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Abstract. Software engineers often need to identify and correct in their
programs design defects, i.e., recurring design problems that hinder de-
velopment and maintenance by making programs harder to comprehend
and/or evolve. While detection of design defects is actively researched
area, their correction – mainly a manual and time-consuming activity –
is yet to be extensively investigated for automation, e.g., by means of
refactorings. In this paper, we propose an automated approach for sug-
gesting defect-correcting refactorings based on relational concept analysis
(rca). The added value of rca consists in exploiting the links between
formal objects which abound in a software re-engineering context. We
validate our approach on instances of the Blob design defect taken from
an open-source program, Azureus.

Keywords: Design Defects, Formal Concept Analysis, Refactoring, Re-
lational Concept Analysis.

1 Introduction

Design defects are wrongful solutions to recurring design problems that gener-
ate negative consequences on the quality characteristics of object-oriented (OO)
software artifacts, such as evolvability and maintainability, and therefore increase
the cost of software development [16,5]. Design defects, such as antipatterns [28]
(the Blob described later is an antipattern), are distinguished from low-level
defects, such as code smells [5] (for example, long methods and large classes).
Automatic detection and correction of design defects are thus key for the im-
provement of software quality.

We proposed a systematic method to specify design defects consistently and
precisely and to generate detection algorithms from their specifications auto-
matically [17]. We specified a language based on rules that allows to define these
specifications with structural, semantic, and measurable properties that char-
acterize a design defect. This method was a first step towards the systematic
detection of design defects. Yet both detection and correction of such defects are
time-consuming and error-prone activities hence leaving room for automated



techniques and tools. On the one hand, approaches exist to detect design de-
fects by using metrics [15,21], coupled with visualisation tools [13,14] and/or
structural data [9]. When applied on large software programs, these approaches
contribute to the development and maintenance of programs. On the other hand,
to the best of our knowledge, no approach attempts to correct design defects in
a semi- or fully automated manner.

Trifu et al. [27] propose correction strategies mapping design defects to pos-
sible solutions. However, in this context a solution is an example of how the
program should have been implemented to avoid a defect rather than a list of
steps that a software engineer should follow to correct the defect. Huchard and
Leblanc [11] use formal concept analysis (fca) to suggest restructurations of class
hierarchies to maximise the sharing of data structure and code through fields
and methods and remove code smells from the program (see [6] for a broader
discussion on the restructuration of class hierarchies through fca). These two
approaches provide interesting results but none attempts to suggest refactorings
to correct design defects.

Thus, design defects are still dealt with manually through tedious code anal-
yses and transformations. More specifically, the correction activity splits into
three main steps, possibly repeated through trials and errors: (1) Identification
of the modifications to correct the design defects, (2) Application of the modifi-
cations on the program, (3) Evaluation of the resulting modified program. Step
two of correction has been made easier by the recent introduction of refactor-
ings [5], i.e., changes performed on the source code of a program to improve
its internal structure without changing its external behaviour. Thus, possible
transformations are now well understood and documented and the emphasis lies
on step one, i.e., the decision of which modifications (or refactorings) to apply.

We propose to apply rca, a framework that extends core fca to the pro-
cessing of several sorts of individuals provided with inter-individual links, on a
suitable representation of a program to help identify appropriate refactorings
for specific design defects. In particular, we examine the benefits of rca for
the correction of a very common design defect, the Blob [28, p. 73–83], also
known as God Class [22]. The Blob reveals a procedural design (and thinking)
implemented with an OO programming language. It manifests through a large
class that plays a God-like role in the program by monopolizing the computa-
tion which is surrounded by a number of smaller data classes providing many
attributes but few or no methods.

Blobs are common and rca is particularly well-suited to suggest refactorings
to correct them. Indeed, correcting a Blob amounts to splitting the Blob class
in smaller chunks by grouping class members that work together, e.g., that col-
laborate to realize a specific responsibility of the Blob class. Thus, we extract
formal concepts to identify the desired chunks whereas both proper characteris-
tics and inter-member links, such as calls between methods, are used in concept
formation. Unlike other fca-based restructuring approaches, we work on whole
lattice regions rather than on separate concepts because candidate classes usually
stretch over several concepts in the lattice.



