sub-classes?

– RQ3: Do bugs related to FBCP exist?

To answer these research questions, we performed

two quantitative studies and one qualitative study. A

preliminary quantitative study allows investigating the

prevalence of FBCS in multiple versions of seven dif-

ferent open-source systems that use 58 different frame-

works, resulting in 301 configurations. Using multiple

versions allows evaluating whether observations made

are version dependant or not. The following quanti-

tative study aims at evaluating the change and fault

proneness of sub-classes involved in the occurrences of

the FBCS. The qualitative study, designed as a survey,
intends to confirm/infirm the existence of bugs related

to the FBCP. The survey involves 41 participants that

analysed 104 bugs from three open-source systems.

Results suggest that there are few occurrences of

mutual recursion FBCS but there is a significant pro-

portion of call to an overridden method FBCS in most

of the analysed systems. Our analyses reveal that these

two aspects of the FBCP may not be as problematic as

previously thought in the literature regarding software

quality, defined in terms of change and fault proneness

of the classes involved (or not) in the occurrences of

the FBCS. Although, there is a significant proportion

of classes involved in FBCS occurrences, there is no

evidence that those classes, in particular classes play-

ing the role of sub-classes, are more change or fault

prone than other classes. Moreover, in the sample of

bugs analysed by participants, none was confirmed as

being caused by the FBCP.

We believe that many reasons to these results exist

and include a savvy use of inheritance by developers,

Fragile Base-class Problem, Problem? 3

the warnings available in IDEs to help developers avoid

some faults, the popularity of dependency-injection and
the use of interfaces over classes for typing, and thor-

ough testing by developers.

Section 2 presents previous works and expands the

motivation for our study. Section 3 provides the nec-

essary definitions and tooling to our studies. Section 4

describes the set up of the empirical study. Sections 5–

7 present the methodology and results of the studies.

Section 8 discusses our findings. Section 9 reports and

discusses the threats to the validity of our studies. Sec-

tion 10 concludes the paper and suggests future work.

2 The Fragile Base-class Problem

We first recall the various contexts in which the FBCP

can occur in Section 2.1, discuss related theoretical works

in Section 2.2, and show in Section 2.3 that no exten-

sive empirical works bring evidence of the prevalence

and impact of the FBCP.

2.1 Contexts

Many authors have discussed the FBCP in the litera-

ture. While all agree that the problem is bound to in-

heritance and method overriding, the contexts in which

the FBCP may occur vary among authors. Mikhajlov

and Sekerinski (1998) and Ghezzi and Monga (2002)

put the problem in the context of the maintenance of

an existing framework without being able or willing to

consider the clients of the framework:

– “Classes in the foundation of an object-oriented sys-

tem can be fragile. The slightest attempt to modify

these foundation classes may damage the whole sys-

tem [...] In a closed system, all extensions are under

control of system developers, who, in principle, can

analyse the effect of certain base class revisions on

the entire system. Although possible in principle, in

practice this becomes infeasible.” (Mikhajlov and

Sekerinski, 1998);

– “In general, [framework] developers are unaware of

extensions developed by the users and attempting

to improve the functionality of the [framework] they

may produce a seemingly acceptable revision of their

classes which may conflict with user extensions.”

(Ghezzi and Monga, 2002).

Differently, Mens (2002) discusses the FBCP in the

context of software merging: he argues that the FBCP

does not occur only when a base-class and its sub-

classes are developed by different developers but that

simple evolutions of a base-class may introduce unde-

sired behaviour in dependently-developed sub-classes,
i.e., within a same framework or client system.

These preceding works frame the FBCP in the con-

text of maintenance and evolution and, generally, rec-

ommend to change the design of the frameworks to pre-

vent any occurrence of the FBCP. We put our work in

the same general context. We consider both contexts in

which (1) the maintainers of some frameworks (respec-

tively client systems) modify a base-class (respectively

a sub-class) without being able or willing to consider

client systems (respectively frameworks) and in which

(2) the maintainers of an entire, large system mod-

ify some base-classes (respectively sub-classes) without

considering immediately the impact of this modification

on the rest of their system.

2.2 Theoretical Works

Many authors have discussed the FBCP from a theoret-

ical point of view and have proposed solutions to pre-

vent it. We divide previous works in three categories:

(1) works that proposed to solve the FBCP through

documentation; (2) works that proposed to prevent the

FBCP by imposing restrictions on the use of inheri-

tance; and, (3) works that proposed new inheritance-

like mechanisms that do not lend themselves to the

FBCP.

2.2.1 Prevention through Usage Documentation

Mens discussed two variants of the FBCP—syntactic

and semantic. The syntactic variant refers to the need

to recompile the sub-class if the base-class is changed

whereas the semantic variant refers to semantic incon-

sistencies, i.e., wrong behaviour. The syntactic variant

is addressed by IBM System Object Model (SOM) and

Microsoft Component Object Model (COM). In SOM,

upward binary compatibility is achieved by a complete

encapsulation of the implementation details of SOM

classes (IBM, 1994)—method dispatch tables are com-

puted at runtime—while Microsoft COM forbids inher-

itance and favours delegation. Steyaert et al. (1996)

addressed the semantic variants—they advocated docu-

menting the usages of inheritance using reuse contracts.

(Ruby and Leavens, 2000) used formal specifications

to ensure the safe overriding and calling of methods

defined in a base-class by methods of its sub-classes.

Part of the specifications (pre- and post-conditions and

invariants) are automatically generated and expressed

and checked using JML.

Ghezzi and Monga (2002) proposed to deal with the

FBCP by documenting class features using the .NET

4 Aminata Sabané et al.

support for attributes. They show how to use .NET

framework component metadata to document depen-
dencies between class features and thus provide infor-

mation on methods that developers can overridden with-

out undesired side effects. A design assistant or reflec-

tive mechanisms can then help to retrieve this informa-

tion and guide developers.

Parkinson and Bierman (2008) proposed a proof sys-

tem to formally specify and verify the behaviour of code

that uses inheritance. The system is based on a logic

separation that requires for each method two specifi-

cations: a static specification and a dynamic one. The

static specification describes the implementation and

direct calls to methods in base-classes while the dy-

namic specification indicates calls that are dynamically

dispatched. This proof system supports all forms of in-

heritance with low proof-obligation overheads and thus

can help developers to avoid inconsistencies when using

inheritance.

2.2.2 Prevention through Usage Restriction

As part of their authoritative work on the FBCP, in

which they expressed the problem in terms of a flexibil-

ity property, Mikhajlov and Sekerinski (1998) described

the FBCP as a problem that occurs in open OO sys-

tems employing inheritance as an implementation-reuse

mechanism. They argued that any open system using

inheritance and self-recursion presents a vulnerability

to this problem. They characterised the FBCP using

five aspects of the usage of inheritance: (1) unantici-

pated mutual recursion between a base-class and some

of its sub-classes; (2) unjustified assumptions in the new

revision of a base-class; (3) unjustified assumptions in

the methods of a sub-class extending a base-class (i.e.,

its modifier (Wegner and Zdonik, 1988)); (4) direct ac-

cess to the state of the base-class from a sub-class; and,

(5) unjustified assumption of the invariants maintained

by the base-class in the sub-classes. Based on these five

aspects of the FBCP, the authors proposed to impose

four restrictions on inheritance to prevent the FBCP

by forbidding these five aspects: (1) a base-class and its

sub-classes, taken together, should not introduce cycles;

(2) the methods in the revision of a base-class should

not make any additional assumption regarding other

methods; (3) sub-classes should consider only the be-

haviour of the methods defined in the base-class, even

if these methods can be overridden; and, (4) a sub-class

must not access the state of a base-class directly. The

authors showed that the proposed restrictions alleviate

the FBCP using refinement calculus.

Gamma et al. (1995) and Bloch (2008) proposed

design solutions to prevent the FBCP. Typically, these

solutions favour composition over inheritance to dis-

tinguish clearly between typing on the one hand and
reuse on the other. They suggested that developers type

classes using interfaces (or pure virtual classes) in which

methods are declared but not defined and build their

classes as compositions of instances of classes whose be-

haviours they want to reuse. A typical example is that

of a Java class that wants to behave generally like a set

but wants to count the numbers of items added to its

instances (Bloch, 2008, p.81–86). Rather than having

class CountingSet inherit directly from HashSet, these

works suggest to have CountingSet implement the in-

terface Set and be composed of an instance of HashSet

to which it would delegate any appropriate calls.

2.2.3 Prevention through New Mechanism Definitions

As a solution to evolution problems, including the FBCP,

Mezini (1997) enhanced the semantics of sub-classing

with a smart composition. A smart composition is a

composition mechanism in which the contract implied

by the base class is made explicit and available at the

client site. This contract that includes design and imple-

mentation properties allows developers to monitor base

classes and identify modifications that may invalidate

existing sub-classes. As a proof of concept, the author

showed a prototypical extension in Smalltalk-80.

Biberstein et al. (2002) introduced the concept of

class sealing as a mean to control sub-classing and,

thus, as a solution to the FBCP. To show that their

new mechanism could be integrated in mainstream OO

programming languages, the authors analysed the Java

runtime library, combining it with 45 client systems,
and showed that more than 80% of the classes are “sealed”

even if only developers should decide whether a class

must be sealed.

Ozaki et al. (2003) suggested to prohibit method

redefinition and proposed to prevent the FBCP by de-

composing inheritance into class addition and class re-
finement (corresponding to method overriding).

Aldrich (2004), following Biberstein et al. (2002)

and Ozaki et al. (2003), proposed to distinguish be-

tween open methods (which can be overridden) and

“non-open” methods that cannot be overridden and

to change the dispatch mechanism to dispatch “non-

open” methods statically if called on this to prevent

the FBCP.

Ducasse et al. (2006) proposed traits to overcome

the limitations of single and multiple inheritances and

to promote the reuse of unrelated classes. A trait is

a stateless programming construct that groups a set

of methods that can be reused orthogonally from in-

heritance. This mechanism is an improvement over in-

Fragile Base-class Problem, Problem? 5

heritance in code reuse and thus helps solve problems

related to inheritance including the FBCP.
Although they do not explicitly introduced a new

mechanism, Kegel and Steimann (2008) proposed to

prevent the FBCP by systematically refactoring inher-

itance usages into delegations, thus effectively favour-

ing composition over inheritance. They built a tool that

performs the refactoring based on a set of pre- and post-

conditions and applied on several open-source systems.

They highlighted that the results are to be interpreted

from a technical perspective, i.e., applying the refac-

toring does not mean a better design but prevents the

FBCP.

2.2.4 Discussion

Different from these works, in the context of software

maintenance during which documentation and specifi-

cations may be missing or outdated, we want to observe

the prevalence of occurrences of the FBCP to warn

developers and possibly focus research work towards

proposing “after the fact” solutions to the problem.
We argue that restricting the usage of inheritance

or imposing the usage of new mechanisms cannot be

justified for most developers or cannot be imposed on

developers, who cannot or do not want to choose or

change the programming languages that they use and

who cannot impose such restrictions on their clients,

unless empirical evidence show that the prevalence of

the FBCP cannot be ignored by their managers.

Delegation and dependency injection are possible

mechanisms to avoid the FBCP. Developers use these

mechanisms, which may be one of the reasons that

explain our results, as discussed in Section 8. How-

ever, for example, no programming language imposes

the use of delegation instead of inheritance for typ-

ing and, thus, developers may not systematically use it.

Showing evidence of the FBCP could encourage devel-

opers to change their development habits by using del-

egation systematically and researchers to propose new

programming languages that enforce using delegation.

2.3 Empirical Works

To the best of our knowledge, there is no strong empir-

ical evidence regarding the prevalence of the FBCP in

real-world software systems. The most closely related

empirical works, by Tempero et al. (2008), studied in-

heritance and method overriding. They studied inher-

itance in 93 open-source Java systems and found that

a large proportion of user-defined classes mostly in-

herited from other user-defined classes. Focussing on

three of the studied systems, they also showed that

the number of inheritance relationships remained con-

stant over time. However, they observed that, as sys-
tems evolved, inheritance relationships connected more

user-defined classes, i.e., the proportion of classes inher-

iting from user-defined classes increased while that of

classes inheriting from framework decreased. Following

this study, Tempero et al. (2010) empirically studied

method overriding in 100 open-source systems. They

showed that, in half of the systems, at least 53% of

the sub-classes used method overriding internally. The

authors did not consider method defined in third-party

and standard frameworks and overridden in the studied

systems. We share with these two previous works our

interest of method overriding and will consider method

overriding within systems but also across the borders

between systems and the frameworks that they use.

Another related work is the empirical study per-

formed by Robbes et al. (2015) on the prevalence of

data and operation extensions in a large number of

open-source Smalltalk systems. The authors also stud-

ied the change proneness of methods involved in these

extensions. They found that inheritance is prevalent

in systems during software evolution and that the two

kinds of extensions are equally common. They also found

that methods involved in these extensions tend to be

less change prone than others. We share with this study

our interest for the use of inheritance and its side ef-

fects on software quality but we focus on a specific use

of inheritance. Moreover, our granularity to measure

the change proneness is at class level.

