Noname manuscript No.
(will be inserted by the editor)

A Study of Build Inflation in 30 Million CPAN Builds on
13 Perl Versions and 10 Operating Systems

Mahdis Zolfagharinia - Bram Adams -
Yann-Gaél Guéhéneuc

Received: date / Accepted: date

Abstract Continuous Integration (CI) is a cornerstone of modern quality as-
surance, providing on-demand builds (compilation and tests) of code changes
or software releases. Yet, the many existing CI systems do not help devel-
opers in interpreting build results, in particular when facing build inflation.
Build inflation arises when each code change has to be built on dozens of com-
binations (configurations) of runtime environments (REs), operating systems
(OSes), and hardware architectures (HAs). A code change C1 sent to the CI
system may introduce programming faults that result in all these builds to
fail, while a change C2 introducing a new library dependency might only lead
one particular build configuration to fail. Consequently, the one build failure
due to C2 will be “hidden” among the dozens of build failures due to C1
when the CI system reports the results of the builds. We have named this
phenomenon build inflation, because it may bias the interpretation of build
results by developers by “hiding” certain types of faults.

In this paper, we study build inflation through a large-scale study of the
relationship between REs and OSes and build failures on 30 million builds
of the CPAN repository on the CPAN Testers package-level CI system. We
show that the builds of Perl packages may fail differently on different REs and
OSes and any combination thereof. Thus, we show that the results provided
by CPAN Testers require filtering and selection to identify real trends of build
failures among the many failures. Manual analysis of 791 build failures shows
that dependency faults (missing modules) and programming faults (undefined
values) are the main reasons for failures, with dependency faults being easier
to fix. We conclude with recommendations for practitioners and researchers in
interpreting build results as well as for tool builders who should improve the
scheduling of builds and the reporting of build failures.

Keywords Continuous integration, build inflation and failure, Perl, CPAN

MCIS and Ptidej labs, Polytechnique Montréal
Québec, Canada
E-mail: mahdis.zolfagharinia,bram.adams,yann-gael.gueheneuc@polymtl.ca

2 Mahdis Zolfagharinia et al.

1 Introduction

Continuous integration (CI) systems are important for quality assurance [1]
by building and testing each commit entering the review environment or the
version control system of an individual project, as well as final or intermediate
releases as they are submitted to an ecosystem (e.g., Linux distribution). They
combine build and test scripts to run compilers and other tools and to test
the compiled code [2,3] and notify developers of build failures [4,5].

CI systems perform many different build-related tasks. For example, open-
source projects like OpenStack [6] or Mozilla [7] use CI systems for experi-
mental (“try”) builds before a patch (a pull request) is sent out for review,
integration builds after acceptance of a patch, builds to prepare and perform a
new release, builds for static analyses, etc. CI systems must schedule builds on
configurations of runtime environments (REs), operating systems (OSes), and
hardware architectures (HAs) identical or as close as possible to their produc-
tion counterparts [8,9]. Nowadays, configuration and instantiation of the REs,
OSes and HAs for a given build can easily be automated using Infrastructure-
as-Code (IaC) languages like Chef or Puppet, and deployment technologies
like virtual machines or containers.

The many possible, legitimate configurations of REs, OSes, and HAs create
a phenomemon of build inflation in CI systems: each single commit yields a
large number of builds, one build per configuration. This build inflation has
several negative consequences on organizations, developers, and researchers.
For organizations, performing more builds strains the CI systems (for example
at Google [10]). This strain can be absorbed by a cloud infrastructure, but at a
cost: in 2013, O’Duinn, Mozilla’s former head of release engineering, estimated
that the build cost per commit was $26.40 [11], on average, for a total of about
$201,000 in December 2013 (7,601 commits x $26.40).

Performing more builds makes the interpretation of their results more com-
plex. For example, commit e17e25c of the Ruby on Rails project led to 42
builds, one of which failed because an API was not supported by Ruby 1.8.7.
As a result, the commit was marked as a “failing build” and displayed as such
by Travis CI. Developers then had to decide whether one build failure out of
42 warranted the withdrawal of the commit or not: were all the 41 successful
builds equally useful as was the unique failing build? Would it be useful to
add a 4377 build and, if so, with what configuration of REs, OSes, and HAs?

For researchers, performing more builds provides a wealth of data unavail-
able in the past about a vast array of diverse software projects. However,
researchers are concerned whether this data is actually representative of dif-
ferent phenomena or instead pertains to the same phenomenon repeated over
and over again. They are also concerned with the costs, for organizations and
developers, of configuring, instantiating, using, and maintaining large CI sys-
tems, with many configurations of REs, OSes, and HAs, and want to reduce
these costs by understanding build inflation.

Consequently, this paper studies 30 million builds of one CI system to
observe and report whether build inflation exists, its impact on builds, and

Title Suppressed Due to Excessive Length 3

provide recommendations to organizations, developers, and researchers. We
choose to study CPAN Testers, the CI system of the Comprehensive Perl
Archive Network (CPAN) [12], which is the official repository of Perl pack-
ages, because CPAN Testers builds CPAN libraries across a wide range of
environments, such as different Perl REs, OSes, and HAs. This provides the
data required to study build inflation. We analyze the build data generated
between 2011 to 2016, covering more than 12,000 CPAN packages, 13 Perl
RE versions, and 10 OSes—the largest quantitative observational study of
builds—to answer the following research questions:

— RQ1: How do build failures evolve across time?

— RQ2: How do build failures spread across OSes and Perl versions?
— RQ3: How do build failures relate to Perl versions?

— RQ4: How do build failures relate to OSes?

— RQ5: What are the different types of build faults?

— RQ6: How do build fault types relate to OSes?

— RQT7: How do build fault types relate to Perl versions?

By answering these questions, we show an inflation in the numbers of builds
and build failures, which hides the reality of builds in noise. For example, com-
paring millions of builds on Linux with thousands of builds on Cygwin may
lead to wrong conclusions about the quality of Perl versions on Cygwin in com-
parison to Linux. We also show that unnecessary builds, e.g., certain OSes/Perl
RE versions, for which we already have many builds, could be avoided alto-
gether. Thus, we provide empirical evidence of the costs of build inflation.
We conclude by providing recommendations to organizations/developers and
researchers to deal with this inflation.

This paper extends our previous work [13] with an analysis of the types of
build faults and of the relations between build fault types and REs and OSes,
respectively. Consequently, we added RQ5, RQ6, and RQ7 to describe each
of these types and relations. Section 2 also adds a detailed comparison of the
types of build faults with those reported in the literature.

This paper is organized as follows: Section 2 presents background infor-
mation on CPAN Testers and major related work. Section 3 describes our
observational study design, while Section 4 presents our observations, followed
by discussion and recommendations in Section 5. Section 6 describes threats
to the validity of our study. Finally, Section 7 concludes with future work.

2 Background and Related Work
2.1 CPAN and CPAN Testers
Similar to Maven and npm for Java and Node.js, the Comprehensive Perl

Archive Network! (CPAN) [12] is a repository of modules that Perl develop-
ers can require and install. These modules provide various applications and

I http://wuw.cpan.org

4 Mahdis Zolfagharinia et al.

libraries, e.g., DBI to connect to databases or JSON to encode/decode in the
JSON format. CPAN currently contains more than 255,000 modules bundled
into 39,000 packages?, published by independent contributors. Each package
combines the set of modules with their documentation, tests, build and instal-
lation scripts. A package can have one or more versions.

Developers can add additional packages to their local Perl RE through
the cpan command line tool. When a developer asks it to install a package
version, it downloads that version from the nearest CPAN mirror, unpacks,
processes, and—or transforms code and data, compiles any native C code, and
runs its unit tests. Since there is no official Perl mechanism for developers to
share their internal build results with users, users and other developers can
consult CPAN Testers [14] to understand whether a package version is likely
to build successfully in their own REs, before installation. As such, CPAN
Testers allows developers (1) to share their local build results along with the
exact REs in which they were obtained and (2) to visualize build results per
package version, RE (e.g., Perl version 5.8 vs. 5.19), OS (e.g., Perl version 5.8
vs. 5.19) and even HA (e.g., Perl version 5.8 vs. 5.19).

The CPAN Testers infrastructure differs from other CI systems, like Travis
CI and Jenkins, by its granularity and architecture. CPAN Testers provides
build results per package version rather than per commit, since it is related to
the Perl ecosystem rather than to one individual project’s development pro-
cess. Furthermore, CPAN Testers is a distributed CI system, because its build
machines depend on contributions of volunteering developers. Consequently,
CPAN Testers cannot guarantee that every package version will be built on
every configuration of REs, OSes, and HAs. A similar phenomenon exists for
commit-level CI systems of large organizations, who are investing in just-in-
time scheduling of CI builds [10] or in grouping of commits [15] because their
(centralized) CI infrastructure is unable to cope with the influx of code changes
to build. On the upside, CPAN Testers provides build results from configu-
rations of REs, OSes, and HAs that are used in practice instead of artificial
configurations maintained in-house.

Figure 1 shows the overview page of the build results of version 0.004002
of List-Objects-Types for Perl RE versions 5.8.8 to 5.19.3 (left column)
and OSes CygWin to Solaris (top row). Each cell aggregates all build results
for a given configuration of RE and OS across all considered HAs. Red cells
indicate that all builds (across all HAs) for a given configuration of RE and
OS failed, green cells that all builds were successful, and red/green cells that
some builds (HAs) failed. White cells indicate missing build results and orange
cells unknown results. CPAN Testers also provides the number of successful,
failing, and unknown build results. Unknown build results comprise 4% of the
build results and typically correspond to builds or tests that were interrupted
before any output could be generated. In RQ3 and RQ4, we consider unknown
results as failures, because they are not successful build results. In RQ5, RQ6

2 In this paper, we use the term “package” in its usual sense, while Perl developers would
talk about “distribution”.

Title Suppressed Due to Excessive Length 5

CPAN Testers Matrix: List-Objects-Types 0.004002

Distribution (e.g. DBI, CPAN-Reporter, YAML-Syck): Submit
GPAN User ID (e.. TIMB, JHI, ANDK): Submit

You can click on the matr cells or rowleolumn headers to get the list of eorresponding reports.

netbsd openbsd solaris

Fig. 1 Example CPAN Testers build report. A vertical ellipse represents a “RE build vec-
tor” (RQ3); a horizontal one represents an “OS build vector” (RQ4).

and RQ7, we ignore unknown results altogether, because their build logs do
not provide any information about the causes of build failures.