We illustrate our approach using a running example of a library and validate
it using Azureus version 2.3.0.6, a peer-to-peer program [25] that contains 41
Blobs for 1,626 classes (201,916 lines of code) and show that rca can suggest
relevant refactorings to improve the program. The generalisation of our results
to other design defects is briefly discussed. The contributions of the present
paper, which extends our previous work [18], are three-fold. First, it describes
a more powerful approach based on finer and richer modeling of the problem
through rca. It then proposes enhanced rules for candidate class formation out
of concept sets provided with an effective algorithm each. Third, it presents an
automated interpretation of the results by suggesting the refactorings to apply.

The paper starts by a short presentation of design defects correction (Section
2). Follow a summary on rca (Section 3) and the description of our approach
(Section 4). Section 5 presents the results of a preliminary empirical study of
the approach validity. Related work is summarised in Section 6 while further
research directions are given in Section 7.

2 Problem

In the following, we relate design defects to general quality criteria for OO
designs using an instance of the Blob as running example. The defects are shown
to erode scores on these criteria. The improvement brought by the fca-based
refactorings is discussed in later sections.

2.1 Quality Criteria

Design defects are the results of bad practices that transgress good OO prin-
ciples. Thus, we use the degree of satisfaction of those principles before and
after the correction as a measure of progress. Technically speaking, we rely on
quantification of coupling and cohesion, which are among the most widely ac-
knowledged software quality characteristics, key for the target maintainability
factor [2].

The cohesion of a class reflects how closely the methods are related to the
instance variables in the class [4] and is typically measured by the LCOM metric
(Lack of COhesion Metric) which follows the number of disjoint sets of methods
[4]. A low LCOM score witnesses a cohesive class whereas a value close to 1
indicates a lack of cohesion and suggests the class might better be split into
parts. The coupling of a class to the rest of a program is defined as the degree
of its reliance on services provided by other classes [4]. It is measured by the
CBO metric (Coupling Between Objects) [3] that counts the classes to which
a class is coupled. A well-designed program exhibits high average cohesion and
low average coupling, but it is widely known that these criteria are antinomic
hence a trade-off is usually sought.



2.2 Other Design Defects

We choose to illustrate our approach with the Blob because it impacts negatively
the two important quality characteristics: such classes show low cohesion and
high coupling. Moreover, it is a frequent defect in OO programs. For example,
a previous study revealed 1,146 Blobs in the Eclipse IDE [19] even though it is
recognised for its quality design.

We observed that an important number of design defects in addition to the
Blob are infected by a low cohesion and a high coupling. We count about ten
of them such as the Divergent Change [5, page 79], Feature Envy [5, page 80],
Inappropriate Intimacy [5, page 85], Lazy Class [5, page 83], Shotgun Surgery
[5, page 80], or Swiss Army Knife [28, page 197]. Thus, the approach presented
in the following can be applied to these defects in future work.

2.3 Running Example

Our running example (see Figure 1) was inspired by a simple library management
system, which includes a Blob described in [28]. The large controller class is the
class Library Main Control which accesses to data of the two surrounded data
classes Book and Catalog.

Fig. 1. Library Blob class diagram.

Refactoring a Blob consists in moving class members away from the large
controller class to its surrounded data classes or to new classes. For the class



Library Main Control, we notice that all methods and fields related to Book or
Catalog could be moved to their respective data classes. As a result, data classes
gain behaviour and the large class becomes less complex. However, the process
of choosing and applying refactoring is long and tedious: Software engineers need
to go through all methods and fields of the large class to identify the subsets
thereof that form consistent wholes. Yet it is a necessary pain since the result of
the process may substantially improve the quality of the program.

3 Relational Concept Analysis

fca offers a framework deriving conceptual hierarchies from sets of individuals
based on the properties these individuals share4.