Few other works studied the relation between inher-

itance and fault proneness. Briand et al. (2000) studied

the relationship between different software metrics (11

of which are related to inheritance) and fault-proneness

in eight C++ implementations of a medium-sized man-

agement information system software. They showed that

the higher the number of overriding methods in a class,

the higher the probability of the class being fault-prone.

However, they did not distinguish between inheritance

from system classes and inheritance from framework

classes because they showed that there is few occur-

rences of the latter in the studied implementations. We

get inspiration from this work in our study by compar-

ing the change- and fault-proneness of classes partici-

pating to possible occurrence of the FBCP with that

of classes elsewhere in the systems. However, contrary

to Briand et al. (2000), who used student implementa-

tions, we consider real systems.

Daly et al. (1996) performed a study on the ef-

fect of inheritance depth on maintainability. They stud-

ied two C++ systems and asked students and recent

graduates to perform maintenance tasks. They observed

that maintaining a system with a depth of inheritance

6 Aminata Sabané et al.

equal to three is faster than maintaining a system with

no inheritance but slower than maintaining a system
with five levels of inheritance. However, Harrison et al.

(2000) later conducted a similar study and concluded

that systems with no inheritance relationships are eas-

ier to modify and understand. They explained the con-

tradictory results by arguing that sizes and functional-

ities have a greater impact on program understanding

than the depth of the inheritance trees. Different from

these studies, we focus on possible occurrences of the

FBCP and compare classes participating in such occur-

rences with other classes with inheritance relationships

without focussing on their depths in their inheritance

trees but rather on their location in the systems wrt.

the frameworks (i.e., border classes vs. internal classes).

3 Definition and Detection

Table 1 provides an overview of two aspects of the

FBCP that are common to previous works in the lit-

erature and that are the focus of our empirical study:

mutual recursion and call to an overridden method. We

choose these two aspects because they can be defined

and detected through static analyses. We do not study

the other aspects because:

– Behavioural conflict, as defined by Mens (2002), would

require studying the behaviour of the methods in the

base-class and its sub-classes, which would require

either formal specifications or dynamic analyses, the

first being usually unavailable in most real-world

systems and the second requiring accurate and com-

plete test suites;

– Direct access to the base-class state, as presented

by Mikhajlov and Sekerinski (1998), in general, is

strongly discouraged and can be refactored semi-

automatically by adding getters and setters and re-

placing any direct access by calls to these getters

and setters.

– Conflict in the method interfaces as introduced by

Steyaert et al. (1996), and specifically the case where

the new or modified method of the base class is not

invoked by other methods in the base class, does not

cause a wrong behaviour but the developer’s inten-

tion can be lost. Checking intention would require

studying the behaviour of the methods in the base-

class and its sub-classes.

– Unimplemented methods, as described by Steyaert

et al. (1996), are usually catch by the compilers

in most mainstream, OO, strongly-typed program-

ming languages. The compiler raises an error when

a concrete sub-class does not implement all of the

abstract methods of its base-classes.

Table 1 also illustrates the two studied aspects with

two typical structures that are the subjects of our em-
pirical study: these two typical FBCS illustrate, using

UML-like models, the aspects of a mutual recursion be-

tween the methods m() and n() and of a call to an

overridden method n() by the base-class method m().

3.1 Definitions

From the two aspects subject of our study, we extracted

the characteristics of the concrete inheritance-related

micro-architectures that can lead to the FBCP and

which could be identified through static analyses of

the source code. We call these structures Fragile Base

Class Structures (FBCS). We define an FBCS as two

classes in an inheritance relationship, not necessarily a

direct relationship, and with specific method declara-

tions and definitions. An FBCS is the location where

the FBCP can occur if, for example, the sub-class over-

rides a method of the base-class and introduces a mu-

tual recursion.

An FBCS is a quadruplet ⟨B,C,m, n⟩ where B is a

base-class, C a sub-class of B, m a method or a con-

structor of B, and n an overriding method of C. m

is the caller method and n the overriding/overridden

method (n is overridden in the base-class B; it is over-

riding in the sub-class C (Tempero et al., 2010)). Thus,

following our definition, two classes can be involved in

more than one FBCS occurrences with different pairs of

methods. An FBCS class is a class that appears at least

in one occurrence of an FBCS, as a base-class or as a

sub-class. An FBCS class can be the base-class in one

FBCS occurrence and a sub-class in another. We call

direct FBCS any FBCS occurrence in which the two

classes defining the structure have a direct inheritance

relation, else we say that it is indirect.

3.1.1 Contexts

To consider the different contexts discussed in the liter-

ature and summarised in Section 2.1, we define a client

as a piece of code relying on some framework to function

and a configuration as a pair of a client and a frame-

work. We then can distinguish between border FBCS

occurrences, in which the base-class is defined in the

framework and the sub-class in the client, and internal

FBCS occurrences, in which the base-class and sub-

class are both defined in the same client or framework.

Following this naming convention, when a sub-class in-

herits from a framework base-class, we refer to the for-

mer as border sub-class while we call internal sub-class

any sub-class inheriting from a base-class defined in the

same client or framework.

Fragile Base-class Problem, Problem? 7

Table 1 FBCP: studied aspects, relationships with the aspects in the literature, and typical FBCS.

Aspects Previous Works Typical FBCS
Mutual Recursion Ghezzi and Monga (2002):

– Mutual recursion.

Mikhajlov and Sekerinski (1998):

– Unanticipated mutual recursion.

Ruby and Leavens (2000):

– Mutual recursion.

Call to an Overridden
Method

Mens (2002):

– Inconsistent methods.

Mikhajlov and Sekerinski (1998):

– Unjustified assumption in revision class;
– Unjustified assumption in modifier class;
– Unjustified assumption of binding invariant in modi-

fier.

Ozaki et al. (2003):

– Downcall.

Steyaert et al. (1996):

– Conflict in the method interfaces;
– Method capture;
– Inconsistent methods.

We now present the 12 variants of the two typical

FBCS shown in Table 1. We will focus on nine of them

as concrete subjects of our study.

3.1.2 Mutual Recursion, Four Variants

An occurrence of typical mutual recursion FBCS, as

shown in Figure 1(a), is a quadruplet ⟨B,C,m, n⟩ where
B is a base-class and C is one of its sub-classes, m is

declared and defined in B as invoking n, n is overridden

in C but m is not, and m is invoked in n in C. We define

three other variants of this FBCS, which correspond to

the structures in which:

– The method n is not defined in B but inherited from

one of its own super-class, as in Figure 1(b);

– The sub-class C is not a direct sub-class of B but

an arbitrary number of intermediate sub-classes T

exist between B and C, as illustrated in Figure 1(c);

– The class playing the role of sub-class is a child of

C and does not itself override the method n but

inherit the method from C, as in Figure 1(d).

The FBCS defined by ⟨B,C,m, n⟩ and shown in Fig-

ures 1(a) and 1(b) are direct FBCS while the one shown

in Figures 1(c) and 1(d) are indirect.

3.1.3 Call to an Overridden Method, Eight Variants

An occurrence of a typical call to an overridden method

FBCS, as shown in Figure 2(a), is a quadruplet ⟨B,C,m, n⟩
where B is a base-class and C a sub-class of B, m is

declared and defined in B and n is invoked from m, n

is overridden in C but m is not, and m is not invoked

from n in C. This FBCS has a “main” variant where

the overridden method n is called from the constructor

B, as depicted in Figure 2(b).

As with the mutual recursion FBCS, from both the

typical FBCS (Figure 2(a)) and the variant with the

constructor (Figure 2(b)), we derive three variants in
which method n is declared, called, and overridden in

different classes: Figures 2(c) and 2(f) in which method

n is defined not in B but in one of the base-class of B;

Figures 2(g) and 2(d) in which an arbitrary number of

intermediate classes exist between B and C and Figures

2(e) and 2(h) in which a sub-class CC of C is considered

in the occurrence of the FBCS.

3.1.4 Analysed FBCS Variants

The variants CC in the different FBCS aspects inherit

the FBCS structure: the sub-class CC does not itself

override the method n but inherits it. The FBCP can

then arise when using the class CC but the problem

8 Aminata Sabané et al.

(a) Typical FBCS of mutual recursion

(b) Variant S (c) Variant T

(d) Variant CC

Fig. 1 The four variants of mutual recursion.

cannot be fixed in class CC: the fix should be done in

B or C. For this reason, we do not include the variant

CC in our study. We will then limit our investigation

to nine variants among the 12 described above.

3.2 Detection

We cannot use existing tools to detect the occurrences

of FBCS that we study because none is publicly avail-

able and–or conforms strictly to our definitions. We

could have adapted some existing tools but we esti-

mated that the amount of effort was quite large be-

cause of the age of the tools and our lack of knowledge

about their designs and implementations. For example,

in 1999, Mezini et al. (1999) built a framework to de-

tect incompatibly problems based on binaries, but their

tool was not maintained since then.

Therefore, we built our own tool to detect the occur-

rences of FBCS. The tool is based on the PADL meta-

model (Guéhéneuc and Antoniol, 2008), a representa-

tion of an OO system that includes all classes, meth-

ods, fields, and binary-class relationships Guéhéneuc

and Albin-Amiot (2004) as well as method invocations.

A PADL model contains all the information needed to

perform the detection of the occurrences of the two
typical FBCS and of their variants. Any meta-model

that contains enough information about inheritance re-

lations between classes and about method invocations

in methods could be used for the detection. We only

use PADL because it is known to us, (Guéhéneuc and

Antoniol, 2008), and its models contain all the required

information.

We obtain PADL models of configurations using the

Ptidej tool-suite. The tool is available on-line 1. The

detection process is as follows:

– Build the PADL model of a configuration;

– Identify all super-classes;

– Identify all their sub-classes;

– For each couple of super-class and sub-class, check

whether a method m of the super-class invokes an-

other method n (declared or inherited) of the super-

class and n is overridden in the sub-class;

– If the previous condition is true, check whether

the quadruplet ⟨B,C,m, n⟩ fulfils one of the FBCS
variants.

– When n in C invokes m, the occurrence is a mu-

tual recursion; Otherwise, it is a call to an over-

ridden method. In both cases, m should not be

also overridden in the sub-class C.

We thus extract all classes involved in FBCS occur-

rences as well as all classes involved in inheritance rela-

tionships and all classes overriding at least one method

of another class. We obtain the following sets:

– Sclasses, the set of all classes in a configuration;

– SFBCS , the set of all occurrences of the detected

FBCS;

– SFBCSborder
, the set of all FBCS occurrences in which

the base-class belongs to a framework and the sub-

class to a client;

– SFBCSborder,direct
, the set of all FBCS occurrences

with a direct inheritance relationship and included
in SFBCSborder

;

– SFBCSborder,indirect
, the set of all FBCS occurrences

in SFBCSborder
that have an indirect inheritance re-

lationship;

– SFBCSinternal
, the set of all FBCS occurrences in

which both base-class and sub-class belong to the

same framework or the same client;

– SFBCSinternal,direct
, the set of all FBCS occurrences

in SFBCSinternal
and having a direct inheritance re-

lationship;

– SFBCSinternal,indirect
, the set of all FBCS occurrences

in SFBCSinternal
and having an indirect inheritance

relationship;

1 http://www.ptidej.net/download/experiments/emse15a/

Fragile Base-class Problem, Problem? 9

(a) Typical FBCS of call to an overridden method (b) Variant C

(c) Variant S (d) Variant T (e) Variant CC (f) Variant C-S (g) Variant C-T (h) Variant C-CC

Fig. 2 The eight variants of overridden method.

– Sinheritance, the set of all pairs of classes I = ⟨C1, C2⟩
in which C2 inherits directly from C1;

– Soverriding, the set of all pairs of classesO = ⟨C1, C2⟩
in which at least one method of C2 overrides a

method of C1.

For each set defined above but Sclasses, we define

a corresponding set of classes playing the role of sub-

classes. Thus, the notation SSubX will be used to name

the sub-classes of occurrences of the set X. For exam-

ple, the set SSubSFBCS
represents the set of sub-classes

in all FBCS occurrences while the set SSubSoverriding

represents the set of sub-classes in Soverriding. We sum-

marise in Table 2 the relations existing between the

different sets.

4 Studies Definitions

The context of our quantitative and qualitative stud-

ies is the maintenance of OO systems, which combine

frameworks and clients code. Our main goal is to in-

fer the prevalence and impact of the FBCP through

some related FBCS, (1) by detecting the occurrences of

the FBCS defined in the previous section, (2) by com-

paring the change- and fault-proneness of the classes

participating in these occurrences with respect to that

of other classes, and (3) by assessing whether there ex-

ist bugs whose cause is the FBCP. The quality focus

is the changeability and faultiness of classes as well as

the prevalence of the FBCP in bugs, which both have

a concrete effect on developers’ effort and on the cost

and time of maintenance. The perspective of our study

is that of researchers, interested in the relationship be-

tween the FBCP, FBCS, and characteristics of classes

impacting maintenance and bugs. Also, our study is of

interest to developers, who perform development and

maintenance activities and must target and forecast

their effort, for example by focussing part of their activ-

ities on replacing inheritance by composition to remove

FBCS and thus prevent FBCP. They can also be of in-

terest to managers or quality assurance personnel, who

could use the results of our study to assess the likeli-

hood of changes and faults when extending frameworks

or maintaining systems using frameworks and, thus, to

better assess their quality.