2.2 Related Work
2.2.1 (CI) Builds

While build scripts exist in one form or another since the early days of soft-
ware development, typically as regular batch scripts, dedicated build script
languages like Make [16] originated at the end of the *70s. While modern Make
incarnations still exist, current developers can choose amongst dozens of dif-
ferent build technologies [17], such as Ant, Maven, Gradle, Bazel, Rake, SCons
and CMake. CI systems date back to 1991, when Booch promoted continuous
integration in his development method [18]. The advent of extreme program-
ming and (more recently) continuous delivery [8] has sparked a wide range
of CI technologies both in the strict (commit-level) sense, such as Bamboo,
Hudson, Jenkins, TeamCity, and Travis CI, and in the wider (release-level)
sense, such as CPAN Testers.

Both build scripts and CI systems have been amply studied in the lit-
erature. Tu et al. [19] proposed the concept of build-time views, which are
architectural views [20] that represent the run-time flow of the (GNU Make)
build process of a software system. Adams et al. [2,21] analyzed the evolu-
tion of the Makefiles that form the Linux kernel build system and reported
that these Makefiles grow in number and size over time and require frequent
changes, a trend that was confirmed by McIntosh et al. [22] for Ant files. Later,
Mclntosh et al. [23,24] empirically showed that, in general, build scripts and

6 Mahdis Zolfagharinia et al.

source code co-evolve and hence require a non-trivial maintenance effort from
developers. Suvorov et al. [25] study how 2 open source projects, Linux and
KDE, migrated their build scripts between different technologies. More recent
work on build scripts focused on errors in build scripts, since these are tricky
to detect and fix. Macho et al. [26] and Hassan et al. [27] proposed techniques
to automatically repair build dependencies and build script instructions.

While this previous work shows that build scripts are important software
artifacts that require effort to evolve, debug and fix, more recently the research
community turned towards the use of these build scripts to power CI activities.
Vasilescu et al. [28] conducted an empirical study about CI usage among 246
projects in GitHub and showed that CI significantly improves the productivity
of GitHub teams. Hilton et al. [29] assessed 34,544 open-source projects in
GitHub, 40% of which use CI and reported that CI can help projects to release
regularly. Three other works performed case studies on the use of CI. Miller [30]
and Leppanen et al. [31] found a positive impact of CI in terms of accelerated
delivery of value to customers (up to 40% speedup [30]), while Laukkanen et
al. [32] identified several challenges of CI adoption, such as the quality of test
cases, learning difficulties, and need for architectural changes.

In practice, continuous integration at commit level means that builds are
triggered very often and, thus, CI must be efficient. In practice, the high
volume of commits as well as the inflation of builds due to the many config-
urations of REs, OSes, and HAs that need to be built and supported, make
commit-level CI intractable. This is why organizations like Google [33] and
OpenStack [15] started to adopt build clustering approaches that basically
buffer all new commits that arrived in a particular time interval, then release
the cluster as a whole to CI. While build successes significantly reduce the
build time by the number of commits in the cluster, any build failure requires
a tedious root cause analysis to determine the culprit commit(s). Reducing
the time for such root cause analysis is the focus of ongoing research [15,33].

2.2.2 Build Failures

The domain of analysis and prediction of build failures and their causes (build
faults) grew with the availability of large build data sets. Table 1 shows an
overview of the different causes of build failures unearthed by existing work.
Hassan et al. [34] modeled build results in terms of developers’ work habits,
team size, developers’ experience, change complexity, integration interactions,
and previous build results; with the latter being the best indicator of future
build results.

Miller [30] studied 66 build failures in Microsoft projects and categorized
their causes into faults related to compilation (26%), unit testing (28%), static
analysis (40%), and server issues (6%). Dyke [35] assessed the frequency of
compilation errors by tracking Eclipse IDE usage with novice developers.
Denny et al. [36] investigated compilation errors in short snippets of Java
code and showed that 48% of the builds failed due to compilation errors. Our

Title Suppressed Due to Excessive Length 7

Table 1 Comparison of build fault types and other factors found by related work to be
significant indicators of build failures. The numbers in a column for a particular paper
indicate the ranking of build fault types in that paper. An “x” indicates a factor that was

not ranked, but which the paper spent considerable attention on.

Failure type [34] [30] [35] [36] [3] [37] [38] [4] [39] [40] [41] this paper

syntactic compilation errors 2 X X X 1 9 X 3 X
semantic compilation errors X

risky part of code 2

internal code deps. X

external code deps. X

static analysis failures
unit test failures 3 X
integration test failure
crosscutting tests

—_
=W N
TN O Ut

N| W Ot = 00

missing files in commit
incorrect code committed
type of code change
scope of code change

file type changed
unstable code
documentation issue
license issue

WK K

E R A
o

dev. experience
bad coder 2
role of developer
size of dev. team 2

_
“

previous build failed 1 X

type of build 4 X

build script error 2 4
external build tools 7

git interaction error 1 2
build environment issues 4 2 X 1
remote deployment site 6

-3

timing vs. release cycle 5

explicitly skipped tests X
passively skipped failures

RE
0S

R k]

paper instead studies 791 build failures in the context of release-level CI and
proposes a finer-grained fault categorization.

Seo et al. [3] performed the first large-scale analysis of build failures by
analyzing 26.6 million builds on C and Java projects at Google. Focusing
on build failures caused by compilation problems, they concluded that (1)
undeclared or missing variables, methods, and classes are the main sources
of compilation errors, often caused by missing packages, (2) the time to fix
these errors varies widely, and (3) developers need tool support to avoid and
interpret these errors. While focusing on build failures in general (not just
compilation errors) and Perl, our paper confirms that programming errors
and missing external dependencies are common sources of build failures. In

8 Mahdis Zolfagharinia et al.

addition, we also consider the impact of different REs and OSes on the types
of build faults.

Kerzazi et al. [37] studied 3,214 builds made during a 6-month period in
a large web company and reported that 17.9% of the build failures have a
potential cost of about 2,035 man-hours. They identified different fault types
with the most common failures caused by missing files in pull requests, ac-
cidental check-in of experimental changes, missing specifications of transitive
dependencies, branch merges, larger teams, and the time of the builds relative
to the release cycle. We study build faults in open-source Perl packages rather
than a closed-source web application. Apart from dependency issues, none of
the factors studied by Kerzazi et al. are applicable to release-level CIL.

Stahl and Bosch [42] surveyed CI practices and build failures, and re-
ported that test failures during builds are sometimes accepted by developers
because they know that these particular failures will be fixed later [43]. These
implicitly-accepted failures make interpretation of build results non-intuitive,
because CI systems do not distinguish such failures from others. Similar to this
paper, we consider a phenomenon, build inflation, that reduces the signal-to-
noise ratio of build results, making it hard to draw correct conclusions.

Rausch et al. [38] analyzed Travis CI build failures in 14 open-source Java
projects. Similar to Hassan et al. [34], they found that prior build results,
change complexity, and developers’ experience are the best indicators for fu-
ture build results. They found that more than 80% of the failures are due
to test failures, code quality issues, compilation errors, git access errors, and
build script errors. Other failures are due to build crashes, dependency errors,
integration test failures, documentation errors, API incompatibility, and An-
droid SDK issues. We confirm that more than 80% of the failures are related
to compilation errors and missing packages (i.e., dependency errors), but also
to OSes and REs, not considered by Rausch et al. or Hassan et al.

Beller et al. [4] conducted an analysis of 1,359 projects in both Java and
Ruby and observed that commit-level CI results are dependent on the pro-
gramming language, i.e., Ruby projects have 10 times more tests and hence
have a higher build failure ratio than Java projects. In parallel with our ear-
lier work [13], they observed that builds on different REs are being run for
each commit, which leads to inconsistent build results. In particular, for more
than 60% of the projects, at least one build had different results across dif-
ferent REs. Our paper investigates this observation in depth, considering REs
and OSes and performing both qualitative and quantitative analyses of build
results.

Vassallo et al. [39] studied build failures in 418 Java projects at a company
and 349 GitHub projects (that use Travis CI). They grouped build failures
across the different build phases of the Maven build system, yielding 20 cat-
egories. They mapped each category to keywords in order to automatically
classify the 34,182 build failures. They showed that the open-source projects
had a much larger percentage of unit testing failures (28% vs. 5.2%) than
the company’s projects, while the company’s build failures had more failures
related to git interaction errors and missing files (21.1% vs. 0.0%), integra-

Title Suppressed Due to Excessive Length 9

tion testing (13.3% vs. 5.0%), other kinds of testing (18.3% vs. 8.3%), remote
deployment sites (10.0% vs. 0.5%), and external build tools (8.8% vs. 1.4%).
Instead of grouping build faults by build phase, we classify them based on the
semantics of the build fault.

Zhao et al. [40] performed quantitative and qualitative analyses of thou-
sands of GitHub projects in 7 programming languages that migrated to Travis
CI. They found that more code is being built and tested per build and more
pull requests are successfully closed, even though the requests take longer to
be closed. They also observed an increase in the number of unit tests per build.
Through open coding, they find an upward trend of build failures due to com-
pilation errors, execution errors, failed tests, and skipped tests, while missing
dependencies and time-outs see a downward trend with prolonged CI usage.
They did not consider failures caused by REs and OSes.

Finally, the closest work to this proposal is the recent analysis of 3.7 million
GitHub build jobs by Gallaba et al. [41], which was published while the first
revision of this paper was under review. Building on our MSR 2017 study [13],
they found that 12% of passing CI builds actually contain failing build jobs
or build jobs explicitly marked to be skipped (i.e., ignored by the CI system).
Furthermore, 2 out of 3 build failures occur for more than one CI run in a row.
This indicates that developers implicitly ignored them, for example because
they know someone else will be working on them [42]. These findings again
indicate the presence of noise in CI results. Furthermore, the authors found
additional empirical proof of build inflation and of build failures, such as the
fact that 44% of the studied build failures were RE-dependent. Gallaba et al.’s
empirical evidence on build failure noise and heterogeneity complements the
results of our current and earlier work on the effects of build inflation.

To conclude, the 34 causes and indicators of build failures in Table 1 cover
a wide range of dimensions. The most commonly found causes of build failures
are syntactic errors (9 studies), unit test failures (8 studies) and external code
dependencies (6 studies). While the other discussed papers identified these top
fault types for commit-based CI systems, we confirm their presence in release-
based CI systems. Together with Gallaba et al. [41], we are the only work
considering the impact of REs and OSes on build failures.

3 Observational Study Design

We now describe our study design. For the sake of locality, we present the
research questions, their motivations, and their results in the next section.

3.1 Study Object
The object of our study is the relationship between build results and REs and

OSes when facing build inflation. Such inflation refers to the phenomenon of
excessive numbers of builds, caused by the many configurations of REs and

10 Mahdis Zolfagharinia et al.

OSes, that introduces bias in build results and that leads to incorrect inter-
pretations of the results by developers. For example, one failed Windows build
for a Perl release built on 99 Linux machines and one Windows machine has a
different impact than 50 failed Windows builds on 50 Windows and 50 Linux
machines. Similarly, build failures that occur across all REs are different to
failures happening only on one specific RE. Based on our findings, organiza-
tions/developers and researchers would need to consider build inflation caused
by multiple REs and OSes, e.g., by considering the specific numbers of build
failures per RE and OS instead of their total number, as currently provided
by most CI systems. We provide more recommendations in Section 5.