3.1 Formal Concept Analysis

fca describes (formal) concepts both extensionally and intentionally, i.e., as sets
of individuals and sets of shared properties, and organizes them hierarchically—
according to a generality relation—into a complete lattice, called the concept
lattice. The lattice structure allows easy navigation and search as well as op-
timal representation of information comparable to classical OO requirement of
maximal factorisation (each property/individual canonically represented by a
unique concept). For instance, the table on the left-hand side of Fig. 2 illustrates
a binary context derived from our running Blob class Library Main Control.
Formal objects are the methods of Blob class whereas formal attributes cor-
respond to method names and the accessed fields5. Fig. 3 depicts a simplified
(reduced) labeling of the concept lattice derived from this context, yet enriched
by additional properties in the way that will be described later in this section.

Formal concepts naturally endow “cohesiveness” because their extents com-
prise members sharing all the properties from the respective intents. Concept
extents are maximal sets for the respective intents because no other individual
can be added to an extent without reducing the set of shared properties. When
individuals and properties correspond to methods and fields of a given class,
the derived concepts represent highly cohesive candidate classes that may re-
place the original class in order to improve the quality of the OO program. For
example, concept ({open Library(), close Library()},{W-library opened})
(concept c9 in Fig. 3) could be mapped into a more cohesive class. Furthermore,
we would like to consider the links between class members such as method calls
(see Fig. 2, on the right) in an attempt to reduce the class coupling in the result-
ing OO code. For instance, both methods borrow Book() and reserve Book()
call check Availability Book(). Assigning the two first methods to the same
class inevitably decreases the class coupling in the OO code. However, grouping
4 We use individuals for objects and properties for attributes to avoid confusion with

OO objects and attributes.
5 The prefixes R- and W- that appear in the field names specify the access mode,

i.e., read and write, respectively.



Fig. 2. Left: Context of methods. Right: Binary relation ’call’ between methods.

these two individuals into a formal concept based on the links they share, i.e.,
the calls of comparable or same methods, is beyond the scope of classical fca.

3.2 Bringing Relations to Concept Intents

Relational concept analysis (rca) is an approach for extracting formal concepts
from sets of individuals described by properties, called also ‘local properties’, and
links. rca comes up with formal concepts that are connected in the same way de-
scription logics concepts are connected by means of role restrictions involving log-
ical quantifiers. rca input data are organized within a structure called relational
context family (rcf) that comprises a set of binary contexts Ki = (Oi, Ai, Ii) and
set of binary relations rk ⊆ Oi ×Oj , where Oi and Oj are the individual sets of
Ki (domain) and Kj (range), respectively. For instance, the context encoding the
access of fields by methods and the binary relation ‘call ’ that links methods of
the Blob with one another form a sample rcf (see Fig. 2). A scaling mechanism
is used to translate links into context properties. To that end, relations are inter-
preted as features whose values are individuals sets, hence the target properties
are predicates describing these sets. The predicates are derived from the avail-
able concept lattice on the underlying context. Thus, for a given relation seen as
a function r : Oi → 2Oj , new properties, called relational, of the form qr:c, are
added to Ki, where c is concept on Kj and q a scaling operator (comparable to
role restriction connectors from description logics). An individual o ∈ Oi gets a
property qr:c depending on the relationship between its link set r(o) and the ex-
tent of c = (X, Y ). The relationship can be either inclusion, i.e., r(o) ⊆ X (called



universal scaling schema, q is ∀), or non-empty intersection, i.e., r(o)∩X (called
existential scaling schema, q is ∃). Formally, given a context Ki=(Oi, Ai, Ii), a
relation r ⊆ Oi×Oj and the lattice Lj of Kj , the image of Ki for the existential
scaling operator is: sc∃(Ki) = (Oi, A

+
i , I+

i ), where A+
i = Ai ∪ {∃r : c|c ∈ Lj}

and I+
i = Ii ∪{(o,∃r : c)|o ∈ Oi, c = (X, Y ) ∈ Lj , r(o)∩X 6= ∅}). In the present

study, as in the vast majority of software engineering applications of rca, cur-
rent or anticipated, only the existential scaling is suitable. Hence we shall be
systematically omitting the ∃ sign in attribute names to keep notations simple.

call:c0 call:c2 call:c4 call:c5 call:c6 call:c11

borrow Book() × × ×
issue LibraryCard() × ×
reserve Book() × × ×
sort Catalog() × × × ×

Table 1. Scaling of the Blob context along the relation call. For space limitation,
individuals that are not affected by relational scaling are omitted.