4.1 Studies Sub-goals

We perform three studies with the following sub-goals

that compose our main goal defined above:

– A preliminary quantitative study to investigate the

prevalence of occurrences of the FBCS in real-world

systems classified into three groups: clients, frame-

works, and configurations that are combination of

clients and frameworks. We show that occurrences

of the nine variants do exist, which motivates the

two following studies;

– A quantitative study to compare the change and

fault proneness of classes, particularly sub-classes,

in FBCS and that of other classes. The results re-

veals any evidence about the fault proneness of FBCS

sub-classes but shows a correlation between change

proneness and FBCS sub-classes in two systems out

of the four analysed. However, the analysis of pos-

sible confounding factors suggests that the change

proneness of FBCS sub-classes observed in these

10 Aminata Sabané et al.

Table 2 Relations between the Defined Sets.

The different kinds of occurrences compose the overall set of occurrences

SFBCSborder,direct
⊂ SFBCSborder

SFBCSborder,indirect
⊂ SFBCSborder

SFBCSinternal,direct
⊂ SFBCSinternal

SFBCSinternal,indirect
⊂ SFBCSinternal

SFBCSborder
⊂ SFBCS , SFBCSinternal

⊂ SFBCS

The different kinds of occurrences compose the overall set of occurrences

SFBCSborder,direct
∪ SFBCSborder,indirect

= SFBCSborder

SFBCSinternal,direct
∪ SFBCSinternal,indirect

= SFBCSinternal

SFBCSborder
∪ SFBCSinternal

= SFBCS

An occurrence is either direct or indirect

SFBCSborder,direct
∩ SFBCSborder,indirect

= ⊘
SFBCSinternal,direct

∩ SFBCSinternal,indirect
= ⊘

An occurrence is either border or internal

SFBCSborder,direct
∩ SFBCSinternal,direct

= ⊘
SFBCSborder,indirect

∩ SFBCSinternal,indirect
= ⊘

The set of classes playing the role of sub-classes in FBCS occurrences is a subset of classes in which a method overrides another,
which in turn is a subset of classes that extend other classes

SSubSFBCS
⊂ SSubSoverriding

⊂ SSubSinheritance

systems is due to the fact that these classes are also

overriding sub-classes;

– A qualitative study to identify whether some bugs

are due to the FBCP. The results show that none of

the bugs in the sample of bugs analysed by partici-

pants is caused by the FBCP.

To perform the two first studies, we detect the nine

variants of the two types of FBCS defined in the pre-

vious section in real-world Java systems. We use the

change and fault data provided by Khomh et al. (2011)

to assess the change- and fault-proneness of classes in

these configurations. For the qualitative study, we con-

duct a survey in which participants must analyse bugs

and assess whether these bugs are caused by the FBCP.

The follow subsections describe the systems, frame-

works, and configurations of systems that we use in

these three studies. The next three Sections 5–7 de-

scribe each study independently: first introducing the

research questions, then the analysis procedures and

methods, then the results, and finally some conclusions

and discussions on each sub-goal. Section 8 discusses

our main goal generally wrt. the results of the three

studies.

4.2 Pool of Systems

We must choose frameworks and clients for internal

FBCS and associate frameworks with clients into con-

figurations border FBCS. We choose clients and frame-

works for which bug tracking systems are available so

that we can mine bugs and ask developers to assess

whether some of these bugs are caused by the FBCP.

4.2.1 Clients

We choose seven clients that represent a wide range

of application domains, maturities, and sizes. Many of

those chosen systems have been used in previous stud-

ies regarding inheritance or overriding (Tempero et al.,

2008, 2010). These clients are all open-source. They

form a convenient sample because we did not choose

them randomly from the (nonexisting) set of all possi-

ble systems but, rather, based on previous works and

our own use of some of these systems (Wohlin et al.,

2000, p.52).

ArgoUML is an open-source software for modeling

UML diagrams. Barcode4J is a flexible generator for

barcodes in Java. CheckStyle Eclipse Plugin is an im-

plementation of the CheckStyle tool to enforce coding

Fragile Base-class Problem, Problem? 11

Table 3 Clients.

Clients Versions
#classes

(min–max)
ArgoUML 0.10.1, 0.12, 0.14, 0.16,

0.18.1, 0.20
908–1,444

Barcode4J 1.0, 2.0, 2.1.0 104–178
CheckStyle
Eclipse Plugin

4.1.0, 4.3.2, 4.4.2, 5.0.0, 5.3.0 300–368

Eclipse−Core 1.0, 2.0, 2.1.1, 2.1.2, 2.1.3 7,193–14,236
JBoss Server 3.2.7, 3.2.8, 4.0.5, 4.2.2 2,366–4,708
Mylyn 2.0.0, 2.1, 2.2.0, 2.3.0, 2.3.1,

2.3.2, 3.0.0, 3.0.1, 3.0.2, 3.0.3,
3.0.4, 3.0.5, 3.1.0

1,403–2,366

Rhino 1.4R3, 1.5R1, 1.5R2, 1.5R3,
1.5R4, 1.5R5, 1.6R1, 1.6R2,
1.6R3, 1.6R4, 1.6R5, 1.6R6

100–318

Total: 7 Ranges #versions: 3–13, #classes: 100–14,236

standards. Eclipse is an open-source OSGi implementa-

tion on which several plugins are built. We considered

the “core” of Eclipse as a framework and all of its other

plugins as clients of this framework. It is used both in

open-source communities and in industry. We distin-

guish Eclipse core packages from other packages of the

system by the prefix ”org.eclipse.core” in their names.

JBoss Server is an application server implementing the

EJB API from J2EE. Mylyn is an Eclipse plugin that

records developers’ tasks. Rhino is an open-source Java

implementation of a JavaScript interpreter.

4.2.2 Frameworks

The seven clients use 58 different third-party frame-

works. We consider the Java runtime libraries (rt.jar)

as a framework because Tempero et al. (2008) showed

that developers treat standard libraries and third-party

libraries alike from the point of view of inheritance.

Our choice of the frameworks as well as their versions

is guided by the dependencies with the seven chosen

clients. The chosen frameworks thus also form a conve-

nient sample and some of them are quite old but still

required by clients, like antlr 2.7.6.

4.2.3 Configurations

In total, we analyse 48 clients (seven different clients in

multiple versions), 158 frameworks (58 different frame-

works in multiple versions), and 301 client–framework

configurations. We choose to analyse different versions

of the clients and frameworks to evaluate whether our

observations are version-dependent or could be gener-

alised to multiple versions.

We treat each configuration independently and as

unique regardless whether two configurations include

the same client or frameworks in different versions. Thus,

we do not seek to study the evolution of occurrences of

FBCS across versions.

Table 4 Frameworks.

Frameworks Versions
#classes

(min–max)
activation 1.0.1, 1.0.2, 1.1, 1.1.0 29–38
ant 1.7.0 1,151
antlr 1.2.2, 1.4.1 (2003),

2004, 2005, 2.7.2, 2.7.6,
2.7.6brew

147–1,515

argouml-model 2005 41
avalon 4.1.5brew, 4.1.5, 4.2.0 69–71
bcel 5.1, 5.1brew 373
bsf 2.3.0, 2.3.0brew 140–145
bsh 1.3.0, 1.3.0brew 133–135
cglib 2.1.3brew, 2.1.3nodep 258
checkstyle-core 4.2, 4.3, 4.4, 5.0, 5.3 326–360
com-sun-syndication 0.9.0 120
commons-cli 1.0 20
commons-codec 1.3 25
commons-collections 3.1-brew 446
commons-discovery 0.2.0 58
commons-httpclient 3.0.1 148
commons-io 1.2 44
commons-lang 2.1, 2.3 110–124
commons-logging 1.0.2, 1.0.3 (2004), 2005,

1.0.4, 1.0.4.1, 1.0.5, 5.0.28
16–21

dom4j 1.6.1 190
el-servlet-api 2.0.1 67
gef 0.9.5, 0.9.6 (2002), 2003,

0.10.14, 0.10.4, 0.11.2
264–321

hibernate-ejb3 3.2.1 162
hibernate3 3.2.0, 3.2.4 1,303–1,343
hsqldb 1.8.0.8brew, 1.8.0RC3,

1.8.0.2, 1.8.0.2jdk13
286–305

i18n 1.4.1.02b06, 1.4.2.02b03
(2004), 2005

32–36

itext 1.3, 2.0.1 567–683
jacorb 2.2, 2.2.2, 2.3.0 4,533–5,026
javassist 3.3.0GA, 3.6.0GA 254–305
javax-xml-rpc 1.1.0 54
javax-xml-soap 1.2.0 27
jaxen v1.1beta9 221
jcert-jnet-jsse 1.0.3 400
jcommon 1.0.0, 1.0.9, 1.0.16 203–209
jdom 1.0, 1.0.0, 1.0b8 53–75
jfreechart-swt 1.0.5 34
jfreechart 1.0.1, 1.0.13, 1.0.5 482–611
jgroups 2.2.7SP1 835
jmi 1.0 (2003), 2004, 2005 25
joesnmp 0.3.4, 0.3.4brew 56
jpl-pattern-util 1.0 26
jsp-api 2.0.1GA 60
log4j 1.1.3, 1.2.8, 1.2.6 (2002),

2003, 2004, 2005
101–244

mail 1.3, 1.3.1, 1.4, 1.4.0
(2008)

209–250

nsuml 0.4.19 (2001), 2003,
0.4.20 (2004), 200501,
200504

249–250

ocl-argo 1.1, 2001, 2003, 2004,
2005

518

org.eclipse.core 1.0, 2.0, 2.1.1, 2.1.2, 2.1.3 388–449
org-apache-axis 1.4.0 (200806), 200807 785
quartz 1.5.2brew 149
rt 1.2.1, 1.3, 1.3.1, 1.4.0,

1.4.2, 1.4.2u4, 1.5, 1.5u4,
1.5u6, 1.5u8, 1.5u12,
1.6, 1.6u4, 1.6u7, 1.6u14,
1.6u22

4,250–17,058

serializer 2.7.0 89
servlet 2.2, 2.4.0 42
swidgets 0.1.1 (20050422),

20050523
42

toolbar 2004, 1.1.1 (2005), 2005 19–36
wsdl4j 1.5.1, 1.6.2 119–143
xalan 2.5.2, 2.6.0, 2.6.0j, 2.7.0 687–1,495
xerces 2001, 1.2.3 (2003), 2004,

2.6.0, 2.6.2, 2.9.0
513–887

xml-apis 1.3.04, 1.3.1 207–303
Total: 58 Ranges #versions: 1–16, #classes: 16–17,058

12 Aminata Sabané et al.

Studying the evolution of FBCS is future work be-

cause, in this study, we want to assess whether classes
participating in FBCS are more change- or fault-prone

than others. If we answer positively, then it would be-

come interesting to study the evolution of FBCS.

4.3 Object Systems of the Quantitative Studies

For the preliminary study, we analyse all the 48 clients,

the 158 frameworks, and the 301 configurations com-

bining each client and one of its frameworks.

For the quantitative study, Khomh et al. (2011)

provide data for change and fault proneness for mul-

tiple versions of ArgoUML, Eclipse JDT, Mylyn, and

Rhino. Thus, we analyse only the subset of clients (or

part of a client in the case of Eclipse JDT included in

Eclipse−Core) for which this data is available: 36 ver-

sions and 166 configurations.

4.4 Object Systems of the Qualitative Study

In the qualitative study, we conduct a survey to identify

bugs related to the FBCP. For that purpose, we mine

bugs repositories of three out of the the four analysed in

the quantitative study namely Eclipse JDT, Mylyn, and

Rhino. The survey involved 41 participants who anal-

ysed 104 bugs to assess if some are due to the FBCP.

5 Preliminary Quantitative Study

Table 5 Number of FBCS Occurrences

Direct Indirect Total

Internal
Client 17,328 10,902 28,230
Framework 54,191 26,923 81,114

Total Internal 71,519 37,825 109,344
Total Border 899 2,020 2,919

Total Internal and Border 72,418 39,845 112,263

The goal of this preliminary study is to investigate

the prevalence of the occurrences of the nine FBCS vari-

ants defined in Section 3 in the real-world systems pre-

sented in Section 4.

5.1 Research Question

We want to answer the following research question:

RQ1: Do FBCS occur in real-world configura-

tions? FBCS must occur for two reasons: first, the

main characteristics of FBCS are the use of inheritance

(a) FBCS

(b) Internal FBCS

(c) BoderFBCS

Fig. 3 Repartition of Kind of FBCS.