3.2 Study Subject

We choose CPAN Testers to study the relationship of Perl REs and OSes with
build failures because it provides the build results of all Perl packages and their
releases on dozens of Perl REs, OSes and HAs. An alternative subject could
be Mozilla TreeHerder [7], which provides centralized, commit-level CI results
on several configurations of REs, OSes and HAs, but for a smaller number of
projects. We could not use the TravisTorrent data set [4] because the projects
using Travis CI system almost exclusively build on the default Ubuntu OS
(although they do consider multiple versions of the Java RE).

The reason why CPAN Testers provides build data across a diverse range
of REs and OSes is because, contrary to most CI systems, it consists of a
heterogeneous grid of machines managed by volunteers. Basically, by installing
a daemon on one’s machine, it becomes part of the CPAN Testers build grid,
sending build and test reports to a central machine. Since this makes the
process of joining and leaving lightweight, the composition of the build grid
frequently changes. On the upside, this provides a very rich environment of
REs, OSes and HAs for our study.

We use CPAN Testers’ REST API [44] and crawl the CPAN web site [12]
to collect the build logs and meta-data of all package versions. Build logs
contain build results as well as the executed commands and any generated
error messages. The META.yml meta-data files contain the package names,
versions, dependencies, authors, and other information (e.g., supported Perl
REs and OSes). We collect all build logs and meta-data between January 2000
and August 2016 as data set for our observational study, which includes 68.9
million builds for 39,000 packages, 103 REs, and 27 OSes. As such, this data
set spans a longer time period than TreeHerder or Travis CI.

3.3 Quantitative Study Sample
We obtain our study sample as follows. Analysis of the complete data set of

68.9 million builds shows that most builds were performed between 2011 and
2016, with 13 top REs (Perl 5.8 to 5.21, excluding 5.9) and 10 top OSes. Each

Title Suppressed Due to Excessive Length 11

00-

[2]
c
Kl
(7]
° 131 1,216 2 #packages
>
() 500
E‘ B 1000
S 2,240 12,584 179 [R
o
*® 10-
®
3,398 17,415 1,835
1- q
10° 10' 10? 10° 10*

median #builds in package

Fig. 2 Hexbin plot of the build results (darker cells). Each cell represents the number of
CPAN packages with a given median number of builds (x-axis) and of versions (y-axis). The
black lines correspond to the thresholds used to filter the build results, dividing the data
set into 9 quadrants. Each quadrant shows the number of included packages. The central
quadrant contains the data set used in our study.

of these 13 REs had more than 800,000 builds, and each of the 10 OSes had
more than one million builds. In order to simplify our analyses and discussions
of results, we defer the analysis of HAs to future work. Consequently, we focus
on the 62.8 million builds performed by these 13 REs and 10 OSes between
January 2011 to June 2016, reducing the number of builds by only 8.85%, and
REs by 87.4% and OSes by 63%.

Figure 2 illustrates the distributions of the median number of builds and
of versions for all packages in our data set. It also shows the number of pack-
ages within each quadrant. We notice a large variance in both the number of
versions and the number of package versions. In addition to these numbers, we
found for example that 13,522 packages have more than 1,000 builds across all
their versions, while 967 have fewer than 3 builds. Conversely, some packages
have build results for only few of their versions. Packages with too few builds or
too few versions would skew our data set because they do not provide enough
build results to analyze. Therefore, we exclude such packages. Similarly, we
also exclude packages with too many builds or versions.

In order to filter our data set, we determine lower and upper thresholds for
the number of package versions and number of builds per package by consid-
ering the density of points in Figure 2. We choose the lower threshold for the
median number of build results of a package as 10 and of a package version as
5. We use the inter-quartile range of the data to compute the upper thresholds

12 Mahdis Zolfagharinia et al.

using the approach suggested by Wohlin et al. [45]: ut = (ug — lg) * 1.5 + ug,
where lq and uq are the 25" and 75" percentiles, which yields 509 as upper
threshold for packages and 26 for package versions. After removing lower and
upper outliers, we obtain a final data set of 30 million builds for the 12,584
CPAN packages, corresponding to the central quadrant in Figure 2.

In order to study the relation between build failures and REs (RQ3 and
RQ7) or OSes (RQ4 and RQ6), we abstract up the build data in the build
result matrix (Figure 1) of each package version by considering vertical rows
(RQ3/7) or horizontal rows (RQ4/6) of build results. Vertical rows are called
“RE build vectors”, while horizontal rows are “OS build vectors”.

The content of these vectors, i.e., the values used for each cell in the ma-
trix, depends on the specific RQ. In RQ3 and RQ4, the vectors consider only
the most common build result. For example, if the majority of builds for a
given configuration of RE and OS were successful, we put “succes” in the cor-
responding vector element. In RQ6 and RQ7, we consider only the most recent
build failure for each configuration of RE and OS, as explained in the next
subsection. Note that RQ1 and RQ2, which do not use the concept of vectors,
consider respectively all possible build results for a given configuration of RE
and OS (RQ1: 100% success/fail, mixed success, unknown outcome or missing
outcome), or all results minus the unknown outcomes (RQ2).

3.4 Qualitative Study Sample

For RQ5, RQ6 and RQ7, we perform a qualitative study of build failures
to categorize the different fault types and to understand the relationships
between these fault types and REs/OSes. We manually analyze the build logs
to identify the fault types and to compare their relative frequencies. Across
all configurations of RE and OS of all analyzed package versions, we observe a
median number of 64 build failures, with a maximum of 1,362 failures. Since
the build failures of a package version for a given configuration of RE and
OS have a high probability of being caused by similar faults, we consider only
the most recent failure for each configuration of RE and OS in these research
questions.

In RQ6, we are interested in possible dependencies between build faults
and OSes, we collect, for each configuration of RE and OS containing a build
failure, its entire OS build vector to analyze whether the same failure also
occurred in other OSes for the same RE and package version. We only consider
OS build vectors containing build results for at least 10 OSes. Similarly, for
RQ7, we extract the RE build vector of each failure.

We split the OS build vectors into “minority vectors” (one to three failing
OSes) and “majority vectors” (six to ten failing OSes), while ignoring vectors
with four or five failing OSes to understand the differences between inconsis-
tent (minority vectors) and consistent build failures (majority vectors). The
resulting OS vectors cover 1,421 build failures (out of 76,748 in the full data

Title Suppressed Due to Excessive Length 13

Fault
Category

[| 1 | I 1

[l‘ pend NF‘ g i][Envir t N 0os][Test J[Unclear]

Missing Undefined -
Library Value Configuration
Missing)
Module Data Format Security
Undefined
Dependency Typos & etc. 1o

Fig. 3 Hierarchy of fault types across all OSes and REs.

set), spread across 804 OS build vectors®. We group the vectors into 752 mi-
nority vectors (963 failures) and 52 majority vectors (458 failures).

For manual analysis, we select a random sample of 791 failures among the
1,421 failures, with a confidence level of 95% and a confidence interval of 5%.
This sample contains 52 majority vectors with 458 failures and 254 minor-
ity vectors with 333 failures. In a first iteration, the first author extracts the
error messages in the build results for each failure, explores on-line reports
and feedback, and identifies the root faults of the failures. She collects the
error messages and their root faults into cards in Google Keep. She groups
these cards when they share similar root faults. In the second and third it-
erations, the first and second author revisit each category and, using open
coding, discuss any differences among root faults. Major reasons for differ-
ences/disagreements are (1) unclear error messages and (2) too broad/narrow
categories. This “negotiated agreement” [46,47] led to a consensus of 6 cate-
gories and 9 subcategories of failure types, shown in Figure 3 and studied in
RQ5, RQ6, and RQT.

4 Observational Study Results

We now present the motivations, approaches, and results of RQ1 to RQ7.

RQ1: How do build failures evolve across time?

Motivation. With this research question, we want to understand how often
builds fail in CPAN Testers and whether the ratio of failing builds is constant
or changes over time. Beller et al. [4] reported failure ratios of 2.9% and 12.7%
for Java and Ruby builds, respectively, in Travis CI; Seo et al. [3] of 37.4% and
29.7% for C++ and Java builds at Google. They consider only commit-level
build results and did not study the evolution of these ratios over time.

3 Most of the vectors did not contain any build failure, which is expected.

14 Mahdis Zolfagharinia et al.

39.81-

25.12-

=

515.85-

©

i

=S

10-

6.31-

eSS e e e
SO AP LIRS RSN R N NS 2
VNI I IS
PTPTPTPTRTARTRTRT RT R P

Fig. 4 Distribution of failure ratios in 6-month periods, with linear regression showing the
trend of the ratios over the studied 6 years.

Table 2 Number of builds, package versions, and average number of builds per package
version in each 6-month period between January 2011 and June 2016.

2011-A 2011-B 2012-A 2012-B 2013-A 2013-B 2014-A 2014-B 2015-A 2015-B 2016-A

#builds| 626 946K 1,860K 2,404K 3,021K 3,482K 3,625K 4,082K 4,827K 3,394K 2,891K

#package versions 14 7,185 8,085 8,338 10,443 9,387 9,549 11,682 9,621

7,829 7003

#builds / #releases| 44.7 131.7 230 288 289.2 371 379.6 349.5 501.7

Approach. We consider as build failures all failing and unknown build
results. For each CPAN package in the data set of 30 million builds, we compute
its ratio of build failures as #buildfailures/#builds (ignoring the different
versions of packages). We investigate the evolution of failures per period of 6
months because every 6 months a new Perl RE version was released between
2010 to 2014. We do not distinguish between REs and OSes in this RQ.

Findings. The median build failure ratio decreases across time from 17.7%
in the first 6 months of 2011 to 6.3% in the first 6 months of 2016. Figure 4
shows the distribution of the failure ratios of all package builds in the studied
6 years. Between 2011 and 2013, the median failure ratio in the first half of
the year is higher than that of the second half. This trend reverses from 2014.
The regression line shows that build failure ratios decrease between 2011 and
2016, especially when considering the logarithmic scale used in the figure. We

433.5 4129

Title Suppressed Due to Excessive Length 15

explore 2 hypotheses to explain the decreasing failure ratio trend: (1) fewer
builds performed over time or (2) fewer package versions released over time,
reducing the probability of build failures.

The number of builds increased by a factor of 3 to 5 from the second half
of 2011 on. Table 2 shows the number of builds per period of 6 months: even
though more builds are performed over time, they also are more successful over
time, i.e., there is an inverse correlation between the number of builds and of
build failures. For comparison, Atlee reported a 6-fold increase in the number
of builds of Mozilla Firefox between November 2009 and September 2013 [48].
While we cannot explain the decreasing number of builds in the second half
of 2015 and the first half of 2016, this decrease is responsible for the plateau
(instead of decrease) of median values for the rightmost box-plots in Figure 4.