For example, assume methods are scaled along relation call regarding the
lattice of the context in the left hand side of Fig. 2, which is composed of the
concepts {c0, c2, c4, c5, c6, c11} and the respective precedence links illustrated
in Fig. 3. Since the method sort Catalog() calls the method add Book() which
appears in the extent of concepts c0, c2 and c5 and calls the method remove -
Book() which belong to the extent of concepts c11 and c5, the Blob context is
extended by the relational properties call:c0, call:c2, call:c5 and call:c11. Table 1
presents the integration of the relation call to the Blob context.

The relational scaling is only one step in the global analysis process which,
given a rcf, yields a set of lattices, one per context, called relational lattice family
(rlf). The rlf is defined as the set of lattices whose concepts jointly reflect all
the shared properties and links among individuals of the rcf. Its construction
is an iterative process because a relational scaling step modifies contexts and
thereby the corresponding lattices which in turn may require a new scaling to
reflect the newly formed concepts and the link sharing they provoke. Iterations
stop whenever a fixed point is reached, i.e., further scaling leaves all the lattices
in the rlf unchanged. In the final lattices, a relational property is interpreted
as an association between two concepts, the one whose intent it belongs to and
the one it refers to explicitly.

Lattice evolution is illustrated within the analysis of the Blob rcf in Fig. 2
using rca process yields the concept lattice illustrated in Fig. 3. The final lat-
tice of the Blob is different from the initial one due to the relational information
inserted into the scaled version of the Blob context. Indeed, the individuals are
assigned relational properties that lead to additional property sharing among
these. By factoring out the new properties into concept intents, links between



individuals are lifted up to the concept level, yielding relations between con-
cepts6. Thus, in Fig. 3, previously existing concepts can be seen getting new
properties while completely new concepts emerge. For example, the concept c16
which represents the method sort catalog() has been assigned the relational
properties call:c0 and call:c11 which means that sort catalog() calls methods
in the extent of concept c0 and c11, namely add book() and remove book().
Furthermore, methods borrow Book() (concept c3) and reserve Book() (con-
cept c12) have top concept as immediate successor in the initial lattice. Their link
with the method check Availability Book() (concept c4) has being revealed
through scaling. They form a new concept c19 (see Fig. 3) which represents the
set of methods that call check Availability Book().

Fig. 3. The lattice of the context of methods shown in Fig. 2.

6 Observe that for compactness reasons, only non-redundant relational properties are
visualized in concept intents, i.e., the ones referring to the most specific concepts.



4 Correction of Design Defects using RCA

Our intuition is that design defects resulting in high coupling and low cohesion
could be improved by redistributing class members among existing or new classes
to increase cohesion and/or decrease coupling. rca provides a particularly suit-
able framework for the redistribution because it can discover strongly related
sets of individuals with respect to shared properties and inter-individual links
and hence supports the search of cohesive subsets of class members. Fig. 4 de-
picts our approach for the identification of refactorings to correct design defects
in general and the Blob in particular. It shows the tasks of detection of design
defects and of correction of user-validated defects.