Fragile Base-class Problem, Problem? 13

Table 6 FBCS Classes Proportions to Classes

FBCS Classes Direct FBCS Classes Indirect FBCS Classes
min avg max min avg max min avg max

Internal
Client 0.00 13.25 32.09 0.00 11.19 27.88 0.00 4.12 12.50
Framework 0.00 12.17 69.93 0.00 9.02 30.07 0.00 5.21 66.43

Internal 0.00 12.42 69.93 0.00 9.53 30.07 0.00 4.95 66.43
Border 0.00 0.15 7.07 0.00 0.06 1.75 0.00 0.10 6.27

Table 7 FBCS Sub-classes Proportions to Classes

FBCS Classes Direct FBCS Classes Indirect FBCS Classes
min avg max min avg max min avg max

Internal
Client 0.00 11.04 29.33 0.00 8.99 25.36 0.00 3.28 11.09
Framework 0.00 9.74 69.23 0.00 6.55 25.17 0.00 4.52 65.73

Internal 0.00 10.04 69.23 0.00 7.12 25.36 0.00 4.23 65.73
Border 0.00 0.11 6.00 0.00 0.03 0.88 0.00 0.09 5.47

Table 8 FBCS Sub-classes Proportions to Inheritance Sub-classes

FBCS Classes Direct FBCS Classes Indirect FBCS Classes
min avg max min avg max min avg max

Internal
Client 0.00 22.01 45.86 0.00 18.12 39.66 0.00 6.04 16.90
Framework 0 16.53 81.15 0 11.90 57.14 0 6.60 77.05

Internal 0.00 17.81 81.15 0 13.35 57.14 0.00 6.47 77.05
Border 0.00 0.17 7.69 0.00 0.06 1.75 0.00 0.12 7.01

Table 9 FBCS Sub-classes Proportions to Overriding Sub-classes

FBCS Classes Direct FBCS Classes Indirect FBCS Classes
min avg max min avg max min avg max

Internal
Client 0.00 44.05 73.70 0.00 36.18 64.71 0.00 11.81 28.37
Framework 0 35.17 100.00 0 27.13 100.00 0 11.47 87.04

Internal 0 37.24 100.00 0 29.24 100.00 0 11.55 87.04
Border 0.00 0.35 16.61 0.00 0.13 4.76 0.00 0.23 15.13

and overriding, two mechanisms that are at the core of

OO programming and, second, a significant number of

related works investigating the FBCP suggested the ex-

istence of FBCS. With this research question, we want

to infer how prevalent is the FBCS and therefore op-

portunities to have the FBCP.
Therefore, to answerRQ1, we detect the nine FBCS

variants in the seven clients, their 58 frameworks, and

the 301 configurations resulting from their association.
We then observe the detected occurrences to study their

numbers and the proportions of classes involved in these

occurrences. We distinguish between border and inter-

nal as well as direct and indirect FBCS.

Consequently, we define the following four research

sub-questions.

– RQ1.1: What is the cardinality of SFBCSinternal+direct

and its proportion to SFBCS?

– RQ1.2: What is the cardinality of SFBCSinternal+indirect

and its proportion to SFBCS?

– RQ1.3: What is the cardinality of SFBCSborder+direct

and its proportion to SFBCS?

– RQ1.4: What is the cardinality of SFBCSborder+indirect

and its proportion to SFBCS?

5.2 Procedure and Method

To answer RQ1 and have a complete picture, we com-

pute the number of the variants of FBCS and their pro-

portion wrt. to all the detected FBCS (SFBCS). We also

analyse the proportion of classes involved in FBCS oc-

currences wrt. to all analysed classes. Finally, we anal-

yse the proportion of sub-classes in FBCS occurrences

wrt. to sub-classes in Sinheritance and in Soverriding.

5.3 Results

5.3.1 FBCS Occurrences

We summarise the results of the FBCS detection in

Figure 3 and in Table 5. Table 5 presents the num-

bers of different kinds of FBCS while Figure 3(a) repre-

sents their proportions to the total number of detected

FBCS. Thus, we found 17,328 and 54,191 direct FBCS

respectively in the clients and frameworks, resulting in

a total of 71,519 internal direct FBCS. Regarding the

internal indirect FBCS, we found a total of 37,825 oc-

currences with 10,902 in clients and 26,923 in frame-

14 Aminata Sabané et al.

works. Except Barcode4j 1.0, each client contains direct

FBCS. The number of occurrences goes from three to
2,695. Out of the 47 clients, six clients do not contain

any indirect FBCS; they are Barcode4j 1.0 and all ver-

sions of Checkstyle-Eclipse. In Checkstyle Eclipse ver-

sions, this fact can be explained by the low depth of

inheritance (DIT): all classes have 1 or 2 as DIT value

but three classes with a DIT of 3. Barcode4j 1.0 does

not contain any FBCS occurrence. After long investiga-

tions, we could not find any reason why Barcode4j 1.0

does not contain any FBCS occurrence. Barcode4j 1.0,

although small (only 88 classes), is not the smallest,

the smallest being rhino that contains 83 classes and

12 FBCS occurrences. Moreover, about 40% and 21% of

classes are respectively sub-classes or overriding classes.

Future work will investigate this issue. The number of

occurrences of indirect FBCS in clients is between one

and 2,049. Direct FBCS occur in 124 frameworks out

of 158 and the indirect ones in 93. Most of the frame-

works that do not contain FBCS occurrences are small

in size (they contain less than 50 classes) and have no or

very limited use of inheritance and–or overriding mech-

anisms. When FBCS exist, the number of occurrences

in frameworks goes from one to 1,827 for direct FBCS

while it is between two and 3,614 for the indirect ones.

We detected a total of 2,919 border FBCS with 899

border direct FBCS and 2,020 border indirect FBCS.

The border direct FBCS occur in 63 and the indirect

ones in 31 out of 301 configurations. The number of oc-

currences varies from one to 68 for border direct FBCS

and from one to 382 for the indirect ones. The internal

and the border FBCS represent respectively 97% and

3% of the total number of FBCS occurrences as shown

in Figure 3(a). The direct FBCS count for 65% of the

internal FBCS while they represent only 31% of the

border FBCS (Figures 3(b) and 3(c)).

5.3.2 FBCS Classes

Table 5 shows the proportions of classes involved in

FBCS occurrences (FBCS classes) either as base-classes

(FBCS base-classes) or sub-classes (FBCS sub-classes)

in comparison to all classes. It is worthwhile to remind

that a class can be part of many occurrences of direct

and–or indirect FBCS. When considering only clients in

which direct FBCS exist, the proportion of participat-

ing classes is, in average, close to 11% with a maximum

about 28%. When indirect FBCS exist, the proportion

of participating classes is about 4% and the maximum

is close to 13%.

When considering only frameworks, the average pro-

portion of classes in direct FBCS is consistent with the

observations in the clients: 9% of classes, in average, are

involved in direct FBCS with a maximum close to 30%.

Regarding the indirect FBCS, the proportion of partic-
ipating classes, in average, is lower, about 5% while the

maximum is higher, about 60%. The high value of the

maximum proportion is due to the versions of nsuml

that act as outlier: 95 classes out of 143 participate in

indirect FBCS. Indeed, when removing nsuml versions,

the maximum proportion drops to 25%. nsuml stands

for Novosoft UML Library for Java. It is a code genera-

tor library from UML to Java. We analysed five versions

of nsuml and all have 143 classes. In those versions,

there is an intensive use of inheritance and overriding:

only 20 classes inherit from java.lang.Object, the DIT of

91 classes is at least equal to 4, and there are 1098 over-

riding methods. 108 classes play the role of sub-classes

in the indirect FBCS. When looking the indirect FBCS,

we observe that all are based on only two base-classes:

ru.novosoft.uml.foundation.core.MModelElement-

Impl and ru.novosoft.uml.MBaseImpl. ru.novosoft.

uml.foundation.core.MModelElementImpl overrides

toString() of java.lang.Object and in its imple-

mentation, the method toString() calls the method

getUMLClassName() that is overridden in 67 classes

leading to 67 indirect FBCS. A similar scenario hap-

pens with the class ru.novosoft.uml.MBaseImpl that

has a method remove() that invokes cleanup(java.

util.Collection), which, in turn, is overridden by 95

classes. The intensive use of inheritance and overriding

mechanisms increases the occurrences of FBCS. More-

over, implementation of some ”util methods” that are

systematically overridden in the sub-classes of the in-

heritance hierarchy can explode the number of occur-

rences with the same pairs of methods.

When border direct FBCS exist, the proportion of

participating classes is less than 2% of the total number

of classes with an average less than 0.1%. When bor-

der indirect FBCS occur, the maximum proportion of

FBCS classes is less than 7% with an average of 0.1%.

5.3.3 FBCS Sub-classes

As explained in Section 3, the manifestation of the

FBCP is visible in sub-classes. Thus, classes playing

the role of sub-classes in FBCS are of great of concern.

We analysed those classes relatively to all classes (Table

5), to inheritance classes (Table 5), and to overriding

classes (Table 5).

In general, the proportions of FBCS sub-classes to

classes are not so far from that of FBCS classes to

classes because as observe in the indirect FBCS oc-

currences of ”nsuml”, a same FBCS base-class can ap-

pear in multiple FBCS occurrences with different sub-

classes. With respect to all classes, the average propor-

Fragile Base-class Problem, Problem? 15

tion of FBCS sub-classes is about 9% and the maximum

about 26% for direct FBCS in clients. When consider-
ing indirect FBCS in clients, FBCS sub-classes count,

in average, for 3% of classes with a maximum at 11%.

Regarding frameworks, the proportion of FBCS sub-

classes to all classes is, in average, about 7% in direct

FBCS with a maximum at 25%. For indirect FBCS, the

proportion of FBCS sub-classes to all classes is about

5% and the maximum is about 66% because of the out-

lier nsuml. Without the versions of nsuml, the maxi-

mum proportion is about 20%. For border FBCS, the

proportion of FBCS sub-classes to all classes varies from

0 to less than 1% (with an average of 0.03%) for direct

FBCS and from 0 to 6.27% (with an average of 0.1%)

for indirect FBCS.

When taking as reference all sub-classes, in the clients,
the average proportion of FBCS sub-classes is 18% with

a maximum of 40% in direct FBCS. For indirect FBCS,

the proportion of FBCS sub-classes is maximum 17%

with an average of 6%. In frameworks, the proportion of

FBCS sub-classes to all sub-classes varies between 0%

and 58% with an average of 12% for direct FBCS. For

indirect FBCS, the average proportion is about 7% and

the maximum is 38% when excluding nsuml versions.

The proportion of FBCS sub-classes to all sub-classes

for border direct FBCS is in average less than 0.1% with

a maximum at about 2%. For border indirect FBCS, the

average proportion is slightly higher than 0.1% while

the maximum proportion is about 7%.

When compared to overriding sub-classes, the aver-

age proportion of direct FBCS sub-classes in clients is

about 36% and the maximum about 65%. For indirect

FBCS, the proportion is about 12% in average with a

maximum about 29%. Regarding frameworks, the pro-

portion of FBCS sub-classes to overriding sub-classes

for direct FBCS is 27% in average with a maximum

at 100%. In one or more versions of three frameworks

namely el-servlet-api, joesnmp, and servlet, all overrid-

ing classes participate to a direct FBCS. The versions of

these frameworks contain between zero and six occur-

rences of direct FBCS. For indirect FBCS, the average

proportion is about 12% with a maximum of about 60%

when removing nsuml versions. In border direct FBCS,

the average proportion of sub-classes to overriding sub-

classes is 0.13% and the maximum about 5%. For bor-

der indirect FBCS, the proportion is about 0.20% in

average with a maximum about 15%.

5.4 Conclusions and Discussions

We thus answer our research question as follows:

RQ1: FBCS occurrences exist in most of the systems

using inheritance. Internal FBCS occur much more of-

ten than border FBCS.

We detected very few occurrences of mutual recur-

sion be it in clients and frameworks (internal FBCS).

In configurations (border FBCS), we did not detect any

occurrence of mutual recursion in all configurations.

In clients, three versions of Eclipse without core con-

tain one occurrence (the same in the three versions) of

indirect mutual recursion out of 2,049 indirect occur-

rences. 20 frameworks consisting in multiple versions of

rt, Hibernate, and Checkstyle−Core and one version of

itext contain between one and 12 direct occurrences of

mutual recursion. These occurrences represent a pro-

portion to direct FBCS occurrences of less than 0.5%.

Concerning the indirect mutual recursion occurrences,

15 frameworks including 13 versions of rt and two of

hibernate contain between one and six occurrences ac-

counting for a proportion to indirect FBCS between 0.1

and 1.16%. The rare occurrences of mutual recursion is

expected and can be explained by the fact that mutual

recursion occurrences lead to an infinite loop that are

easily detectable when running the code. When looking

to the detected occurrences, we observe that in the base

class and-or in the sub-class, if statements prevent the

execution to enter in an infinite loop. This shows that

developers are aware when using this kind of structure.

Most of occurrences of all the detected FBCS occur-

rences are then of type call to an overridden method

from a method or a constructor.

The proportion of border FBCS to all FBCS is neg-

ligible. We observe that classes do not often inherit from

third-party libraries classes, confirming the findings in

(Tempero et al., 2008). When they inherit from them,

they rarely override their methods, thus reducing the

opportunity to give rise to a border FBCS. The low

proportion of border FBCS and consequently of classes

playing the role of sub-class in border FBCS reduce

the opportunity for the FBCP, as defined in the liter-

ature, to occur. However, today’s systems are so large

that even in the same system, the conditions that make

inheritance from third part libraries less-safe can be

encountered. Moreover, sub-classes involved in internal

FBCS represent a significant proportion to all classes:

in average about 10%. The next study will then investi-

gate to what extent those classes can impact the quality

of the system in terms of change and fault proneness.