The average number of builds per package version shows a 10-fold increase
over time from 44.7 to 412.9, with some fluctuations from the second half of
2014 on (i.e., 2014-B). The average number of builds per version in Table 2
increases from 44.7 in the first 6 months of 2011 to 501.7 in the first half of
2015 with a slight dip at the end of 2014, after which it drops but still remains
higher than in 2014. This observation can be explained as follows: the number
of builds decreases from the second half of 2015, yet the number of versions
did not decrease at the same rate.

While the increasing number of package versions is typical of today’s rapid
release strategies [49], the decreasing build failure ratio seems to be impacted
much more by the 10-fold increase in the number of builds per package version.
The next research question helps understand the impact of REs and OSes on
this increase.

RQ1: The median build failure ratio decreases
super-linearly across time, while the number of
builds per package version sees a 10-fold inflation.

RQ2: How do build failures spread across OSes and Perl versions?

Motivation. We explain the decrease of the build failure ratio in RQ1 in
terms of build inflation: each new package version is built multiple times, with
most builds succeeding. Essentially, the same features are built and tested on
every configuration of REs and OSes, such that feature-related faults result
in failures in all REs and OSes, while RE- or OS-specific failures occur only
for the (very) few problematic REs or OSes. For example, a Windows-specific
fault would result in one build failure among dozens of successful builds on non-
Windows OSes, a low build failure ratio giving a false impression of success.
Beller et al. [4] suggested “to do continuous integration in several environments
when their execution leads to different results, capturing errors that would not
have been caught with one single environment”.

Approach. For each build, we compute build failure ratios per RE and
0OS. As explained in Section 3.3, this RQ ignores builds with unknown results.

16 Mahdis Zolfagharinia et al.

10000
1

1000
1

#Builds

-

Fig. 5 Distribution of the number of (1) builds per package and of (2) REs and (3) OSes
on which the builds took place.

Findings. The package versions have a median of 179 builds on a median
of 22 REs and 7 OSes. Figure 5 shows the distribution of the number of
builds, REs, and OSes across all packages. The distribution of OSes is more
or less stable around 7 (low variance). However, the distribution of REs and
especially of the number of builds per package have much higher medians and
larger variance. There is a correlation between the product of the number of
REs and OSes, and the number of builds per package.

We observe through a manual analysis of the data set that, when developers
release a new package version, it is built on most of the REs and OSes to check
whether it is backward compatible with their APIs [50]. Similarly, when a new
RE or OS becomes available, most of the existing, non-deprecated package
versions are re-built, which explains the increasing number of builds observed
in RQ1, but not the decrease of the build failure ratio.

Not every RE yields equally representative build results. Figure 6 shows
the evolution of build failures from Perl version 5.8 (released in 2002) to 5.21
(2015). REs are shown on the x-axis, ordered by release date [51], while the
y-axis shows the build failure ratios (blue; right axis) and the percentages of
builds of that package version on a given RE (black; left axis). The jagged trend
of the percentages of builds suggests that odd releases are built substantially
less than even ones.

Indeed, Perl version numbers have a fixed semantics [51]: even numbers, like
5.8, are official production releases (with maintenance releases, such as 5.12.1,
for bug fixes) and odd numbers, like 5.11, are development releases. CPAN
Testers prioritizes stable REs over development REs, which have consequently
fewer, less representative, and less reliable build results. Only RE versions 5.19
and 5.21 had the same or less failures as their stable predecessors.

Title Suppressed Due to Excessive Length

17

Build Ratio Failure Ratio
0.20 0.20
0.10 A/\ 0.10

0.05

0.00

/

/ /V
V

T T T T T T T T T T T T T
P Q0 N OO > 0 e A » e o N
® & OB 6 6 oo o o o P

0.00

Fig. 6 Distribution of the ratios of all builds performed on an RE (black y-axis) and
proportions of failing builds (blue y-axis).

Build Ratio Failure Ratio
0.4 0.4
0.3 0.3
0.2 0.2
- /\\ ~
AU G G G G S A O
s+ & & RN
\\Q\S @0% é@e {\06 ,50% /z,é\ 0\@5\ @é}, (§\ ®9
¢ &g @S < &) &%\\
(§\> &\é

Fig. 7 Distribution of the ratios of all builds performed on an OS (black y-axis) and pro-
portions of failing builds (blue y-axis).

Windows (18%), Cygwin (14%) and Solaris (12%) have substantially more
build failures than other OSes. Figure 7 shows a clear difference between
BSDs/Linux on the one hand and Windows/Cygwin/Solaris on the other in

terms of the percentage of builds and build failures. The former cluster of

OSes has a substantially larger number of builds than the latter while the

18 Mahdis Zolfagharinia et al.

SRR nm

75

50

%Unsupported OS

25

St > > > & & SV > & >
N A N A
<
« o & R
$ &

Fig. 8 For a given OS, distribution across package versions of the percentages of REs for
which no builds were performed.

percentages of failures are lower. Similar to Perl versions, the build results on
some OSes are less representative than others, because most Perl developers
use Linux for development. Cygwin, Solaris, and Windows are less common
OSes among Perl developers, yielding less builds and more failing builds.

We make similar observations by counting the number of times package
versions are not built on configurations of REs and OSes, because no CPAN
Testers volunteer has contributed such a machine configuration. Missing con-
figurations correspond to empty cells in Figure 1 and their distributions for
each OS are shown in Figure 8. The most incomplete OSes coincide with the
OSes having most build failures in Figure 7. Therefore, the popularity of REs
and OSes (and combinations thereof) among Perl developers impacts and could
bias build results: build failures on less common configurations are drowned
by successful builds on dozens of popular configurations.

RQ2: The environments (RE/OS) with the least
builds have the highest proportion of failures, yet
those numbers are drowned out by the larger (in-
flated) number of successes on more popular envi-
ronments.

Title Suppressed Due to Excessive Length 19

Table 3 Total percentage of the 4 patterns across OSes. “Pure” refers to occurrences of
the patterns without fluctuation (e.g., [1,1,1]) while “Noisy” refers to occurrences with
fluctuations (e.g., [1,0,1]).

Description Pattern Name Pure Noisy

Mostly Succeed 14+ (0+ 1+4)* -1 7% 3%
Mostly Fail 0+ (1+ 0+4)* 0-0 6% 1%
Eventually Fail 14 (0+ 1+)* 0+ 1-0 3% 1%
Eventually Succeed 0+ (14 0+)* 1+ 0-1 8% 1%

RQ3: How do build failures relate to Perl versions?

Motivation. RQ2 provided evidence of build inflation due to popular config-
urations of REs and OSes. Yet, it does not explain why the build failure ratio
decreases over time. We hypothesize that most of the build failures are specific
to one RE and, hence, only count for one build failure compared to a large
number of successful builds. Similarly, OS-specific faults, which result in fewer
build failures than OS-independent faults, might be prevalent and impact the
build failure ratio. Therefore, this and the next research question study the
relationships between build failures and REs (RQ3), respectively OSes (RQ4).

Lehman’s 7" law of software evolution states that “the quality of an E-
type system will appear to be declining unless it is rigorously maintained
and adapted to operational environment changes” [52]. Each package version
is immutable: any change to a package creates a new version. Thus, once a
package version starts to fail for a given RE on a given OS, it will keep on
failing on future REs on that OS, unless the failure is due to a broken RE
fixed in a later version. This RQ studies how often RE versions break builds
and whether a failing build can recover or will keep on failing.

Approach. Given a package and an OS, we generate RE build vectors (see
Section 3.3), which encode chronological sequences of build results across REs
in which “0” and “1” represent failing and successful builds, respectively. We
ignore RE versions with missing builds, e.g., the Perl version build vector for
Cygwin in Figure 1 would be [1,1,1]. As explained earlier, we use majority
voting to encode build results into zero or one when, for a configuration of
an RE and an OS, some builds fail while others succeed (red/green cells in
Figure 1). If 50% or more of the builds fail for a given configuration, we put 0
in the corresponding Perl version build vector, otherwise 1.

Then, we analyze 4 possible patterns in the Perl version build vectors,
which Table 3 summarizes and Figure 1 illustrates. The pattern for OpenBSD
is 0-0, because version 0.004002 of the List-0bjects-Types package started
and ended up failing on multiple REs with some successful builds in between
(Perl versions 5.14.4, 5.16.0, and 5.16.2). On the other hand, the pattern for
Cygwin is 1-1, while that for Linux is 0-1. The figure does not contain an
instance of 1-0.

Findings. Builds succeed across all Perl versions for 77% of the RE build
vectors and fail across all Perl versions for 6%. Build results fluctuate for the

20 Mahdis Zolfagharinia et al.

I 0-0 1-0 0-1

Build Pattern

1.00
)

0.50
.

0.10 0.20
. |

Patterns Ratio

0.05
.

0.02
.

0.01

Fig. 9 Percentages of the 4 patterns for Linux. Blue and gray bars represent occurrences
of the pure and noisy patterns, respectively.

remaining 17%. Figure 9 shows the percentages of RE build vectors matching
each pattern for Linux. Blue bars show the percentages of “pure” matches,
i.e., matches that do not include the optional parts (between parentheses) of
the patterns in Table 3. Gray bars show the percentages of “noisy” matches.

Our observations provide evidence for Lehman’s 7" law for 12% of the
build vectors (3% noisy for 1-1, 8% pure for 0-1, and 1% noisy for 0-1) because
changes to newer Perl versions fixed build failures occurring in earlier versions.
These changes include APIs removed in one Perl version and reintroduced in
a following version as well as changes in the behavior of a Perl API. For
example, in version 0.05 of Any-Template-ProcessDir, Linux follows the 1-1
pattern: although the build fails for Perl version 5.13, it succeeds again from
Perl version 5.14 on.

Our observations also show that 11% of the RE build vectors follow the
0-0 and 1-0 patterns: builds that always fail after some particular version of
Perl. We explain these observations by counting the number of trailing zeros
in the vectors as a measure of the time (in terms of Perl versions) during which
builds failed for a given OS. We normalized these numbers by the total number
of Perl versions on which builds were made. We find that builds fail for the
shortest amounts of time for FreeBSD, Linux, and OpenBSD (with trailing
build failures accounting for 20% of the builds) while 50% of all builds fail for
Cygwin and 33% for Darwin, GNU kFreeBSD, Solaris and Windows.

Title Suppressed Due to Excessive Length 21

RQ3: For 77% and 6% of the RE build vectors,
builds consistently succeed or fail, respectively,
across all Perl versions. In other words, only for
17% of the vectors, build results provide inconsis-
tent information due to REs.

RQ4: How do build failures relate to OSes?