4.1 Overall process

We define a three-step rca-based refactoring process that follows a two-step
defect detection process. First, we build a model of the program which is simpler
to manipulate than the raw source code and therefore eases the subsequent
activities of detection and correction. The model is instantiated from a meta-
model to describe OO programs. Next, we apply well-known algorithms based
on metrics and–or structural data on this model to single out suspicious classes
having potential design defects [17]. For each suspicious class, we automatically
extract a rcf that encodes relationships among class members from the model
of the program. Then, the obtained rcf is fed into a rca engine which derives
the corresponding concept lattices. Finally, the discovered concepts are explored
using some simple algorithms, which apply a set of refactoring rules that allow
the identification of cohesive sets of fields and methods. The approach suggests a
set of refactorings that jointly amount to splitting the Blob into as many classes
as there are cohesive sets and merge the content of the surrounding classes with
the new classes whenever appropriate.

Detection 

RCA  Engine 

Code Representation 

       RCF modeling Interpretation 

        Code 

Model 

1 

Suspicious Classes 

Relational Context Family Relational Lattice Family

Refactorings 

2 

3 4 5 

Metamodel PADL Metric-based Detection 

RCA-based Correction 

Fig. 4. RCA-based Workflow for the Detection and Correction of Design Defects.



4.2 RCF Extraction

To correct design defects, we need to identify cohesive sets of methods with
respect to the mode of usage of fields, i.e., read or write, and call between
methods. Hence, the individuals are methods of the large class and properties
are its fields. The incidence relation represent the access of fields in read/write
mode. In order to differentiate between the two access modes, the prefix -R
and -W are added to the name of the fields as illustrated in Fig. 2. Method
invocations within the large class are encoded by a dedicated inter-individuals
relation denoted call (see table in the left hand side of Fig. 2).

The formal attributes were derived from names of methods and added to the
method context. These attributes allow the emergence of a single concept for each
method, called method concept7, in the corresponding lattice. Beside listing the
entire set of properties of a given method, the concept method helps preserving
one-to-one invocation between methods. These details can be lost during the
scaling step that aims at integrating the relation call into the context of the
large class by substituting one-to-many invocations for those of type one-to-one.

4.3 Deriving the lattice

Fig. 3 represents the concept lattice obtained by the rcf engine from the context
given in Fig. 2. The concepts of the lattice represent the refactoring opportuni-
ties of the design defect. Indeed, concepts such as c9 exhibit group of methods
using the same sets of fields and fields used by cohesive sets of methods. These
concepts are considered as class candidates because they are cohesive. In addi-
tion, concepts such as c3 and c12 highlight subsets of cohesive methods, because
methods calling the same set of other methods are highly cohesive. A third
category of concepts such as c9 and c13 represent the use-relationship between
methods of the large class and the surrounding data classes. The study of these
concepts allow to assess the coupling between the large class and its surrounding
data classes. Thus, we can identify which methods and fields of the large class
should be moved to surrounding classes.

4.4 Suggesting Refactorings

The rlf of the Blob is used to interpret the inner structure of the Blob and then
suggest refactorings. More specifically, we apply algorithms looking for concepts
that reflect the presence of highly cohesive and weakly coupled sets. Intuitively,
shared usages of fields and calls of methods is a sign of cohesion whereas cou-
pling is directly expressed by the reliance of a method on a surrounding class
(method and/or field). Following these design guidelines, we correct the Blob in
two ways. First, we move disjoint and cohesive subsets of methods and/or fields
that are related to a data class in that data class. Two refactorings describe such
migration between classes: Move Method [5, p.142] and Move Field [5, p.146].

7 The smallest extent in the lattice containing this method.



Second, we organise cohesive subsets that are not related to data classes in sep-
arate classes. In addition to the two previous refactorings, we use the refactoring
Extract Class [5, p.149], which consists in creating a new class and moving the
chosen fields and methods from the old class to the new class using the two first
previous refactorings.

We have specified three refactoring rules to build incrementally cohesive sets
by visiting the concept lattice of methods8. These rules are applied in a row,
i.e., we apply the two first rules that deal with the access of fields by methods
in read/write mode and then rule that handle method calls.

Rule 1. Methods accessing in write mode the same set of fields are gathered in
a single cohesive set.

Rule 2. Methods accessing in read mode the same set of fields are gathered in
a single cohesive set if the number of common fields which they access is higher
than the number of fields they access separately.