We performed a correlation test between number of

occurrences and size (number of classes or LOC) and,

as expected, we observed that the larger the systems,

16 Aminata Sabané et al.

the greater the numbers of occurrences of the FBCS. We

expected this correlation because, intuitively, the larger
a system, the more chance to have pairs of classes with

an inheritance relationship and consequently the more

chance to have FBCS to occur.

6 Quantitative Study

The previous study showed that FBCS occur and that

their numbers and proportions cannot be ignored. The

goal of this quantitative study is to investigate the im-

pact of the FBCS on the class change and fault prone-

ness. We perform this study from the researchers’ point

of view. We found in the literature many papers about

the use of inheritance, its potential drawbacks, and the

fragile base-class problem. Yet, none provided empiri-

cal evidence on the impact of the FBCP. This study is

also useful to developers who should be aware whether

FBCS have negative impact on their classes and, thus,

decide whether to refactor them or not.

6.1 Research Question

Following the literature on the FBCP and our defini-

tion of an FBCS, we focus on the classes playing the

role of sub-classes because these are the classes whose

behaviour is, by definition, under the control of clients

(be them external clients or internal clients from an-

other group in a same organisation) and whose be-

haviour may be modified by a change to either their

base-classes or themselves. Thus, we formulate our re-

search question as follows: RQ2: Do FBCS impact

the change- and fault-proneness of their partici-

pating sub-classes? We want to observe whether sub-

classes involved in FBCS occurrences are more change-

prone and–or fault-prone than other classes. We divide

this question as follows:

– RQ2.0: Are FBCS sub-classes, i.e., in SSubSFBCS
,

more change- or fault-prone than other classes, i.e.,

classes in Sclasses \ SSubSFBCS
?

– RQ2.1: Are classes in SSubSFBCSborder
more change-

or fault-prone than classes belonging to Sclasses \
SSubSFBCS

?
– RQ2.2: Are classes in SSubSFBCSinternal

more change-

or fault-prone than sub-classes in Sclasses\SSubSFBCS
?

– RQ2.3: Are sub-classes in internal FBCS occur-

rences (SSubSFBCSinternal
) more change- or fault-

prone than classes in border FBCS occurrences

(SSubSFBCSborder
)?

6.2 Procedure and Method

For all our research questions, we compute the differ-

ent sets and test whether the proportion of classes ex-

hibiting (or not) at least one change (respectively, one

fault), significantly varies between classes with a spe-

cific role and another set of classes. For example, in

RQ2.1, the two sets of classes are SSubSFBCSborder
and

Sclasses \ SSubSFBCS
.

We use Fishers exact test (Sheskin, 2007b) to check

whether the proportion varies between the two pop-

ulations. The Fisher’s exact test is a non-parametric

statistical test designed to determine if there are non-

random associations between two categorical variables.

This test works by testing the independence of rows

and columns in a 2× 2 contingency table based on the

exact sampling distribution of the observed frequen-

cies. We also compute the odds ratio (OR) (Sheskin,

2007b) that indicates the likelihood for an event to oc-
cur. The odds ratio is defined as the ratio of the odds

p of an event occurring in one sample, i.e., the odds

that classes participating in one population underwent

a change (experimental group, e.g., in RQ2.1, classes

belonging to SSubSFBCSborder
), to the odds q of the

same event occurring in the other population, i.e., the

odds that classes that do not belong to the experimen-

tal group change (control group, in RQ2.1, classes in

Sclasses\SSubSFBCS
): OR = (p/(1−p))/(q/(1−q)). An

odds ratio of 1 indicates that the event is equally likely

in both samples. An OR greater than 1 indicates that

the event is more likely in the first sample (e.g., classes

belonging to SSubSFBCSborder
), while an OR less than

1 indicates that the event is more likely in the second

sample (e.g., classes in Sclasses \ SSubSFBCS
).

Thus, we consider the following independent and

dependent variables.

6.2.1 Independent Variables

Each sub-research question RQ2 has different indepen-

dent variables, consisting of two sets:

– RQ2.0: SSubSFBCS
and Sclasses \ SSubSFBCS

;
– RQ2.1: SSubSFBCSborder

and Sclasses \SSubSFBCS
;

– RQ2.2: SSubSFBCSinternal
and Sclasses\SSubSFBCS

;
– RQ2.3: SSubSFBCSinternal

and SSubSFBCSborder
;

When investigating the subset direct and indirect

in RQ2.1 to RQ2.3, we consider the corresponding sub-

sets as independent variable. For example, the indepen-

dent variable for sub-classes in internal direct FBCS (cf.

RQ2.2) is SSubSFBCSinternal,direct
.

Fragile Base-class Problem, Problem? 17

6.2.2 Dependant Variables

For change proneness, our dependant variable is a boolean

variable indicating if a particular class has changed at
least once between two successive versions. To deter-

mine whether a class has changed, we rely on the com-

mits in their version control systems (CVS or SVN).

For fault proneness, our dependant variable is a boolean

variable indicating if there exists a bug involving a par-

ticular class between two successive considered versions.

For further details on the computations of class change-

and fault-proneness, we refer to the work by Khomh

et al. (2011).

6.2.3 Objects

We analysed several versions of ArgoUML, Eclipse JDT,

Mylyn, and Rhino, i.e., four different clients that cor-

respond to 36 versions. Those clients are associated

with 26 frameworks resulting in 166 configurations. We

choose these clients because we have independently-

computed change and fault data for their classes.

6.2.4 Populations

Figure 4 describes the proportions of the different anal-

ysed populations in the present study per version and

per system. In particular, the graphs report the pro-

portions relatively to classes of FBCS sub-classes, of

classes that override a method without being FBCS

sub-classes, and finally of sub-classes that do not over-

ride any method. Thus, we can infer from those graphs

the proportion of sub-classes as well as the proportion

of overriding classes in each version. In general, the dif-

ferent proportions are similar across the versions within

a system but different from one system to another.

ArgoUML exhibits the highest proportions of classes

in each category. At least three out of four classes in-

herit from a class that is not java.lang.Object. The pro-

portions of overriding classes are between 40 and 50%

while the proportions of FBCS sub-classes between 24

to 32%.

In the versions of Eclipse JDT, almost half of the

classes are sub-classes. The proportions of overriding

classes is around 33% and that of FBCS sub-classes

19% in all versions except in Eclipse JDT 1.0 where it

is about 24%.

Mylyn presents the smallest proportions of each kind.

The proportion of sub-classes is about 28% except in

Mylyn 3.1.0 where it is about 35%. The proportions of

overriding classes are between 10% and 16% and the

proportions of FBCS sub-classes do not exceed 5%.

Rhino has similar proportions than Eclipse JDT. In

most of the versions, sub-classes count for about 50% of

the classes. The proportions of overriding classes vary

from 25% to 40%. FBCS sub-classes account for about
20% of the classes.

At least 18% of classes play the role of FBCS sub-

classes in all analysed versions except in Mylyn ver-

sions where the proportions of FBCS sub-classes do

not exceed 5%. However, ArgoUML versions present

higher proportions of FBCS sub-classes, between 24%

and 32%. Thus, in general, FBCS sub-classes represent

a significant proportion of classes.

6.3 Results

We now report the results of our analyses and answers

to the research questions.

Table 10 summarises the results of Fisher’s exact

test for the different RQ2 and gives for each of them

the number of versions where the test is significant out
of the total number of versions per system. The detailed

results with the p-values and the odd ratio are reported

on-line1.

6.3.1 RQ2.0: Are FBCS sub-classes, i.e., classes in

SSubSFBCS
, more change- or fault-prone than other

classes, i.e., classes in Sclasses \ SSubSFBCS
?

Regarding the change proneness of FBCS sub-classes,

the results show that in 15 versions out of 36, FBCS

sub-classes are more change prone than other classes.

In most of the versions of ArgoUML (five out of six)

and in all Eclipse JDT versions, the test is significant

with an odds ratio varying from 1.93 to 5.38 but in one

case, where the odds ratio is infinite. Thus, in those
versions, FBCS sub-classes are at least 2 times more

change prone than other classes. In contrast, in only few

versions (no more than a third) of Mylyn and Rhino the

test is significant: FBCS sub-classes are more change

prone than the other sub-classes in three versions of

Mylyn out of 13 and four versions of Rhino out of 12.
With respect to fault proneness, the test is signifi-

cant in only seven out of 36 versions, i.e., about 20%

of the analysed versions. FBCS sub-classes are more

fault prone than the other classes in three versions of

ArgoUML, one version of Eclipse JDT, and three ver-

sions of Rhino. In those versions, the odd ratio varies

between 0.38 and and 7.85.

6.3.2 RQ2.1: Are classes in SSubFBCSborder
more

change- or fault-prone than classes belonging to

Sclasses \ SSubFBCS?

As shown in Table 10, compared to non FBCS sub-

classes, Border FBCS sub-classes are more change prone

18 Aminata Sabané et al.

(a) ArgoUML (b) Eclipse JDT

(c) Mylyn (d) Rhino

Fig. 4 Repartion of Kind of FBCS.

Table 10 Results RQ2: FBCS Sub-classes vs Non FBCS Sub-classes

ArgoUML Eclipse JDT Mylyn Rhino
Change Bug Change Bug Change Bug Change Bug

SSubSFBCS
vs Sclasses \ SSubSFBCS

4/6 3/6 4/5 1/5 3/13 0/13 4/12 3/12
SSubSFBCSborder

vs Sclasses \ SSubSFBCS
3/6 2/6 1/5 0/5 3/13 0/13 0/12 1/12

SSubSFBCSinternal
vs Sclasses \ SSubSFBCS

4/6 3/6 4/5 1/5 4/13 0/13 7/12 3/12

SSubSFBCSinternal
vs SSubSFBCSborder

4/6 3/6 1/5 0/5 3/13 0/13 5/12 4/12

in only seven versions (three versions of ArgoUML, one

version of Eclipse JDT, and three versions of Mylyn)

and more fault prone in only three versions (two ver-

sions of ArgoUML and one version of Rhino).

6.3.3 RQ2.2: Are classes in SSubFBCSinternal
more

change- or fault-prone than sub-classes in

Sclasses \ SSubFBCS?

Internal FBCS sub-classes are more change prone than

non FBCS sub-classes in 19 versions representing about

53% of the analysed versions: seven versions of Rhino

Fragile Base-class Problem, Problem? 19

and four versions in each of the three other systems.

Regarding the fault proneness, the test is significant in
only seven versions: three versions of ArgoUML, one

version of Eclipse JDT, and three versions of Mylyn.

6.3.4 RQ2.3: Are sub-classes in internal FBCS

occurrences (SSubFBCSinternal
) more change- or

fault-prone than classes in border FBCS occurrences

(SSubFBCSborder
)?

According with the results reported in Table 10, in-

ternal FBCS sub-classes are more change prone than

border FBCS sub-classes in 13 versions out of 36: four

versions of ArgoUML, one version of Eclipse JDT, three

versions of Mylyn, and five versions of Rhino. Regarding

the fault proneness, the test is significant in only seven

versions: three versions of ArgoUML and four versions

of Rhino.

In almost half of the versions, FBCS sub-classes are
more change prone than other classes, particularly the

internal FBCS sub-classes as suggested by the results

of RQ2.1 and RQ2.2. We can distinguish two groups

based on the trends regarding the change proneness.

In most versions of ArgoUML and Eclipse JDT, FBCS

sub-classes are more change prone while in Mylyn and

Rhino, there is rarely more than one third of the ver-

sions with a significant test.
Regarding fault proneness, the results show that in

most versions, there is no evidence that FBCS sub-

classes are more fault prone than other classes. Except

in ArgoUML where the test is significant in half of the

versions, in the other systems, in general, there is no

more than 25% of versions with a significant test. More-

over, results suggest that internal direct FBCS sub-
classes are the ones that are more fault prone than the

non FBCS sub-classes.

6.4 Conclusions and Discussions

We thus answer our research question as follows:

RQ2: There is no evidence that the sub-classes in the

two typical FBCS considered in this study—mutual

recursion and call to an overridden method—are more

fault prone than other classes. Our results suggest that

sub-classes in these FBCS are more change prone in

two systems out of the four analysed but the con-

founding factors discussed in Section 8 infirm these

results: the change proneness of FBCS sub-classes in

these systems may due to them being also overriding

sub-classes, which are generally more change prone in

these systems.

The results presented above and the ones in Section

8 suggest that FBCS sub-classes are neither change nor

fault prone than other classes. The analysis of possi-

ble confounding factors in Section 8 points out that
the change proneness of FBCS sub-classes observed in

ArgoUML and Eclipse JDT may be due to the over-

riding feature. The results suggest that being an over-

riding sub-class can increase the likelihood of a class to

change. However, this trend is not consistent through

the analysed systems. In ArgoUML and Eclipse JDT,

overriding classes and therefore FBCS sub-classes are

more change prone but in Mylyn and Rhino, they are

not. Future work should investigate the impact of over-

riding on change proneness with more systems to study

this difference.

Regarding sub-classes in general, we can see that

they are not more change-or fault prone than other

classes. The previous studies that show that using in-

heritance can be problematic use a specific characteris-

tic of that use. For example, inheritance depth in (Daly

et al., 1996) and (Harrison et al., 2000).