Motivation. The number of builds across REs and OSes is not homogeneously
distributed, which gives some failures more weight than others. No previous
work studied the relationship between OSes and build results, except for a
brief mention of different build environments in Travis CI by Beller et al. [4],
and, more recently, the work of Gallaba et al. [41]. This RQ analyzes whether
build failures are specific to certain OSes. If an OS is less popular than others
among developers, it might be used less often to build package versions and
the corresponding REs on that OS may miss some APIs, both of which are
likely causes of build failures. Yet, due to the effects of build inflation, these
failures would weigh little in the build results for all OSes.

Approach. We generate OS build vectors, which represent the build re-
sults of package version across all OSes for a given RE version and in which,
again, zero indicates a build failure and one a successful build (using majority
vote). In contrast to RQ3, RQ4 does not study chronological differences in
build results, but the consistency of the build failures across OSes. Consistent
build failures are more likely to appear for REs with builds on a small number
of OSes than on 10 OSes, hence we perform our analysis in function of the
vector lengths, from 3 to 10. We group the vectors into separate sets C;:

[B = {OS build vectors across all package versions}] (1)
Ci={beB||b=1i},Vi:3<i<10

ci={veci| Tib=ioro}

Ci CZMZ{bECi|O<Z;:1bj§%}

cr an:{beCi|§'<Z§:1bj<i}

(2

For a vector length ¢ from 3 to 10, C; is the union of the vectors (1) that
consistently failed or succeeded (C!) and in which a majority (CM) and a
minority (CI") of OSes have build failures.

Table 4 shows the percentages of vectors with inconsistent builds as well as
how often these are caused by a minority of build failures. For a given vector,
a minority of m OSes with build failures counts as % for each of the OSes:

22 Mahdis Zolfagharinia et al.

Table 4 Percentages of OS build vectors in C; that fail inconsistently and percentages of
these vectors for which a minority of OSes is failing (C7™). The latter percentages are broken
down across all studied OSes (i.e., they sum up to the percentages in the third column).

Nl %Cl %Cr™ [WinLinuxDarwinSolaris FreeBSD OpenBSD NetBSD CygwinkFreeBSD Midnight
(out of C;)(out of CI') % % % % % % % % % %
3| 10 61 13 15 3 4 11 6 5 2 2 0
4 12 50 13 11 3 5 7 4 4 1 2 0
5| 14 67 22 11 6 6 7 5 5 2 2 1
6] 16 65 27 8 6 6 5 4 4 3 1 1
7 16 75 33 6 8 8 4 4 4 5 2 1
8 14 81 38 4 9 8 2 4 4 7 3 2
9 13 90 44 3 10 8 1 3 3 13 3 2
10 9 94 50 2 6 8 0 1 2 21 2 2
Median| 13.5 71 30 7 6 7 4.5 4 4 4 2 1

the more OSes fail together, the lower the weight of the failures, because such
failures are less tied to one specific OS.

Findings. A median of 13.5% of OS build vectors fails inconsistently. Ta-
ble 4 shows that the percentages of inconsistent build failures varies from 9%
(N =10) to 16% (N =6 or N = 7). Since a median of 86.5% of the OS build
vectors have no build failures or have build failures for all OSes, this indicates
repetitive build results across OSes and, hence, build inflation. Within the
86.5% of consistent OS build vectors, the 11.7% of build failures that occur
across all OSes are due to missing features or incorrect logic.

Within the 13.5% inconsistent build vectors, a median of 71% have only
a minority of failing OSes: Windows (30%), Linuz (7%), and Solaris (7%).
Windows is the source of most of the minority inconsistencies, which is likely
due to its lower popularity amongst Perl developers, as shown in RQ2. Linux is
responsible for more minority inconsistencies when built with a small number
of other OSes (small N, e.g., N = 3). Conversely, Cygwin and Windows are
responsible for more minority inconsistencies in larger sets of OSes (large N,
e.g., N = 10). GNU kFreeBSD and MidnightBSD are the least inconsistent
OSes. The fact that a median of 71% of the inconsistently failing build vec-
tors has a minority of failing OSes (instead of most of the OSes failing), also
indicates build inflation.

Furthermore, build failures occurring consistently on most of the OSes,
would not require further builds on other OSes, once identified on one OS
for a particular package version and RE version. Instead, build failures with
inconsistent occurrences across OSes require additional builds to circumscribe
their root faults.

Title Suppressed Due to Excessive Length 23

RQ/: Only a median of 13.5% of OS build vectors
fails inconsistently. A median of 71% of these in-
consistent vectors have only a minority of OSes
failing.

RQ5: What are the different types of build faults?

Motivation. Identifying different types of build faults and their relationships
with REs and OSes can help developers to resolve or even prevent future build
failures.

Approach. We used the open coding approach described in Section 3.3
to identify the major types of build faults responsible for the build failures
studied in this paper.

Finding. We obtained 6 main types of build faults with 9 sub-
types, summarized in Table 5. We give brief definitions of the fault types
and a sample of the corresponding build failures.

— The “Dependency” type deals with unfulfilled API dependencies, e.g., miss-
ing packages. Typically, these packages do not exist on CPAN but do on
the developers’ machines. For example:

— The failure Can’t locate *.pm in @INC occurs when a Perl module
cannot be found in the runtime path @INC, because either the package
was not installed or the runtime path does not contain the location of
the module.

— The failure Error while loading shared libraries: ?: cannot open
shared object file refers to missing OS libraries, such as unavailable
C/C++ libraries, DLL, etc.

— The failure Makefile: recipe for target ’test_dynamic’ failed.
pertains to uninitialized dependencies during the install of a package.

— The “Programming” type relates to uninitialized variables, implicit decla-
ration of functions, typos, incorrect data types, and syntax errors. These
faults imply that the code cannot be compiled or executed correctly. For
example:

— “Undefined value”, e.g., Use of uninitialized value $class_ip in
concatenation(.) or string.
— “Data format”, e.g., Non-ASCII character seen before =encoding.
Assuming UTF-8.
— “Typos”, e.g., prototype mismatch: 2 args passed, 3 expected.
— The “Environment” type includes faults that occur when trying to access
folders, resources, etc. For example:

— The “configuration” subtype corresponds to errors in build scripts of
packages, e.g., MAKE failed: No such file or directory.
— The “security” subtype covers permission issues, such as Can’t exec

‘‘yim’’: Permission denied.

24

Mahdis Zolfagharinia et al.

Table 5 Percentage of occurrence of fault types in REs with minority failures vs. majority

failures.

Fault Type Subtype Description Minority Failure Majority Failure
% %
Missing module |Package not installed 35.8 27.8
Dependency Missing library |Library not installed 3.6 0
Unfulfilled deps. |Other dependency issues 2 0
Programming Undefined value |Uninitialized value 7.9 26.4
Typos, etc. Source code issues 4 8.3
Data format Improper data type 3.6 1.4
oS OS specific failures 12.9 12.5
Configuration Conlfig. errors, e.g., wrong directories 12.6 6.9
Environment I/0 I/0 errors, e.g., serial port issues 3.3 6.9
Security Config. errors, e.g., permission denied 0
Test Test An automated test fail 6 2.8
Dep.-related test|Failing test due to missing module(s) 4 1.4
Unclear Improper error message 2.6 5.6

— When a build cannot perform I/O at the right time, it often fails with
I/0 fault: Could not execute: open3: Resource temporarily unavailable.
Similarly, we also observed build faults related to display or serial port.

— The “OS” type covers faults related to unsupported features in some OSes
and behavioral differences among OSes, e.g., your vendor has not defined
POSIX macro VEOF and It seems localtime() does not honor$ENVTZ
when set in the test script, both occurring on Windows. We observed
that almost all OS-related faults occur in Cygwin, Solaris, and Windows
with only a minority of OSes failing (minority vectors). This fault type con-
firms our findings in RQ4: inconsistently failing builds have only a minority
of OSes failing.

— The “Test” type refers to failing automated tests, e.g., release-pod-syntax.t
these tests are for release candidate testing, which indicates semantically-
incorrect behavior of the package.

— The “Unclear” type represents faults for which an improper message ap-
pears in error logs.

RQ5: Build faults belong to 6 main groups (divided
into 9 subgroups): dependency, programming, en-

vironment, OS, test, and unclear.

Title Suppressed Due to Excessive Length 25

RQ6: How do build fault types relate to OSes?

Motivation: This question identifies the most common faults resulting in
majority failures, i.e., failures across most of the OSes. It compares those to
the most common faults resulting in minority failures, thus identifying the
reasons for builds to fail on only a few of the OSes. Such faults are difficult
to detect because they are drowned in a larger volume of successful builds or
builds failing across the majority of OSes.

Approach: We use the minority and majority OS build vectors from
RQ4 and the fault types from RQ5 to determine the prevalence of each fault
(sub)type across OSes. With majority failures, most of the OSes fail because
of the same fault while with minority failures, only a few OSes fail, yielding
information about OS-specific fault types.

Findings: “Dependency” faults are the most common reason of build fail-
ures overall, followed by “Programming” faults for majority failures and “En-
vironment” /“0OS8” faults for minority failures. Table 5 (last columns) shows the
percentages of occurrences of each fault (sub)type between the minority and
majority build failures, while Figure 10 displays these numbers. The depen-
dency faults dominate both majority and minority failures, followed closely
(for majority builds) by the “Undefined value” subtype. The popularity of
programming faults among majority faults is expected because an “Undefined
value” or “Typo” cannot be fixed by changing the OS. On the other hand, the
“0O8S” and “Configuration” (sub)types intuitively make sense as the second top
fault types for minority builds.

Windows, Cygwin, and (to some extent) NetBSD are minority failing OSes
experiencing a variety of faults. Figure 11 shows the distributions of fault types
across all OSes. The darker a cell (colors and percentages are relative to each
0OS), the higher the percentage of faults for a given OS belonging to the fault
(sub)type on the left. Our earlier finding in RQ4—Cygwin and Windows are
the most minority fault-prone OSes—can be explained by the variety of fault
types occurring with these OSes when they experience a minority failure. If we
compare this observation with Linux, the “Data format” fault subtype is re-
sponsible for 66.7% of minority failures, and “Configuration” for the remaining
33.3%.

f
RQG: “missing modules” (a “dependency” fault

subtype) is the most common reason of fail-
ures overall, with majority failures also commonly
caused by “programming” faults, and minority fail-
ures by “environment” and “OS” faults. The OSes
experiencing many minority failures do so because
of a wide variety of fault types.)

26 Mahdis Zolfagharinia et al.

Dependency (missing module)
os

Environment (configuration)
Programming (undefined value)
test

Dependency (missing library)

Programming (typos)

Fault Type

Environment (10)

unclear

Programming (data format)
Dependency (unfulfilled dependency)

Environment (security)

T T T T
0.4 0.2 (¢} 0.2

“%Fault
Minority Wl Majority Wl

Fig. 10 Distribution of fault types in OS build vectors with minority failures vs. majority
failures.