Note that these two rules are inspired from the object identification approach
described in [23] where grouping of methods is based on the accessed fields, with
respect to the number of fields they access separately. The obtained cohesive
sets are merged according to the following rule:

Rule 3. Methods that call the same set of methods are put in a single cohesive
set if the number of jointly called methods is higher than the number of methods
called separately.

For instance, applying the three previous rules on the running example of the
Library blob class, we obtain several cohesive sets as illustrated in Fig. 5, on
the left. The cohesive sets that should be migrate in the data classes are shown
in Fig. 5 on the right. This last step is currently performed manually but planned
to be automated.

5 Experimental Study

We use PADL [10] to model source code and Galicia, v.2.1, to construct and
visualize the concept lattices. PADL is the meta-model at the heart of the Ptidej
tool suite (Pattern Trace Identification, Detection, and Enhancement in Java)
[8]. Galicia is a multi-tool open-source platform for creating, visualizing, and
storing concept lattices [20]. Both tools communicate by means of XML files
describing data and results. Thus, an add-on to Ptidej generates contexts in
the XML format of Galicia, which are then transformed by the tool into lattices
and shown on screen for exploration.

In order to validate the proposed approach for the detection and correction
of Blob design defects, we consider an open source program: Azureus version
8 We provide the implementation details of these rules in an Appendix.



Fig. 5. Left: The cohesive sets obtained from class Library Main Control depicted in
Fig. 1 . Right: Moving these cohesive Sets to existing data-classes or new-classes.

2.3.0.6. We use a freely available program to ease comparisons and replications
of our experiments. Azureus version 2.3.0.6 (201,916 lines of code, 1,626 classes,
561 interfaces) is a peer-to-peer client implementing the BitTorrent protocol with
a comprehensive user-interface and extension mechanisms. We choose Azureus
because it has been heavily changed and maintained since its first release in July
2003. The addition of new features, optimisations, and bugs fixes have introduced
design defects.

We found 41 Blobs in Azureus by applying detection algorithms. We no-
tice that the underlying classes are difficult to understand, maintain, and reuse
because they have a large number of fields and methods. For example, the
class DHTTransportUDPImpl in the package com.aelitis.azureus.core.dht.-
transport.udp.impl, which implements a distributed sloppy hash table (DHT)
for storing peer contact information over UDP, has an atypically large size. It
declares 42 fields and 66 methods for 2,049 lines of code. It has a medium-
to-high cohesion of 0.542 and a high coupling of 81 (8th highest value among
1,626 classes). The data classes that surround this large class are: Average,
HashWrapper in package org.gudy.azureus2.core3.util and IpFilterMan-
agerFactory in package org.gudy.azureus2.core3.ipfilter. Table 2 pro-
vides the results of applying our rules on three different Blobs classes detected
in Azureus. It is noteworthy that the results provided by our method have been
assessed manually: Among the set of all cohesive sets in the output we identi-
fied those whose semantics could be clearly established and it confirmed their
cohesiveness. A measure for the precision of our method is the ratio of the really
cohesive sets to the total number of sets output by the method. As Table 2 in-
dicates, the precision may vary within a wide range (from 30 to 70 % of correct
guesses).

The cohesive sets suggested by our method include an important number of
small cohesive sets, which include generally at most one field and one or two
methods. This explains why we did not get a good precision. The other concise



sets gather between 10 and 20 fields/methods and are good candidates for the
creation of new classes because they define a specific responsibility or semantics.