For each research question, from RQ2.1 to RQ2.3,

we also investigate separately the change or fault prone-

ness of the subsets of direct and indirect FBCS sub-

classes compared to that of non FBCS sub-classes. The

results again do not show any evidence of a correlation

between those subsets and change or fault proneness.

7 Qualitative Study

The quantitative study that we presented in the previ-

ous section does not show that FBCS sub-classes are

more change or fault prone than other classes. Yet,

FBCS could still impact, positively or negatively, the

design of systems: FBCP could impact systems but

be solved immediately by developers and, thus, hinder

development without increasing the change and fault

proneness of involved classes. We contacted some de-

velopers of the systems under study in the previous

section but received little feedback. Consequently, we

decided to study the bugs issued against some of the

systems in the previous quantitative study to perform

a qualitative study.

We choose to do a survey because a quantitative, au-

tomatic study would not fully answer our research ques-

tion below: we could automatically analyse whether

classes involved in faults are part of some FBCS but

even if classes in the fault-fixes are part of some FBCS,

it would not prove that the faults are caused by the

FBCP and, conversely, there could exist faults in which

fixed classes do not belong to known occurrences of the

FBCS but still relate to the FBCP. Thus, we perform a

survey hoping that some participants will identify faults

due to the FBCP (possibly without base and–or sub-

20 Aminata Sabané et al.

classes in some FBCS being involved directly in the

description of the faults).

7.1 Research Question

The aim of the qualitative study is to gather subjec-

tive evidence that supports or not previous results on

the lack of negative impact of FBCS on change or fault

proneness. We conducted an on-line survey asking par-

ticipants to analyse a representative sample of real bugs

and their fixes to answer the research question:

RQ1: Do bugs related to FBCP exist?

The existence of such bugs would reveal that the

FBCP actually exists, although our quantitative study

fails to provide evidence of the negative impact of FBCS.

7.2 Procedure and Method

The design of our study is a survey of a random sam-

ple of bugs within the studied systems. The sample is

representative in terms of size with a confidence level

of 95% and a confidence interval of 10%.

7.2.1 Objects

The systems that we use for this qualitative study are:

Eclipse JDT Core, Mylyn, and Rhino. We mine bug

repositories of the three systems to extract bugs that

could relate to the FBCP problem. Because FBCP is

a problem related to certain uses of inheritance and

overriding, we use keywords that refer to these fea-

tures to identify bugs of interest. Table 11 summarises

these keywords and the corresponding regular expres-

sions used during bugs repositories mining. We selected

only resolved bugs to ensure that accurate informa-

tion about the causes and the resolutions of the bugs

are available and also to allow participants to anal-

yse the classes involved in the fix. Using the technique

described in (An et al., 2014), we retrieved the fixing

commits of each bug and provided to participants the

classes in those commits as source of analysis.

Table 12 describes the results of the mining of bugs

repositories giving the total number of resolved bugs

per systems and the number of bugs retrieved based on

the keywords. We randomly sampled bugs to analyse

among all bugs related to inheritance and overriding.

The size of each sample is statistically significant with

a confidence level of 95% and a confidence interval of

10% (Sheskin, 2007a). Information about the sample of

each system is given in Table 12.

7.2.2 Questionnaires

The survey was designed as an on-line questionnaire.

Each questionnaire contains six pages. The first page
describes the FBCP and the goal of the study. The re-

maining pages are analysis forms, one per bug. Each

form contains seven questions listed in Table 13. All

questions require an answer except the last one. The

first question ensures that the participant read and un-

derstood the bug. It also serves to check the validity of

an answer. Questions 2 to 5 evaluate the link between

the bug and inheritance, polymorphism, and overriding.

These questions serve to guide the participant towards

the answer to the sixth question: “Do you think that

this bug is related to the FBCP?”. Questions 2 to 6

are multiple choice questions whose possible answers

are “Yes”, “No”, or “I do not know”. However, par-

ticipants are encouraged to support their answers by

comments. The last question gives the opportunity to

the participants to leave any other comment regarding

the analysed bugs. We randomly group bugs to analyse

in packages, each package containing five bugs. To in-

crease the chance to have more than one analysis per

bug, each bug appears in two packages. Thus, we cre-

ated 43 packages; each randomly assigned to at least

two participants.

7.2.3 Participants

We invited a total of 121 participants via e-mail to anal-

yse the selected bugs using the questionnaires presented

in the previous section. The participants include stu-

dents (Ph.D. and M.Sc.) and professionals (developers

and researchers) with enough knowledge of OO pro-

gramming and Java. None of the participants belongs

to the developers’ team of the analysed systems. We

chose participants from authors contacts list, old and

current student contacts lists of our research labs, and

also contacts in industry. Although participants do not

know the systems under analysis neither the bugs to

analyse, inspecting many of the bugs to analyse shows

that they generally have enough information from the

description of the bug and its solution to answer the

questions. They can also analyse the classes that have

been committed to fix the bug if needed. We remind

participants at least three times before closing the sur-

vey that run for two months.

7.3 Results

Out of the 121 invited participants, 41 participants an-

swered a total of 33 packages. The response rate is

about 34%, higher than what is usually reported in

Fragile Base-class Problem, Problem? 21

Table 11 Keywords Used to Extract Identify Reports of Interest.

Feature Keywords Regular Expression
Inheritance child, children child*

base class, super-class base[|−]class, super[|−]class
sub-class sub[|−]class
inheritance, extension, inherits, extends inherit*, exten*

Overriding overrid, overriding, overriden overrid*

Table 12 Bugs Repositories Mining Results.

System # resolved bugs # Bugs of interest Sample Size
Eclipse JDT 2530 177 62
Mylyn 868 11 10
Rhino 520 55 35

the literature (R. M. et al., 2009). All bugs have been

analysed at least once. A preliminary check helps us to

discard irrelevant or incomplete responses. For exam-

ple, we discarded bug analyses without an answer to

the first question. Because, the answer to this question

is mandatory, we use the following heuristic to iden-
tify those cases: if the length of the answer is smaller

than 10 then the bug analysis is discarded. We also dis-

carded bug analyses whose answers to questions 2 to 6

are all ”I do not know”. We discarded 22 bugs analysis.

The remaining 183 bug analysis concern 104 bugs; 34

of them have been analysed by one participant, 61 by

two participants, and nine by three participants. Table

15 gives the details of this distribution per system. As

explained before, to increase the chance to have more

than one analysis per bug, each bug appears in two

packages and each package has been assigned to at least

two participants. Because not all participants have an-

swered to the survey and also not all packages have

been analysed, we end up with differences in the num-

ber of times each bug has been analysed. Moreover the

fact that we discarded some bugs analysis also reduces

the total number of analysed bugs and–or the number

of times they have been analysed. Tables 15 and 16

respectively summarise the responses of bugs analysed

by one participant and bugs analysed by at least two

participants.

As shown in Table 15, participants identified nine

bugs possibly related to the FBCP: seven in Eclipse,

one in Rhino, and one in Mylyn. We summarise the par-

ticipants’ answers to the analyses of these bugs in Table

17. Regarding bugs analysed more than once, partici-

pants identified 38 of them as potentially related to the

FBCP. Among them, participants agreed on five bugs

whose analyses are summarised in Table 18.

A bug is related to the FBCP if it is related to in-

heritance and overriding. Moreover, answers to ques-

tions 3 and 4 should not be ”No”. Answering ”No” to

one of the questions from 2 to 5 dismisses one of the

necessary conditions to have a FBCP. However, as we

can see in Tables 17 and 18, in most cases, participants

answered ”No” to one or more of the preliminary ques-

tions and positively to the question relating the bugs to

the FBCP. Surprisingly, one of the participants answer

negatively to all the preliminary questions but conclude

that the bug is caused by the FBCP. Because we are

aware that the answers to these questions may not be

obvious by analysing the bugs and fixes, we chose to

manually check each of these 14 bugs. One of the au-

thors manually checked the bugs. In most of the cases,

from the description of the problem, it is clear that the

bug is not related to the FBCP but to one or both of its

characteristics without satisfying the other conditions.

For instance, the fix to the bug 123514 in Eclipse JDT

is described as follows:” CompletionParser must over-

ride consumeTypeParameter1() and not consumeType-

Parameters1()”. It is then clear from this comment that

the bug is caused by the fact that the sub-class overrides

the wrong method. The bug is indeed related to inher-

itance and overriding but not to the FBCP. In other

cases which we identified as false positive, participants

answer positively to all the preliminary questions. For

instance, the bug 80063 in Eclipse JDT is such case.

The participant answers ”Yes” to all the preliminary

questions but the description of the bug says: ”Code

assist allows overriding super class private method. Su-

perclass’ private members should be omitted instead.”.
It is clear from this description and the following com-

ments that this bug concerns the code assist that should

not propose to override private classes. This bug is not

caused by the use of inheritance or overriding and thus

far from being due to the FBCP. However, some cases
were more tricky. For those cases, at least two authors

check the bugs to decide whether or not they are related

to the FBCP. An example of such case is the bug 28064

in Eclipse JDT. The summary of this bug is the follow-

ing: ”the compilation unit CU had definite compilation

errors, and it had an anonymous subclass declaration in

a field initialiser that probably caused an infinite loop.”.

Looking to the classes and the fix, we saw that the er-

ror is not due to the anonymous subclass and therefore

not to the use of inheritance. The results of the analysis

finally revealed that none of these 14 bugs are actually

due to the FBCP.

Regarding the remaining 32 bugs on which partici-

pants disagreed whether they are or not related to the

22 Aminata Sabané et al.

Table 13 Bug Analysis Questions.

Id Question
1 Please, give in your own words a summary of the cause of this bug?
2 Is the bug related to inheritance?
3 Is the bug related to polymorphism?
4 Is the bug related to a method being overridden in a sub-class?
5 Is the bug related to a method being overriden in a sub-class and calling (or not) a method of the super-class?
6 Do you think that this bug is related to the FBCP?
7 Please, feel free to share with us any other comments you judge interesting about this bug.

Table 14 Distribution of responses.

System # Total # Bugs # Bugs # Bugs
bugs Analysed Analysed analysed

analysed Once twice three times
Eclipse JDT 59 29 30 0
Mylyn 8 1 4 3
Rhino 35 4 25 6

Table 15 Responses of Bugs Analysed by one Participant.

System # bugs # Bugs related
analysed to FBCP

Eclipse JDT 29 7
Mylyn 1 1
Rhino 4 1

Table 16 Responses of Bugs Analysed by at least Two Par-
ticipants.

System # bugs # Bugs related # Bugs related
analysed at to the FBCP to the FBCP
least twice with Agreement with Disagreement

Eclipse JDT 30 2 18
Mylyn 7 0 4
Rhino 31 3 11

FBCP, following the process described above, we per-

formed a manual check that indicated that none of them

is caused by the FBCP.

7.4 Conclusions and Discussions

We thus answer our research question as follows:

RQ3: none of the bugs that participants analysed is

due to the FBCP although some of them have been

wrongly identified as such.

Participants identified some of the analysed bugs

as related to the FBCP although they are actually not.

These participants made their decisions based on one or

two of the conditions and not all required ones. Indeed,

when a bug is related to inheritance or overriding, they

identified such bugs as related to the FBCP. Other par-

ticipants answer ”Yes” to all questions but the manual

check or other participants contradict them. These false

positive could be also caused by an experiment learning

bias. Because, participants were asked to analyse bugs

to identify bugs related to the FBCP, they could think

that at least one bug in the set they analyse should be

related to the FBCP.

Besides the survey, we also manually checked bugs

involving the border FBCS sub-classes of all versions

of Barcode4J and CheckStyle Eclipse plugin in config-

urations with Checkstyle-core. We could not analyse

all border FBCS because of their sheer numbers. We

choose Barcode4J and CheckStyle because they have

lows numbers of classes: Barcode4j (104–178) and Check-

Style (300–368), which allow manual analyses. The re-

sults of this manual check go along with the results of

the survey and the quantitative study: In none of the

66 bugs analysed, the issue is related to the FBCP.

8 General Discussions

Our main goal was to infer the prevalence and impact

of the FBCP by considering two particular FBCS—

mutual recursion and call to an overridden method and:

(1) by detecting FBCS occurrences, (2) by comparing

the change and fault-proneness of the classes partici-

pating in these occurrences as sub-classes with respect

to that of other classes, and (3) by assessing whether

there exist bugs whose cause is the FBCP.

The results of the preliminary study show that there

exists a significant proportion of call to an overridden

method FBCS occurrences in most of the analysed sys-

tems but few mutual recursion FBCS occurrences. How-

ever, the study of sub-classes involved in these FBCS

does not indicate that those classes are more fault prone

than other classes. However, the analysis performed to

answer RQ2 in Section 6 shows that, in most versions

of two systems out of the four analysed, they are more

change prone than the other classes.

In this section, we analyse these results in the light

of possible confounding factors that could affect the

outcome of our studies.

8.1 Confounding Factors for the Quantitative Study

Inheritance and overriding are two characteristics of

FBCS classes. Thus, they can be confounding factors

when answering RQ2 in Section 6. Therefore, to avoid

a false inference about the relation between FBCS sub-

classes and change and fault proneness, we also consider

Fragile Base-class Problem, Problem? 23

Table 17 Summary of Responses of Bugs Identified as Related to the FBCP by One Participant.