H EEEEN

os-
Environment (configuration) -

Programming (undefined value) -

test- percentage
8_ -) 0.6
|2, Dependency (missing library)- o4
% Programming (typos)- 02
L(E Environment (/O) - 0.0
Unclear -
Programming (data Format)- -

Dependency (unfulfield dependency)-

Environment (security) -

g, Fap, Frae, 9, Yine,, Py, s,y Pty e, S0

%r, g e, Pery, sy, Pte e, S,

Sy Wiy sy "’7'@@2' "’9/;;;"'73?6*‘0 M5y 7S
S S

Operating System

Fig. 11 Distribution of fault categories across all OSes in the minority dataset.

RQ7: How do build fault types relate to Perl versions?

Motivation. This RQ studies failures in different RE versions to find out
which failures are temporary or permanent. A temporary failure only occurs
for some of the RE versions and is fixed in the more recent versions. A perma-
nent failure occurs in all future RE versions after a given version. We find ad-
ditional evidence of build inflation by comparing temporary/permanent fault
types between minority and majority failures, since permanent failures (by def-

Title Suppressed Due to Excessive Length 27

inition) are predictable. Any build on newer RE versions would only provide
redundant build results.

Approach. We leverage the 4 patterns of RQ3 to determine whether a
fault type is temporary or permanent. We use regular expressions to identify
matching error messages in the 791 manually analyzed build failures of RQ5
(333 minority failures and 458 majority failures) across all RE versions: for each
most recent failure in a given cell of Figure 1, we identify all its occurrences
within its column (RE vector). We then aggregate all non-dependency failures
into one group and compare this group to dependency build failures, since RQ6
shows that failures due to API dependencies are significantly more numerous
than others.

For example, we search the failure Can’t locate *.pm in QINC of the
package Acme-CPANAuthors-0.23 on Windows for Perl version 5.14.4 across
all other Perl versions for which a Windows build was made. We then analyze
the obtained Perl RE vectors to understand the evolution of the build failures
according to the patterns of RQ3.

Findings. Dependency faults are more difficult to resolve for majority fail-
ures than for minority failures. Figures 12 and 13 compare the distributions
of build failures for the 4 patterns of RQ3 between dependency and non-
dependency faults in majority and minority builds, respectively. While 72% of
the dependency faults of majority failures in Figure 12 follow the 0-0 pattern,
only 51% follow this pattern for minority failures in Figure 13. In contrast,
the number of 1-1 matches doubles from 14% to 28%. Dependency faults re-
sponsible for majority failures are more permanent than those responsible for
minority failures.

Non-dependency faults show similar patterns between minority and major-
ity failures. While Figures 12 and 13 show a slight increase in the numbers of
0-1 and 1-0 pattern occurrences for non-dependency faults between majority
and minority failures, their orders of magnitude are comparable. This makes
sense, since we found, for example, in RQ6 that programming faults domi-
nate the non-dependency faults. Such faults cannot be fixed without changing
the source code, which, however, would generate a new package version (with
separate build results). Hence, programming faults effectively cannot be fixed
within a given package version.

The proportions of occurrences of the 0-0 and 1-1 patterns across all de-
pendency and non-dependency faults are more numerous than those of other
patterns: consistently failing or succeeding builds produce repetitive informa-
tion, i.e., build inflation. The patterns 0-1 and 1-0 (i.e., inconsistent build
results) form much smaller proportions of builds.

RQ7: Dependency faults responsible for majority
failures are harder to fix than those responsible for
minority failures.

28 Mahdis Zolfagharinia et al.

0.72
0.64
0.6-
pattern
o 04 oo
2 Mo
& o
0.29 o
0.2-
0.14
007 0.07
004 __ 0,03
0.0-
Dependency Non-Dependency
FaultType

Fig. 12 Distribution of failures due to dependency vs. non-dependency faults in different
build patterns when the majority (6-10) of builds fail. The y-axis shows the failure ratio
and x-axis shows fault types and build patterns.

5 Discussions

By answering RQ1 to RQ7, we now have a better understanding of the fre-
quency of builds and build failures, the distributions of these failures across
REs and OSes, and the faults leading to these failures. This section discusses
our findings and their impact on practitioners and researchers.

5.1 Implications of Build Inflation for Practitioners

In the introduction, we defined build inflation as the occurrence of a large
number of builds for a given commit or release because of the many different
kinds of CI build tasks, product variants, and build environments. This paper
focused on the latter source of inflation in the form of RE versions and OSes.
We report evidence that the higher numbers of builds across environments
also render the build outcomes and the interpretation of the build results by
developers more complex, e.g., the decreasing ratio of build failures over time
in RQ1. In particular, we found the following findings across the seven RQs:

1. Perl development versions are more likely to have build failures than stable
Perl versions, yet have less builds.

Title Suppressed Due to Excessive Length 29

Failure

0.61
0.6-
0.51

0.4-
pattern
Moo
Mo
o
O

0.2-

0.0-

Dependency Non-Dependency
FaultType

Fig. 13 Distribution of failures due to dependency vs. non-dependency faults in different
build patterns when the minority (1-3) of builds fail. The y-axis shows the failure ratio
and y-axis shows fault types and build patterns.

Less popular OSes in the Perl community (Cygwin, Solaris, and Windows)
are more likely to have build failures than popular ones (BSDs and Linux)
but have less builds.

Four out of every five RE vectors yield builds that succeed or fail consis-
tently, while one out of every five vectors yield inconsistently failing builds.
For a median of 86.5% of OSes, builds succeed or fail consistently.

A median of 71% of inconsistently-failing builds are due to a handful of
OSes.

The failing OSes (typically the less popular OSes) experience a wide variety
of faults.

These findings have implications for CI systems in general and the Perl

ecosystem in particular. We now discuss some of these implications, using
especially the majority and minority faults identified through our work and
available online?.

5.1.1 CI Systems

Theoretically, every build provides some additional insights about the quality
of a software system, regardless of build inflation. Builds can fail on any OS,

4 http://www.ptidej.net/downloads/replications/emsel9b

30 Mahdis Zolfagharinia et al.

even Linux, which is the number one development OS for the Perl community.
If a non-trivial bug has been found and resolved, all builds ideally should be
re-run on the bug fix commit/release to assess regressions. However, given
the limited resources of companies/communities and the build costs estimated
by O’Duinn [11], practically, there are opportunities to reduce the numbers
of builds and decrease build inflation by increasing the effectiveness of CI
systems.

Our findings suggest that instead of “building each commit/release on all
combinations of REs and OSes”, CI systems should run a minimal number
of builds necessary to have sufficient confidence that (1) the major product
variants build and test as expected across (2) the major targeted REs and
OSes. For example, CPAN Testers, which relies on machines configured and
provided by volunteers, could reduce the number of builds scheduled on BSDs
and Linux in favor of machines with Windows. We cannot define explicitly a
lower limit of necessary builds and build configurations. However, similar to
Occam’s razor, CPAN Testers should strive to reduce as much as possible the
number of overlapping build configurations, despite the risk of missing unique
configurations exposing particular build failures. This risk already exists be-
cause build configurations do not represent all possible configurations.

Following this idea of a smaller, focused group of build configurations,
and similar to test-case selection [53], build schedulers should also reduce the
number of builds scheduled across product variants and build configurations,
exploiting similarity between variants and configurations in terms of build
results. However, the problem of defining and identifying similar variants and
configurations raises technical and ethical issues. Answering these questions is
out-of-the-scope of this paper and is left as future work, e.g.:

— Are two versions of Windows 10 on the same Intel Skylark processor really
similar?

— Does the data used to determine if two REs/OSes are similar require priv-
ileged information?

The criteria to group build configurations are not trivial. First, they should
consider the REs, because we observed that Perl development versions have
different failure ratios than stable Perl versions. Second, they should con-
sider the OSes, because we observed different failures ratios among Linux and
Windows configurations, with different fault types occurring in minority or
majority. Third, they should include other factors like HAs, versions of third-
party dependencies, etc., which vary per project. CI systems should provide
to developers a means for aggregating build configurations and weighting the
aggregates.

In addition, CI systems should provide better dashboards to highlight and
reorganize build failure data to improve their interpretation. For example, they
should allow developers to annotate build failures and—or provide feedback
to clarify/assign weights to failures. They would thus ease interpretation in
comparison to today’s systems, which label a commit/release as failing as
soon as one of the scheduled builds is failing, no matter whether the failure

Title Suppressed Due to Excessive Length 31

happens across all OSes or on only one. They could distinguish build results
by the proportion of “unique” failing build configurations, according to the
patterns identified in RQ3 and RQ4.

CI systems could also include models predicting the likely outcome of a
build [34, 38], incrementally trained on historical build results. Thus, they
could perform builds only when necessary. Given the large percentage of builds
consistently failing/succeeding across Perl REs and—or OSes, such predictions
seem feasible. Using the predictions, they could further optimize builds across
product variants and build configurations based on expected costs/benefits.
The previous suggestions complement current practices of scheduling builds for
groups of commits/releases to make CI scalable to large software projects [10,
15,33].

5.1.2 Perl Ecosystem

We reported that the majority of faults are related to missing packages in
the build configurations, OS-specific problems, or incorrect configuration of
directories or daemons, in particular.

Missing packages include “ERROR: no packlist file found: 77, “Can’t locate
J.pm in @QINC”, or “No Module::Signature found”. OS-specific problems are
illustrated by “Can’t connect to display ‘unix:0’: No such file or directory” or
“The deprecated ucontext routines require _XOPEN_SOURCE to be defined”.
Incorrect configuration of directories are “aspell.h: No such file or directory”,
“Tidyp.h’ file not found”, or “cannot find include file: ”sp.h””. Such faults
should be easy to fix by Perl developers by adopting Infrastructure-as-Code
(IaC), i.e., by specifying textually all packages, versions, and configuration files
needed in build configurations [8]. Dedicated IaC programming languages like
Ansible, Chef, or Puppet, allow specifying such information and instantiating
the requested build configurations automatically. If CPAN Testers would use
TaC, similarly to Travis CI, for example, a major part of the faults could be
avoided.

Other faults are due to the Perl programming language itself. Such faults
include “implicit declaration of function ’getdcwd”’, “Useless use of numeric
gt (>) in void context”, “Can’t bless non-reference value”, “Can’t call method
”get_request” on an undefined value”, “Can’t use an undefined value as a sym-
bol reference.”, “Use of uninitialized value $ExtUtils::F77::Runtime in concate-
nation (.) or string”, and many others. A majority of these faults is related to
the nature of the Perl language: a dynamically-typed scripting language. As
such, our findings relate to earlier studies on the impact of dynamically-typed
languages on software quality, in which faults exist that could be caught by
some static analysis (e.g., a compiler). For example, Gao et al. studied the
relation between dynamic/static typing and bug-proneness in JavaScript and
reported that dynamic languages let significantly more bugs slip through to
production [54].