To increase the robustness of our method, we need to define additional rules
related to the access of fields and methods by methods not only within one class
but also located in other associated classes. Moreover, our analysis is purely
static. Thus, we need to enhance our method with a dynamic analysis to preserve
the behavior of the program. Finally, the restructuring should be semi-supervised
by an expert because only experts could assess the relevance of grouping ele-
ments. The method should be seen as a support for restructuring huge number
of data. Thus, we share Snelting’s opinion that an interactive restructuring per-
formed by the software engineer is more appropriate.
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DHTTransportUDPImpl (42+66) 108 2,049 0.542 81 (27+32) 59 10 7
DHTControlImpl (47+80) 127 1,868 0.52 67 (35+62) 97 19 11
TRTrackerBTAnnouncerImpl (36+47) 83 1,393 0.948 54 (24+33) 57 16 5

Table 2. Blob Classes in Azureus and the Number of Cohesive Sets

6 Related Works

Few studies have explored the semi-automatic correction of design defects. Thus,
we only sketch work related to design defects and to the use of fca in software
maintenance.

Sahraoui et al. in [23] describe an approach and algorithms for identifying
objects in procedural code. This approach uses artificial intelligence techniques
and includes the five following steps: first, some metrics such as the number of
routines or the number of global variable are calculated to determine the profile
of the application analyzed. The profile allows to choose the abstraction method
the most appropriated for the identification of objects such as reference graphs,
routine interdependence graphs, or type visibility graphs. Then, objects are iden-
tified using different fca algorithms of graph decomposition and formation of
concepts. The third step consists in identifying the methods of these objects.
Relations between objects such as associations and generalisations are found in
the fourth step. Finally, the procedural program is transformed using the object
model determined.

Snelting and Tip [24] proposed a method based on concept analysis for ana-
lyzing the usage of a class hierarchy. They studied how the members of a class



hierarchy are used in the executable code of a set of applications by examin-
ing relationships between variables and class members, and relationships among
class members. This method allows the identification of anomalies in the design
of class hierarchies such as class members that are redundant or that can be
moved into a derived class. In contrast, we detect design defects at a higher level
and specified in the literature. Moreover, we are not only interested in defects
that could arise within class hierarchies only, but also among a set of classes
with association relationships.

Godin and Mili [7] used gallois lattices for the class hierarchy redesign using
the signatures of classes. The starting point in their approach is a set of inter-
faces of classes. A binary table is built representing for each interface the set of
methods supported. The lattice derived from this table shows how the hierar-
chy of classes implementing these interfaces has to be organised to optimise the
repartition of methods in the hierarchy.

Marinescu [16] presented an approach based on metrics for detecting design
defects in the form of detection strategies. In essence, metrics-based rules capture
deviations from good design principles and heuristics. The advantage lies in the
combination of different metrics through filtering and composition. However,
metrics alone can hardly detect a design flaw because the structure of a design is
not measurable. In our approach, we combine different metrics for the detection
of design defects with a clustering and visualisation technique, fca, that allows
the design structure to be fully comprehended.

Our work is closed to Kirk’s et al. work [12] but in their work, they use the
technique of attribute slicing to refactor large classes. Attribute slicing is a form
of decomposition slice based on the attributes or fields of a class. They identify
and split a large class on the basis of the usage made by the methods of the
attributes, i.e., if there are subsets of methods which use distinct subsets of at-
tributes, then they identify a class composed of different abstractions and should
be refactored into a number of smaller classes. They concentrated on identifying
only the Large Class code smell and thus, their approach is applied at a local
scope, i.e., within a class. They did not interested in defects that involve several
classes such as the Blob and relationships or dependencies between methods.
However, an interesting advantage of their approach is that attribute slicing can
be applied at the method level but also at the intra-method level. An intra-
method level attribute slice takes into account the detailed control structure of
a method, and thus, returns only the instructions that updates or manipulates
the attribute. Their approach needs yet to be implemented and validated into
larger examples.

Tonella and Antoniol used fca to infer recurring patterns in models of pro-
grams [26]. They obtained significant results in inferring groups of classes hav-
ing common structural relations without using any library of patterns. However,
their approach seems of limited interest to the detection of design defects, be-
cause it can detect only structural relations, whereas design defects are often
characterised by measurable properties (e.g., a large class has a large number of



fields and methods). fca is not focused on numerical measurement and hence
needs some assistance from metrics-based techniques.