Bug Id System Q1 Q2 Q3 Q4 Q5 Q6

1 80063 Eclipse JDT The code Assist suggests overriding a pri-
vate method. Although the implementa-
tion leads to have a new method that is
unrelated to the one in the base class.

Yes Yes Yes Yes Yes

2 93396 Eclipse JDT Abstract method not implemented Yes Yes I don’t know Yes Yes
3 160652 Eclipse JDT The class can not be sub-classed by clients

but it is
Yes No No No Yes

4 162026 Eclipse JDT calling of the method fetch is not explicit Yes Yes No No Yes
5 191247 Eclipse JD API breakage Yes No Yes No Yes
6 210681 Eclipse JDT inheritance issue Yes No No No Yes
7 426048 Eclipse JDT My understanding is that a class had its

variables not initialised, which ended up
causing NPE once they were used indi-
rectly by a subclass.

Yes I don’t know I don’t know I don’t know Yes

8 352933 Mylyn this error is based on interaction events
and coupled to the context framework.
To improve modularity and reuse of tasks
task activity related classes should be ex-
tracted to a separate bundle and injected
through an extension point.

No No Yes No Yes

9 328924 Rhino classes are package protected and can’t be
reused. need to duplicate all of the classes

Yes No Yes Yes Yes

the following two research questions: MF1: What is the

relation between sub-classes involved in any inheritance

relations, belonging to SSubSinheritance
, and change and

fault proneness? We want to observe whether sub-classes

are more change- or fault-prone than other classes in

general. Similarly, we ask: MF2: What is the relation

between sub-classes involved in any overriding relations,

belonging to SSubSoverriding
, and change and fault prone-

ness? We want to observe whether overriding classes

are more change- or fault-prone than other classes in

general. For both confounding factors, we compare the

change- and fault-proneness of classes belonging to ei-

ther SSubSinheritance
or SSubSoverridding

with that of

classes not belonging to these sets. Thus, we can con-

firm whether any differences among sub-classes and other

classes observed while answering RQ2 are due to their

role in FBCS occurrences or to them being sub-classes

or sub-classes overriding some methods.

We thus ask the following questions:

– MF1: SSubSinheritance
and Sclasses\SSubSinheritance

;

– MF2: SSubSoverridding
and Sclasses\SSubSoverridding

.

8.1.1 MF1: Are sub-classes (SSubSInheritance
) more

change- or fault-prone than other

classesSclasses \ SSubSinheritance
?

Table 19 shows that in 10 versions out of 36, sub-classes

are more change prone than other classes. These ver-

sions include two versions of ArgoUML and Mylyn and

three versions of Eclipse JDT and Rhino. The odd ra-

tio in these cases vary from 0.54 to 5.1. These results

suggest that the change-proneness of FBCS sub-classes

may not due to the fact that they are sub-classes.

Regarding the fault proneness, only five versions out

of 36 show a significant difference between sub-classes

and other classes with a odd ratio going from 0.53 to

3.08. The concerned versions comprise three versions

of Eclipse JDT and two versions of Rhino. FBCS sub-

classes are, like sub-classes in general, not more fault-

prone than other classes.

8.1.2 MF2: Are sub-classes (SSubSOverriding
) more

change- or fault-prone than other

classesSclasses \ SSubSOverriding
?

As shown in Table 19, overriding sub-classes are more

likely to change than other classes in 17 versions: three

versions of ArgoUML, all versions of Eclipse JDT, five

versions of Mylyn, and four versions of Rhino. These

results are similar to that of FBCS sub-classes. To iden-

tify the predominant factor that trigger these results,

between being an overriding sub-class or being an FBCS

sub-class, we compare the change proneness of FBCS

sub-classes to that of other overriding sub-classes. Re-

sults show that FBCS sub-classes are more change-

prone than other overriding sub-classes in only eight

systems out of 36. Moreover, the odd ratio in these

cases is less than 1. Thus, these results suggest that

the change-proneness of FBCS sub-classes may be due

to the fact that they are overriding sub-classes.

Overriding sub-classes are likely to be faulty more

than other classes in only eight systems out of 36 with a

24 Aminata Sabané et al.

Table 18 Summary of Responses of Bugs Identified as Related to the FBCP by at least Two Participants.

Bug Id System Q1 Q2 Q3 Q4 Q5 Q6

1 83600 Eclipse JDT Signature construct not well respected Yes Yes Yes I don’t know Yes
2 83600 Eclipse JDT The List types verificator does not perform well

when is has to accept subtypes with the ? extends
Number notation

Yes No Yes Yes Yes

3 123514 Eclipse JDT The autocompletion feature crash because the
implementation for this specific case override the
wrong methods

Yes Yes Yes Yes Yes

4 123514 Eclipse JDT Wrongly override the method of parent class. Yes No Yes No Yes
5 271401 Rhino Classes that extend ScriptableObject can-

not use polymorphism to define.JavaScript-
accessible properties and functions because
Class.getDeclaredMethods() is used instead of
Class.getMethods()

No No No No Yes

6 271401 Rhino Probably a problem with casting objects during
its lifecycle

Yes Yes I don’t know Yes Yes

7 42097 Rhino a global property overwrite is occuring instead of
a local prop being.created in function now

Yes Yes Yes No Yes

8 42097 Rhino Rédéfinition involontaire de la superclasse. Yes Yes Yes Yes Yes
9 462827 Rhino The main is to allow JavaAdapter class to extend

Scriptable objects without additional wrapping.
Yes No Yes Yes Yes

10 462827 Rhino Baseclass is responsible for wrapping the instance
of Scriptable wrapper in the subclass..

Yes No Yes No Yes

11 462827 Rhino Tis is an extension to allow JavaAdapter to to
extend Scriptable objects directly, without addi-
tional wrapping as NativeJavaObject..

Yes No No No Yes

Table 19 Results RQ2: Confounding Factors

Argouml Eclipse JDT Mylyn Rhino
Change Bug Change Bug Change Bug Change Bug

SSubSinheritance
vs Sclasses \ SSubSinheritance

2/6 0/6 3/5 3/5 2/13 0/13 3/12 2/12
SSubSoverridding

vs Sclasses \ SSubSoverridding
3/6 4/6 5/5 2/5 5/13 0/13 4/12 2/12

SSubSFBCS
vs SSubSoverridding

\ SSubSFBCS
4/6 2/6 4/5 0/5 0/13 0/13 0/12 0/12

odd ratio varying between 0.22 and 2.64. These results

are similar to that of FBCS sub-classes. When looking

to the fault proneness of FBCS sub-classes compared to

that of other overriding classes, we can see that FBCS

sub-classes are more fault prone than other overriding

sub-classes in only two versions of ArgoUML with a odd

ratio of 0.5 and 2.8. These results suggest again that the

few cases where FBCS sub-classes are more fault prone

than other sub-classes may be due to the fact they are

overriding sub-classes.

The analysis of the possible confounding factors that

are inheritance and overriding shows that the results

observed could be due to overriding. Thus, FBCS sub-

classes are more change prone than other classes in Ar-

goUML and Eclipse JDT because they are also overrid-

ing sub-classes. Finally, we conclude that FBCS sub-

classes are not more change or fault prone than other

classes. The results of the qualitative study supports

also these findings: none of the analysed bugs is caused

by the FBCP. The present section presents the analy-

sis of the confounding factors and discusses the reasons

that could explain our findings.

8.2 Confounding Factors for the Qualitative Study

Some factors related to both the bugs and the partic-

ipants could mitigate our results and conclusions. The

choice of the bugs and the mean to administer the sur-

vey could impact the participants’ answers. We tried

to have as many participants as possible and also care-
fully studied manually the bugs in which more than one

participants indicated the presence of the FBCP.

Participants’ demographics and characteristics could

also impact the results and conclusions of our survey.

For example, their knowledge (or lack thereof) of Java

and–or of the systems and–or of the FBCP would im-

pact their answers. We believe that these factors ex-

ist but do not negatively impact our results and con-

clusions because we contacted 121 participants, out of

which 41 provided answers, without choosing and–or

disciminating against participants. Hence, our partici-

pants include a variety of knowledge.

Fragile Base-class Problem, Problem? 25

8.3 Reasons for Lack of Impact and Causes

Although the significant proportion of the considered

FBCS in the analysed systems, the quantitative study

failed to establish a correlation between FBCS and change

or fault proneness. The results of the qualitative study

also support the results of the quantitative one. None

of the 104 bugs that participants analysed is related to

the FBCP. We explain in the following the main rea-

sons which we believe can explain this lack of impact

and causes. All the reasons could explain the results of

our studies and are all means that can help to prevent

the occurrence of the FBCP.

8.3.1 Savvy use of inheritance and overriding

The observation that FBCS occurrences are not more

change or fault prone than other classes may suggest

that developers are careful when using inheritance and

overriding even from third-party libraries. The fact that

a significant proportion of classes participate in FBCS

occurrences also indicates that FBCS are usual and that

developers use them frequently in their code.

Moreover, many participants of the survey, which

included professional and students with a good knowl-

edge and practice of Java and OO programming, identi-

fied some bugs as related to the FBCP albeit they were

not. This observation shows that participants may not

be aware of the FBCP and do not encounter this kind

of problem in their work.

8.3.2 IDEs Assistance

Current IDEs help developers by detecting some incon-

sistencies when coding. This assistance may also explain

why FBCS occurrences seem not to be harmful and are

adequately used. Although there is no specific warning

detecting a FBCS, many warnings exist regarding over-

riding. For example, the option Missing ’@Override’

annotation in Eclipse IDE will require to explicitly an-

notate an overriding method. Thus, accidental naming,

which is one of the possible cause of the FBCP, is pre-

vented by current IDEs.

8.3.3 Testing

Testing is one of the main means for developer to find

bugs in their systems and ensure software quality. The

development of xUnit frameworks (such as JUnit) and

their integration into most IDEs increase testing ac-

tivities and allow developers to catch “coarse” errors,

which could explain our results and conclusions. Indeed,

all the analysed systems are accompanied by test cases

that could help (and have helped) developers to detect

bugs related to the FBCP early during development.

8.3.4 Dependency Injection

One of the proposed solutions to prevent the FBCP con-

sists in favouring composition over inheritance (Gamma

et al., 1995; Bloch, 2008). This solution is nowadays

easy to use thanks to the introduction of the concept

of interfaces for typing as well as to the prevalence of

frameworks using “dependency-injection”. Dependency

injection is a programming idiom (or a design pattern

depending on the researcher) that implements inversion

of control. Instead of having an inflexible dependency

between classes, this idiom allows injecting the depen-

dencies when needed into the framework and thus facil-

itate the use of composition by clients and is a means

to prevent the FBCP.

9 Threats to validity

This section discusses the threats to validity that can

affect our studies.
Construct validity threats concern the relationship

between theory and observation. In our quantitative

study, these threats are due to the detection of FBCS

occurrences. Our detection tool is based on Ptidej (Gue-

heneuc, 2007), a tool suite for the analysis of code and

design models, which is actively maintained and which

has been used in many previous studies. Ptidej forms

a proven framework on which to build our analysis

tool. Yet, it is possible that errors in our analysis tool

would bias the detected occurrences. We thoroughly re-

viewed our code and tested it and, also, we perform

several manual validations. Thus, we accept this threat.

We also provide our analysis tool on-line1 for other re-

searchers to use and–or review.

Another threat concerns the identification of faulty

and changed classes. We relied on change and fault data

independently computed and published in a previous

work (Khomh et al., 2011). Therefore, we believe that

this threat is minimal even though different faults and

changes would impact our results and conclusions.

Another threat is the use of FBCS as proxy to mea-

sure the existence of the FBCP in the quantitative

studies. FBCS occurrences are defined as opportuni-

ties for the FBCP, but notwithstanding the results and

conclusions of our studies, not all FBCS would lead

to the FBCP. We did not find any significant correla-

tion between FBCS occurrences and change and fault

proneness, and discussed whether this lack of corre-

lation is due to the FBCP or other confounding fac-

tors. Yet, as mentioned in Section 3, there are other

26 Aminata Sabané et al.

aspects of the FBCP problem that are not captured by

the FBCS in general and by the FBCS considered in
our studies—mutual recursion and call to an overrid-

den method, such as conflicts in the method interfaces

and behavioural conflicts. Those other aspects of the

FBCP are out of the scope of this paper and will be

subject to a future work.

Finally, the FBCP is thought in the literature to im-

pact software development and reduce software quality

if and only if changes are made to the base- or sub-

classes participating to related FBCS. In our studies,

we assumed that we could measure this impact a pos-

teriori, by measuring the change and fault-proneness of

classes that were committed in the control-version sys-

tems of the analysed systems. Our assumption does not

and cannot simply consider other impact, such as devel-

opers introducing faults due to the FBCP but identify-

ing these faults through testing and fixing them before

committing their changes or such as developers revert-

ing their changes before committing them because the

presence of the FBCP make them too difficult to per-

form successfully. Such threats exist and should be the

subject of future work.