To avoid such faults, the Perl community (or a subset thereof) could de-
cide to follow the example of JavaScript and TypeScript by implementing a

32 Mahdis Zolfagharinia et al.

superset of the Perl programming language with mandatory or optional types
annotations. They could also use dedicated static analyses to identify such
faults, as further discussed in the next subsection. We did not observe other
faults that would require other changes to the Perl language or to its use by
developers.

5.2 Implications of Build Inflation for Researchers

Our findings lead us to argue that research on build results (including failures)
must consider build configurations, the programming language version (and
that of its packages), and the nature of the programming language itself.

5.2.1 Build Configurations

Not every build result has the same value and, similar to Simpson’s Paradox,
aggregating all build results together yields incorrect trends and interpreta-
tions. One example is the illusion of decreasing build failure ratio in RQ1,
which is mostly due to a proportionally higher number of repeating build suc-
cesses on the main build configurations, while faults on the other (minority)
build configurations are overlooked.

We performed a small quantitative study in which we built explanatory
random-forest models® with build failure as the dependent variable and with
OSes and REs as independent variables. We built the models at the granularity
of packages. Out of the 12,584 packages considered in this paper, we selected
the 3,949 packages with more than 200 builds and between 20% and 80% of
failures: enough data to perform cross-validation. We grouped related packages
based on the first parts of their names, e.g., Acme, Net, Yahoo, etc. to avoid
having one model per package and over-fitting. We thus built 677 models for
677 groups of packages.

We thus obtained a set of random forest models able to classify a given
build as either successful or failing [55]. We used 10-fold cross-validation to
evaluate the stability of the models and calculated the area under the ROC
curve (AUC) for comparison against random guessing (AUC>>0.5). We also
calculate the percentages of build failures classified correctly as build failures
(true positive recall) and of successful builds classified as such (true negative
recall). The higher these percentages, the better OSes and REs explain build
failures.

A median of 88% of successful builds and 80% of failing builds
are correctly classified as such using only OSes and REs. Furthermore,
Figure 14 shows that most of the models have an AUC value greater than 0.8:
they perform substantially better than a random guess. We can also report

5 The models are not useful to predict build failures in practice because they only include
OSes and REs and ignore other factors. However, they are useful to validate the extent to
which OSes and REs alone explain build failures, i.e., to validate the strength of the link
between build configurations and build failures.

Title Suppressed Due to Excessive Length 33

0.2

AUC Recal_ TN Recall_TP

Fig. 14 Beanplot showing the distributions of AUC, true negative recall and true positive
recall across all packages. The horizontal lines show median values, while the black shape
shows the density of the distributions.

that OSes have a higher explanatory power than REs, based on the outcome
of the AUCRF algorithm [56], which implements a backward-removal process
according to the primary ranking of the variables. Hence, we confirm that
build configurations are an important variable explaining build failures and
suggest that researchers study and propose means to identify and resolve (for
example through IaC) configuration faults early.

5.2.2 Programming Languages

Developers could expect that a programming language allows straightforward
development and sharing of packages, in the sense that, if the package is work-
ing on the developers’ machines and tested successfully on their CI systems,
then they should as well on their users’ machines. However, a programming
language is more than just its syntax, grammar, and semantics. It also includes
its RE (compiler, interpreter, and other packages) and the interactions among
REs and the OSes. Hence, a package working and successfully tested on one
machine could easily fail on another machine with different packages and OS.

This situation arises from the differences between programming-in-the-
small and programming-in-the-large [57]. When programming-in-the-small, a
developer (or a small group of developers) develops a package (or program)
for one given combination of programming language, RE, and OS. When
programming-in-the-large, a large group of developers develops and maintains

34 Mahdis Zolfagharinia et al.

a package over an extended period of time, which must work for many different
versions of the language, REs, and OSes.

These differences have always existed with programming languages, since
the advent of the first computers, and gave rise to the first modern program-
ming languages, in particular Fortran. Java faces this problem as well, and Sun
Microsystems and Oracle have offered different versions of Java for embedded
systems (Java ME), regular computers (Java SE), and enterprise servers (Java
EE). Perl is no different to Java, which explains why some packages may fail
in different combinations of REs and OSes. In addition, as explained in the
next subsubsection, the dynamic nature of Perl compounds these differences.

The use of different programming models could alleviate this situation, but
cannot entirely prevent it. Component-based software engineering or contain-
ers could help (1) by making explicit the language versions, packages, and OSes
required by a package and (2) by providing these versions, packages, and OSes
independently of the underlying machine. However, components and contain-
ers also have problems and even recent technologies currently have limitations
when it comes to reproducibility, e.g., [58].

5.2.8 Nature of Programming Languages

Other findings discussed in the previous subsection show that the nature of
the Perl language is the root cause of many faults, typically faults due to
typing errors at runtime. Thus, researchers could also adapt existing and—or
propose novel static analyses to Perl to identify these faults early on. There
have been long lines of research on dynamically-typed programming languages,
for example Smalltalk [59,60] or JavaScript [61, 62]. Perl could also benefit
from such work. Besides researching and implementing static analyses, we can
only recommend Perl developers to invest in code reviews and testing (unit
tests, regression tests) to identify such faults as early as possible and before
production. We cannot recommend other changes to developers’ practices,
because these faults are intrinsic to the nature of Perl.

6 Threats to Validity

Regarding threats to external validity, this study focused on build data of
CPAN Testers, related to packages implemented in Perl. Despite the large
number of builds, OSes and REs, we cannot generalize our observations and
answers to other programming languages. Yet, the various similarities that
we discussed between CPAN Testers and OpenStack Zuul [6] or Mozilla Tree-
herder [7], as well as commonalities with other studies [3], encourage replication
studies on those CI systems.

Regarding construct validity, we fetched the build result data from the
centralized CPAN Testers build archive, which is used as the basis for all build
reports for the language. As explained in Section 3.3, we performed various
filtering steps that could impact the outcome of our study. We explicitly listed

Title Suppressed Due to Excessive Length 35

all selection criteria used to replicate our findings. Such filtering is typical for
build-result analyses, for example in the recent work on Travis CI [4].

Regarding internal validity, we observed that multiple builds may occur for
a single configuration of OSes and REs. These builds would typically exercise a
package version on different variants of an OS/RE and even on different HAs.
We ignored HAs and other factors, and, depending on the RQ, we considered
all builds or subsets thereof for a particular configuration of OSes and REs.
Future work should analyze in more detail the relation between HAs and
OSes/REs.

Build failures may also be due to flaky tests, i.e., tests that fail inconsis-
tently across different builds because of asynchronous calls, multi-threading,
or test-order dependencies. Existing work on flaky tests [63-66] focused on the
causes/detection of these flaky tests. They showed that most flaky tests are
environment-independent [65], i.e., related to majority-build failures. Future
work should analyze to what extent flaky tests impact build inflation.

Finally, we performed our study in a distributed build environment (CPAN
Testers) at the release-level, compared to previous commit-level analyses [3,4,
35,37-40]. Future work should replicate our study at the commit-level.

7 Conclusion

“Did the build fail and, if so, why?” is a seemingly simple question that de-
velopers ask on a daily basis. It has become much harder to answer in recent
years due to build inflation. Instead of a one-to-one mapping between com-
mits/releases and builds, modern CI systems perform multiple builds per com-
mit/release because of (1) the different tasks that CI systems perfom, (2) the
different configurations needed to be built, and (3) the different REs/OSes,
which are the focus of this paper. The term “inflation” implies that not all
those builds are equally useful: certain build failures will be over-emphasized,
while others will be hidden.

In particular, based on our study of 30 million CPAN builds between 2011
and 2016, and a qualitative analysis of build logs, we conclude that researchers
and practitioners should be aware that:

— when aggregating all builds, the number of builds for a given package ver-
sion can see up to 10-fold increases, while the build failure ratio seemingly
decreases substantially (RQ1);

— a given CPAN package version is built on dozens of Perl versions and OSes,
many of which are not stable, equally popular or supported (RQ2);

— many repetitive builds with predictible outcome are performed across these
different environments, adding nuance to the results of RQ1 (RQ2);

— the builds of a working release may fail due to changes in the installed Perl
version, with only a small chance for recovery (RQ3);

— some OSes, especially the less common ones amongst developers and users,
are more prone to failing their builds (RQ4);

36

Mahdis Zolfagharinia et al.

the most common build fault categories are dependency, programming,
environment, OS and test faults (RQ5);

while missing modules (dependency faults) are the main reason of failures
in both minority and majority failures, majority failures are also likely to
occur due to programming faults (OS-independent), and minority failures
due to environment faults (OS-specific) (RQ6);

the type and impact of dependency faults differ between minority and
majority failures, while we did not find such difference for non-dependency
faults (RQT).

While replication studies on other CI systems and programming languages

are necessary, we argue for more “clever” CI systems that (1) optimize the
number and type of build tasks and configurations that are scheduled and
(2) offer means to meaningfully aggregate build results in order to reduce the
overload of build inflation for developers. Researchers could play an important
role by developing and evaluating scheduling and aggregation approaches. Fur-
thermore, they should consider the build environment as a control variable in
future build-result studies.

Acknowledgements Part of this work was funded by the NSERC Discovery Grant and
Canada Research Chair programs.

References

1.

10.

11.

P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration: Improving Software
Quality and Reducing Risk (The Addison-Wesley Signature Series). Addison-Wesley
Professional, 2007.

. B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design recovery and main-

tenance of build systems,” in 2007 IEEE International Conference on Software Main-
tenance. 1EEE, 2007, pp. 114-123.

. H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge, “Programmers’ build

errors: a case study (at google),” in Proceedings of the 36th International Conference
on Software Engineering. ACM, 2014, pp. 724-734.

M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build: An explorative
analysis of travis ci with github,” in Proceedings of the 14th International Conference
on Mining Software Repositories. IEEE Press, 2017, pp. 356-367.

M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works) hitp://www.
thoughtworks. com/Continuous Integration. pdf, p. 122, 2006.

“Openstack zuul ci dashboard,” http://zuul.openstack.org.

“trecherder,” https://treeherder.mozilla.org/# /jobs?repo=mozilla-inbound, accessed:
2017-09-20.

J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, 1st ed. Addison-Wesley Professional, 2010.

. L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective, 1st ed.

Addison-Wesley Professional, 2015.

J. Micco, “Continuous integration at google scale,”
https://www.slideshare.net/JohnMiccol/2016-0425-continuous-integration-at-google-
scale, April 2016.

J. O’Duinn, “The financial cost of a checkin (part 2),”
https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/, December
2013.

Title Suppressed Due to Excessive Length 37

12.