Arévalo et al. applied fca to identify implicit dependencies among classes in
program models [1]. They build models from source code and extract contexts
from thee models. Concepts and lattices generated from the contexts with the
ConAn engine are filtered out to build a set of views at different levels of ab-
straction. At the class level, views show the access of the state by the methods
and the patterns of calls among methods in a class and, hence, help to assess
the cohesion of the class. At the class hierarchy level, based on the different de-
pendencies among classes of a hierarchy, views highlight common and irregular
forms of hierarchies to deduce possible refactorings. At the program level, they
refined and extended the approach of Tonella et al. to any (recurring) regulari-
ties such as design patterns, architectural constraints, idioms, etc. Our approach
is similar in that it uses fca to detect flaws, but our choices of the elements and
properties to be analysed are guided by the descriptions of design defects.

7 Conclusion

We proposed an approach to use RCA to suggest appropriate refactorings to cor-
rect certain design defects. In particular, we showed how our approach can help
refactoring programs with Blob design defects. Unlike other FCA-based restruc-
turing approaches, we worked on whole lattice regions rather than on separate
concepts because candidate refactoring are inferred from several concepts in the
lattice. We illustrated our approach using an example of a Library management
system and validated it on Azureus v2.3.0.6. We showed that using RCA, our
approach could suggest relevant refactorings to improve the program. The gen-
eralisation of our results to other design defects is briefly discussed and will be
developed in future work. Future work will also include assessing of our approach
more programs and discussing the proposed refactorings with their developers
and apply them. We also plan to performed quantitative studies on the trade-off
between cohesion and coupling.
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editors, proceedings of the 4th international Workshop on Object-Oriented Reengi-
neering. Universiteit Antwerpen, July 2003.

28. Hays W. McCormick III Thomas J. Mowbray John Wiley & Sons Inc. William
J. Brown, Raphael C. Malveau. AntiPatterns – Refactoring Software, Architec-
tures, and Projects in Crisis. Robert Ipsen, 1998.



Appendix

Implementing Rule 1. We iterate the lattice and record all concepts related to
fields with the prefix ‘W-’. We mark all these concepts as visited. We sort this list
in reverse order by the number of fields with ‘W-’. Thus, fields that are accessed
in write mode by a high number of methods are processed first. For example,
the concept c3 in Fig. 3 is processed first because of the related concept c13.
For each concept of the list, we create a new cohesive set and apply the method
applyRuleWrite(). This method consists in moving the current(s) field(s)
(borrow date book et return date book in concept c13) with the refactoring
Move Field and for each method in the intent of the current concept (borrow -
Book()) that has not yet been included in a set (i.e., not yet visited), we move it
to the current cohesive set using the refactoring Move Method. Then, recursively,
we check the parents of the current concept and the children of a parent if
interesting to explore. The children of a parent are interesting to explore if the
parent contains at least one ‘W-’ field also contained by the current concept.
For example, only the children of the parent c13 of the concept c3 are interesting
to explore. We reapply the rule applyRuleWrite() on the children.

Implementing Rule 2. This rule consists in finding the best cohesive set of
methods that access to a common set of fields in read mode. For each concept
related to common fields in read mode and not yet visited i.e., not processed
when applying the rule 1, and thus not included in a set, we calculate a ratio. The
ratio corresponds to the number of fields in common with their total number of
fields. We calculate the mean of all the ratios corresponding to each concept and
retain only groups of concepts that have a mean higher than 0.5 i.e., concepts
whose methods accessing a common number of fields is higher than their own
number of fields in average. We obtain thus a list of candidate sets of concepts
that we sort in reverse order to process first concepts with a better ratio. For each
sets of concepts, we create a new cohesive set by moving the methods and fields
with the respective appropriate refactorings (Move Field and Move Method).

Implementing Rule 3. This rule is similar to rule 2. The difference is that
we identify common methods called by one or several methods of the resulting
cohesive sets built from rules 1 and 2. We calculate also a ratio and select the
best candidates, and then merge the cohesive sets according to the value of their
ratio.