Internal validity threats concern confounding fac-

tors that can affect our dependant variables. Regarding

the quantitative study on change and fault proneness

of FBCS sub-classes, we dealt with these threats by

analysing two possible confounding factors: inheritance

and overriding.

Another such threat is related to the particular choice

of the systems and the versions that we analysed. We

tried to mitigate this threat in the preliminary study

by using multiple versions of seven systems from differ-

ent application domains, with different sizes, and which

have been used in previous studies (Tempero et al.,

2008, 2010). Moreover, these seven systems led to the

analyses of a wide variety of frameworks. Regarding the

second quantitative study, we used a subset of this pool

of systems guided by the availability of change and fault

data. The four chosen systems are also from different

application domains and have different sizes.

Conclusion validity threats deal with the relation be-

tween the treatment and the outcome. We used proper

statistical tests to answer our research questions. We

used the non-parametric statistical Fisher test to assess

the differences in terms of change and fault proneness of

the analysed populations. We also computed the odd-

ratios to evaluate the magnitudes of the differences.

Another such concern is related to the representa-

tiveness of the sample of bug that we used in the sur-

vey. To mitigate this threat, we performed a random

sampling across bugs containing terms related to in-

heritance and–or overriding. To have a representative

sample in terms of size, we considered a confidence level

of 95% and a confidence interval of 10%. Although we
cannot guarantee to have a representative sample in

terms of relevance of bugs, the random sampling makes

it unlikely that we accidentally excluded all relevant

bugs.

Another threat concern the manual checking that

we performed to evaluate the responses of the partici-

pants. This manual checking could be affected by sub-

jectiveness or human error. To mitigate this threat, we

took in consideration more than one opinion when the

bugs were not easy to understand.

External validity threats concern the generalisability

of our results. The preliminary study involved multiple

versions of seven clients and 58 frameworks from dif-

ferent application domains and different sizes. We thus

could expect that our results and conclusions about the

existence of FBCS occurrences could be generalised to

other Java open-source systems.

The second quantitative study is limited to multiple

versions of four different systems. The trends in the

change and fault-proneness of the FBCS sub-classes are

not the same in all the systems. Therefore, we would

need to perform larger studies with more systems to

generalise our conclusions. Such larger studies are part

of future work.

Regarding the qualitative study, the survey involved

samples of bugs from three systems. Future work should

target more systems to generalise the results and con-

clusions. Yet, this survey is the first of such survey and

it involved 41 participants (out of 121 invited partic-

ipants), which makes it the largest survey about the

FBCP.

10 Conclusion and Future Work

The fragile-base class problem (FBCP) has been de-

fined and studied in the literature for many years (IBM,
1994; Mikhajlov and Sekerinski, 1998; Aldrich, 2004).

Previous works proposed various solutions to prevent

or alleviate the FBCP when designing and developing

object-oriented systems. Yet, the question remains

whether solutions to the FBCP should be ap-

plied extensively. To answer this question, we per-

formed qualitative and quantitative studies.

First, we performed a preliminary quantitative study

that confirms the existence of occurrences of some fragile-

base class structures (FBCS) in open-source systems.

These FBCS are some of the opportunities in systems

architectures that can lead to two aspects of the FBCP:

the mutual recursion and the call to an overridden method.

Second, we performed another quantitative study on

Fragile Base-class Problem, Problem? 27

the relation between FBCS occurrences and change and

fault proneness to assess the impact of these occur-
rences on system and, indirectly, the impact of these

tow aspects of the FBCP. Using our detection tool,

we analysed multiple versions of seven different open-

source Java systems (clients), 58 different frameworks,

and 301 configurations resulting from the combination

of clients and frameworks. Our results showed that there

exists a significant proportion of call to an overrid-

den method FBCS occurrences in most of the analysed

frameworks, clients, and configurations but few mutual

recursion FBCS occurrences. Our results also showed

that there is no statistical evidence that classes partic-

ipating in these FBCS as sub-classes are more change-

prone or fault-prone than classes not participating in

any FBCS. Third, we performed a qualitative analy-

sis by the means of a survey. We select 104 bugs from

three systems, namely Eclipse JDT, Mylyn, and Rhino,

and asked participants to analyse these bugs to assess

whether they are caused by the FBCP. We received

answers from 41 participants and, although some par-

ticipants identified some of the bugs as related to the

FBCP, a further manual validation revealed that none

of the bugs was due to the FBCP.

Thus, to the extent of the threats to the validity of

our studies, we concluded that the two aspects of the

FBCP that we analysed—mutual recursion and call to

an overridden method—may not be as problematic as

thought in previous works, in terms of change and fault

proneness. Generally, our results suggested that it may

not be worth the effort to implement the solu-

tions proposed in the literature to prevent ex-

tensively and systematically the FBCP related

to mutual recursion and call to an overridden

method. Yet, we also discussed that many reasons

could justify the lack of negative impact of the FBCP

on systems. In particular, we argued that a savvy use

of inheritance by developers, the warnings available in

IDEs to help developers avoid some faults, the popu-

larity of dependency-injection and the use of interfaces

over classes for typing, and thorough testing by devel-

opers all help prevent the FBCP. Among these reasons,

dependency injection, which is very popular in frame-

works, was introduced by Gamma et al. (1995) and

Bloch (2008) as a means to avoid the FBCP. Thus, we

believe that it is not so surprising that FBCS do not

have a negative impact on systems.

Future work should investigate in more details mu-

tual recursion and call to an overridden method FBCS

as well as other FBCS and should also use more systems

to generalise our findings. Investigating other aspects

of the FBCP may lead to other results regarding the

change and fault proneness of their participating classes

for which we currently cannot say anything. A survey

with developers of the analysed systems could help to
understand whether the FBCP could impact other as-

pects of software development that cannot be measured

by a post-hoc analyses of releases. Future work also in-

clude another survey to observe, organise, and study

the measures that developers take when writing code

containing FBCS, especially when third party libraries

are involved. Other aspects of the FBCP, such as con-

flicts in the method interfaces and behavioural conflicts,

should also be studied.

Finally, as several of the clients and frameworks con-

sidered in our studies come with tests, we could use

these available tests to assess whether classes and meth-

ods participating into FBCS have been tested and, in

particular, if some tests have been designed particularly

to avoid a possible fault related to the FBCP.

Acknowledgements This work has been partly funded by
the NSERC Research Chairs in Software Change and Evolu-
tion and in Software Patterns and Patterns of Software. The
authors are grateful to all the anonymous participants.

References

Aldrich, J. (2004). Selective open recursion: A solution

to the fragile base class problem. School of Computer

Science Carnegie Mellon University.
An, L., Khomh, F., and Adams, B. (2014). Supplemen-

tary bug fixes vs. re-opened bugs. In Source Code

Analysis and Manipulation (SCAM), 2014 IEEE

14th International Working Conference on.

Biberstein, M., Sreedhar, V. C., and Zaks, A. (2002). A

case for sealing classes in Java. In Israeli Workshop

on Programming Languages & Development Environ-

ments.

Bloch, J. (2008). Effective Java. Addison-Wesley, 2

edition.

Briand, L. C., Wüst, J., Daly, J. W., and Porter, D. V.

(2000). Exploring the relationship between design

measures and software quality in object-oriented sys-

tems. Journal of Systems and Software, 51:245–273.

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood,

M. (1996). Evaluating inheritance depth on the main-

tainability of object-oriented software. Journal of

Empirical Software Engineering, 1:109–132.

Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., and

Black, A. P. (2006). Traits: A mechanism for fine-

grained reuse. ACM Trans. Program. Lang. Syst.,

28(2):331–388.

Gamma, E., Helm, R., R.Johnson, and Vlissides, J.

(1995). Design Patterns: Elements of Reusable Object

28 Aminata Sabané et al.

Oriented Software. Addison-Wesley, Boston, MA,

USA.
Ghezzi, C. and Monga, M. (2002). Fostering compo-

nent evolution with C# attributes. In Proceedings of

the International Workshop on Principles of Software

Evolution, pages 22–28. ACM.

Gueheneuc, Y. (2007). Ptidej: A flexible reverse

engineering tool suite. In Software Maintenance,

2007. ICSM 2007. IEEE International Conference

on, pages 529–530.

Guéhéneuc, Y.-G. and Albin-Amiot, H. (2004). Re-

covering binary class relationships: Putting icing on

the uml cake. In Schmidt, D. C., editor, Pro-

ceedings of the International Conference on Object-

Oriented Programming, Systems, Languages, and

Applications. ACM Press.
Guéhéneuc, Y.-G. and Antoniol, G. (2008). DeMIMA:

A multi-layered framework for design pattern identi-

fication. IEEE Transactions on Software Engineer-
ing, 34.

Harrison, R., Counsell, S., and Nithi, R. (2000). Exper-

imental assessment of the effect of inheritance on the

maintainability of object-oriented systems. Journal

of Systems and Software, 52:173–179.

Hürsch, W. (1994). Should superclasses be abstract?

In Tokoro, M. and Pareschi, R., editors, Proceedings

of the European Conference on Object-Oriented Pro-

gramming, volume 821 of Lecture Notes in Computer

Science, pages 12–31. Springer.

IBM (1994). IBM’s System Object Model (SOM): Mak-

ing reuse a reality. White paper, IBM Corporation,

Object Technology Products Group.
Kegel, H. and Steimann, F. (2008). Systematically

refactoring inheritance to delegation in Java. In Pro-

ceedings of the International Conference on Software

Engineering, pages 431–440. ACM.
Khomh, F., Penta, M. D., Guéhéneuc, Y.-G., and An-

toniol, G. (2011). An exploratory study of the impact

of antipatterns on class change- and fault-proneness.

Empirical Software Engineering (EMSE).

Kiczales, G. and Lamping, J. (1992). Issues in the de-

sign and speci

cation of class libraries. In Proceedings of the In-

ternational Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, pages

435–451.

Mens, T. (2002). A state-of-the-art survey on software

merging. IEEE Transactions on Software Engineer-

ing, 28:449–462.

Mezini, M. (1997). Maintaining the consistency of class

libraries during their evolution. SIGPLAN Notices,

32:1–21.

Mezini, M., Pipka, J. U., Dittmar, T., and Boot, W.

(1999). Detecting evolution incompatibilities by an-
alyzing java binaries. In Proceedings of the Technol-

ogy of Object-Oriented Languages and Systems, pages

126–135. IEEE CS Press.

Mikhajlov, L. and Sekerinski, E. (1998). A study of the

fragile base class problem. In Proceedings of the Eu-

ropean Conference on Object-Oriented Programming,

pages 355–382.

Ozaki, H., Gondow, K., and Katayama, T. (2003). Class

refinement for software evolution. In Proceedings of

the International Workshop on Principles of Software

Evolution, pages 51–56. IEEE CS Press.

Parkinson, M. J. and Bierman, G. M. (2008). Sepa-

ration logic, abstraction and inheritance. SIGPLAN

Notices, 43:75–86.

R. M., G., F. J., Fowler, J., M. P., C., J. M., L., E.,

S., and R., T. (2009). Survey Methodology. Wiley, 2

edition.
Robbes, R., Rthlisberger, D., and Tanter, r. (2015).

Empirical Software Engineering, 20(3):745–782.

Ruby, C. and Leavens, G. T. (2000). Safely creating cor-

rect subclasses without seeing superclass code. SIG-

PLAN Notices, 35:208–228.

Sheskin, D. J. (2007a). Handbook of Parametric and

Nonparametric Statistical Procedures. Chapman &

Hall/CRC, 4 edition.

Sheskin, D. J. (2007b). Handbook of Parametric

and Nonparametric Statistical Procedures (fourth edi-

tion). Chapman & All.
Snyder, A. (1986). Encapsulation and inheritance in

object-oriented programming languages. In Pro-

ceedings of the International Conference on Object-

Oriented Programming, Systems, Languages, and

Applications, pages 38–45.

Steyaert, P., Lucas, C., Mens, K., and D’Hondt, T.

(1996). Reuse contracts: Managing the evolution of

reusable assets. SIGPLAN Notices, 31:268–285.

Taenzer, D., Gandi, M., and Podar, S. (1989). Prob-

lems in object-oriented software reuse. In Proceedings

of the European Conference on Object-Oriented Pro-

gramming, pages 25–38. Cambridge University Press.

Tempero, E., Counsell, S., and Noble, J. (2010). An

empirical study of overriding in open source java.

In Proceedings of the Australasian Computer Science

Conference, pages 3–12. Australian Computer Soci-

ety, Inc.

Tempero, E., Noble, J., and Melton, H. (2008). How do

java programs use inheritance? An empirical study of

inheritance in java software. In Proceedings of the Eu-

ropean Conference on Object-Oriented Programming,

pages 667–691. Springer.

Fragile Base-class Problem, Problem? 29

Wegner, P. and Zdonik, S. (1988). Inheritance as an

incremental modification mechanism or what like is
and isnt like. In Proceedings of the European Confer-

ence on Object-Oriented Programming, volume 322

of Lecture Notes in Computer Science, pages 55–77.

Springer Berlin Heidelberg.

Williams, S. and Kinde, C. (1994). The Component

Object Model: Technical overview. Dr. Dobbs Jour-

nal.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-

nell, B., and Wesslén, A. (2000). Experimentation in

Software Engineering - An Introduction. Kluwer Aca-

demic Publishers.