13.

14.
15.
. S.I. Feldman, “Makea program for maintaining computer programs,” Software: Practice

17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

“CPAN comprehensive perl archive network,” http://www.cpan.org, accessed: 2015-12-
22.

M. Zolfagharinia, B. Adams, and Y.-G. Guéhéneuc, “Do not trust build results at
face value: an empirical study of 30 million cpan builds,” in Proceedings of the 14th
International Conference on Mining Software Repositories. IEEE Press, 2017, pp.
312-322.

“CPAN testers,” http://www.cpantesters.org, accessed: 2015-12-22.

T. Carrez, “Openstack testing automation,” February 2014.

and experience, vol. 9, no. 4, pp. 255-265, 1979.

Wikipedia, “List of build automation software,” November 2018.

G. Booch, Object-oriented Analysis and Design with Applications (2Nd Ed.). Redwood
City, CA, USA: Benjamin-Cummings Publishing Co., Inc., 1994.

Q. Tu and M. W. Godfrey, “The build-time software architecture view,” in Proceedings
of the IEEE International Conference on Software Maintenance (ICSM’01), ser.
ICSM ’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 398—. [Online].
Available: http://dx.doi.org/10.1109/ICSM.2001.972753

P. Kruchten, “The 441 view model of architecture,” IEEE Softw., vol. 12, no. 6, pp.
42-50, Nov. 1995. [Online]. Available: https://doi.org/10.1109/52.469759

B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution of the linux
build system,” Electronic Communications of the EASST, vol. 8, 2008.

S. MclIntosh, B. Adams, and A. E. Hassan, “The evolution of ant build systems,” in
2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010).
IEEE, 2010, pp. 42-51.

S. MclIntosh, B. Adams, Y. Kamei, T. Nguyen, and A. E. Hassan, “An empirical study
of build maintenance effort,” in Proceedings of the 33rd International Conference on
Software Engineering (ICSE), Waikiki, Honolulu, Hawaii, May 2011, pp. 141-150.

S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan, “A large-scale
empirical study of the relationship between build technology and build maintenance,”
Empirical Software Engineering, vol. 20, no. 6, pp. 15871633, 2015.

R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and B. Adams, “An empirical study
of build system migrations in practice: Case studies on kde and the linux kernel,” in
Software Maintenance (ICSM), 2012 28th IEEE International Conference on. IEEE,
2012, pp. 160-169.

C. Macho, S. McIntosh, and M. Pinzger, “Automatically Repairing Dependency-Related
Build Breakage,” in Intl. Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER), 2018.

F. Hassan and X. Wang, “Hirebuild: An automatic approach to history-driven repair
of build scripts,” in 40th Intl. Conference on Software Engineering (ICSE), 2018, pp.
1078-1089.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and productivity
outcomes relating to continuous integration in github,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ACM, 2015, pp. 805-816.
M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and benefits
of continuous integration in open-source projects,” in Automated Software Engineering
(ASE), 2016 31st IEEE/ACM International Conference on. IEEE, 2016, pp. 426-437.
A. Miller, “A hundred days of continuous integration,” in Agile, 2008. AGILE’08. Con-
ference. IEEE, 2008, pp. 289-293.

M. Leppénen, S. Mékinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V. Méntyl4, and
T. Ménnisto, “The highways and country roads to continuous deployment,” IEEE Soft-
ware, vol. 32, no. 2, pp. 64-72, 2015.

E. Laukkanen, M. Paasivaara, and T. Arvonen, “Stakeholder perceptions of the adoption
of continuous integration—a case study,” in Agile Conference (AGILE), 2015. IEEE,
2015, pp. 11-20.

C. Ziftci and J. Reardon, “Who broke the build?: Automatically identifying changes
that induce test failures in continuous integration at google scale,” in Proceedings of
the 39th International Conference on Software Engineering: Software Engineering in
Practice Track, ser. ICSE-SEIP ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp.
113-122. [Online]. Available: https://doi.org/10.1109/ICSE-SEIP.2017.13

38

Mahdis Zolfagharinia et al.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.
44.
45.

46.

47.

48.

49.

50.

51.

52.

A. E. Hassan and K. Zhang, “Using decision trees to predict the certification result of
a build,” in Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM Inter-
national Conference on. IEEE, 2006, pp. 189-198.

G. Dyke, “Which aspects of novice programmers’ usage of an ide predict learning out-
comes,” in Proceedings of the 42nd ACM technical symposium on Computer science
education. ACM, 2011, pp. 505-510.

P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors are not equal,” in Pro-
ceedings of the 17th ACM annual conference on Innovation and technology in computer
science education. ACM, 2012, pp. 75-80.

N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds break? an empirical
study,” in Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014, pp. 41-50.

T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical analysis of build
failures in the continuous integration workflows of java-based open-source software,”
in Proceedings of the 14th International Conference on Mining Software Repositories.
IEEE Press, 2017, pp. 345-355.

C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaidman, M. D.
Penta, and S. Panichella, “A tale of ci build failures: An open source and a financial
organization perspective,” in 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), Sept 2017, pp. 183-193.

Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The impact of
continuous integration on other software development practices: A large-scale empirical
study,” in Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2017. Piscataway, NJ, USA: IEEE Press, 2017, pp.
60-71. [Online]. Available: http://dl.acm.org/citation.cfm?id=3155562.3155575

K. Gallaba, C. Macho, M. Pinzger, and S. McIntosh, “Noise and heterogeneity in histor-
ical build data: An empirical study of travis ci,” in 33rd ACM/IEEE Intl. Conference
on Automated Software Engineering (ASE), 2018, pp. 87-97.

D. Stahl and J. Bosch, “Modeling continuous integration practice differences in industry
software development,” Journal of Systems and Software, vol. 87, pp. 48-59, 2014.

R. O. Rogers, “Scaling continuous integration,” in International Conference on Extreme
Programming and Agile Processes in Software Engineering. Springer, 2004, pp. 68-76.
“metacpan-api,” https://github.com/metacpan/metacpan-api, accessed: 2016-12-07.
C. Wohlin, P. Runeson, M. Hést, M. C. Ohlsson, B. Regnell, and A. Wesslén, Exper-
imentation in Software Engineering: An Introduction. Norwell, MA, USA: Kluwer
Academic Publishers, 2000.

J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-depth
semistructured interviews: Problems of unitization and intercoder reliability and
agreement,” Sociological Methods € Research, vol. 42, no. 3, pp. 294-320, 2013.
[Online]. Available: https://doi.org/10.1177/0049124113500475

S. Mirhosseini and C. Parnin, “Can automated pull requests encourage software
developers to upgrade out-of-date dependencies?” in Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 84-94. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3155562.3155577

“What happens when you push - 2012 edition,” https://atlee.ca/blog/posts/
blog20120113what-happens-when-you-push-2012-edition.html, accessed: 2017-03-07.
B. Adams and S. McIntosh, “Modern release engineering in a nutshell — why researchers
should care,” in Leaders of Tomorrow: Future of Software Engineering, Proceedings of
the 23rd IEEE International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), Osaka, Japan, March 2016.

S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software library stability
through historical version analysis,” in Software Maintenance (ICSM), 2012 28th IEEE
International Conference on. 1EEE, 2012, pp. 378-387.

cpan@perl.org, “PerlSource versions and release date,” accessed: 2016-11-01. [Online].
Available: http://www.cpan.org/src/

M. M. Lehman, “Laws of software evolution revisited,” in European Workshop on Soft-
ware Process Technology. Springer, 1996, pp. 108-124.

Title Suppressed Due to Excessive Length 39

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization:
A survey,” Softw. Test. Verif. Reliab., vol. 22, no. 2, pp. 67-120, Mar. 2012. [Online].
Available: http://dx.doi.org/10.1002/stv.430

Z. Gao, C. Bird, and E. T. Barr, “To type or not to type: Quantifying detectable
bugs in javascript,” in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 758-769.
[Online]. Available: https://doi.org/10.1109/ICSE.2017.75

R. R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann, A. Seewald, and D. Scuse,
“Weka manual for version 3-7-3,” The university of WAIKATO, 2010.

M. L. Calle, V. Urrea, A.-L. Boulesteix, and N. Malats, “Auc-rf: a new strategy for
genomic profiling with random forest,” Human heredity, vol. 72, no. 2, pp. 121-132,
2011.

F. DeRemer and H. Kron, “Programming-in-the large versus programming-in-
the-small,” in Proceedings of the International Conference on Reliable Software.
New York, NY, USA: ACM, 1975, pp. 114-121. [Online]. Available: http:
//doi.acm.org/10.1145/800027.808431

T. Glatard, L. B. Lewis, R. Ferreira da Silva, R. Adalat, N. Beck, C. Lepage,
P. Rioux, M.-E. Rousseau, T. Sherif, E. Deelman, N. Khalili-Mahani, and
A. C. Evans, “Reproducibility of neuroimaging analyses across operating systems,”
Frontiers in Neuroinformatics, vol. 9, p. 12, 2015. [Online]. Available: https:
//www .frontiersin.org/article/10.3389/fninf.2015.00012

G. Bracha and D. Griswold, “Strongtalk: Typechecking smalltalk in a production
environment,” in Proceedings of the FEighth Annual Conference on Object-
oriented Programming Systems, Languages, and Applications, ser. OOPSLA
93. New York, NY, USA: ACM, 1993, pp. 215-230. [Online]. Available:
http://doi.acm.org/10.1145/165854.165893

E. Allende, J. Fabry, R. Garcia, and E. Tanter, “Confined gradual typing,”
in Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA ’14. New York,
NY, USA: ACM, 2014, pp. 251-270. [Online]. Available: http://doi.acm.org/10.1145/
2660193.2660222

C. Anderson, P. Giannini, and S. Drossopoulou, “Towards type inference for javascript,”
in Proceedings of the 19th European Conference on Object-Oriented Programming,
ser. ECOOP’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 428-452. [Online].
Available: http://dx.doi.org/10.1007/11531142_19

A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, and G. Levi, “Fast and precise
type checking for javascript,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, pp.
48:1-48:30, Oct. 2017. [Online]. Available: http://doi.acm.org/10.1145/3133872

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in 40th Intl. Conference on
Software Engineering (ICSE), 2018, pp. 433-444. [Online]. Available: http:
//doi.acm.org/10.1145/3180155.3180164

A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the cost of regression
testing in practice: A study of java projects using continuous integration,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. New York, NY, USA: ACM, 2017, pp. 821-830. [Online].
Available: http://doi.acm.org/10.1145/3106237.3106288

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky tests,” in
22nd ACM SIGSOFT Intl. Symposium on Foundations of Software Engineering (FSE),
2014, pp. 643-653.

F. Palomba and A. Zaidman, “Does refactoring of test smells induce fixing flaky tests?”
in 2017 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), Sept 2017, pp. 1-12.

”»

